高光谱遥感图像的空间邻域指数
高光谱遥感

• 中国:MAIS、PHI、OMIS-1(10个热波段)、 中国: 个热波段)、 、 、 ( 个热波段 CMODIS(神舟III号) 、Env-DD(环境灾害小卫星) (神舟 号 (环境灾害小卫星)
三、高光谱遥感技术优势与局限性
优势 1:充分利用地物波谱信息资源 :
图 不同波谱分辨率对水铝反射光谱曲线
优势 2: 利用波形 精细光谱特征进行分类与识别地物 : 利用波形/精细光谱特征进行分类与识别地物
Al-OH
Paragonite
Muscovite
Phengite
三种类型的白云母精细光谱特征
岩石的光谱发射率特征
航空高光谱遥感飞行设计图
(2)光谱特征参数定量分析技术 )
不同水分含量的叶片的光谱反射率
RWC(%)=24.5+7.13*面积 (R2=0.845)
(3)光谱匹配技术(二值编码) )光谱匹配技术(二值编码) • 岩矿光谱分类与识别
岩石和矿物
2.15-2.31微米 粘 土 矿 2.24-2.31微米 Mg-OH 对称性>1 滑石 2.15-2.19微米 叶蜡石 2.31-2.35微米 碳 酸 盐
优势 3: 利用图 谱实现自动识别地物并制图 : 利用图-谱实现自动识别地物并制图
局限1:海量数据的传输、 局限 :海量数据的传输、处理与存储 128波段的 波段的OMIS: 采集数据速率 采集数据速率60Mb/s;400Mb/km2 波段的 ;
高光谱遥感信息的图像立方体表达形式是一种新 高光谱遥感信息的图像立方体 表达形式是一种新 型的数据存储格式, 型的数据存储格式,其正面图像是由沿飞行方向的扫 描线合沿扫描方向的像元点组成的一景优选的三波段 合成的二维空间彩色影像; 合成的二维空间彩色影像;其后面依次为各单波段的 图象叠合,其数据量为所有波段图像的总和; 图象叠合,其数据量为所有波段图像的总和;位于图 像立方体边缘的信息表达了各单波段图像最边缘各像 元的地物辐射亮度的编码值或视反射率。 元的地物辐射亮度的编码值或视反射率。
高光谱遥感

概念: 具有比较高的光谱分辨 率,通常能达到10-2λ数量级,
高光谱遥感具有波段多的特 点,光谱通道数多达数十甚 至数百个以上,而且各通道 间往往是连续的,因此高光 谱遥感通常也被称为成像光 谱遥感(Imaging Spectrometry)。
基本概念
遥感成像技术的发展一直伴随着两方面的进步:一是通
④定量化的连续光谱曲线数据为地物光谱机理模型引入图像分类提
供了条件。 劣势:
①对数据冗余处理不当,反而会影响分类精度;
②对定量化要求高,数据前处理复杂; ③波段多,波段间的相关性大,对训练样本数量要求高;
④使用统计学分类模型对光谱特征选择要求很高。
四、高光谱图像分类与目标识别
面向高光谱图像特点的分类算法:
高光谱图像目标识别:
①从数字信号到辐射值的转换,这个过程要求在辐射和光谱上有
高精度的定标;
②剔除大气效应:从辐射值到地面视反射率; ③纠正光照几何因素和地形影响:视反射率到地面反射率; ④光谱特征选择、特征提取、数据空间转换等; ⑤从光谱数据库中提取所要识别的目标标准光谱;或者从图像中 提取光谱端元、识别和确认所找出的端元光谱; ⑥光谱匹配和识别,采用全波形匹配或者特征参量光谱匹配;也 可以采用混合光谱分解的方法,分解每一像元光谱,得出每像元 中各端元组分的相对含量。
谱特征空间,但它包括了该对象的主要特征光谱,并在一个 含有多种目标对象的组合中,该子集能够最大限度地区别于 其它地物。
光谱特征选择:光谱特征位置搜索 光谱相关性分析 光谱距离统计
三、高光谱图像光谱分析技术 (光谱特征位置搜索)
包络线去除(Continuum Removal ):光谱曲线的包络线从 直观上看,相当于光谱曲线的“外壳”。
高光谱遥感图像中的特征提取与分类算法优化

高光谱遥感图像中的特征提取与分类算法优化高光谱遥感图像是一种获取地面物体反射光谱信息的重要数据源。
在资源环境监测、农业生产、城市规划等领域,高光谱遥感图像的特征提取与分类算法优化具有重要意义。
本文将重点探讨高光谱遥感图像中的特征提取与分类算法优化的方法和技术。
一、高光谱遥感图像的特征提取方法在高光谱遥感图像中,每个像素点包含多个波段的光谱信息,因此特征提取主要是从光谱、空间和纹理等多个方面进行。
以下介绍几种常用的特征提取方法:1. 光谱特征提取:光谱特征提取是指通过分析各个波段的光谱反射率,获取区分不同地物的特征。
常用的方法有平均光谱曲线、光谱强度、光谱比值等。
可以利用统计学方法或者光谱分解等技术进行光谱特征提取。
2. 空间特征提取:空间特征提取是指通过分析高光谱图像像素点之间的空间关系,提取地物的空间分布特征。
常用的方法有纹理特征、空间模式指数等。
可以利用滤波器、卷积操作、灰度共生矩阵等技术进行空间特征提取。
3. 纹理特征提取:纹理特征提取是指通过分析高光谱图像中地物表面纹理的特征,提取地物的纹理信息。
常用的方法有灰度共生矩阵、小波变换、局部二值模式等。
可以通过计算纹理特征的统计值或者采用机器学习方法进行纹理特征提取。
以上是高光谱遥感图像中常用的特征提取方法,通过综合运用各种方法,可以获得更多的特征信息,提高特征提取的准确度和鲁棒性。
二、高光谱遥感图像的分类算法优化高光谱遥感图像分类是指将图像中的每个像素点划分到不同类别中,以实现对地物的识别和分类。
分类算法的优化可以提高分类的准确性和效率。
以下介绍几种常用的优化算法:1. 监督分类算法优化:监督分类算法是指在训练样本的基础上,通过对特征进行提取和选择,利用统计学或模型建立分类器,实现对遥感图像进行分类。
常用的监督分类算法有支持向量机(SVM)、随机森林(RF)和人工神经网络(ANN)等。
通过优化特征选择、样本分布策略和分类器参数等方面,可以提高分类的准确性。
高光谱遥感名词解释

高光谱遥感名词解释
1.高光谱遥感(Hyperspectral Remote Sensing):是遥感技术的一种,利用高光谱数据进行地物信息的提取。
高光谱遥感能够提供每个像元的数十至数百个波段的光谱数据,这些数据可以用来识别不同类型的地物,对地表的物理、化学和生物属性进行精确的定量分析。
2.光谱(Spectrum):是由不同波长的光组成的光线。
在高光谱遥感中,探测器可以测量出每个像元的光谱,也就是不同波长的光在该像元的反射率或辐射率的值。
3.反射率(Reflectance):是地物表面反射入射光的比率,是高光谱遥感中的一个重要参数。
不同地物的反射率在不同波段上表现出不同的特征,可以用来识别地物类型。
4.特征提取(Feature extraction):是高光谱遥感中的重要分析方法,通过数学和统计学方法对光谱数据进行处理,提取出地物的光谱特征,如反射率峰值、谷值和斜率等,用来识别地物类型和进行精确分类。
5.分类(Classification):是将地物根据其光谱特征划分为不同的类别的过程。
高光谱遥感中常用的分类方法包括基于像素的分类、基于物体的分类和基于混合像元的分类等。
6.多光谱遥感(Multispectral Remote Sensing):和高光谱遥感相似,但是只能提供少数几个波段的光谱信息。
多光谱遥感常用于地物类型的粗略分类,而高光谱遥感更加适用于地物的精细分类和属性分析。
高光谱遥感的概念

定量反演与模型模拟技术
定量反演
利用高光谱数据反演地物参数, 如叶绿素含量、地表温度等。
模型模拟
建立地物光谱模型,模拟地物光 谱特征,用于预测和模拟。
参数优化
对反演和模拟的参数进行优化, 提高结果的准确性和可靠性。
04
高光谱遥感的应用案例
农业应用案例
作物分类与识别
土壤质量评估
高光谱遥感能够通过分析不同作物反射 的光谱特征,实现对农作物的精细分类 和识别,有助于精准农业的实施。
图像融合
将多源遥感数据融合,提 高信息量和分辨率。
图像增强
通过对比度拉伸、色彩映 射等手段,改善图像的可 视化效果。
特征提取与分类技术
特征提取
从高光谱数据中提取地物 光谱特征,如光谱曲线、 谱带宽度等。
分类识别
利用提取的特征进行地物 分类,识别不同类型地物。
精度评估
对分类结果进行精度评估, 提高分类准确率。
高光谱遥感的概念
目
CONTENCT
录
• 引言 • 高光谱遥感的原理 • 高光谱遥感的关键技术 • 高光谱遥感的应用案例 • 高光谱遥感的未来发展
01
引言
什么是高光谱遥感
高光谱遥感是一种利用光谱信息对地球表面进行观测和监测的技 术。它通过卫星、飞机或其他遥感平台搭载的高光谱传感器,获 取地表反射、发射和散射的光谱数据,从而实现对地物的精细识 别和分类。
高光谱遥感的数据获取方式
采集方式
通过卫星或飞机搭载高光谱传 感器进行数据采集。
数据处理
对采集的高光谱数据进行预处 理、特征提取和分类识别等操 作。
应用领域
农业、环境监测、城市规划、 地质勘察等领域。
03
高光谱遥感的概念

遥感的发展趋势 (1)随着热红外成像、机载多极化合成孔径雷达、高分辨力表层穿透雷达和星载合成孔径 雷达技术日益成熟,遥感波谱域从最早的可见光向近红外、短波红外、热红外、微波方向发 展,波谱域的扩展将进一步适应各种物质反射、辐射波谱的特征峰值波长的宽域分布。
(波段范围扩展从可见光、近红外、发展到中 远红外、微波)
(6)建立适用于遥感图像自动解译的专家系统,逐步实现遥感图像专题信息提取自动化。 (遥感图像自动解译的专家系统)
(7)3S一体化
(8)随着高空间分辨力新型传感器的应用,遥感图像空间分辨率从1KM、500m、250m、 80m、30m、20m、10m、5m发展到1m,军事侦察卫星传感器可达到15cm或者更高的分辨 率。空间分辨率的提高,有利于分类精度的提高,定位和目标识别,但也增加了计算机分类 的难度。
总结起来,高光谱分辨率遥感信息的分析与处理,侧重于从光 谱维角度对遥感图像信息进行展开和定量分析,其图像处理模式的 关键技术,例如:
(1) 光谱重建,即:成像光谱数据的定标、定量化和大气纠正模 型与算法,恢复地物光谱的真实面目;
一些针对传统遥感数据的图像处理算法和技术,如:特征选择与提取、图像分类等技术 面临挑战。如:用于特征提取的主分量分析方法,用于分类的最大似然法、用于求植被 指数的NDVI算法等等,不能简单地直接应用于高光谱数据。
3、如何处理高光谱遥感数据?
高光谱遥感技术的发展来自于成像技术的不断完善,成像光谱仪有其独特的优越性,但同时 海量数据也给应用和分析带来了不便。
➢ 常规遥感的局限:波段太少;光谱分辨率太低;波段宽一般>100nm;波段在光谱上不连续, 不能覆盖整个可见光至红外光(0.4~2.4nm)光谱范围。
➢ 如一个TM波段内只记录一个数据点,而航空可见光/红外光成像光谱仪(AVIRIS)记录这一波 段范围内的光谱信息用10个以上数据点。
高光谱遥感080705(2)

2. 高光谱遥感成像技术——光谱成像
色散型成像光谱仪
光谱图像立方体
λ
前置光学 干涉型成像光谱仪 前置光学 干涉成像 光电转换 分色成像 光电转换
ΔL
干涉图像立方体
FFT
光谱图像立方体
2. 高光谱遥感成像技术——光谱成像 (1)棱镜、光栅色散型成像光谱仪
Grating spectrometer
衍射光栅
飞机最高飞行地速要求:
V
≤ 像元分辨率 × 遥感器行扫描速率
1. 引言
(8)信噪比 (SNR): 信噪比是遥感器采集到的信号和噪声的比,信噪比和图像的空间分 辨率、光谱分辨率是相互制约的 。
Vs D02ωτ aτ 0 Dλ = X T ΔT VN 4 AD Δf
D0为成像仪光学系统的有 效口径,
2. 高光谱遥感成像技术——空间成像 摆扫型成像光谱仪的优点:
(1) FOV大; (2) 像元配准好; (3) 探测元件定标方便,数据稳定性好; (4) 进入物镜后再分光,光谱波段范围可以 做得很宽。
摆扫型成像光谱仪的不足之处:
像元凝视时间短,提高光谱和空间分辨率以及 信噪比相对困难。
2. 高光谱遥感成像技术——空间成像 (2)推扫型成像光谱仪(Pushbroom) 推扫型成像光谱仪采用一个面阵探测器,其垂直于运动方向在飞 行平台向前运动中完成二维空间扫描;平行于平台运动方向,通 过光栅和棱镜分光,完成光谱维扫描。
GR=2×tg(IFOV/2) ×altitude
r
α
L
L α = rad r
1. 引言 2.1 基本概念
(5)空间分辨率(Spatial Resolution):
1 IFOV = rad = 1mrad 1000
遥感图像的空间分辨率与光谱分辨率解读

遥感图像的空间分辨率与光谱分辨率解读遥感图像是通过遥感技术获取的地球表面信息的图像。
它是利用飞机、卫星等传感器对地球表面进行观测和探测,通过光电转换技术将观测到的信息转化为数字信号,再经过一系列处理,生成用于科学研究、资源调查、环境监测等领域的图像数据。
遥感图像的分辨率是指图像中显示的最小可分辨的特征的大小。
它分为空间分辨率和光谱分辨率两种类型。
空间分辨率是指遥感图像中所显示的最小可分辨物体的大小。
通常来说,空间分辨率越高,图像所显示的物体越小,细节越清晰。
空间分辨率取决于传感器的分辨能力,较高的空间分辨率可以提供更为细致的地表信息,对于城市规划、土地利用等研究具有重要意义。
光谱分辨率是指遥感图像能够区分不同波长范围内的电磁能量的能力。
通过分析不同波段的电磁能谱,可以获取有关被观测物体的物理、化学特性等信息。
一般来说,光谱分辨率越高,可以获取的信息越丰富。
光谱分辨率对于农业、林业等领域的研究尤为重要,可以用于监测植被生长状况、水质监测等应用。
空间分辨率和光谱分辨率的提高可以更准确地获取地球表面信息,提高遥感图像在科学研究和应用中的价值。
然而,提高分辨率也面临一些挑战。
首先,提高空间分辨率和光谱分辨率会导致图像数据量增大,给数据存储和处理带来困难。
对于大规模遥感图像数据的处理,需要耗费大量的计算资源和存储空间,提高了处理成本。
其次,高分辨率的遥感图像对传感器和设备的要求更高。
高分辨率传感器的研发和制造成本较高,而且在实际应用中,高分辨率的图像采集也更加困难。
此外,高分辨率图像的使用也面临一些技术问题。
由于图像文件较大,传输速度较慢,限制了遥感图像的实时监测和广泛应用。
在解读遥感图像时,需要综合考虑空间分辨率和光谱分辨率。
空间分辨率可以帮助我们观察到尺度较小的地表特征,例如建筑物、道路等,而光谱分辨率可以提供物体的物理属性、化学成分等信息,例如植被类型、土壤含水量等。
在农业领域的应用中,可以利用高空间分辨率的遥感图像观察农田的变化,监测作物的生长状况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Abstract: Hyperspectral remote sensing image provides not only abundant spectral information but also spatial detailed information. For making full use of the information, this paper considered the variations of the spectral feature among pixels in local neighborhood and researched on a kind of Local Neighborhood Spectral Similarity Measure Index to extract the spatial detailed information. Furthermore, the spectral feature of endmember in local neighborhood was also considered. And a kind of Local Neighborhood Independent Endmember Index was proposed. In experiments, these local neighborhood indexes demonstrated excellent performance in the real hyperspectral image. Based on these work, it can further improve the capability of hyperspectral target detection and identification by combining with spatial and spectral information. Key words: hyperspectral remote sensing, spectral similarity measure, endmember, local neighborhood index CLC number: TP751.1 Document code: A
Citation format: Luo W F and Zhong L. 2010. Spatial local neighborhood index in hyperspectral remote sensing image. Journal of Remote Sensing. 14(4): 751—760
image, since the significant variations are the spectral feature not the grad. In this case, Kanade and Shafer (1987) detect the edges in each channel independently and then combine the results by 1-norm, 2-norm or maximal-norm. Verzakov et al. (2006) reduces the spectral dimension of the hyperspectral remote sensing image in order to satisfy the requirement of the small number of the samples. And the multivariate techniques, such as Joint Probability Density Functions of Neighbouring Pixels and Conditional Probability Density Functions of Neighboring Pixels Difference, are used to retrieve the spatial information. Gong and Bi (2007) uses linear spectral unmixing technique and then detects the edges from the abundance results of unmixing. The latter two methods provide better improvement on spatial information extraction for hyperspectral remote sensing image. However, in the procedure of dimension reduction or linear spectral unmixing, especially when a great amount of spectral channels are reduced, the image information will be lost. And the spectral unmixing error will be introduced in to the abundance results. These factors have impacts on the accuracy of the following analysis. Therefore, this paper considers the spatial information extraction from the original spectral dimension of the hyperspectral remote sensing image. In this case, Bakker and Schmidt (2002) introduce commonly used measures including Euclidean distance, spectral angle distance and intensity difference into weighted Laplace
1
INTRODUCTION
Hyperspectral remote sensing stresses on the distinguishable spectral features of the substances. It relies on its abundant spectral resolution to differentiate the substances by their diagnostic spectral features (Tong et al, 2006). In application, hyperspectral remote sensing image also provides important spatial information. The interested targets may exist in the image with very low probability, but they can also occupy single cells with high probability, or be interfered by the background with the same spectral feature but different geometric feature. These embarrass the application of hyperspectral remote sensing analysis techniques, such as anomaly detection. In this case, the capability of target detection and recognition can be greatly improved when combining the spatial and the spectral features of the targets. The spatial information includes edge contour, texture, and targets that occupy a whole pixel or are embed as sub-pixel. This paper does not consider the texture information. The spatial information gives rise to the significant variations between the pixels in the image. The local neighborhood method, whose application has widely covered image restoration, image segment and many other fields (Kenneth, 2002), is a well-known technique for spatial information extraction in grad image analysis. However, this is not the case in hyperspectral remote sensing
Received: 2009-07-08; Accepted: 2009-08-29 Foundation: Chinese National “863” Programs for High Technology Research and Development (No.2008AA12Z113); Key Project of Chinese National “973” Programs for Fundamental Research and Development (No.2009CB723902) and National Natural Science Foundation of China (No.40901232/D010702, No. 40901225/D010702). First author biography: LUO Wen-fei (1979— ), male, lecturer. He received the Ph.D degrees in the Institute of Remote Sensing Applications, Chinese Academy of Sciences. His research interest include remote sensing image processing and hyperspectral remote sensing. E-mail: luowenfei@