大学物理波的干涉和衍射
大学物理电磁波与光的干涉与衍射

大学物理电磁波与光的干涉与衍射干涉与衍射是物理学中重要的概念,特别是在电磁波和光学中有着广泛的应用。
本文将介绍电磁波与光的干涉和衍射现象及其相关理论,并探讨其在实际应用中的重要性。
一、电磁波与光的干涉现象干涉是指两个或多个波源发出的波相遇时所产生的相互干涉现象。
在电磁波和光学中,干涉现象表现为光的干涉,主要分为以下几种形式:1. 杨氏双缝干涉杨氏双缝干涉是最经典的干涉实验之一,它通过在光路上设置两个相隔较远的狭缝,使光通过后形成干涉图样。
当两个光波相遇时,会出现相长和相消的现象,从而形成明暗相间的干涉条纹。
2. 牛顿环干涉牛顿环干涉也是一种常见的干涉现象,它是通过将平凸透镜与平凹透镜叠在一起形成的。
当光线从平凸透镜上射入空气中,然后经过平凹透镜后再次汇聚,会在两个透镜之间形成明暗相间的圆环。
3. 薄膜干涉薄膜干涉是指当光线从两个介质的交界面入射时,经过反射和折射后产生干涉现象。
常见的例子是气泡的彩色干涉,当光线从气泡的表面反射和折射时,由于波长的不同,会产生明暗相间的彩色光。
二、电磁波与光的衍射现象衍射是指当波通过物体的缝隙或尺寸接近波长的物体时,波的传播方向发生偏离的现象。
在电磁波和光学中,衍射现象也有多种形式:1. 单缝衍射单缝衍射是一种常见的衍射现象,当光通过一个小缝隙时,会出现中央明亮,两侧逐渐暗淡的衍射图样。
这是因为当光通过缝隙时,会发生弯曲并扩散,使得光束在屏幕上形成衍射斑。
2. 双缝衍射双缝衍射是一种与杨氏双缝干涉相似的现象,当光通过两个相隔较近的缝隙时,会产生明暗相间的衍射条纹。
与干涉不同的是,衍射是由于波的传播特性而形成的,而不是波的相互干涉。
3. 衍射光栅衍射光栅是一种由许多平行的细缝组成的光学元件,用于分析和分离光的不同波长。
当光通过衍射光栅时,会出现多个明亮和暗淡的光斑,这是由于不同波长的光经过光栅后发生不同程度的衍射而产生的。
三、干涉与衍射的应用电磁波与光的干涉与衍射现象在实际应用中具有重要作用,主要体现在以下几个方面:1. 光学仪器干涉和衍射现象广泛应用于光学仪器中,包括显微镜、干涉仪、光栅等。
大学物理中的波动光学光的衍射和干涉现象

大学物理中的波动光学光的衍射和干涉现象大学物理中的波动光学:光的衍射和干涉现象波动光学是大学物理中的一门重要课程,研究光的传播与干涉、衍射、偏振等现象。
其中,光的衍射和干涉是波动光学中的两个重要现象。
本文将对光的衍射和干涉进行详细讨论和解析,并探讨其在实际应用中的重要性。
一、光的衍射现象光的衍射是指光通过狭缝或障碍物后的传播过程中,光波的干涉和折射产生的现象。
当光波通过一个狭缝时,光波会在狭缝的边缘发生弯曲,进而产生波动的干涉效应。
这个过程称为光的衍射。
光的衍射现象在日常生活中有各种各样的应用。
例如,CD、DVD 和蓝光碟等光盘的读写原理就是基于光的衍射现象。
光的衍射也被广泛应用于显微镜、望远镜和天文学的观测中,使我们能够更清晰地观察微观和宇宙中的远处物体。
二、光的干涉现象光的干涉是指两个或多个光波相互叠加产生干涉的现象。
当两束或多束光波相遇时,它们会发生叠加干涉现象,形成交替出现明暗的干涉条纹。
这种现象称为光的干涉。
光的干涉现象在很多实验中都有应用。
例如,杨氏双缝干涉实验就是利用光的干涉现象来观察和研究波的性质。
干涉技术还被广泛应用于光学测量、图像处理和激光干涉等领域。
干涉技术的应用使得我们可以实现高精度测量、光栅分析和光学干涉计等。
三、衍射与干涉的区别与联系尽管光的衍射和干涉是两个不同的现象,但它们之间有着紧密的联系。
首先,光的衍射和干涉都是由于光波的波动性质而产生的。
其次,它们都是波动光学中干涉和折射效应的体现。
不同之处在于,光的干涉是多个光波相互叠加产生的干涉现象,而光的衍射是光通过狭缝或障碍物后的波动干涉和弯曲现象。
此外,光的干涉通常需要明确的相位差和干涉构成条件,而光的衍射则更多地受到波长、狭缝尺寸和物体形状的影响。
无论是光的衍射还是干涉,在物理学的研究和实际应用中都起着重要的作用。
无论是在光学器件设计、成像技术还是光学测量中,都需要充分理解和应用这些光学现象。
同时,通过对光的干涉和衍射的研究,我们可以更深入地了解光与物质相互作用、光的传播特性和波动性质等问题,有助于推动光学科学和技术的发展。
大学物理中的光的干涉与衍射光的干涉与衍射现象

大学物理中的光的干涉与衍射光的干涉与衍射现象大学物理中的光的干涉与衍射光的干涉与衍射现象是大学物理中一个重要且有趣的研究课题。
这些现象揭示了光的波动性质,以及波动性对光的传播与相互作用的影响。
本文将系统地介绍光的干涉与衍射现象,并探讨其在物理学与现实生活中的应用。
一、光的干涉现象光的干涉是指两列或多列光波相互叠加形成的明暗条纹图案。
常见的干涉现象包括杨氏双缝干涉、杨氏单缝干涉、牛顿环等。
1.1 杨氏双缝干涉杨氏双缝干涉是光的干涉现象中最典型的实验之一。
它利用一束光通过两狭缝后产生的明暗交替的干涉条纹来说明光的波动性质。
当光线经过两条狭缝时,由于来自不同狭缝的光波具有相位差,它们会相互干涉,形成一系列明暗相间的条纹。
1.2 杨氏单缝干涉杨氏单缝干涉是光的干涉现象中较为简单的一种。
它是通过单个狭缝产生的衍射效应,导致在观察屏幕上出现明暗相间的条纹。
单缝干涉通常用于分析光的波长和狭缝大小之间的关系。
1.3 牛顿环牛顿环是一种非常有趣的干涉现象。
它是由一片凸透镜与平面玻璃片之间的空气薄膜所形成的。
当光线垂直照射到凸透镜与平面玻璃片之间的空气薄膜时,由于空气薄膜的厚度不均匀,光线在不同厚度处产生不同的相位差,从而形成一系列明暗相间的圆环。
二、光的衍射现象光的衍射是指光通过物体的边缘或孔径时发生偏离直线传播的现象。
常见的衍射现象包括夫琅禾费衍射、菲涅耳衍射等。
2.1 夫琅禾费衍射夫琅禾费衍射是一种通过窄缝衍射的现象。
当一束平行光通过一个窄缝时,光波会在缝口处发生衍射,形成一系列明暗相间的条纹。
这种衍射现象的强度分布与缝口的大小和光波的波长有关。
2.2 菲涅耳衍射菲涅耳衍射是一种通过物体边缘衍射的现象。
当一束平行光照射到物体的边缘时,光波会在物体边缘发生衍射,从而形成明暗相间的衍射图样。
菲涅耳衍射常用于分析物体的形状和边缘的特性。
三、光的干涉与衍射在应用中的意义光的干涉与衍射现象在科学研究和实际应用中具有重要意义。
大学物理干涉衍射汇总

第17章 波动光学
干涉:两列频率/振动方向相同,相位差恒定的波在空 间相遇产生固定加强/减弱的现象。相干波
为什么17世纪不做个干涉实验证明波动性?
1 光源
非不为也,实不能也!
基本发光单元是分子、原子(电子的运动状态有关). (基态-激发态,辐射能量,发光)
1
波列长L = c
激
两频率相同,光矢量方向相同的 光源在p点相遇
E1 E10 cos(t 1 ) E2 E20 cos(t 2 )
E E0 cos(t )
E2 0
E2 10
E2 20
2E10E20
cos
I I1 I2 2 I1I2 cos
I
1
0
(I1
I2
2
I1I2 cos )dt
I1 I2 2
干涉相长(相等=4倍) 干涉相消
干涉:能量在空间的重新分布
回顾
光的干涉
干涉:两列频率/振动方向相同,相位差恒定的波在空 间相遇产生固定加强/减弱的现象。
I I1 I2 2 I1I2 cos
空间各点位相差恒定,明暗相间的干涉图样
2k
(2k 1)
波的空间/时间周期性
二 分波阵面法干涉 1 杨氏双缝干涉 Young’s Two-slit experiment
k 3 k 1
k 2
k 1 k 2 k 3
例:白光入射,400-760nm,哪几级光谱不会重叠?
x k D , k 0,1,2...
d
k=0, 白色.
k!=0, 紫光-红光
1
x 400 D ...760 D
d
d
2
x 800 D ...1520 D
大学物理中的光的干涉与衍射问题

大学物理中的光的干涉与衍射问题在大学物理中,光的干涉与衍射是一个非常重要的课题。
干涉和衍射现象是光的波动性质所导致的,它们对于我们理解光的本质和物质的性质起到了关键的作用。
本文将详细介绍光的干涉与衍射问题,以及相关的实验和应用。
一、干涉现象干涉是指两束或多束光波相互叠加产生的明暗相间的干涉条纹的现象。
干涉现象的产生需要满足两个条件:一是光源是相干光源,二是光的传播路径存在差异。
1. 条纹的产生当两束相干光波相遇时,会在空间中形成干涉条纹。
这些干涉条纹的产生可以通过弗朗霍夫衍射公式来解释,该公式描述了光通过一个狭缝时的衍射现象。
2. 干涉条纹的特征干涉条纹具有明暗相间的特征,这是因为光波的干涉会导致光的增强和相消干涉。
光的增强会使得干涉条纹出现明亮区域,而光的相消干涉则会导致干涉条纹出现暗区。
二、衍射现象衍射是指光波传播时发生弯曲和障碍物附近出现干涉效应的现象。
衍射现象的产生需要满足光波传播经过障碍物或者经过狭缝。
1. 衍射的产生光的衍射现象可以由基尔霍夫衍射公式来解释,该公式描述了光波传播经过一个孔径时所发生的衍射现象。
2. 衍射的特征衍射现象会导致光波的扩散,使得光的传播区域扩大。
衍射还会导致光的强度分布不均匀,形成明暗相间的衍射图案,这一特征是衍射现象的重要标志。
三、实验与应用光的干涉与衍射是许多实验和应用领域的基础。
以下是一些与干涉与衍射相关的实验和应用:1. 杨氏干涉实验杨氏干涉实验是用来观察干涉现象的经典实验之一。
通过在两面平行的玻璃板之间引入光源和接收屏,可以观察到明暗相间的干涉条纹。
2. 双缝干涉实验双缝干涉实验是观察干涉现象的经典实验之一。
通过在光源前放置两个狭缝,可以观察到通过狭缝后形成的干涉条纹。
这个实验不仅可以用来验证光的波动性质,还可以用来测量光的波长等重要参数。
3. 衍射光栅衍射光栅是一种利用光的衍射现象来实现光谱分析和波长测量的装置。
它由许多平行的狭缝构成,通过光的衍射,可以将不同波长的光分散成明暗相间的衍射光谱。
大学物理光的干涉和衍射

2
2
R2
2d
2
(2k 1)
d2
d1
d r
O
R1
2 (k 0,1,2,)
2 2
r4 r4 k 4, 2d 4 R1 R2
R2 102.8 cm
例14 当把折射率为n=1.40的薄膜放入迈克耳孙干涉仪的一 臂时,如果产生了7.0条条纹的移动,求薄膜的厚度。(已知 钠光的波长为 = 589.3 nm) 解:
2(n 1)t k
k t 2(n 1)
7 589.3 109 m 5.154 6 m 2(1.4 1)
t
光的衍射
3.单缝的夫琅禾费衍射
以垂直入射为例
半波带法
2 2
2
9 2R(d e) Rλ( k) 2
(2)
d max 2
由明纹条件
2d
kmax
2 2 4.5 4
max
2k
得
λ 1 d k 2 3)条纹向外侧移动
d
A
B
例11. 在牛顿环装置中,如果平玻璃由冕牌玻璃(n1=1.50) 和火石玻璃(n2=1.75)组成,透镜由冕牌玻璃组成,而 透镜与平玻璃间充满二硫化碳(n3=1.62)。试说明在单 色光垂直入射时反射光的的干涉图样是怎样的?
2n2d
2
k
2n2d k 1 2
取 k = 1,2,3代入上式,分别得
1 4n2 d 1700 nm
4 2 n2 d 567 nm 3 4 3 n2 d 341 nm 5
红外线 黄光! 紫外线
例7. 平面单色光垂直照射在厚度均匀的油膜上,油膜覆盖在玻 璃板上。所用光源波长可以连续变化,观察到500 nm与700 nm波长的光在反射中消失。油膜的折射率为1.30,玻璃折射 率为1.50,求油膜的厚度。
波的干涉和衍射现象

波的干涉和衍射现象波的干涉和衍射是波动现象中非常重要且有趣的现象。
它们具有深刻的物理意义,不仅可以解释光的行为,还可以应用于各个领域。
本文将介绍波的干涉和衍射现象,并探讨它们在光学和其他领域中的应用。
波的干涉是指两个或多个波相互叠加时产生的干涉现象。
当两个波波峰或波谷相遇时,它们会相互增强,形成明亮的干涉条纹;而当波峰与波谷相遇时,则会相互抵消,形成暗条纹。
这种干涉现象可以用叠加原理解释。
波动理论认为,波既具有粒子特性,也具有波动特性,而干涉现象正是波动特性的体现。
波的干涉现象最早被英国物理学家托马斯·杨发现并解释为光的干涉。
杨实验通过将光线分成两道光,然后让它们通过两个微细的狭缝,之后让它们重新重合。
当光线重合时,就会观察到明暗相间的干涉条纹。
这一实验验证了光是一种波动现象,并奠定了光的波动理论的基础。
波的干涉除了可以发生在光波上,还可以发生在其他类型的波上,比如水波、声波等。
比如,当水波通过两个狭缝时,也会出现干涉现象,形成明暗相间的水波纹。
这种水波干涉现象在海洋学研究中被广泛应用,可以用来研究海浪的传播和波动特性。
波的衍射是指波通过障碍物或孔径时发生的偏斜现象。
当波通过一个小孔时,会呈现出一种扩散的现象,形成从中心向外辐射的光圈。
波的衍射现象可以解释为波通过障碍物或孔径时,波的传播方向发生了改变。
波的衍射现象对于光学的发展起到了重要作用。
它帮助人们理解了光是如何传播的,并为光的波动理论提供了重要的支持。
在现代光学中,衍射也被广泛应用于衍射光栅、衍射仪器等方面。
光栅是光的波长级衍射光栅,它可以分解复杂的光谱,对于光谱分析具有重要意义。
许多重要的科学实验,如迈克尔逊干涉仪的工作原理也依赖于衍射现象。
除了光学,波的干涉和衍射现象在其他学科中也有着广泛的应用。
比如,在声学中,波的干涉和衍射现象可以用来制作音乐乐器或调音。
在地质学中,地震波的干涉和衍射现象可以用来研究地壳的结构和地震活动。
大学物理基础知识光的干涉与衍射现象

大学物理基础知识光的干涉与衍射现象光的干涉与衍射现象光的干涉和衍射现象是大学物理基础知识中的重要内容。
本文将介绍光的干涉和衍射的基本概念、原理以及实际应用。
一、光的干涉现象光的干涉是指两个或多个光波相遇时发生的现象。
干涉可以是构成性干涉(增强光强)或破坏性干涉(减弱或抵消光强)。
干涉现象可以通过光的波动性解释。
1. 干涉光的波动模型根据互相干涉的光波的波函数,可以使用叠加原理对光的干涉进行数学描述。
干涉是由于波峰与波峰相遇或波谷与波谷相遇而形成的,这种相遇会产生干涉图案。
2. 干涉的光程差干涉的关键参数是光程差,它是指两束相干光的传播路径的差值。
当光程差为整数倍的波长时,会出现构成性干涉;当光程差为半整数倍的波长时,会出现破坏性干涉。
3. 干涉的类型干涉现象可分为两种类型:薄膜干涉和双缝干涉。
薄膜干涉是指光线在介质的两个表面之间反射、透射产生的干涉现象;双缝干涉是指光通过两个相隔较近的缝隙后形成的干涉现象。
二、光的衍射现象光的衍射是指光线通过小孔或物体的边缘时发生的现象,光波会向周围扩散形成衍射图样。
衍射现象可以通过光的波动性解释。
1. 衍射光的波动模型光通过一个小孔或物体的边缘时,光波会发生弯曲,并在周围空间中形成散射波。
这些散射波的叠加就会形成衍射图样。
2. 衍射的特点衍射的特点是衍射波传播范围广,可以绕过物体的边缘,进入遮挡区域。
衍射图样的大小与孔径或物体边缘大小有关,小孔或细缝会产生较宽的衍射图样,大孔或宽缝会产生较窄的衍射图样。
3. 衍射的应用光的衍射现象在实际应用中具有广泛的意义,例如天文学中使用的干涉仪、显微镜的分辨率提升、光学存储器的读写操作等。
三、光的干涉与衍射的应用光的干涉与衍射现象不仅仅是基础学科的内容,也有着广泛的实际应用。
1. 干涉与衍射在光学仪器中的应用干涉仪是利用光的干涉现象进行测量和分析的仪器,如干涉计和迈克尔逊干涉仪等。
衍射仪是利用光的衍射现象进行实验和观测的仪器,如杨氏双缝干涉实验装置和夫琅禾费衍射装置等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
合振动的振幅
A2
A12
A22
2A1A2 cos[2
1
2π
r2
r1 ]
P 点处波的强度 I I1 I2 2 I1I2 cos
相位差
(2
1)
2π
r2
r1
空间点振动的情况分析
当
(2
1)
2π
r2
r1
2kπ
k 0,1,2,
Amax A1 A2 Imax I1 I2 2 I1I2
干涉相长
二、叠加原理
波传播的独立性 当几列波在传播过程中在某一区域相遇后再行分开,各波 的传播情况与未相遇一样,仍保持它们各自的频率、波长、 振动方向等特性继续沿原来的传播方向前进。
叠加原理
在波相遇区域内,任一质 点的振动,为各波单独存在 时所引起的振动的合振动。
v1
v2
y y1 y2
注意 波的叠加原理仅适用于线性波的问题
三、波的干涉
相干条件: 频率相同、振动方向相同、相位差恒定。
S1 y01 A1 cos(t 1)
S2 y02 A2 cos(t 2 )
P
y1
A1
cos(t
2π
r1
1)
r1
P
y2
A2
cos(t
2π
r2
2 )
S1
S2
r2
根据叠加原理可知,P 点处振动方程为
y y1 y2 Acos(t )
当
(2
1 )
2π
r2
r1
(2k
1)π
k 0,1,2,
Amin | A1 A2 |
Imin I1 I2 2 I1I2
干涉相消
讨论
若 1 2
r1 r2 k,
r1
r2
(2k
1) ,
2
若 A1 A2 A
k 0,1,2, k 0,1,2,
Amax 2 A
Imax 4I0
初相差为 ,u = 400 m/s, f =100 Hz 。
求 A、B 连线上因干涉而静止的各点位置。
解 r2 r1 30 m u 4m
f
r2
r1
30m
P
AB
π
2π
π
2π 4
30
16π (P 14π(P
在B 在A
右侧) 左侧)
I Imax (即在两侧干涉相长,不会出现静止点)
P 在A、B 中间
§8.5 波的干涉和衍射
一、惠更斯原理
惠更斯提出:
波前上任意一点都 可看作是新的
子波源;所有子波源各自向外发出
许多子波;各个子波所形成的包络源自面,就是原波面在一定时间内所传
播到的新波面。
S1
S2
已知某一时刻波 前,可用几何方 法决定下一时刻 波前;
r ut
t t t
t
S2
S1
O
R1 R2
惠 更 斯 原 理 解 释 衍 射 现 象
干涉相长 干涉相消
干涉相长
Amin 0
Imin 0
干涉相消
从能量上看,当两相干波发生干涉时,在两波交叠的区, 合成波在空间各处的强度并不等于两个分波强度之和,而 是发生重新分布。这种新的强度分布是时间上稳定的、空 间上强弱相间具有周期性的一种分布。
例 A、B 为两相干波源,距离为 30 m ,振幅相同, 相同,
r2 r1 r1 r2 2r1 30 2r1
π 2π
14π π r1
(2k 1)π
干涉相消
r1 14 (2k 1) k 0,1,2,7
(在 A,B 之间距离A 点为 r1 =1,3,5,…,29 m 处出现静止点)