互感器局放放电解析及试验参考文档
完整版)互感器局放试验方案

完整版)互感器局放试验方案互感器1.2Um/√31.2Um(必要时)3、试验步骤1)准备工作a.检查试验仪器设备是否完好;b.检查试验线路连接是否可靠;c.检查试验现场安全措施是否到位。
2)试验操作a.按照试验方案进行试验操作;b.实时记录试验数据;c.发现异常情况及时处理;d.试验结束后,将试验仪器设备恢复原状。
4、试验注意事项a.试验过程中应注意安全距离;b.试验前应检查试验仪器设备是否完好;c.试验操作人员应具备相关知识和技能;d.试验数据应实时记录,确保准确性;e.试验结束后应将试验仪器设备恢复原状;f.试验过程中如发现异常情况应及时处理。
五、试验结果处理根据试验结果,判断互感器的好坏,并及时处理异常情况。
试验数据应及时整理、分析和归档,以备后续参考和使用。
六、安全措施1、试验前应做好安全措施,确保试验过程中人身和设备安全;2、试验现场应设立明显的安全警示标志;3、试验操作人员应穿戴符合要求的个人防护装备;4、试验操作人员应具备相关知识和技能;5、试验过程中应注意安全距离,防止对周边柜体及相邻设备出现放电现象;6、试验结束后应将试验仪器设备恢复原状,清理现场,确保安全环境。
七、附录1、互感器局放检测报告模板;2、互感器局放检测数据分析表。
本文介绍了电压互感器和电流互感器的局部放电测量预防性试验的相关数据要求和电压互感器的局放试验。
在电压互感器方面,要求固体绝缘相对地电压互感器在电压为1.1Um/√3时,放电量不大于100pC,在电压为1.1Um时(必要时),放电量不大于500pC。
在电流互感器方面,要求固体绝缘互感器在电压为1.1Um/√3时,放电量不大于100pC,在电压为1.1Um时(必要时),放电量不大于500pC。
电压互感器的局放试验需要预加试验电压Us=0.7×1.3×Um和局放试验电压Us'=1.2×Um/√3,并进行局放校准。
电流互感器的局放试验需要施加高压试验接线和谐振耐压试验装置,并计算和接线。
(完整版)互感器局放试验方案

互感器局放检测试验方案方案编写:方案审核:1方案批准:互感器局放试验方案一、编制说明局部放电对绝缘的破坏有两种情况:一是放电质点对绝缘的直接轰击,造成局部绝缘破坏,逐步扩大,使绝缘击穿;二是放电产生的热、臭氧等活性气体的化学作用,使局部绝缘受到腐蚀,电导增加,最后导致热击穿。
因此,规程规定,互感器应按10%的比例进行局放试验,若局部放电量达不到规定要求应增大抽测比例。
互感器的局部放电试验是属于工作强度大,电压高,危险性大的试验项目,为了确保试验安全,提高试验数据的准确性,在总结以往试验的基础上,特编制本试验方案,在互感器局放测试过程中,所有参加试验的人员应遵照执行。
二、编制依据1、《电气装置安装工程电气设备交接试验标准》 GB50150-2016;2、《电力建设安全工作规程》-----------DL5009.3-19973、《现场绝缘试验实施导则》--------------DL560-954、《仪器使用说明书、工程相关厂家资料》三、电压互感器局放试验概况互感器安装在高压开关柜内,与其他设备距离相当的小,且与断路器和母线的连接铜排已安装完毕,试验具有一定的难度。
在进行高压线连接时应特别注意安全距离防止对周边柜体及相邻设备出现放电现象。
如果试验结果超出规程规定的局放量要求范围,对于互感器与其他设备的连接铜排应拆除或应该将互感器拆下后放置到空旷的场地、试验室再进行试验,以保证试验数据的相对准确性和真实性。
在连接线的两端应连接可靠,尽量减少尖端及毛刺,防止放电。
四、试验方案1、试验方案简述:电流互感器采用无局放控制箱及变压器或无局放谐振耐压试验装置进行外施加压的方法,通过耦合电容分压器用局放测试仪进行局放测试。
电压互感器局放试验采用无局放三倍频发生器通过倍频感应的升压方式从二次侧加压,用局放测试仪进行局放量测量,试验电源同时需要380V与220V。
局放测量试验所施加在互感器上的电压很高,最高达到1.2Um,因此对于设备绝缘以及试验的安全距离要求较高,且测试精度要求高,数据要求准确,才能正确判断互感器的好坏。
局部放电试验

局部放电试验局部放电测量指导书一、适用范围本指导书适用于电力设备在交流电压下进行局部放电试验,包括测量在某一定电压下的局部放电量、设备局部放电的起始电压和熄灭电压。
二、测量基本方法与步骤2.1试验方法:根据接线方式可分为并联法、串联法,即检测阻抗与被试品串联进行测量,称为串联法;检测阻抗与被试品并联进行测量,称为并联法,此时,需加测量用耦合电容器。
对于变压器来说,一般通过套管末屏处测量,类似并联法。
(1) 并联法:2.2试验步骤:2.2.1试验接线:应根据被试品的特点完成接线,检查试验加压回路、测量系统回路;2.2.2试验回路校准:在加压前应对测试回路中的仪器进行例行校正,以确定接入试品时测试回路的刻度系数,该系数受回路特性及试品电容量的影响。
在已校正的回路灵敏度下,观察未接通高压电源及接通高压电源后是否存在较大的干扰,如果有干扰应设法排除。
2.2.3试验前试品应按有关规定进行预处理:(1)使试品表面保持清洁、干燥,以防绝缘表面潮气或污染引起局放。
(2)在无特殊要求情况下,试验期间试品应处于环境温度。
(3)试品在前一次机械、热或电气作用以后,应静放一段时间再进行试验,以减少上述因素对本次试验结果的影响。
2.2.4测定局放起始电压和熄灭电压拆除校准装置,其他接线不变,在试验电压波形符合要求的情况下,电压从远低于预期的局放起始电压加起,按规定速度升压直至放电量达到某一规定值(一般为局放仪在测量时可观测到的设备放电)时,此时的电压即为局放起始电压。
其后电压再增加10%,然后降压直到放电量等于上述规定值,对应的电压即为局放熄灭电压。
测量时,不允许所加电压超过试品的额定耐受电压,另外,重复施加接近于它的电压也有可能损坏试品。
2.2.5测定局部放电量(1)无预加电压的测量试验时试品上的电压从较低值起逐渐增加到规定值,保持一定时间再测量局放量,然后降低电压,切断电源。
有时在电压升高、降低过程中或在规定电压下的整个试验期间测量局放量。
互感器局放放电解析和试验共56页文档

61、奢侈是舒适的,否则就不是奢侈 。——CocoCha nel 62、少而好学,如日出之阳;壮而好学 ,如日 中之光 ;志而 好学, 如炳烛 之光。 ——刘 向 63、三军可夺帅也,匹夫不可夺志也。 ——孔 丘 64、人生就是学校。在那里,与其说好 的教师 是幸福 ,不如 说好的 教师是 不幸。 ——海 贝尔 65、接受挑战,就可以享受胜利的喜悦 。——杰纳勒 尔·乔治·S·巴顿
互感器局放放电解析和试验
26、机遇对于有准备的头脑有特别的 亲和力 。 27、自信是人格的核心。
28、目标的坚定是性格中最必要的力 量泉源 之一, 也是成 功的利 器之一 。没有 它,天 才也会 在矛盾 无定的 迷径中 ,徒劳 无功。- -查士 德斐尔 爵士。 29、困难就是机遇。--温斯顿.丘吉 尔。 30、我奋斗,所以我快乐。--格林斯 潘。
谢谢!
电流互感器局部放电实验

汇报人: 日期:
目录
• 实验目的与背景 • 实验原理与方法 • 实验操作过程与结果分析 • 实验数据统计与处理方法 • 实验误差来源及控制方法探讨 • 实验结论总结与未来研究方向
展望
01
实验目的与背景
电流互感器局部放电现象
局部放电定义
局部放电是指在绝缘介质中,由于电 场分布不均匀,导致局部区域出现放 电现象。在电流互感器中,局部放电 通常发生在绝缘材料内部或表面。
3. 逐渐增加电压,观察电流互感器的 局部放电现象,并记录相关数据。
4. 重复实验,改变电压、温度、湿度 等条件,观察局部放电的变化。
实验设备与材料
实验设备
高压电源、局部放电检测仪、示 波器、数据采集系统等。
材料
电流互感器、绝缘介质、导线等 。
03
实验操作过程与结果分析
实验操作过程描述
01
02
影响因素研究
研究了温度、湿度、电压等级等环境因素对局部放电的影响。
对比分析
将实验结果与理论预测进行对比,验证了理论的正确性,并提供了 实际应用指导。
技术创新与改进
新材料应用
研究新型绝缘材料在电流互感器中的应用,以提 高其抗局部放电性能。
测量技术提升
改进局部放电的测量技术,提高测量精度和灵敏 度。
多参数综合评估
局部放电原因
局部放电可能是由于绝缘材料内部存 在缺陷、杂质、气隙等,或者外部电 场强度过高,导致绝缘材料内部或表 面出现放电。
实验目的与意义
实验目的
通过电流互感器局部放电实验,研究局部放电现象的规律和特点,分析局部放 电对电流互感器性能的影响,为提高电流互感器的绝缘性能和可靠性提供理论 依据。
电压互感器局部放电试验研究

电压互感器局部放电试验研究局部放电是造成电压互感器绝缘损坏的主要原因,积极开展电压互感器局放试验可预防重大电力事故,保证电力系统安全运行。
文章以型号为JDZX3-15的电压互感器为试验对象,通过比较得出,检测系统增加隔离、滤波装置能大大降低电源的干扰;使用屏蔽实验室能有效隔离外界各种空间干扰,提高局放检测精度。
标签:电压互感器;局部放电;电源干扰;屏蔽实验室引言电压互感器是电力系统中一种重要的特殊变压器,主要将交流大电压按比例降到可用仪表直接测量的数值,同时为继电保护和自动装置提供电源。
其绝缘性能的好坏是判定互感器状况的重要因素。
研究证明,局部放电是造成高压电气设备绝缘损坏的主要原因之一,微弱放电的累积效应会使绝缘缺陷逐渐扩大,最终出现击穿、爆炸现象。
积极开展互感器局部放电试验对及时发现互感器中的绝缘弱点和缺陷,保证电力系统安全运行具有重要意义。
2015年5月,五凌电力公司与华北电力大学合作,选取公司电厂中有代表性的电压互感器,对局放试验进行了学习,并对现场试验中部分干扰的抑制及屏蔽实验室的搭建进行了研究。
1 电压互感器现场局部放电试验1.1 系统构成及接线我公司进行电压互感器局放测量时,采用传统的脉冲电流法,由三倍频发生器和试验变压器在试品的高压端提供试验电压,通过无局放耦合电容器和输入单元将局部放电信号取出并送至局部放电检测仪显示、判断和测量。
系统接线原理如图1。
其中:三倍频发生器型号为GOZ-SBF;无局放试验变压器及耦合电容器参数分别为50KV/10KV A及1000pF/100kV;外同步模块型号为HCTX-06A;输入单元型号为HCPD-1-3;局放测试仪型号为HCPD-9108;被试电压互感器型号为JDZX3-15。
1.2 试验程序局放试验可结合感应耐压试验进行,即在耐压60s后不将电压回零,直接将电压降至局放测量电压进行30s局放测量;如单独进行局放试验,则先将电压升至预加电压(一般是感应耐压的80%),停留10s后,将电压降至局放测量电压进行局放测量。
电流互感器局部放电实验研究

电流互感器局部放电实验研究【摘要】由于电流互感器绝缘体中存在着细微的气泡和裂纹,没有形成连通性故障,用交流耐压方式无法检测成功。
利用局部放电的方式进行绝缘体局部放电检测,通过获取局部放电量来判断检测部位是否存在着放电现象,从而检验处绝缘体内部的薄弱环节,加强互感器的运行安全。
【关键词】绝缘体局部放电;脉冲电流;校正电荷引言国标GB50150-91《电气装置安装工程电气设备交接试验标准》中规定“35kV 及以上固体绝缘互感器应进行局部放电试验”。
35kV固体绝缘互感器,一般指LCZ-35型环氧树脂电流互感器。
由于在这种互感器在浇注环氧树脂时可能残留小气泡,在搬运过程中又容易因振动和撞击产生微小裂纹。
这些微小的气泡和裂纹往往存在于绝缘体的局部,没有形成连通性故障,用交流耐压方式无法检测成功。
在交流高电压作用下,便会产生局部放电,周而复始地形成恶性循环,并伴随着电、热、声、光过程,加速着绝缘材料的老化,以致酿成严重的电气事故,破坏系统的正常运行。
利用局部放电的方式进行绝缘体局部放电检测,通过获取局部放电量来判断检测部位是否存在着放电现象,从而检验处绝缘体内部的薄弱环节,加强互感器的运行安全。
1 局部放电试验局部放电测量方法主要有无线电干扰测量方法、放电能量法和脉冲电流法。
脉冲电流法灵敏度高,是目前国际电工委员会推荐进行局部放电测试的一种通用方法。
1.1 测试装置为了取得较好的试验电源,阻止干扰脉冲进入测量回路,使用了型号为LB-55 kV·A的电源滤波装置,成套的YDW-k5V·A无局部放电升压试验变压器和XYD-5S无局部放电调压器,局部放电仪型号为KJF96-1,检测阻抗是RLC 型,调谐电容量范围为25 ~100 ~400 pF。
被试品型号为LZZW-35和LCZ-35Q。
1.2 试验接线首先采用直接法串联线路,用此方法进行局放试验时,空气杂散电容器Cs代替藕合电容器Ck,未加试验电压前的背景噪声约有50pC,放电波形如图1所示。
110KV电压互感器局部放电试验

110KV及以下电压互感器局部放电试验一、110KV电压互感器的局放试验1、试验电压预加电压:Us=0.7×1.3×126KV=114KV局放试验电压:Us'=1.2×126/ √3=87.3KV2、试验接线3、施加电压试验时将两个100/√3的绕组串联。
串联后的电压为 115.4V。
电压互感器的变比为 K=110000/√3/115.4=550.35预加电压时二次施加电压 U=114/550=207V局放试验电压时二次施加电压 U=87.3/550=158V二、66KV电压互感器的局放试验1、试验电压预加电压:Us=0.7×1.3×69KV=62.79KV局放试验电压:Us'=1.2×69/ √3=47.8KV2、试验接线3、施加电压试验时将两个100/√3的绕组串联。
串联后的电压为 115.4V。
电压互感器的变比为 K=66/√3/115.4=330.2预加电压时二次施加电压 U=62.79/330=190V局放试验电压时二次施加电压 U=47.84/330=144V三、35KV电压互感器的局放试验1、试验电压予加电压:Us=0.7×1.3×40.5KV=36.8KV局放试验电压:Us'=1.2×40.5/ √3=28.06KV2、试验接线3、施加电压试验时将两个100/√3的绕组串联。
串联后的电压为 115.4V。
电压互感器的变比为 K=35000/√3/115.4=175预加电压时二次施加电压 U=36800/175=210V局放试验电压时二次施加电压 U=28060/175=160V110KV及以下电流互感器局部放电试验一、110KV电流互感器的局放试验1、试验电压预加电压:Us=114KV局放试验电压:Us'=1.2×126/ √3=87.3KV2、试验接线3、施加电压3、1无晕交流分压器:200KV、250pF (2台串联每节100KV 500PF)3、2耦合电容器:120KV、750pF (2台串联每节 60KV 1500PF)3、3试验电容电流:试品电容量为C=800 pFIc=2πfUC=2π×150×114×800=85mA3、4电抗器:U=57KV f=150HZ I=0.18A L=336H总电感量:L=336H×2=672H3、5总电容量: C=250pF+750pF+800pF=1800pF3、6试验频率:f=1/2πLC(L=672H,C=1800pF),f=147.8Hz 3、7 Q=103、8励磁变计算:一次电压: U1=12000二次电压:U2=350V变比:K=12000/350=34.283、9 预加电压:试验时励磁变一次电压 US=114KV/10=11.4KV试验时励磁变二次电压 US2=11.4KV/34.28=332V 3、10 试验电压:试验电压 U=87.3试验时励磁变一次电压 US=87.3KV/10=8.73KV试验时励磁变二次电压 US2=8.73KV/34.28=254.7V二、66KV电流互感器的局放试验1、试验电压预加电压:Us=0.7×1.3Um=0.7×1.3×69KV=62.79KV局放试验电压:Us'=1.2Um/ √3=47.8KV2、试验接线3、施加电压3、1无晕交流分压器:200KV、250pF (2台串联每节100KV 500PF)3、2耦合电容器:120KV、750pF (2台串联每节 60KV 1500PF)3、3试验电容电流:试品电容量为C=800 pFIc=2πfUC=2π×150×62.79×800=47.3mA3、4电抗器:U=57KV f=150HZ I=0.18A L=336H (2台)总电感量:L=336H×2=672H3、5总电容量: C=250pF+750pF+800pF=1800pF3、6试验频率:f=1/2πLC(L=672H,C=1800pF),f=147.8Hz 3、7 Q=103、8、励磁变计算:一次电压: U1=12000二次电压:U2=350V变比:K=12000/350=34.283、9 预加电压:试验时励磁变一次电压 US=62.79KV/10=6.28KV试验时励磁变二次电压 US2=6.28KV/34.28=183V3、10 试验电压:试验电压 U=47.8试验时励磁变一次电压 US=47.8KV/10=4.78KV试验时励磁变二次电压 US2=4.78KV/34.28=139.5V三、35KV电流互感器的局放试验1、试验电压预加电压:Us=0.7×1.3Um=0.7×1.3×40.5KV=36.9KV局放试验电压:Us'=1.2Um/ √3=28.1KV2、试验接线3、施加电压3、1无晕交流分压器:100KV、500pF 1节3、2耦合电容器:60KV、1500pF 1节3、3试验电容电流:试品电容量为C=400 pFIc=2πfUC=2π×150×36.9×400=13.9mA3、4电抗器:U=57KV f=150HZ I=0.18A L=336H (1台)总电感量:L=336H3、5总电容量: C=500pF+1500pF+400pF=2400pF3、6试验频率:f=1/2πLC(L=336H,C=2400pF),f=177.3Hz3、7 Q=103、8、励磁变计算:一次电压: U1=12000二次电压:U2=350V变比:K=12000/350=34.283、9 预加电压:试验时励磁变一次电压 US=36.8KV/10=3.68KV试验时励磁变二次电压 US2=3.68KV/34.28=107V 3、10 试验电压:试验电压 U=47.8试验时励磁变一次电压 US=28.1KV/10=2.81KV试验时励磁变二次电压 US2=2.81KV/34.28=81.97V110KV及以下电压互感器的感应耐压试验一、110KV电压互感器交流耐压试验、用感应法进行交流耐压1、1 试验电压U=160KV1、2试验接线1、3施加电压:试验时将两个100/√3的绕组串联。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.2.熄灭电压:
▪ 当施加于试品上的试验电压从开始在测量仪器 上观察到局部放电电压继续上升到较高电压后, 在将电压下降到局部放电测量仪器上观察不到 局部放电信号刚好消失时的试验电压称为局部 放电熄灭电压。
▪ 局部放电熄灭电压也和测量仪器及整个测试回 路的测量灵敏度有关,局部放电熄灭电压实际 上是测量仪器及整个回路的最大测量灵敏度情 况下小于某一规定局部放电量值时的最大试验 电压值。
五. GB50150-2006电气装置安装 工程电气设备交接试验标准
▪ 5.1电流互感器:测量电压1.2Um/√3 kV ▪ 允许的视在放电量局部水平:环氧树脂及
其他干式 50pc 、油浸式和气体式 20pc。
▪ 5.2 电压互感器35kv :(全绝缘结构)测量 电压1.2Um/√3 kV
▪ 允许的视在放电量局部水平:环氧树脂及 其他干式 50pc 、油浸式和气体式 20pc。
上观察到局部放电的较低电压遂渐上升,到刚 好到能观察到局部放电信号时的最低电压称为 局部放电起始放电电压。 ▪ 显然局部放电起始放电电压和测量仪器及整个 测试回路的测量灵敏度有关,测量灵敏度越高, 能观察到局部放电量值就越小,此时的试验电 压越低;因此,局部放电起始放电电压实际上 是测量仪器及整个回路的最大测量灵敏度情况 下超过某一规定局部放电量值时的最小试验电 压值。
▪ 电晕的放电脉冲就出现在外加电压负半周的 900相位附近,几乎是对称于900,出现的放电 脉冲几乎是等幅值、等间隔的,随着电压的提 高,放电大小几乎不变,而次数增加,当电压 足够高时,在正半周也会出现少量幅值较大的 放电,正负半周波形是极不对称的。
6.5气泡放电的特征:
▪ 通常介质内部气泡的放电,在正负两个半周内 基本上是相同的。但每次放电的大小,即脉冲 的高度并不相等,而且放电多是出现在试验电 压幅值绝对值的上升部分的相位上,只有在放 电很剧烈时,才会扩展到电压绝对值下降部分 的相位上,这可能是由于实际试品中往往存在 多个气泡同时放电,或者是只有一个大气泡,
6.7检测阻抗
▪ 检测阻抗的主要作用是取得局部放电所产生的高频脉冲信号, 对试验电压的工频及其谐波的低频信频信号则予以抑制,检 测阻抗是连接试品与仪器主体部份的一个关键部件,对仪器 的频率特性与灵敏度有直接关系,也有人称为输入单元。采 用LCR(并联)的型式,并通过初、次级的匝数比,使其获得 较高的检测灵敏度。流过检测阻抗的电流,也是选择检测阻 抗的一个重要因素
▪
6.3.背景噪声
▪ 在局放试验中检测到的不是由试品产生的 信号干扰:是除设备的局放信号以外的一 切信号。当噪声信号达到对测试产生不良 反应的程度时就成为干扰。
6.4电晕:
▪ 若导体附近的电场强度达到了周围大气的击穿 场强,于是就在导体附近出现电晕。电气设备 主要的特征就是在绝缘体表面且周围是气体的, 我们则称之为电晕。
四.局部放电的危害性
▪ 设备内部的局部放电虽然不形成贯穿性通 道,但放电会产生热,使介质出现局部的 温度升高,甚至碳化,另外,由于放电的 电解作用,会产生一些活性气体,(如臭 氧、一氧化碳和二氧化碳)它们对绝缘都 有腐蚀作用,可见,局部放电持续发展, 会逐渐造成绝缘的损伤,促使绝缘的老化, 基至最后导致整个绝缘的击穿。
▪ 5.3电压互感器35kv :(半绝缘结构)测量电 压1.2Um/√3 kV
▪ 允许的视在放电量局部水平:环氧树脂及 其他干式 50pc 、油浸式和气体式 20pc。
▪ 油浸式互感器局部放电试验前后,应各进 行一次绝缘油的色谱分析。
六.关于局部放电试验的名词解释
▪ 6.1.起始放电电压: ▪ 当施加于试品上的试验电压从还末在测量仪器
▪ 气体放电是有一定的随机性,电压作用的时间 长,如升压的速度慢或用遂级升压法升压,测 得的起始电放电电压要偏低。
6.6气泡产生的原因
▪ 高压电气设备的绝缘内部常常存在着气隙(气 泡)这些气隙通常是在制造过程中形成的,比 如电木筒和电木板的各纸层之间,由于真空浸 漆干燥工艺处理不好,就会在内部形成空腔。 绝缘内部存在的这些气隙(气泡)其介电强度 常数比绝缘材料的介电常数要小,在电场的作 用下气隙上承受的电场强度比邻近的绝缘材料 上的电场强度要高,绝缘内部所含气隙上的场 强就会先达到使之击穿的程度,从而气隙先发 生放电,这种绝缘内部气隙放电就是一种局部 放电。这些电场集中的地方,就可能使局部绝 缘击穿。
二.局部放电的形成
▪ 高压互感器常用的绝缘材料有油纸绝缘, 环氧树脂浇注的绝缘及六氟化硫与塑料薄 膜复合绝缘,绝缘内部可能会出现空腔或 杂质,在高压电场作用下就会形成局部放 电。
三.局部放电试验的意义
▪ 干式绝缘的互感器在制造过程中总是在不 同程度上残留气隙 ;有些缺陷的存在在交 流耐压试验中无法发现的;而且由于绝缘 电介质在交流电压作用下的破坏或电老化, 可以认为是从局部放电开始的,一般在局 部放电测试中的试验电压要比耐压试验电 压低得多,因此在试验过程损伤被试物的 可能要小得多。通过局部放电检测可以检 验绝缘设计是否合理,工艺过程是否存在 原始纯角等设备缺陷。
互感器
局放试验
一.局部放电
▪ 在电气设备中由于绝缘体是由不同材料组成的 复合绝缘体,如气体—固体复合绝缘的材料,但在制造或使用过程中会残 留一些气泡或其他杂质,因此绝缘体内各区域 承受的电场一般是不均匀的,而且电介质也是 不均匀的,于是在绝缘体内部或表面就会出现 某些区域的电场强度高于平均电场强度,某些 区域的击穿强度低于平均击穿强度,在某些区 域就会首先发生放电,而其他区域仍然保持绝 缘的特性,这就会产生局部放电。
▪ 一般初级、次级为均为LCR回路,其初级绕组电感量在局部放 电检测仪的放大器频带内与试验回路的等效电容相调谐,其 优点是它的电感量L对高压电源频率形成的一个低阻抗,选用 检测阻抗时应考虑检测阻抗初级电感量与检测回路的等效电 容相调谐,调谐电容量的值应选在检测阻抗调谐电容量的中 心值附近,检测阻抗还必须承受进行局部放电试验时流过其 初级绕组的最大电流值,这个电流值由试验电压及检测阻抗 相串联的电容的容抗值所决定。