2014~2015第一学年度初三数学上期末测试卷 含答案
2014--2015年初三数学期末试题及答案

A B DEABCD2014-2015学年第一学期初三年级期末质量抽测数 学 试 卷 120分钟, 120分 2015.1一、选择题(本题共32分,每小题4分)在下列各题的四个备选答案中,只有一个是正确的. 1.已知∠A 为锐角,且sin A =12,那么∠A 等于A .15°B .30°C .45°D .60°2.下列图形中,既是轴对称图形又是中心对称图形的是 A .等边三角形B .等腰直角三角形C .正方形D .正五边形3.如图,等边三角形ABC 内接于⊙O ,那么∠BOC 的度数是 A .150° B .120° C .90° D .60°4.如图,在△ABC 中,DE ∥BC ,分别交AB ,AC 于点D ,E . 若AD =1,DB =2,则△ADE 的面积与△ABC 的面积的比等于A .12 B .14 C .18D .19 5.如图,在△ABC 中,D 为AC 边上一点,若∠DBC =∠A ,BCAC =3,则CD 的长为A .1B .32C .2D .526.如图,点P 是第二象限内的一点,且在反比例函数ky x=的图象上,PA ⊥x 轴于点A , △PAO 的面积为3,则k 的值为A .3B .- 3C . 6D .-67.如图,AB 为⊙O 的弦,半径OD ⊥AB 于点C .若AB =8,CD =2,则⊙O 的半径长为A B .3 C .4 D .58.如图,菱形ABCD 中,AB =2,∠B =60°,M 为AB 的中点.动点P 在菱形的边上从点B 出发,沿B →C →D 的方向运动,到达点D 时停止.连接MP ,设点P 运动的路程为x , MP 2=y ,则表示y 与x的函数关系的图象大致为二、填空题(本题共16分,每小题4分) 9. 抛物线2(2)1y x =-+的顶点坐标是 .10.已知关于x 的一元二次方程220x x m --= 有两个不相等的实数根,则m 的取值范围是 .11. 如图,点P 是⊙O 的直径BA 的延长线上一点,PC 切⊙O 于 点C ,若30P ∠=,PB =6,则PC 等于 .12.如图,在平面直角坐标系中,已知点A (3,0),B (0,4),记Rt △OAB 为三角形①,按图中所示的方法旋转三角形,依次得到三角形②,③,④,……,则三角形⑤的直角顶点的坐标为 ;三角形⑩的直角顶点的坐标为 ;第2015个三角形的直角顶点的坐标为 .①A三、解答题(本题共30分,每小题5分)13. 计算2sin 453tan 45cos60︒-︒-︒+︒. 14. 解方程:01322=+-x x .15.已知△ABC 如图所示地摆放在边长为1的小正方形组成的网格内,将△ABC 绕点C 顺时针旋转90°,得到△11A B C . (1)在网格中画出△11A B C ;(2)直接写出点B 运动到点1B 所经过的路径的长.16. 如图,在平面直角坐标系xOy 中,一次函数y ax b =+的图象与反比例函数k y x=的图象交于A (-1,4),B (2,m )两点. (1)求一次函数和反比例函数的解析式; (2)直接写出不等式ax b +<kx的解集.17.如图,在△ABC 和△CDE 中,∠B =∠D =90°,C 为线段BD 上一点,且AC ⊥CE .AB =3,DE =2,BC =6.求CD 的长.18.如图,在Rt △ABC 中,∠C =90°,AD 平分∠BAC ,交BC 于点D ,AC=3.(1)求∠B 的度数;(2)求AB 及BC 的长. 四、解答题(本题共20分,每小题5分) 19.已知抛物线22(21)y x m x m m =--+-. (1)求证:此抛物线与x 轴必有两个不同的交点;(2)若此抛物线与直线33y x m =-+的一个交点在y 轴上,求m 的值.EADBCBA20.如图,在修建某条地铁时,科技人员利用探测仪在地面A 、B 两个探测点探测到地下C 处有金属回声.已知A 、B 两点相距8米,探测线AC ,BC 与地面的夹角分别是30°和45°,试确定有金属回声的点C 的深度是多少米?21.已知: 如图,在Rt △ABC 中,∠ C =90°,BD 平分∠ABC ,交AC 于点D ,经过B 、D 两点的⊙O 交AB 于点E ,交BC 于点F , EB 为⊙O 的直径.(1)求证:AC 是⊙O 的切线; (2)当BC =2,cos ∠ABC 13时,求⊙O 的半径.22.已知,正方形ABCD 的边长为6,点E 为BC 的中点,点F 在AB 边上,且∠EDF =45°.(1)利用画图工具,在右图中画出满足条件的图形; (2)猜想tan ∠ADF 的值,并写出求解过程.AB CD五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.已知:如图,一次函数2+=x y 的图象与反比例函数ky x=的图象交于A 、B 两点,且点A 的坐标为(1,m ). (1)求反比例函数ky x=的表达式; (2)点C (n ,1)在反比例函数ky x=的图象上,求△AOC 的面积; (3)在x 轴上找出点P ,使△ABP 是以AB 为斜边的直角三角形,请直接写出所有符合条件的点P 的坐标.24.如图,已知△ABC 和△ADE 都是等腰直角三角形,∠BAC =∠DAE = 90°,AB =AC ,AD =AE .连接 BD 交AE 于M ,连接CE 交AB 于N ,BD 与CE 交点为F ,连接AF . (1)如图1,求证:BD ⊥CE ;(2)如图1,求证:FA 是∠CFD 的平分线; (3)如图2,当A C =2,∠BCE =15°时,求CF 的长.FEDCBA图1NM图2ABCDE F MN备用图25.如图,二次函数y=-x2+bx+c的图象与x轴交于点A(﹣1,0),B(2,0),与y轴相交于点C.(1)求二次函数的解析式;(2)若点E是第一象限的抛物线上的一个动点,当四边形ABEC的面积最大时,求点E的坐标,并求出四边形ABEC的最大面积;(3)若点M在抛物线上,且在y轴的右侧.⊙ M与y轴相切,切点为D.以C,D,M为顶点的三角形与△AOC相似,求点M的坐标.备用图2014-2015学年第一学期初三年级期末质量抽测(样题)数学试卷参考答案及评分标准 2015.1一、选择题(本题共32分,每小题4分)三、解答题(本题共30分,每小题5分)13.解:原式211322332+⨯-⎪⎪⎭⎫ ⎝⎛-⨯= …………………………4分 213213+--= 0=. ……………………………………5分14.解法一:∵ 2a =,3b =-,1c =,∴ .1124)3(2=⨯⨯--=∆ ……………………………………2分 ∴ 413±=x . ……………………………………3分 ∴ 原方程的根为:1211.2x x ==, ……………………………………5分 解法二: 21232-=-x x . 16921169232+-=+-x x . ………………………………………1分161432=⎪⎭⎫ ⎝⎛-x . ………………………………………2分4143±=-x . ………………………………………3分 ∴ 11x =,212x =. ………………………………………5分 解法三:()()0112=--x x ………………………………………2分 210x -=,或10x -=. ………………………………………3分 ∴ 11x =,212x =. ………………………………………5分15.解:(1)如图所示,△A 1B 1C 即为所求作的图形. ……………3分 (2)1BBπ. ……………………………5分16.解:(1)∵ 反比例函数ky x=经过A (-1,4),B (2,m )两点, ∴ 可求得k =-4,m =-2.∴ 反比例函数的解析式为 4y x=-.B (2,-2). ……………………………………2分 ∵ 一次函数y ax b =+也经过A 、B 两点,∴ 422.a b a b =-+⎧⎨-=+⎩,解得 22.a b =-⎧⎨=⎩,∴ 一次函数的解析式为 22y x =-+. ……………………………………3分 (2)如图,-1<x <0,或x >2. ……………………………………5分17.解:∵ 在△ABC 中,∠B =90º, ∴ ∠A +∠ACB = 90º.E ADB∵ AC ⊥CE , ∴ ∠ACB +∠ECD =90º.∴ ∠A =∠ECD . ……………………………………2分 ∵ 在△ABC 和△CDE 中,∠A =∠ECD ,∠B =∠D =90º,∴ △ABC ∽△CDE . ……………………………………3分∴ DEBC CDAB =. ……………………………………4分∵ AB = 3,DE =2,BC =6,∴ CD =1. ……………………………………5分 18.解:(1)∵ 在△ACD 中,90C ∠=︒,CD =3,AC =3, ∴tan 3CD DAC AC∠==∴ ∠DAC =30º. ……………………………………1分 ∵ AD 平分∠BAC ,∴ ∠BAC =2∠DAC =60º. ……………………………2分 ∴ ∠B =30º. …………………………………………3分(2) ∵ 在Rt △ABC 中,∠C =90°,∠B =30º,AC =3,∴ AB =2AC =6. ……………………………………4分DCBAtan3ACBCB=== (5)分四、解答题(本题共20分,每小题5分)19(1)证明:∵△=[]22(21)4()m m m----…………………………………… 1分=2244144m m m m-+-+=1>0,∴此抛物线与x轴必有两个不同的交点.…………………………… 2分(2)解:∵此抛物线与直线33y x m=-+的一个交点在y轴上,∴233m m m-=-+. (3)分∴2230m m+-=.∴13m=-,21m=. (5)分∴m的值为3-或1.20.解:如图,作CD⊥AB于点D.∴∠ADC=90°.∵探测线与地面的夹角分别是30°和45°,∴∠DBC=45°,∠DAC=30°.∵在Rt△DBC中,∠DCB=45°,∴DB=DC. ............................ 2分∵在Rt△DAC中,∠DAC=30°,∴ AC=2CD . ........................... 3分 ∵ 在Rt △DAC 中,∠ADC =90°,AB =8, ∴ 由勾股定理,得 222AD CD AC +=.∴ 222(8)(2)CD CD CD ++=. ……………………………………… 4分 ∴4CD =±∵4CD =- ∴4CD =+∴ 有金属回声的点C 的深度是(4+)米. ……………………………… 5分 21(1)证明:如图,连结OD .∴ OD OB =. ∴ 12∠=∠. ∵ BD 平分ABC ∠, ∴ 13∠=∠.∴ 23∠=∠. …………………………..1分 ∴ OD BC ∥. ∴ 90ADO C ∠=∠=°. ∴ OD AC ⊥. ∵ OD 是⊙O 的半径,∴ AC 是⊙O 的切线. (2)分(2)解:在Rt △ACB 中,90C ∠=,BC =2 , cos ∠ABC 13=, ∴ 6cos BCAB ABC==∠. …………………………………………………… 3分设O ⊙的半径为r ,则6AO r =-. ∵ OD BC ∥, ∴ AOD ABC △∽△. ∴OD AOBC AB =. ∴626r r -=. 解得 32r =. ∴ O ⊙的半径为32. ………………………………………………………… 5分22. 解:(1)如图1. ………………………… 1分(2)猜想tan ∠ADF 的值为13.……………………2分 求解过程如下: 如图2.在BA 的延长线上截取AG=CE ,连接DG . ∵ 四边形ABCD 是正方形,∴ AD=CD=BC=AB=6,∠DAF=∠ABC=∠ADC=∠BCD = 90°. ∴ ∠GAD = 90°.∴ △AGD ≌ △CED . ………………………………3分FEDCBA 图1∴ ∠GDA=∠EDC ,GD=ED ,AG=CE . ∵ ∠FDE =45°,∴ ∠ADF +∠EDC=45°. ∴ ∠ADF +∠GDA =45°. ∴ ∠GDF=∠EDF . ∵ DF = DF ,∴ ∠GDF ≌∠EDF . ……………………………… 4分 ∴ GF =EF . 设AF =x , 则FB=6-x ,∵ 点E 为BC 的中点, ∴ BE=EC=3.∴ AG=3. ∴ FG=EF=3+x .在Rt △BEF 中,∠B =90°, 由勾股定理,得 222BF BE EF +=, ∴ 2223(6)(3)x x +-=+ . ∴ x=2.∴ AF=2. ……………………………………………………………… 5分∴ 在Rt △ADF 中,tan ∠ADF =AF AD =13. 五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)GABCDEF图223.解:(1)∵点A (1,m )在一次函数2+=x y 的图象上,∴ m=3.∴ 点A 的坐标为(1,3). (1)分∵点A (1,3)在反比例函数ky x=的图象上, ∴ k =3. ∴反比例函数ky x=的表达式为3y x =.…………………………………………2分 (2)∵点C (n ,1)在反比例函数3y x=的图象上, ∴ n=3. ∴ C (3,1). ∵ A (1,3),∴ S △AOC =4. …………………………………………………………5分(3)所有符合条件的点P 的坐标:P 1(1,0),P 21,0). ……………………………………………7分 24.(1)证明:如图1.∵ ∠BAC =∠DAE =90°,∠BAE =∠BAE ,∴ ∠CAE =∠BAD .NMF ED CBA在△CAE 和△BAD 中,AC AB CAE BAD AE AD =⎧⎪∠=∠⎨⎪=⎩,,, ∴ △CAE ≌△BAD . (1)分∴ ∠ACF=∠ABD . ∵ ∠ANC=∠BNF , ∴ ∠BFN =∠NAC =90°.∴ BD ⊥CE . ……………………………………2分(2)证明:如图1’.作AG ⊥CE 于G ,AK ⊥BD 于K . 由(1)知 △CAE ≌△BAD ,∴ CE = BD ,S △CAE =S △BAD . ………………… 3分 ∴ AG = AK .∴ 点A 在∠CFD 的平分线上. ………… 4分即 FA 是∠CFD 的平分线.(3)如图2.∵ ∠BAC = 90°,AB =AC ,∴ ∠ACB =∠ABC =45°.∵ ∠BCE =15°,MN图1'ABCDEFKG图2ABCDE F MN∴ ∠ACN =∠ACB-∠BCE= 30°=∠FBN . 在Rt △ACN 中∵ ∠NAC = 90°,AC =2,∠ACN = 30°,∴ ,33CN AN ==. …………………………………… 5分∵ AB=AC =2,∴ BN= 2-3. …………………………………… 6分在Rt △ACN 中∵ ∠BFN = 90°,∠FBN = 30°,∴ 1323NF BN -==.∴1CF CN NF =+=+ …………………………………… 7分25.解:(1)∵ 二次函数y=-x 2+bx +c 的图象与x 轴相交于点A (﹣1,0),B (2,0),∴ 01,042.b c b c =--+⎧⎨=-++⎩解得 1,2.b c =⎧⎨=⎩∴ 二次函数的解析式为y = -x 2+x+2. ………………………………………2分(2)如图1.∵二次函数的解析式为y =-x 2+x +2与y 轴相交于点C , ∴ C (0,2).设 E (a ,b ),且a >0,b >0. ∵ A (-1,0),B (2,0), ∴ OA =1,OB =2,OC =2. 则S 四边形ABEC = 11112(2)(2)222b a a b ⨯⨯++⋅+-⋅= 1a b ++ ∵ 点 E (a ,b )是第一象限的抛物线上的一个动点, ∴ b = -a 2 +a +2, ∴ S 四边形ABEC = - a 2+2a +3 = -(a -1)2+4∴ 当四边形ABEC 的面积最大时,点E 的坐标为(1,2),且四边形ABEC的最大面积为4.………………………………………………5分(3)如图2.设M (m ,n ),且m >0. ∵ 点M 在二次函数的图象上, ∴ n =-m 2 +m +2.∵ ⊙M 与y 轴相切,切点为D , ∴ ∠MDC =90°.∵ 以C ,D ,M 为顶点的三角形与△AOC 相似,∴12CD OA DM OC ==,或2CD OCDM OA==. …………………………………6分 ①当n >2时,22-122m m m mm m+-+==,或 . 解得 m 1=0(舍去),m 2=12, 或m 3=0(舍去),m 4=-1(舍去). ②同理可得,当n <2时,m 1=0(舍去) ,m 2=32,或m 3=0(舍去),m 4=3. 综上,满足条件的点M 的坐标为(12,94),(32, 54),(3,-4). ……………8分。
2014-2015学年九年级上数学期末试卷及答案解析

2014-2015九年级第一学期数学期末测试卷一.选择题(共10小题)1.已知实数a ,b 分别满足a 2﹣6a+4=0,b 2﹣6b+4=0,且a ≠b ,则的值是( )23.已知m ,n 是关于x 的一元二次方程x 2﹣3x+a=0的两个解,若(m ﹣1)(n ﹣1)4.如图①是3×3正方形方格,将其中两个方格涂黑,并且使涂黑后的整个图案是轴对称图形,约定绕正方形ABCD 的中心旋转能重合的图案都视为同一种图案,例如图②中的四幅图就视为同一种图案,则得到的不同图案共有( )D . 7种5.如图,在△ABC 中,AC=BC ,点D 、E 分别是边AB 、AC 的中点,将△ADE 绕点E 旋转180°得△CFE ,则四边形ADCF 一定是( )4个黑球和若干个白球,它们除颜色外没有任何(m 为常数)的图象与x 轴的一个交点为(1,0),8.如图,二次函数y=ax 2+bx+c 的图象经过点(0,﹣2),与x 轴交点的横坐标分别为x 1,x 2,且﹣1<x 1<0,1<x 2<2,下列结论正确的是( )﹣9.如图,在平行四边形ABCD 中,AB=6,AD=9,∠BAD 的平分线交BC 于E ,交DC 的延长线于F ,BG ⊥AE 于G ,BG=,则△EFC 的周长为( )D.810.如图,在△ABC中,以BC为直径的圆分别交边AC、AB于D、E两点,连接BD、DE.若BD平分∠ABC,则下列结论不一定成立的是()二.填空题(共8小题)11.如果(2x+2y+1)(2x+2y﹣1)=63,那么x+y的值是_________.12.若,且一元二次方程kx2+ax+b=0有两个实数根,则k的取值范围是_________.13.如图,在平面直角坐标系中,点A,B,C的坐标分别为(1,0),(0,1),(﹣1,0).一个电动玩具从坐标原点0出发,第一次跳跃到点P1.使得点P1与点O关于点A成中心对称;第二次跳跃到点P2,使得点P2与点P1关于点B成中心对称;第三次跳跃到点P3,使得点P3与点P2关于点C成中心对称;第四次跳跃到点P4,使得点P4与点P3关于点A成中心对称;第五次跳跃到点P5,使得点P5与点P4关于点B成中心对称;…照此规律重复下去,则点P2013的坐标为_________.14.一副扑克牌52张(不含鬼牌),分为黑桃、红心、方块、及梅花4种花色,每种花色各有13张,分别标有字母A、K、Q、J和数字10、9、8、7、6、5、4、3、2.从这副牌中任意抽取一张,则这张牌是标有字母的概率是_________.15.二次函数y=﹣x2+bx+c的图象如图所示,则一次函数y=bx+c的图象不经过第16.如图,以扇形OAB的顶点O为原点,半径OB所在的直线为x轴,建立平面直角坐标系,点B的坐标为(2,0),若抛物线y=x2+k与扇形OAB的边界总有两个公共点,则实数k的取值范围是_________.17.如图,已知抛物线y=x2+bx+c经过点(0,﹣3),请你确定一个b的值,使该抛物线与x轴的一个交点在(1,0)和(3,0)之间.你确定的b的值是_________.18.如图,AB是⊙O的直径,弦CD⊥AB于点G,点F是CD上一点,且满足=,连接AF并延长交⊙O于点E,连接AD、DE,若CF=2,AF=3.给出下列结论:①△ADF∽△AED;②FG=2;③tan∠E=;④S△DEF =4.其中正确的是_________(写出所有正确结论的序号).三.解答题(共10小题)19.随着铁路客运量的不断增长,重庆火车北站越来越拥挤,为了满足铁路交通的快速发展,该火车站去年开始启动了扩建工程,其中某项工程,甲队单独完成所需时间比乙队单独完成所需时间多5个月,并且两队单独完成所需时间的乘积恰好等于两队单独完成所需时间之和的6倍.(1)求甲、乙两队单独完成这项工程各需几个月?(2)若甲队每月的施工费为100万元,乙队每月的施工费比甲队多50万元.在保证工程质量的前提下,为了缩短工期,拟安排甲、乙两队分工合作完成这项工程,在完成这项工程中,甲队施工时间是乙队施工时间的2倍,那么,甲队最多施工几个月才能使工程款不超过1500万元?(甲、乙两队的施工时间按月取整数)20如图1所示,将一个边长为2的正方形ABCD和一个长为2、宽为1的长方形CEFD拼在一起,构成一个大的长方形ABEF.现将小长方形CEFD绕点C顺时针旋转至CE′F′D′,旋转角为a.(1)当点D′恰好落在EF边上时,求旋转角a的值;(2)如图2,G为BC中点,且0°<a<90°,求证:GD′=E′D;(3)小长方形CEFD绕点C顺时针旋转一周的过程中,△DCD′与△CBD′能否全等?若能,直接写出旋转角a的值;若不能说明理由.21.如图,△ABC内接与⊙O,AB是直径,⊙O的切线PC交BA的延长线于点P,OF∥BC交AC于AC点E,交PC于点F,连接AF.(1)判断AF与⊙O的位置关系并说明理由;(2)若⊙O的半径为4,AF=3,求AC的长.22.如图,AD是⊙O的切线,切点为A,AB是⊙O的弦.过点B作BC∥AD,交⊙O 于点C,连接AC,过点C作CD∥AB,交AD于点D.连接AO并延长交BC于点M,交过点C的直线于点P,且∠BCP=∠ACD.(1)判断直线PC与⊙O的位置关系,并说明理由;(2)若AB=9,BC=6.求PC的长.23.如图,对称轴为直线x=﹣1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B 两点,其中点A的坐标为(﹣3,0).(1)求点B的坐标;(2)已知a=1,C为抛物线与y轴的交点.①若点P在抛物线上,且S△POC=4S△BOC.求点P的坐标;②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.24.)为迎接中国森博会,某商家计划从厂家采购A,B两种产品共20件,产品的(1)设A产品的采购数量为x(件),采购单价为y1(元/件),求y1与x的关系式;(2)经商家与厂家协商,采购A产品的数量不少于B产品数量的,且A产品采购单价不低于1200元,求该商家共有几种进货方案;(3)该商家分别以1760元/件和1700元/件的销售单价售出A,B 两种产品,且全部售完,在(2)的条件下,求采购A种产品多少件时总利润最大,并求最大利润.25.如图①,若二次函数y=x2+bx+c的图象与x轴交于A(﹣2,0),B(3,0)两点,点A关于正比例函数y=x的图象的对称点为C.(1)求b、c的值;(2)证明:点C在所求的二次函数的图象上;(3)如图②,过点B作DB⊥x轴交正比例函数y=x的图象于点D,连结AC,交正比例函数y=x的图象于点E,连结AD、CD.如果动点P从点A沿线段AD方向以每秒2个单位的速度向点D运动,同时动点Q从点D沿线段DC方向以每秒1个单位的速度向点C运动.当其中一个点到达终点时,另一个点随之停止运动,连结PQ、QE、PE.设运动时间为t秒,是否存在某一时刻,使PE平分∠APQ,同时QE平分∠PQC?若存在,求出t的值;若不存在,请说明理由.26.在△ABC中,∠CAB=90°,AD⊥BC于点D,点E为AB的中点,EC与AD交于点G,点F在BC上.(1)如图1,AC:AB=1:2,EF⊥CB,求证:EF=CD.(2)如图2,AC:AB=1:,EF⊥CE,求EF:EG的值.27.如图,在平面直角坐标系xOy中,矩形OABC的边OA、OC分别在y轴和x 轴的正半轴上,且长分别为m、4m(m>0),D为边AB的中点,一抛物线l经过点A、D及点M(﹣1,﹣1﹣m).(1)求抛物线l的解析式(用含m的式子表示);(2)把△OAD沿直线OD折叠后点A落在点A′处,连接OA′并延长与线段BC 的延长线交于点E,若抛物线l与线段CE相交,求实数m的取值范围;(3)在满足(2)的条件下,求出抛物线l顶点P到达最高位置时的坐标.28.如图,直线x=﹣4与x轴交于点E,一开口向上的抛物线过原点交线段OE于点A,交直线x=﹣4于点B,过B且平行于x轴的直线与抛物线交于点C,直线OC交直线AB于D,且AD:BD=1:3.(1)求点A的坐标;(2)若△OBC是等腰三角形,求此抛物线的函数关系式.2014-2015学年九年级[上]数学期末测试卷参考答案与试题解析一.选择题(共10小题)1.(2013•烟台)已知实数a ,b 分别满足a 2﹣6a+4=0,b 2﹣6b+4=0,且a ≠b ,则=此题考查了一元二次方程根与系数的关系,熟练掌握根与系数的关系是解本题的关键. 2.(2013•咸宁)关于x 的一元二次方程(a ﹣1)x 2﹣2x+3=0有实数根,则整数a D . ﹣1 ,3.(2013•鄂州)已知m ,n 是关于x 的一元二次方程x 2﹣3x+a=0的两个解,若(m的关键.6.(2013•资阳)在一个不透明的盒子里,装有色外没有任何其他区别,÷8.(2013•济南)如图,二次函数y=ax +bx+c 的图象经过点(0,﹣2),与x 轴交点的横坐标分别为x 1,x 2,且﹣1<x 1<0,1<x 2<2,下列结论正确的是( )﹣<最小值:<﹣9.(2013•自贡)如图,在平行四边形ABCD 中,AB=6,AD=9,∠BAD 的平分线交BC 于E ,交DC 的延长线于F ,BG ⊥AE 于G ,BG=,则△EFC 的周长为( ),AG=10.(2013•日照)如图,在△ABC 中,以BC 为直径的圆分别交边AC 、AB 于D 、E 两点,连接BD 、DE .若BD 平分∠ABC ,则下列结论不一定成立的是( ) ∴===二.填空题(共8小题) 11.如果(2x+2y+1)(2x+2y ﹣1)=63,那么x+y 的值是 4或﹣4 .兰州)若,且一元二次方程解:∵,13.(2013•威海)如图,在平面直角坐标系中,点A,B,C的坐标分别为(1,0),(0,1),(﹣1,0).一个电动玩具从坐标原点0出发,第一次跳跃到点P1.使得点P1与点O关于点A成中心对称;第二次跳跃到点P2,使得点P2与点P1关于点B成中心对称;第三次跳跃到点P3,使得点P3与点P2关于点C成中心对称;第四次跳跃到点P4,使得点P4与点P3关于点A成中心对称;第五次跳跃到点P5,使得点P5与点P4关于点B成中心对称;…照此规律重复下去,则点P2013的坐标为(0,﹣2).∵=335从这副牌中任意抽取一张,则这张牌是标有字母的概率是=.故答案为:..15.(2013•营口)二次函数y=﹣x2+bx+c的图象如图所示,则一次函数y=bx+c的图象不经过第四象限.x <联立消掉k=时,抛物线与的坐标为(,))时,×y=.17.(2011•湖州)如图,已知抛物线y=x2+bx+c经过点(0,﹣3),请你确定一个b的值,使该抛物线与x轴的一个交点在(1,0)和(3,0)之间.你确定的b的轴的交点的坐标特点是解此题的关=,连接E=.,根据垂径定理可得:,由,E=∴=,∵=,AG=== E=AD=,××=3∴(∴,,;足铁路交通的快速发展,该火车站去年开始启动了扩建工程,其中某项工程,甲队单独完成所需时间比乙队单独完成所需时间多5个月,并且两队单独完成所需时间的乘积恰好等于两队单独完成所需时间之和的6倍.(1)求甲、乙两队单独完成这项工程各需几个月?(2)若甲队每月的施工费为100万元,乙队每月的施工费比甲队多50万元.在保证工程质量的前提下,为了缩短工期,拟安排甲、乙两队分工合作完成这项工程,个月,则乙队施工个月,则乙队施工y≤20.(2013•潍坊)如图1所示,将一个边长为2的正方形ABCD和一个长为2、宽为1的长方形CEFD拼在一起,构成一个大的长方形ABEF.现将小长方形CEFD 绕点C顺时针旋转至CE′F′D′,旋转角为a.(1)当点D′恰好落在EF边上时,求旋转角a的值;(2)如图2,G为BC中点,且0°<a<90°,求证:GD′=E′D;,=135﹣垂直于OC ,OB=OC ,利用为公共边,利用SAS ,即可得证;OA=OC 的长,即可确定出AE=CE=AF=AE=AC=2AE=.BC=3,根据等AM=6;r=6r=,则CE=2r=OM=6﹣BE=2OM=然后判断Rt △PCM BM=CM=BC=3=6,r=6﹣r=CE=2r=OM=6=BE=2OM=∠MCP ,∴=,=PC=.求出二次函数的解析式为的方程,解方程),则D 点坐标为(x ,长度的最大值.两点,∴∴××,解得),时,有最大值,且的值,函数关系式即可求>=11,y=xxy=y=CEQ ,根据y=∴﹣x ,FOB=,∴C 作CK y=x ×,×,﹣y=﹣,当AC===.y=xCD=AD=2,∠AC=∴,即:﹣t=或t=,故舍去)t=本题是二次函数压轴题,考查了二次函数的图象与性质、正比例函数的图象与性质、待定系数法、对称、解直角三角形、相似三角形的判定与性质、解一元二次方程等知识点.试题的难点在于第(3)问,图形中:EQ=BE AE 在△ACD 与△BEF 中,,:B==EQ=AEH==,EH=BE::DM=OM=x 点坐标,运用待定系数法得到直,解得,m N=N=m ON==m m x ﹣×解得≤,,)﹣当时,m=)=,到达最高位置时的坐标为(,)考点:二次函数综合题.分析:(1)过点D作DF⊥x轴于点根据相似三角形对应边成比例得出=,即AF=1,进而得到点A(2)先由抛物线过原点((﹣2,0),求出对称轴为直线可知当△OBC是等腰三角形时,可分两种情况讨论:①求出y1的值,将A,设C(2,y2),列出方程,解方程求出抛物线的解析式.∴====362)代入,解得x=36(负值舍去))代入,解得xx x y=x。
2014-2015学年九年级上期数学期末试卷及答案

1.在4-,0,2-,1这四个数中,最小的数是( )A.4-B.2-C.0D.1 2.计算()234x -的结果是( )A.616x -B.516xC.64x -D.616x 3.如图,直线AB //CD ,直线EF 分别交直线AB 、CD 于 点E 、F ,EG 平分∠AEF 交CD 于点G ,若∠1=36°, 则∠2的大小是( )A.72°B.67°C.70°D.68°4.在函数1-=x y 中,自变量x 的取值范围是( )A.1>xB.1≠xC.1≤xD.1≥x 5.若点A (2-,m )在正比例函数x y 21-=的图像上,则m 的值是( ) A.41 B.41- C.1 D.1- 6.如图,AB 与⊙O 相切于点A ,AC 为⊙O 的直径,点D 在圆上,且满足∠BAD =40°,则 ∠ACD 的大小是( )A.50°B.45°C.40°D.42°7.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,AC =8,BD =6,点E 为AB 中点,连 接OE ,则OE 的长是( ) A.5 B.512 C.4 D.25 8.重庆一中初三年级某班10名同学的一次体考成绩如下表,则下列说法错误的是( )3题图xy12题图① ② ③A.这10名同学的平均成绩为45.5B.这10名同学成绩的中位数是45C.这10名同学成绩的众数为50D.这10名同学成绩的极差为2 9.分式方程0112=--x x 的解是( ) A.2-=x B.2=x C.32=x D.1=x 10.上周周末,小江进行了一次“惊心动魄”的自行车之旅,小江匀速行驶一段路程后,发 现了一处“世外桃源”,便停车享受美景,当小江准备拿手机拍照留影时,发现手机掉 了,于是小江沿原路原速返回,在路途中幸运地找到了手机(停车捡手机的时间忽略不 计),再掉头沿原计划路线以比原速大的速度行驶,则小江离出发点的距离s 与时间t 的 函数关系的大致图象是( )11.如图,下列一束束“鲜花”都是由一定数量形状相同且边长为1的菱形按照一定规律组 成,其中第①个图形含边长为1的菱形3个,第②个图形含边长为1的菱形6个,第③ 个图形含边长为1的菱形10个,... ...,按此规律,则第⑦个图形中含边长为1的菱形的 个数为( )A.36B.38C.34D.28 12.如图,∆ABC 是等腰直角三角形,∠ACB=90°,点A 在 反比例函数xy 4-=的图像上,点B 、C 都在反比例函数 xy 2-=的图像上,AB //x 轴,则点A 的坐标为( ) A.(32,332-) B.(3,334-) C.(334,3-) D.(332,32-)二、填空题 (本大题6个小题,每小题4分,共24分)在每小题中,请将你认为正确的答成绩(分) 39 42 44 45 4850 人数 1 2 1 2 1 3案填在答题卡相应位置的横线上. 13.实数2015-的相反数是 .14.新年第一天,我市大约有13000名市民涌上仙女山、金佛山、巫溪红池坝的滑雪场玩雪. 将13000这个数字用科学记数法表示是 .15.如图,在□ABCD 中,点E 是AD 的中点,连接CE 、BD 相交于点F ,则∆DEF 的周长 与∆BCF 的周长之比=∆∆F D EF :BC C C .16.如图,矩形ABCD 的对角线AC 、BD 相交于点O ,AO =AD =2,以A 为圆心,AO 为半径作弧,则图中阴影部分的面积为 . 17.从-1,0,1,2,3这五个数中,随机抽取一个数记为m ,则使关于x 的不等式组122x mx m+⎧⎨-⎩≤≤有解,并且使函数()2212+++-=m mx x m y 与x 轴有交点的概率为 .18.如图,在ABC ∆中,2AB =3AC ,AD 为∆BAC 的角平分线,点H 在线段AC 上,且CH=2AH ,E 为BC 延长线上的一点,连接EH 并延长交AD 于点G ,使EG=ED ,过点E 作 EF ⊥AD 于点F ,则FG AG := . 三、解答题 (本大题2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算 过程或推理步骤,请将解答书写在答题卡中对应的位置上.19.计算:() 45tan 22731221322--⎪⎭⎫ ⎝⎛-+-⨯-+--π20.今年四月份将举行体考,重庆一中为了解初三学生目前体育训练成果,于1月16日举行 了体育模拟考试,现从参加了考试的同学中随机抽取了50名了解他们的跳绳成绩,并根 据成绩等级(优:20分;良:18-19分;中:小于18分)绘制出如下两幅不完整的统计 图.(1)请补全条形统计图;(2)在此次考试中,被抽取的获优秀成绩的有3人来自同一班级,这3人中有2男1女,该班班主任为让班上其他同学在练习跳绳的过程中效果更好,现打算从这3人中随机抽取2人到前排示范,请用画树状图或列表的方法求出所选同学是一男一女的概率.四、解答题 (本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算 过程或推理步骤,请将解答书写在答题卡中对应的位置上.16题图成绩扇形统计图成绩条形统计图 15题图 18题图l21.先化简,再求值:34433922+++÷⎪⎭⎫ ⎝⎛-+++x x x x x x ,其中x 是方程374=+x 的解.22.如图,在笔直的公路l 上有一检查站A ,在观测点B 的南偏西53°方向,且与观测点B 的距离为7.5千米.一辆自行车从位于点B 南偏西 76°方向的点C 处,沿公路自西向东行驶, 2小时后到达检查站A .(1)求观测点B 与公路l 的距离;(2)求自行车行驶的平均速度. (参考数据:252476sin ≈,25676cos ≈ ,476tan ≈,5453s ≈ in ,5353cos ≈ ,3453tan ≈ )23.重庆一中后勤部门每年都要更新一定数量的书桌和椅子.已知2012年采购的书桌价格为 120元/张,椅子价格为40元/张,总支出费用34000元;2013年采购的书桌价格上涨为 130元/张,椅子价格保持不变,且采购的书桌和椅子的数量与2012年分别相同,总支出 费用比2012年多2000元.(1)求2012年采购的书桌和椅子分别是多少张?(2)与2012年相比,2014年书桌的价格上涨了%a (其中500<<a ),椅子的价格上涨了%10,但采购的书桌的数量减少了%21a ,椅子的数量减少了50张,且2014 年学校桌子和椅子的总支出费用为34720元,求a 的值.24. 如图,在□ABCD 中,CE ⊥AD 于点E ,且CB=CE ,点F 为CD 边上的一点,CB=CF, 连接BF 交CE 于点G.(1)若60=∠D ,CF =32,求C G 的长; (2)求证:AB=ED+CG五、解答题:(本大题2个小题,每小题各12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.25.如图,抛物线223y x x =--与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴交于C 点,点D 是抛物线的顶点. (1)求B 、C 、D 三点的坐标;(2)连接BC,BD,CD ,若点P 为抛物线上一动点,设点P 的横坐标为m ,当PBC BCD S S ∆∆=时,求m 的值(点P 不与点D 重合);(3) 连接AC ,将∆AOC 沿x 轴正方向平移,设移动距离为a ,当点A 和点B 重合时,停止运动,设运动过程中∆AOC 与∆OBC重叠部分的面积为S ,请直接写出S 与a 之间的函数关系式,并写出相应自变量a 的取值范围.26.如图(1),抛物线)0(52≠++=a bx ax y 与x 轴交于A 、B 两点,与y 轴交于点C , 直线AC 的解析式为5+=x y ,抛物线的对称轴与x 轴交于点E ,点D (2-,3-)在 对称轴上.(1)求此抛物线的解析式;备用图 备用图(2)如图(1),若点M 是线段OE 上一点(点M 不与点O 、E 重合),过点M 作MN ⊥x 轴,交抛物线于点N ,记点N 关于抛物线对称轴的对称点为点F ,点P 是线段MN上一点,且满足MN =4MP ,连接FN 、FP ,作QP ⊥PF 交x 轴于点Q ,且满足PF =PQ , 求点Q 的坐标;(3)如图(2),过点B 作BK ⊥x 轴交直线AC 于点K ,连接DK 、AD ,点H 是DK 的中点,点G 是线段AK 上任意一点,将∆DGH 沿GH 边翻折得GH D '∆,求当KG 为何值时,GH D '∆与KGH ∆重叠部分的面积是∆DGK 面积的41.数 学 试 卷(答案)一、 选择题:备用图图(1)图(2)二.填空题 题号13 1415 答案 2015 4103.1⨯1:2 题号 161718答案 332-π 52 7:4三.解答题20.解:(1)…………………………………………………… 2分 (2)将男生分别标记为21,A A ,女生标记为1B一1A2A 1B1A()21,A A()11,B A 2A ()12,A A()12,B A1B()11,A B()21,A B……………………………………………………………………………… 5分3264(==一男一女)P …………………………… ……………………… 7分 二lH22.解:(1) 过点B 作l ⊥BH 交l 于点H ………………………………1分 在中在ABH Rt ∆km BH AB AB BH ABH 5.45.753cos =∴===∠, ………………4分(2)在中H A Rt B ∆, km AH AB AB AH BH 65.7,54A sin =∴===∠∴………………………6分 在中在BCH Rt ∆ km CH BH BH CH CBH 185.414tan =∴===∠∴, …………………8分 hkm kmAH CH CA /621212=∴=-=∴速度为: ………………………10分 答:观测点B 与公路l 的距离是4.5km ,自行车行驶的平均速度是6h km /. 23.解:(1)设2012年采购的书桌为x 张,椅子为y 张. ⎩⎨⎧=+=+36000401303400040120y x y x 解得⎩⎨⎧==250200y x ………… …………4分(2)()()34720)50250%10140%211200%1120=-++⎪⎭⎫⎝⎛-+(a a …7分 令t a =%,则原方程可化简为:0425252=+-t t解得=1a 0.2 ,=2a 0.8 (舍) ………………………9分 答:2013年采购书桌和椅子分别是200张和250张. ………………10分 24.解:(1) 四边形ABCD 是平行四边形 ∴AD//BCCE ⊥AD∴ECB CED ∠==∠9090,60=∠=∠DEC D∴ 120,30D =∠=∠CF EC BBC=CF 30=∠∴GBC在Rt ∆BCG 中,90=∠GCB∴tan 3233GCBC GC GBC ===∠ ∴GC=2 ……………4分(2)延长EC 到点H ,使得ED =CH ,连接BH ……………5分CGED DC GH BH GBH GBH CF BC CDBH DCE HBC BC EC HCB DEC HCDE DCE HBC +=∴=∴∠=∠∴∠+∠=∠∠+∠=∠∠=∠∴==∠=∠∴∆≅∆∴⎪⎩⎪⎨⎧=∠=∠=∆∆4534,1252,31 中和在…………………………………………………………………10分(2)设b kx y BC +=:将代入得:)3,0(),0,3(-C B⎩⎨⎧-==∴⎩⎨⎧=-+=31330b k b b k 3-=∴x y ,过点D 作y //DE 轴,交BC 于点E 21-=∴==E E D y x x3=+=∴∆∆∆CD E BED BCD S S S ……………4分过点P 作y //PQ 轴,交直线BC 于点Q)3,(),32,(2---m m Q m m m P 设①当P 是BC 下方抛物线上一点时,329232=+-=+=∴∆∆∆m m S S S PQC PBQ PCB 2)(121=-=∴m m ,舍…………………………………………………… ……………6分②32923)30(2C =-=-=><∆∆∆m m S S S m m BC P PQB PQ PBC 或上方抛物线上一点时是当 2173,217321-=+=m m 解得 ……………8分综上:=m 22173,2173,-+ (3)⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<+-≤<+-≤<+-=)43(6383)31(2381)10(3813222a a a a a a a a S ……………12分 25.解:(2)PF QP FN QM ⊥⊥⊥,MN MN ,∴ 9062=∠=∠, 90539031=∠+∠=∠+∠,51∠=∠∴又PQ F =P ,PNF MP ∆≅∆∴Q NF MP NP ==∴,MQ ………4分 设)0,(M m (02<<-m ),则54)54,(N 22+--=+--m m MN m m m , )54,4(F 2+----∴m m m ,42)4(+=---=m m m FND 'D ' 图(1) 图(2) 备用图)42(4542+=+--∴m m m ,解得:)(111舍或-=-=m m )0,7(643)0,1(,8MN -∴===∴-=∴Q MN NP MQ M ,, …………7分 (3))0,1(,15,0542B x x x x ∴=-==+--或得令)6,1(K ∴ [][]103)3(6)2(1DK 22=--+--=①若翻折后,点D '在直线GK 上方,记H D '与GK 交于点L ,连接K D ' D GH GHK DGK GHL 212141'∆∆∆∆===∴S S S S ,即KHL G L D G HL ∆'∆∆==S S S L D HL LK '==∴,GL ,是平行四边形四边形GHK D '∴, 102321D ==='=∴KD KH G D G ,又3,6BK ====AE DE BA AED ABK ∆∆∴和都是等腰直角三角形,23AD =904545DAG =+=∠∴,由勾股定理得:223AG 22=-=AD DG 22922326KG =-=-=∴AG KA ……………9分。
最新2014-2015学年人教版九年级上册数学期末测试卷及答案

2014-2015学年度九年级上册数学期末试卷一、选择题1.下列图形中,既是中心对称图形又是轴对称图形的是 ( )2.将函数y =2x 2的图象向左平移1个单位,再向上平移3个单位,可得到的抛物线是( ) A .y =2(x -1)2-3 B .y =2(x -1)2+3C .y =2(x +1)2-3D .y =2(x +1)2+33.如图,将Rt △ABC (其中∠B=35°,∠C=90°)绕点A 按顺时针方向旋转到△AB 1C 1的位置,使得点C 、A 、B 1在同一条直线上,那么旋转角等于 ( )A.55°B.70°C.125°D.145°4.一条排水管的截面如下左图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O 到水面的距离OC 是( )A. 4 B. 5 C. 36 D. 6 5.一个半径为2cm 的圆内接正六边形的面积等于( )A .24cm 2B .2C .2D .26.如图,若AB 是⊙O 的直径,CD 是⊙O 的弦,∠ABD =55°,则∠BCD 的度数为( ) A .35° B .45° C .55° D .75°7.函数m x x y +--=822的图象上有两点),(11y x A ,),(22y x B ,若221-<<x x ,则( )A.21y y < B.21y y > C.21y y = D.1y 、2y 的大小不确定 8.将半径为3cm 的圆形纸片沿AB 折叠后,圆弧恰好能经过圆心O ,用图中阴影部分的扇形围成一个圆锥的侧面,则这个圆锥的高为( )A .B .C .D .9.一次函数y ax b =+与二次函数2y ax bx c =++在同一坐标系中的图像可能是( )第3题图 第6题图第4题图A .B .C .D .10.如图,有一圆锥形粮堆,其正视图是边长为6m的正三角形ABC,粮堆母线AC的中点P处有一老鼠正在偷吃粮食,此时,小猫正在B处,它要沿圆锥侧面到达P处捕捉老鼠,则小猫所经过的最短路程是m.(结果不取近似值)A.3B.3根号3 C.D.4二、填空题:1112.如图,将△ABC的绕点A顺时针旋转得到△AED,点D正好落在BC边上.已知∠C=80°,则∠EAB= °.13.若函数221y mx x=++的图象与x轴只有一个公共点,则常数m的值是_______ 14.抛物线y=-x2+bx+c的部分图象如图所示,若y>0,则x的取值范围是.15.如图,在一个正方形围栏中均匀地散步者许多米粒,正方形内有一个圆(正方形的内切园),一只小鸡仔围栏内啄食,则“小鸡正在院内”啄食的概率为_______.16.如图,把直角三角形ABC的斜边AB放在定直线l上,按顺时针方向在l上转动两次,使它转到△A″B″C″的位置.设BC=2,AC=2,则顶点A运动到点A″的位置时,点A 经过的路线与直线l所围成的面积是_________ .三、解答下列各题1.解方程:(1)122=+xx(2)0)3(2)3(2=-+-xx第12题图第14题图第15题图2.已知关于x 的一元二次方程2(31)30kx k x +++=(0)k ≠. (1)求证:无论k 取何值,方程总有两个实数根;(2)若二次函数3)13(2+++=x k kx y 的图象与x 轴两个交点的横坐标均为整数,且k 为整数,求k 的值.3.如图,平面直角坐标系中,每个小正方形边长都是1.(1)按要求作图:①△ABC 关于原点O 逆时针旋转90°得到△A 1B 1C 1;②△A 1B 1C 1关于原点中心对称的△A 2B 2C 2. (2)△A 2B 2C 2中顶点B 2坐标为 .4.某校九年级举行毕业典礼,需要从九年(1)班的2名男生1名女生(男生用A 1表示,女生用B 1表示)和九年(2)班的1名男生1名女生(男生用A 2表示,女生用B 2表示)共5人中随机选出2名主持人.(1)用树状图或列表法列出所有可能情形;(2)求2名主持人来自不同班级的概率; (3)求2名主持人恰好1男1女的概率.5.某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格销售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量y 箱与销售价x 元/箱之间的函数关系式.(2)求该批发商平均每天的销售利润w (元)与销售价x (元/箱)之间的函数关系式. (3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?6、如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠D=60°.(1)求∠ABC的度数;(2)求证:AE是⊙O的切线;(3)当BC=4时,求劣弧AC的长.7、如图,有一座抛物线形拱桥,在正常水位时水面AB的宽为20m,如果水位上升3m时,水面CD的宽是10m.(1)求此抛物线的解析式;(2)现有一辆载有救援物资的货车从甲地出发需经过此桥开往乙地,已知甲地距此桥280km(桥长忽略不计).货车正以每小时40km的速度开往乙地,当行驶1小时时,忽然接到紧急通知:前方连降暴雨,造成水位以每小时0.25m的速度持续上涨(货车接到通知时水位在CD处,当水位达到桥拱最高点O时,禁止车辆通行).试问:如果货车按原来速度行驶,能否安全通过此桥?若能,请说明理由;若不能,要使货车安全通过此桥,速度应超过每小时多少千米?参考答案1.DA 、是中心对称图形,不是轴对称图形,故本选项错误;B 、不是中心对称图形,是轴对称图形,故本选项错误;C 、不是中心对称图形,是轴对称图形,故本选项错误;D 、既是中心对称图形又是轴对称图形,故本选项正确. 2.D将函数y =2x 2的图象向左平移1个单位,得: y =2(x +1)2,,再向上平移3个单位,可得到的抛物线是y =2(x +1)2+3.故选:D. 考点:抛物线的平移. 3.C .∵∠B=35°,∠C=90°,∴∠BAC=90°﹣∠B=90°﹣35°=55°,∵点C 、A 、B 1在同一条直线上,∴∠BAB′=180°﹣∠BAC=180°-55°=125°, ∴旋转角等于125°. 4.D.∵OC ⊥AB ,OC 过圆心O 点,∴BC=AC=21AB=21×16=8,在Rt △OCB 中,由勾股定理得:68102222=-=-=BC OB OC5.B .连接正六边形的中心与各个顶点,得到六个等边三角形,等边三角形的边长是2,因而面积是因而正六边形的面积 6.A【解析】连接AD ,∵AB 是⊙O 的直径,∴∠ADB =90°,∵∠ABD =55°,∴∠A =90°-∠ABD =35°,∴∠BCD =∠A =35°. 7.A因为函数m x x y +--=822的图象抛物线开口向下,所以在对称轴8224b x a -=-=-=--左侧,y 随x 的增大而增大,因为221-<<x x ,所以21y y <,故选:A. 8.A【解析】过O 点作OC⊥AB,垂足为D ,交⊙O 于点C ,由折叠的性质可知OD 为半径的一半,而OA为半径,可求∠A=30°,同理可得∠B=30°,在△AOB中,由内角和定理求∠AOB,然后求得弧AB的长,利用弧长公式求得围成的圆锥的底面半径,最后利用勾股定理求得其高即可.解:过O点作OC⊥AB,垂足为D,交⊙O于点C,由折叠的性质可知,OD=OC=OA,由此可得,在Rt△AOD中,∠A=30°,同理可得∠B=30°,在△AOB中,由内角和定理,得∠AOB=180°﹣∠A﹣∠B=120°,∴弧AB的长为=2设围成的圆锥的底面半径为r,则2πr=2π,∴r=1cm.∴圆锥的高为=.故选A.9.C.A.由一次函数y ax b=+的图象可得:a>0,b>0,此时二次函数2=++的y ax bx c图象应该开口向上,故A错误;B.由一次函数y ax b=+的图象可得:a>0,b>0,此时二次函数2=++的y ax bx c图象应该开口向上,对称轴x=﹣<0,故B错误;C.由一次函数y ax b=+的图象可得:a<0,b<0,此时二次函数2=++的y ax bx c图象应该开口向下,对称轴x=﹣<0,故C正确.D.由一次函数y ax b=+的图象可得:a<0,b<0,此时二次函数2=++的y ax bx c图象应该开口向下,故D错误;10.求这只小猫经过的最短距离的问题首先应转化为圆锥的侧面展开图的问题,转化为平面上两点间的距离的问题.根据圆锥的轴截面是边长为6cm的等边三角形可知,展开图是半径是6的半圆.点B是半圆的一个端点,而点P是平分半圆的半径的中点,根据勾股定理就可求出两点B和P在展开图中的距离,就是这只小猫经过的最短距离.解:圆锥的底面周长是6,则6=,∴n=180°,即圆锥侧面展开图的圆心角是180度. 则在圆锥侧面展开图中AP=3,AB=6,∠BAP=90度. ∴在圆锥侧面展开图中BP=m .故小猫经过的最短距离是m .11.(1,2).已知抛物线的解析式是一般式,用配方法转化为顶点式,根据顶点式的坐标特点,直接写出顶点坐标.试题解析:∵y=x 2-2x+3=x 2-2x+1-1+3=(x-1)2+2, ∴抛物线y=x 2-2x+3的顶点坐标是(1,2). 12.根据旋转可得AC=AD ,∠CAD=∠BAE , ∵AC=AD ,∠C=80°, ∴∠C=∠ADC=80°,∴∠CAD=180°-80°-80°=20°, ∴∠BAE=20°.13.需要分类讨论:①若m=0,则函数为一次函数;②若m≠0,则函数为二次函数.由抛物线与x 轴只有一个交点,得到根的判别式的值等于0,且m 不为0,即可求出m 的值.试题解析:①若m=0,则函数y=2x+1,是一次函数,与x 轴只有一个交点; ②若m≠0,则函数y=mx 2+2x+1,是二次函数. 根据题意得:△=4-4m=0, 解得:m=1.故答案为:0或1.14.根据图象可知抛物线的对称轴为x=-1,一个交点为(1,0),那么可推出另一交点为(-3,0),结合图象即可求出y >0时,x 的范围. 解:根据抛物线的图象可知:抛物线的对称轴为x=-1,已知一个交点为(1,0), 根据对称性,则另一交点为(-3,0), 所以y >0时,x 的取值范围是-3<x <1. 15.设正方形的边长为a ,再分别计算出正方形与圆的面积,计算出其比值即可. 试题解析:设正方形的边长为a ,则S 正方形=a 2,因为圆的半径为2a,所以S 圆=π(2a )2=24a ,所以“小鸡正在圆圈内”啄食的概率为:2244a a ππ=.16.∵在Rt △ACB 中,BC=2,AC=2∴由勾股定理得:AB=4,∴AB=2BC ,∴∠CAB=30°,∠CBA=60°,∴∠ABA′=120°,∠A″C″A′=90°,S=22120490125236036023πππ⨯⨯++⨯⨯=+17.解:()1212=+x x 方程两边同时加1得: 2122=++x x ()212=+x 21±=+x 所以: 21±-=x()()()032322=-+-x x()()0233=+--x x()()013=--x x所以:13==x x 或小题(1)用配方法好解,小题(2)适合用提公因式法。
新人教版2014-2015年九年级上学期期末考试数学试题及答案

新人教版2014-2015年上学期期末考试九年级数学试题(考试时间:120分钟 满分:150分)一、选择题(本题共10道题,每小题3分,共30分)1.下列方程中,是一元二次方程的是( )A. 221x x y ++=B. 2110x x+-= C. 20x = D. 2(1)(3)1x x x ++=- 2.下列汽车标志中,既是轴对称又是中心对称图形的是( )3.下列说法中正确的是( )A.不确定事件发生的概率是不确定的B.事件发生的概率可以等于事件不发生的概率C.事件发生的概率不可能等于0D.抛掷一只均匀的骰子两次,朝上一面的点数之和一定大于24.如图45,15中,∠=∠=O CBO CAO ,则AOB ∠的度数是( )A.75 B.30 C.45 D.60 5.掷一枚六面分别标有1到6的均匀骰子,向上一面的点数大于2且小于5的概率为1P ,抛两枚硬币,正面均朝上的概率为2P ,则( )A.12P P <B.12P P >C.12P P =D.不能确定6.在同圆中,下列四个命题:○1圆心角是顶点在圆心的角;○2两个圆心角相等,它们所对的弦也相等;○3两条弦相等,所对的劣弧也相等;○4等弧所对的圆心角相等。
其中真命题有( )A.4个B.3个C.2个D.1个7.抛物线22(1)3y x =---与y 轴交点的纵坐标为( )A.3-B. 4-C.5-D.1-8.用配方法解关于x 的方程20x px q ++=,方程可变形为( ) A.224()24p p q x -+= B.224()24p q p x -+= C.224()24p p q x +-= 第4题D.224()24p p q x --= 9.如图,E 、F 分别是正方形ABCD 的边BC 、CD 上的点,BE=CF ,连接AE 、BF ,将△ABE 绕正方形的中心按逆时针方向旋转到BCF △,旋转角为()0180a a <<,则a =( )A.60 B.90 C.120 D.4510.已知二次函数2y ax bx c =++的图象如图所示,其对称轴为直线1x =-,给出下列结论(1)24b ac >; (2)0abc >; (3)20a b +=; (4)0a b c ++>; (5)420a b c -+<.则正确的结论有( )A. 2个B. 3个C. 4个D. 5个第9题C第16题第17题B二、填空题(本大题共8小题,每小题3分,共24分)11.方程2x =的根是 .12.众所周知,手机的电话号码是由11位数字组成的,某人的手机号码位于中间的数字为5的概率是13.在一幅长为80cm ,宽为50cm 的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如果要使整个挂图的面积是54002cm ,设金色纸边的宽为,那么x 满足的方程是14.如果函数232(3)1k k y k x kx -+=-++是二次函数,那么k 值为15.一个圆锥的侧面展开图是半径为1的半圆,该圆锥的底面半径是16.二次函数2y x bx c =-++的图象如图所示,则一次函数y bx c =+的图象不经过第 象限. 17.如图所示,一条公路的转变处是一段圆弧(图中的弧AB )点O 是这段弧的圆心,C 是AB 上一点,,OC AB ⊥ 垂足为D ,AB=300m ,CD=50m ,则这段弯路的半径是18.观察下列一组数:13579,,,,,27142334⋅⋅⋅它们是按一定规律排列的,那么这一组数的第n 个数是三、解答题(本大题共96分)19.解方程:(10分)(1) 2660x x --=(2) 22760x x -+=20.△ABC 在平面直角坐标系中的位置如图所示(A 、B 、C 三点在格点上),把△ABC 绕原点O 顺时针旋转90,A 、B 、C 旋转后的对应点分别是1A 、1B 、1C(1)画出旋转后的111△ABC ,并直接写出1A、1B 、1C 的坐标; (2)在旋转过程中,求点A 到点1A 所经过的路径的长.(12分)21.某汽车经销商推出A 、B 、C 、D 四种型号的小轿车共1000辆进行展销。
2014-2015年第一学期九年级数学试题答案

2014---2015学年度第一学期期末质量检测九年级数学试题 (答案)一、选择题(请把选择题答案填在下列表格中,每题3分,满分36分)二、填空题(本大题共8小题,每小题3分,共24分.) 13.1414. 24π 15. 35︒ 16. 80 17. 10 18. 2 三、解答题19.解: 1)设平均每次下调的百分率为x , 则6000(1-x )2=4860, 解得:x 1=0.1=10%, x 2=1.9(舍).故平均每周下调的百分率为10%.……………………5分 (2)方案1优惠:4860×100×(1-0.98)=9720(元); 方案2可优惠:80×100=8000(元). 故方案1优惠.…………………………9分 20. 解:设小明的身高为x 米,则CD=EF=x 米. 在Rt △ACD 中,∠ADC=90°,tan ∠CAD=AD CD ,即tan30°=xAD,AD=3x --2分 在Rt △BEF 中,∠BFE=90°,tan ∠EBF=EF BF ,即tan60°=x BF ,BF=x 33 ---4分 由题意得DF=2,∴BD=DF-BF=2-x 33,∵AB=AD+BD=4,∴3x+2-x 33=4 --7分即x=3.答:小明的身高为3米.------------------------------------------------------------------------9分21. 解:(1)把A点(1,4)分别代入反比例函数y=,一次函数y=x+b,得k=1×4,1+b═4,解得k=4,b=3,反比例函数的解析式是y=,一次函数解析式是y=x+3;…………4分(每个解析式2分)(2)如图,当x=﹣4时,y=﹣1,B(﹣4,﹣1),当y=0时,x+3=0,x=﹣3,C(﹣3,0)S△AOB=S△AOC+S△BOC==;…………8分(3)∵B(﹣4,﹣1),A(1,4),∴根据图象可知:当x>1或﹣4<x<0时,一次函数值大于反比例函数值.…………12分22.解:(1)∵x%+15%+10%+45%=1,∴x=30;…………1分∵调查的总人数=90÷45%=200(人),…………2分∴B等级人数=200×30%=60(人);C等级人数=200×10%=20(人),…………4分(求出1个1分)如图:…………5分(2)2500×(10%+30%)=1000(人),所以估计每周课外阅读时间量满足2≤t<4的人数为1000人;…………7分(3)3人学习组的3个人用甲表示,2人学习组的2个人用乙表示,画树状图为:,共有20种等可能的结果数,其中选出的2人来自不同小组占12种,…………10分所以选出的2人来自不同小组的概率==.…………12分23.(1)证明:∵AB是⊙O的切直径,∴∠ADB=90°,又∵∠BAD=∠BED,∠BED=∠DBC,∴∠BAD=∠DBC,∴∠BAD+∠ABD=∠DBC+∠ABD=90°,∴∠ABC=90°,∴BC是⊙O的切线;…………6分(2)解:∵∠BAD=∠DBC,∠C=∠C,∴△ABC∽△BDC,∴=,即BC2=AC•CD=(AD+CD)•CD=10,∴BC=.…………12分22.………………1分………………6分∴P 点的坐标为(5,2)………………12分………………7分………10分………………11分。
2014-2015学年第一学期期末质量检测九年级数学试卷附答案

2014-2015学年第一学期期末质量检测九年级数学试卷(本试卷共三个大题,26个小题,时间90分钟,满分120分)一、精心选一选(本大题共16小题。
1-6题,每题2分;7-16题,每题3分,共42分)每小题给出的4个选项中只有一个符合题意,请将所选选项的字母代号写在题中的括号内. 1. 一元二次方程02=-x x 的解为……………………………………………【 】 A.1=x B.0=x C.0,121==x x D.0,121=-=x x 2.在平面直角坐标系中,点M (3,-5)关于原点对称的点的坐标是……………【 】 A .(-3,-5) B .(3,5) C .(5,-3) D .( -3,5) 3.下列各点中,在函数xy 2-=的图象上的是…………………………………【 】 A.(2,1) B.(-2,1) C.(2,-2) D.(1,2)4. 顶点坐标为(-2,3),开口方向和大小与抛物线y =x 2相同的解析式为…【 】A .y =(x -2)2+3B .y =(x +2)2-3C .y =(x +2)2+3D .y =-(x +2)2+35. 盒子里有3支红色笔芯,2支黑色笔芯,每支笔芯除颜色外均相同.从中任意拿出一支笔芯,则拿出黑色笔芯的概率是………………………………………【 】A .23B .15C .25D . 356. Rt △ABC 中∠C =90°,AC =3cm ,BC =4cm ,则它的外心与顶点C 的距离为……【 】 A .2.4cm B .2.5cm C .3cm D .4cm7.向上发射一枚炮弹,经x 秒后的高度为y 米,且时间与高度关系为y =ax 2+bx .若此炮弹在第6秒与第15秒时的高度相等,则下列几个时刻高度最高的是……【 】 A. 第8秒 B.第10秒 C.第12秒 D. 第14秒 8. 如图,⊙O 的直径CD ⊥EF 于G ,若∠EOD =50°,则∠DCF 等于………………【 】 A.80° B. 50° C. 40° D. 25°9.如图,为了测量一池塘的宽DE ,在岸边找一点C ,测得CD =30m ,在DC 的延长线上找一点A ,测得AC=5m ,过点A 作AB ∥DE ,交EC 的延长线于B ,测得AB =6m ,则池塘的宽DE 为…………………………………………………………………【 】 A.25m B.30m C.36m D.40m10. 已知:如图,PA 切⊙O 于点A ,PB 切⊙O 于点B ,如果∠APB =60°,⊙O 半径是3,则劣弧AB 的长为…………………………………………………………【 】 A .π B .6π C .2π D .3π11.面积为2的直角三角形一直角边长为x ,另一直角边长为y ,则y 与x 的变化 规律用图象大致表示为……………………………………………………………【 】12.已知反比例函数y =xm52 的图象上有A (x 1,y 1)、B (x 2,y 2)两点,当 x 1<x 2<0时,y 1<y 2,则m 的取值范围是………………………………………【 】A.m <0B.m >0C.m <52 D.m >52 13.如图所示,在一边靠墙(墙足够长)的空地上,修建一个面积为640m 2的矩形临时仓库,仓库一边靠墙,另三边用总长为80 m 的栅栏围成,若设栅栏AB 的长为 xm ,则下列各方程中,符合题意的是………………………………………………【 】 A .21x (80-x )=640 B .21x (80-2x )=640 C .x (80-2x )=640 D . x (80-x )=640第8题图第9题图 第10题图第13题图第14题图第15题图第16题图14. 如图,若P 为△ABC 的边AB 上一点(AB >AC ),则下列条件不一定能保证 △ACP ∽△ABC 的有…………………………………………………………………【 】A.∠ACP =∠BB.∠APC =∠ACBC.AC AP AB AC =D.AB ACBC PC = 15.如图,一次函数与反比例函数的图象相交于A 、B 两点,则图中使反比例函数的值小于一次函数的值的x 的取值范围是…………………………………………【 】 A.x <-1 B.x >2 C.-1<x <0或x >2 D.x <-1或0<x <2 16.如图,量角器的直径与含30°角的直角三角板ABC 的斜边AB 重合,射线CP 从CA 处出发沿顺时针方向以每秒2度的速度旋转,CP 与量角器的半圆弧交于点E ,当第30秒时,点E 在量角器上对应的读数是……………………………………【 】 A. 120° B.150° C.75° D. 60°二、细心填一填(本大题共4小题,每小题3分,共12分)把答案直接写在题中的横线上.17. 圆锥的母线长5cm ,底面半径长3cm ,那么它的侧面展开图的面积是 . 18. 如图,△ABC 中,E 、F 分别是AB 、AC 上的两点,且,若△AEF 的面积为3,则四边形EBCF 的面积为 .19. 如图,在平面内将Rt △ABC 绕着直角顶点C 逆时针旋转90°得到Rt △EFC .若AB =1BC =,则阴影部分的面积为 .20.如图,Rt △ABC 中,∠ACB =90°,∠ABC =60°,BC =4cm ,D 为BC 的中点,若动点E 以1cm /s 的速度从A 点出发,沿着A →B →A 的方向运动,设E 点的运动时间为t 秒(0≤t <12),连接DE ,当△BDE 是直角三角形时,t 的值为 .第18题图 第19题图第20题图三、专心解一解(本题满分66分)请认真读题,冷静思考.解答题应写出文字说明、解答过程.21. (本题满分9分) 已知双曲线xky的图象经过点A (-1,2). (1)求该反比例函数的解析式.(2)若B (b ,m )、C (c ,n )是该双曲线上的两个点,且b <c ,判断m ,n 的大小关系.(3)判断关于x 的一元二次方程k x 2+2x -1=0的根的情况.22. (本题满分10分)如图,方格纸中每个小正方形的边长都是单位1,△ABC 在平面直角坐标系中的位置如图所示.(1)将△ABC 绕点B 顺时针方向旋转 90o后得△A 1BC 1,画出△A 1BC 1,并直接写 出点C 1的坐标为 . (2)把△ABC 以点C 为位似中心同侧 放大,使放大前后对应边长的比为1:2, 画作出△A 2B 2C ,并直接写出点B 2的坐标 为 .23. (本题满分11分)在一副扑克牌中,拿出黑桃3、黑桃4、黑桃5、黑桃6四张牌,小刚从中随机摸出一张记下牌面上的数字为x,再由小明从剩下的牌中随机摸出一张,记下牌面上的数字为y,组成一对数(x,y).(1)用列表法或树状图表示出(x,y)的所有可能出现的结果;(2)求小刚、小明各摸一次扑克牌所确定的一对数是方程x+y=9的解的概率.24.(本题满分11分)如图所示,AB 是⊙O 的直径,AD 与⊙O 相切于点A ,DE 与⊙O 相切于点E ,点C 为DE 延长线上一点,且CE =CB .(1)求证:BC 为⊙O 的切线; (2)若AB =4,AD =1,求线段CE 的长.25. (本题满分12分)某商场出售一批进价为3元的小工艺品,在市场营销中发现此工艺品的日销售单价x (单位:元)与日销售量y (单位:个)之间有如下关系:(1) (2)设经营此小工艺品的日销售利润为S元,求出S 与x 之间的函数关系式; (3)物价局规定小商品的利润不得高于进价的200%,请你求出当日销售单价x 定为多少时,才能获得最大日销售利润?最大日销售利润是多少?26. (本题满分13分)如图,抛物线y=ax2+52x-2与x轴相交于点A(1,0)与点B ,与y轴相交于点C.(1)确定抛物线的解析式;(2)连接AC、BC,△AOC与△COB相似吗?并说明理由.(3)点N在抛物线的对称轴上,在抛物线上是否存在点M,使得以点N、M、A、B为顶点的四边形是平行四边形?若存在,求出对应的点M、N的坐标;若不存在,请说明理由.备用图九年级数学答案一、1.C 2.D 3.B 4.C 5.C 6.B 7.B 8.D 9.C 10. C 11. C 12.D 13.A 14.D 15.D 16.A二、17. π15 18.24 19. 1-π 20. 4或7或9 三、21.解:(1)由题意可知,12-=k ,∴k =-2-----------------2分 (2)∵k =-2<0,∴y 随x 的增大而增大-----------------4分 又∵b <c ,∴m <n-----------------6分(3)△=22-4×(-2)×(-1)=-4<0 -----------------8分∴关于x 的一元二次方程k x 2+2x -1=0没有实数根-----------------9分22.如图 (1)作图 3分 C 1(2,3)2分 (2) 作图 3分 B 2(1,-2) 2分23.解:(1)分析题意,用树状图表示为:--------------5分所以共有12种等可能的结果,即(3,4)(3,5)(3,6)(4,3)(4,5)(4,6)(5,3)(5,4)(5,6)(6,3)(6,4)(6,5) -----------7分(2)满足所确定的一对数是方程x+y=9的解的结果有4种:(3,6)(4,5)(5,4)(6,3) -----------9分此事件记作A ,则P(A)=31124= -----------11分 24 (1)证明:连接OE,O C …………1分∵DE 与⊙O 相切于点E ∴∠OEC =90° -----------3分 ∵OE=OB CB=CE OC=OC∴△CEO ≌△CBO -----------5分 ∴∠OBC=∠OEC =90° -----------6分 ∴BC 为⊙O 的切线 -----------7分 (2)过点D 作D F ⊥BC 于F …………………8分 设CE=x ∵CE,CB 为⊙O 切线 ∴CB=CE=x ∵DE,DA 为⊙O 切线 ∴DE=DA=1∴DC=x+1………………………………9分 ∵∠DAB=∠ABC =∠DFB= 90° ∴四边形ADFB 为矩形 ∴DF=AB=4 BF=AD=1 ∴FC=x-1Rt △CDF 中,(x+1)2-(x-1)2=16 -----------10分 x=4 ∴CE=4 -----------11分25.解:(1)由表中数据规律可知x 与y 的乘积一定,为105×4=420 -----------2分所以函数关系式为xy 420= -----------3分 (2)S=(x-3)x420-----------5分=4201260+-x-----------7分 (3)由题意可知:x ≤3+3×200% ∴3≤x ≤9 -----------8分 ∵k=-1260<0九年级数学试卷共8页,第11页∴S 随x 的增大而增大∴当x=9时,S 的值最大 -----------10分最大值为280 -----------11分∴当日销售单价定为9元时,才能获得最大日销售利润是280元。
人教版2014-2015九年级数学上册期末考试试题含大题答案

2014 ~ 2015学年度九年级数学上学期期末考试(满分:150分 考试时间:90分钟)姓名___________ 班级__________ 分数 ________-_____一、选择题(每小题4分,共40分) 1、下列运算正确的是( )A 、325=- B 、428=+ C 、3327= D 、1)21)(21(=-+2.把方程x x 632=+配方得( )A 、12)3(2=-xB 、3)3(2=+xC 、6)3(2=-xD 、6)3(2=+x 2、已知关于x 的一元二次方程(m -2)2x 2+(2m +1)x +1=0有两个实数根,则m 的取值范围是( ) (A )43>m (B )43≥m (C )43>m 且2≠m (D )43≥m 且2≠m3)A B C4、如图,⊿ABC 内接于⊙O ,若∠OAB=28°则∠C 的大小为()(A )62° (B )56° (C )60° (D )28°5、随机掷一枚均匀的硬币两次,落地后至少有一次正面朝上的概率是 ( )(A )41 (B )21 (C )43(D )1 6、三角形两边长分别是8和6,第三边长是一元二次方程x 2-16x+60=0一个实数根,则该三角形的面积是( )A .24B .48C .24或D .D7.一个扇形的圆心角为120°,它的面积为3πcm 2,那么这个扇形的半径是 ( )A 、3cm C 、6cm D 、9cm8.一台机器原价60万元,如果每年的折旧率为x ,两年后这台机器的价位应为y 万元,则y 与x 的函数关系表达式为( )A 、260(1)y x =-B 、y=60(1+x)2C 、y = 60(1-x )D 、y=60-x29知抛物线y=ax 2+bx,当a>0,b<0时,它的图象经过( )A 、一、二、三象限B 、一、二、四象限C 、一、三、四象限D 、一、二、三、四象限10.点B 、C 、E 、F 在同一直线上.现从点C 、E 重合的位置出发,让△ABC 在直线EF 上向右作匀速运动,而△DEF 的位置不动.设两个三角形重合部分的面积为y ,运动的距离为x .下面表示y 与x 的函数关系式的图象大致是 ( )二、细心填一填(每小题4分,共20分) 11、已知式子31+-x x有意义,则x 的取值范围是 12、计算20102009)23()23(+-=13、点P 关于原点对称的点Q 的坐标是(-1,3),则P 的坐标是 14、已知圆锥的底面半径为9cm ,母线长为10cm ,则圆锥的全面积是 cm 215、已知:关于x 的一元二次方程041)(22=++-d x r R x 有两个相等的实数根,其中R 、r 分别是⊙O 1 ⊙O 2的半径,d 为两圆的圆心距,则⊙O 1 与⊙O 2的位置关系是三、解答题16、(8分)计算:)681(2)2124(+--17、(8分)解方程:x2-12x-4=0(用配方法)18.已知二次函数y=ax2+bx+c的图象经过一次函数y=-3/2x+3的图象与x 轴、y轴的交点;且过(1,1),求这个二次函数解析式,并把它化为y=a(x-h)2+k的形式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
BC2014-2015学年度第一学期期末初三数学试卷 2015.1一、选择题 (本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..选项是符合题意的. 1. 已知34m n=,那么下列式子中一定成立的是 A .43m n = B .34m n = C .4m n = D . 12mn =2. 如图,△ABC 中,DE ∥BC ,13AD AB =,2cm AE =, 则AC 的长是X k B 1 . c o m A .2cmB .4cmC .6cmD .8cm3. 如图,⊙O 是ABC ∆的外接圆,50A ∠=︒ ,则BOC ∠的度数为A .40︒B .50︒C .80︒D .100︒4. 将抛物线22y x =向右平移1个单位,再向上平移3个单位,得到的抛物线是A .22(1)3y x =++B .22(1)3y x =-+C .22(1)3y x =+- D .22(1)3y x =--5.如图,在Rt ABC ∆ ,90C ∠=︒ ,8AC =,6BC =,则sin B 的值等于A .34B . 34C .45D . 356. 如图,AB 是O 的直径,C D 、是圆上两点,70CBA ∠=︒,则D ∠的度数为A .10︒B .20︒C .70︒D .90︒7. 在平面直角坐标系xOy 中,以(3,4)M 为圆心,半径为5的圆与x 轴的位置关系是A .相离B .相交C .相切D .无法确定 8. 如图,ABC ∆ 中,4AB AC ==,120BAC ∠=︒. 点O 是BC 中点,点D 沿B →A →C 方向从B 运动 到C .设点D 经过的路径长为x ,OD 长为y .则函数y 的图象大致为A ABDCBADCBA二、填空题(本题共16分,每小题4分)9. 若两个相似三角形对应边的比是3:2,那么这两个相似三角形面积的比是 . 10. 若反比例函数1m y x-=的图象分布在第二、四象限,则m 的取值范围是______. 11. 若扇形的圆心角为120°,半径为3cm ,那么扇形的面积是____2cm . 12. 如图,边长为1的正方形ABCD 放置在平面直角坐标系中,顶点A 与坐标原点O 重合,点B 在x 轴上.将正方形ABCD 沿x 轴正方向作无滑动滚动,当点D 第一次落在x 轴上时,D 点的坐标是________,D 点经过的路径的总长度是________;当点D 第2014次落在x 轴上时,D 点经过的路径的总长度是_______.三、解答题(本题共50分,每小题5分) 13. 计算:sin 60cos3045tan 45︒︒+︒-︒14. 如图,在ABC ∆中,点D 在边AB 上,ACD ABC ∠=∠,1,3AD AB ==.求AC 的长.15. 已知二次函数243y x x =-+ .(1)求二次函数与x 轴的交点坐标; (2)求二次函数的对称轴和顶点坐标;(3)写出y 随x 增大而减小时自变量x 的取值范围.16. 如图,在DEF ∆中,2,4,120EF DE DEF ==∠=︒,EOD CBA17. 如图,AB 是⊙O 的弦,CD 是⊙O 的直径,CD AB ⊥,垂足为E .1,3CE ED == ,求AB 长.18. 如图,某数学兴趣小组想测量一棵树CD 的高度,他们先在点A 处测得树顶C 的仰角为30︒,然后沿AD 方向前行10m ,到达B 点,在B 处测得树顶C 的仰角高度为60︒ (A 、B 、D 三点在同一直线上)。
请你根据他们测量数据计算这棵树CD 的高度(结果精确到0.1m ).(参考数据:3≈1.732)19. 在平面直角坐标系xOy 中,一次函数y x b =-+ 4(0)y x x=>都经过(1,)A m .(1)求m 值和一次函数的解析式;(2)点B 在函数4(0)y x x=>的图象上,且位于直线y x b =-+下方.若点B 的横纵坐标都为整数,直接写出点B 的坐标.20. 在ABCD 中,tan 2A =,AD =,BD =O 是BD 中点,OE DC ⊥ 于E .(1)求DBA ∠的度数.(2)求四边形OBCE 的面积.ABAP21. 如图,AB 是O 的直径,C 是圆周上一点,OD AC ⊥ 于点D .过C 作O 的切线,交OD 的延长线于点P ,连接AP . (1)求证:AP 是O 的切线.(2)若45AC AB = ,163PD = ,求O 的半径.22. 阅读下面材料:小明遇到下面一个问题:如图1所示,AD 是ABC ∆的角平分线, ,AB m AC n ==,求BDDC的值.小明发现,分别过B ,C 作直线AD 的垂线,垂足分别为,E F .通过推理计算,可以解决问题(如图2).请回答,BDDC=________. 图2图1参考小明思考问题的方法,解决问题:如图3,四边形ABCD 中,2,6,60,A B B C A B C B D ==∠=︒平分ABC ∠,CD BD ⊥.AC 与BD 相交于点O .(1)AO OC=______.(2)tan DCO ∠=__________.图3图2ABD四、解答题(本题共22分,23题、24题各7分,25题8分)23. 在平面直角坐标系xOy 中,抛物线22+22y mx x m =++的开口向下,且抛物线与y 轴的交于点A ,与x 轴交于B ,C 两点,(B 在C 左侧). 点A 的纵坐标是3.(1)求抛物线的解析式; (2)求直线AB 的解析式;(3)将抛物线在点C 左侧的图形(含点C )记为G .若直线(0)y kx n n =+<与直线AB 平行,且与 图形G 恰有一个公共点,结合函数图象写出n 的 取值范围.24. ABC ∆中,AB=AC ,将线段AB 绕点A 按逆时针方向旋转α得到线段AD ,其中0180α︒<<︒.连结BD ,CD , DAC m DBC ∠=∠.新 |课 |标| 第 |一| 网 (1)若60BAC ∠=︒,30α=︒,在图1中补全图形,并写出m 值.(2)如图2,当BAC ∠ 为钝角,BAC α∠<时 ,m 值是否发生改变?证明你的猜想.(3) 如图3,90BAC ∠=︒ ,45DBC DAC ∠+∠=︒,BD 与AC 相交于点O ,求COD ∆与AOB ∆的面积比.图3图备用图25. 如图1,在平面直角坐标系中,O 为坐标原点.直线y k x b =+与抛物线2194y mx x n =-+同时经过(0,3)(4,0)A B 、. (1)求,m n 的值. (2)点M 是二次函数图象上一点,(点M 在AB 下方),过M 作MN ⊥ x 轴,与AB 交于点N ,与x 轴交于点Q .求MN 的最大值.(3)在(2)的条件下,是否存在点N ,使AOB ∆和 NOQ ∆相似?若存在,求出N 点坐标,不存在,说明理由. 新 课 标 第 一 网D B A密云县2014-2015学年度第一学期期末初三数学试卷参考答案2015.1 一、选择题(共32分,每小题4分)二、填空题(本题共16分,每小题4分)9. 9:4 10. 1m< 11. 3π 12. (3,0);4027)2π.三、解答题(本题共50分,每小题5分)13. 计算:sin60cos3045tan45︒︒︒-︒解:原式1…………………….4分(写对一个三角函数值给1分) =331144+-=………………………………………………….5分14.证明:ACD ABC∠=∠,B B∠=∠ACD∴∆∽ABC∆………………………………2分AD ACAC AB∴=, …………………………………3分1,3AD AB==3AC=……………………………………5分15. 解:(1)由(1)可得二次函数的解析式为243y x x=-+.令0y=,解得1x=或3x=............................1分∴二次函数与x轴的交点坐标为(1,0)和(3,0)…………………2分(2)243y x x=-+224243x x=-+-+…………………………………………3分=22)1x--(∴对称轴是2x=,顶点坐标是(2,1)-……………………………4分(3) 2x<…………………………………………………………………………….5分16.解:过F作FG⊥DE,交DE延长线于点G……………………………1分在Rt EGF∆中,90EGF∠=︒,∴cosEGGEFEF∠=,18012060GEF ∠=︒-︒=︒,2EF =∴cos 602EG︒=解得:1EG =,GF ==.3分∴5DG EG DE =+=在Rt DGF ∆中,90,DGF ∠=︒5,DG FG ==.∴DF ==5分17. 解:1,3CE DE ==4CD CE DE ∴=+=2r ∴=………………………………………………..1分1OE DE OB ∴=-=………………………………………2分连结OB.在RtOEB ∆中,EB ==.3分CD 是⊙O 的直径,AB 是⊙O 的弦,CD 是⊙O 的直径, CD AB ⊥,垂足为EAB BE ∴=………………………………………………………………4分 2AB EB ∴==..5分18.解:由题意可知,CD BD ⊥.设,(0)BD xm x => 则CD =,…………………….1分Rt ACD ∆中,tan 103CD CAD AD x ∠===+……….3分 解得:5x = ………………………………………………………….4分8.7CD ∴=≈………………………………………………….5分(其它解法酌情给分)19. 解: (1)一次函数y x b =-+ 和函数4(0)y x x=>都经过(1,)A m . 441m ∴==…………………………………………………………..1分(1,4)A ∴145b b ∴-+=∴=…………………………………………2分4m ∴=,一次函数的表达式是5y x =-+……………………3分(2)满足题意的点B 的坐标是(2,2)…………………………..5分20. 解:(1) 过D 作DF AB ⊥于F.tan 2,A =2.DFAF∴=2,DF k =(0)k >,AF k =.AD =………………………………………1分 2AD = 2.k =∴2,AF =4DF =,4BF =……………………………………………………………………..2分在Rt DFB ∆中, DF BF =45DBA ∴∠=︒ ……………………………………………………………………………………….3分 (2)可求:6,DC AB ==164122DBC S ∆∴=⨯⨯=…………………………………….4分 可求:2,DE AE ==12222ODE S ∆∴=⨯⨯= ∴四边形OBCE 的面积是10.……………………………………………………………….5分 21. 解: (1)证明:连结OC.AC 是O 的弦,OD AC ⊥,OA=OC AOP COP ∴∠=∠ 在AOP ∆和COP ∆中,OA OC AOP COP OP OP =⎧⎪∠=∠⎨⎪=⎩AOP COP ∴∆≅∆PCO PAO ∴∠=∠……………1分 PC 切O 于点C90PCO ∴∠=︒90PAO ∴∠=︒即PA AO ⊥又OA 是O 的半径,∴AP 是O 的切线……………………………2分(2)连结BC.AB 是O 的直径,∴AC BC ⊥又OD AC ⊥∴//OD BC45AD AC AO AB ∴==45CD CO ∴= 设CD=4k,则CO=5k,OD=3k.(k>0) 新 |课 |标| 第 |一| 网90,90,CPD COD COD OCD ∠+∠=︒∠+∠=︒CPD OCD ∴∠=∠90,PDC CDO ∠=∠=︒ACPD ∴∆∽OCD ∆ CD ODPD DC∴=…………………………………………………………………………3分 设CD=4k,则CO=5k,OD=3k.(k>0)163PD k ∴= ……………………………4分 1613PD k =∴=5OC ∴= ∴O 的半径长为5………………………5分22.m n ;(1)13(2四、解答题(本题共22分,23题、24题各7分,25题8分) 23. (1)抛物线22+21y mx x m =++ 与y 轴的交点A 的纵坐标是3∴220+2023m m ⨯⨯++=解得:1m =±……………………………………………1分抛物线开口向下 1m ∴=-∴抛物线的解析式为2+23y x x =-+…………..……………………………………2分 (2) 由(1)可知(1,0),(3,0)B C -.设AB 的解析式为y kx m =+.则3m k m =⎧⎨-+=⎩ 解得: 33m k =⎧⎨=⎩ ∴AB 的解析式为:33y x =+………………….………………………………………..4分(3)当3y x n =+经过(3,0)点时,9n =-…………………………………………….5分 结合图象可知,n 的取值范围是9n <-.………………………………………………7分24.(1)2m = ……………………………………….2分. X|k | B | 1 . c |O |m (图形正确1分,m 值1分) (2)解:1802ABD α︒-∠=180180()22BAC DAC ABC α︒-∠︒--∠∠==DBC ABC ABD ∠=∠-∠=2DAC∠ 2m ∴=………………………………………………4分(其它证明方法请酌情给分.)(3)12COD AOB S S ∆∆=…………………………………7分CB图1图225. 解: (1)抛物线2194y mx x n =-+ 经过两点(0,3),(4,0)A B ∴22190034194404m n m n ⎧⨯-⨯+=⎪⎪⎨⎪⨯-⨯+=⎪⎩解得13m n =⎧⎨=⎩所以二次函数的表达式为21934y x x =-+. …………………………….2分 (2)可求经过AB 两点的一次函数的解析式为334y x =-+ .2223193(3)4(2)444MN x x xx x x =-+--+=-+=--+04x ≤≤∴ 当2x =时,MN 取得最大值为4.……………………………….4分(3)存在.①当ON AB ⊥ 时,(如图1)可证:NOQ OAB ∠=∠ ,90OQN AOB ∠=∠=︒ ∴AOB ∆∽OQN ∆. ∴ ON NQ OQ AB OB OA==∴3,4OA OB ==∴5,AB =..ON AB OAOB =,∴125ON =∴4836,2525NQ OQ ==.3648(,)2525N ∴ ………………………………………6分 ②当N 为AB 中点时,(如图2)新 课 标 第 一 网NOQ B ∠=∠,90AOB NQO ∠=∠=︒∴AOB ∆∽NQO ∆.此时3(2,)2N .∴满足条件的N 3648(,)2525或N 3(2,)2……………………………………..8分。