《概率论及数理统计》第一章随机事件

合集下载

概率论与数理统计 第一章1.1随机事件

概率论与数理统计 第一章1.1随机事件

事件的关系与运算
注:(1) 事件的关系与运算可用维恩图形象表之
(2) 事件的和与积的运算可推广到有限个事 件或可数无限个事件的情形.
A B A B, (3) 事件的和与积的另一记法:
A B AB.
事件的关系与运算
8. 完备事件组 设 A1 , A2 ,, An , 是有限或可数个事件,若其 满足:

随机事件
在随机试验中,人们除了关心试验的结果本身外,
往往还关心试验的结果 是否具备某一指定的可观
察的特征,概率论中将这一可观察的特征称为一 个事件 , 它分三类:
随机事件
1. 随机事件:在试验中可能发生也可能不发生的 事件; 2. 必然事件:在每次试验中都必然发生的事件; 3. 不可能事件:在任何一次试验中都不可能发 生的事件. 例如,在抛掷一枚骰子的试验中,我们也许会关
A : “点数为奇数”,B : “点数小于5”.
则 A B {1,2,3,4,5}; A B {1,3};
A - B {5}.
6. 若 A B , 则称事件 A 与 B 是互不相 容的(或互斥的).
7. 若 A B S 且 A B ,
事件的关系与运算
由于随机现象的结果事先不能预知, 初看似乎 毫无规律. 然而人们发现 同一随机现象大量重 其每种可能的结果 出现的频率具有 复出现时,
稳定性, 从而表明随机现象也有其固有的规律
性. 人们把随机现象在大量重复出现时 所表现 出的量的规律性 称为随机现象的统计规律性.
随机现象的统计规律性
概率论与数理统计是研究 随机现象统计规律性 的一门学科. 为了对随机现象的统计规律性进行研究,就需 对随机现象进行重复观察,我们把对随机现象

概率论与数理统计第一章

概率论与数理统计第一章

具有以上两个特点的随机试验称为等可能概型。 由于它是概率论发展初期的主要研究对象,所以 也称之为古典概型.
设试验E是古典概型,由于基本事件两两互不相容 n n 因此 1 = P( ) = P( {wi }) = P{wi } = nP{w i }
1 从而 P{w i } = n
i =1
i =1
则事件 A表示“某公司今年年底结算将亏损”.
AAຫໍສະໝຸດ 按差事件和对立事件的定义,显然有A B = AB
A
B

A
B

运算规律
1.交换律 A B = B A A B = B A 2.结合律 A ( B C ) = ( A B) C
A ( B C ) = ( A B) C
A B = 事件A和事件B不能同时发生
A
B

对立事件
A 称为事件A的对立事件或逆事件,记做 A
即A = A
事件 A发生 事件A不发生
A A= A A=
故在每次试验中事件A , A 中必有一个且仅有一个发生
A也是 A 的对立事件,所以称事件A与A互逆
若事件A表示“某公司今年年底结算将不亏损”
抛硬币实验
试验者
出现正面的 频率
n
2048 4040 12000 24000 80640
出现正面的 试验次 次数 数 n
nH
1061 2048 6019 12012 39699
f n (H ) =
A
n
德摩根 蒲丰 K.皮尔逊 K.皮尔逊 罗曼诺夫斯基
0.5181 0.5069 0.5016 0.5005 0.4923
( i = 1, 2, , n )

概率论与数理统计:第一章 随机事件与概率

概率论与数理统计:第一章 随机事件与概率
A∩B={正正} 。 • A与B的差事件∶第一次正面第二次出现反面,表
示为 A-B={正反}.
• 如果一组事件中任意两个事件都互不相容, 那么称这组事件两两互不相容。
• (7)对立事件:事件Ω-A称为事件A的对立
事件(逆、余),记Ā.
A A A A
ĀA
• (8)运算定律:交换律、结合律、分配律、 对偶律。
• 在随机事件中,有的可以看成是由某 些事件复合而成的,而有些事件则不能分 解为其它事件的组合,这种不能分解成其 它事件组合的最简单的随机事件称为基本 事件。
• 一般地说,只含一个样本点的随机事 件称为基本事件。
• 每次试验中一定发生的事件称为必然事件.
由于Ω包含所有样本点,因此每次试验中 必定有Ω中的一个样本点出现,故Ω是必然 事件;
P(A)=m(A)/m(Ω)
这里m(·)分别表示长度、面积或体积。
例6,在半圆区域0≤y≤
2内ax随 机x2 地投入
一点,求该点与原点的连线与x轴的夹角不
超过 的概率 .
4
0
2a
例7(书上例1.9) . 在单位圆O的一条直径 MN上随机地取一点Q,试求过Q且与MN垂 直的弦的长度超过1的概率。
例8(书上例1.10) . 甲、乙两艘轮船都要 在某个泊位停靠6h,假定它们在一昼夜时
出来,问该女士的说
法是否可信?
牛奶
• 解:假设该女士的说法不可信,即该女士纯粹是
猜测,则每次试验的两个可能结果:茶+牛奶或 牛奶+茶是等可能的.
• A={该女士在10次试验中都正确的辨别出 来},则

p(A)=1/210=0.0009766
• 这是一个小概率事件.
• 概率论中“实际推断原理”:一个小概率事件在 一次试验中实际上是不会发生的.

概率论与数理统计第一章随机事件及其概率第一节随机事件

概率论与数理统计第一章随机事件及其概率第一节随机事件
ABC ABC, 或 ABC; (8) ABC ABC ABC ABC; (9) ( A B)C; (10) ABC ABC ABC.
二、事件的关系与运算
练产的第 i 个零件是正品( i 1, 2, 3,4), 试用 Ai 表 示下列各事件:
(7) 不多于两个事件出现; (8) 三个事件至少有两个出现; (9) A, B 至少有一个出现, C 不出现; (10) A, B, C 中恰好有两个出现. 解 (1) ABC; (2) ABC; (3) ABC;
(4) A B C; (5) A B C;
二、事件的关系与运算
(6) ABC ABC ABC ABC; (7) ABC ABC ABC ABC ABC
而 x AB x A, x B
x AB x A , x B x A , x B
矛盾,从而:AB (1)
又若:AB A B AB A B A B A B
故: A B,即 :A B
由(1)(2)知:A与B互为逆事件。
(2)
随机事件及其概率
第一节 随机事件
一、随机试验与随机事件
通常称满足以下三个条件的试验为随机试验,简 称试验,一般用字母E表示: (1)在相同条件下可以重复 (2)每次试验所有可能结果明确知道,且不止一个 (3)每次试验前不能准确地预言该试验出现哪种结果
试验中可能出现也可能不出现的结果称为随机事件, 用A,B,C表示 试验中必然发生的事件——必然事件—— Ω 试验中一定不发生的事件——不可能事件—— Ø 注:不可能事件和必然事件都视为随机事件
二、事件的关系与运算
练习3 若用事件A表示“甲产品畅销,乙产品滞
销”,则事件A 表示( )。
A.甲产品滞销,乙产品畅销; B. 甲、乙两产品均畅销; C. 甲产品滞销; D.甲产品滞销或乙产品畅销.

经典概率论与数理统计第1章随机事件与概率

经典概率论与数理统计第1章随机事件与概率
上一页 下一页 返 回
上一页 下一页 返 回
第二节 概率的定义及其确定方法
1、频率
定义1: 在相同条件下,进行了n次试验.若随机事件A在 这n次试验中发生了k次,则比值 称为事件A在n次 实验中发生的频率,记为
频率具有下列性质: (1)对于任一事件A,有 (2)
上一页 下一页 返 回
上一页 下一页 返 回
1
1
k 1
1
N N
PA 1 P A
1
1 1
1 k1
N N
3、几何概型 若试验具有如下特征:
上一页 下一页 返 回
例5 (约会问题)甲、乙两人相约在某一段时间T内在预 定地点会面。先到者等候另一人,经过时间t(t<T)后即 离去,求甲乙两人能会面的概率.(假定他们在T内任一时 刻到达预定地点是等可能的)
P( Ai Aj )
i 1
i 1
1i jn
P(Ai)=1/n
Sk
1 k!
P( Ai Aj Ak ) (1)n1 P( A1A2 An ).
1i jkn
S1 S2 S3 (1)n Sn
1 1 1 (1)n 1
2! 3!
n!
若n充分大,则 P( A) e1.
下赌注问题:17世纪未,法国的 Chevalies Demere在赌博中 感觉到,如果上抛一对骰子25次,则把赌注押到“ 至少出现一次 双六”比把赌注押到“完全不出现双六”更有利,但他本人找不 出原因,请计算该两事件的概率。
P(A)=1-P(B)=0.5045
1.4 乘法公式与全概率公式
1、条件概率的定义
上一页 下一页 返 回
上一页 下一页 返 回
例1.4.1 已知某家三胞胎小孩中有女孩,求至少有一个 男孩的概率(假定每个小孩是男是女是等可能的)。

概率第一章

概率第一章

第1章 随机事件1.1 随机事件1.1.1 随机现象与随机试验概率论与数理统计是研究随机现象统计规律的一门数学分科.什么是随机现象呢?下面让我们先做两个简单的试验:试验一:一个盒子中有10个完全相同的白球,搅匀后从中任意摸取一球;试验二:一个盒子中有10个相同的球,其中5个是白色的,另外5个是黑色的,搅匀后从中任意摸取一球.分析上述两个试验结果给出下述两个基本概念:确定性现象:在一定条件下必然发生的现象称为确定性现象.试验一所代表的类型即是确定性现象.试验二所代表的类型,有多于一种可能的试验结果,而且在一次试验之前不能确定会出现哪一个结果,这一类试验称为随机试验.在客观世界中随机现象也是极为普遍的,例如:某地区的年降雨量;检查流水生产线上的一件产品,是合格品还是不合格;打靶射击时,弹着点离靶心的距离,等等.在条件相同的一系列重复观察中,会时而出现时而不出现,呈现出不确定性,并且在每次观察之前不能准确预料其是否出现,这类现象称之为随机现象.在相同条件下多次重复某一试验或观察时,虽然结果具有不确定性,但会表现出一定的规律性,这种规律性称之为统计规律性.那么如何来研究随机现象的统计规律呢?对随机现象进行的实验与观察统称为试验.具有下列特征的试验称为随机试验:1.可在相同的条件下重复进行;2.试验结果不止一个,但在试验之前能明确试验所有可能的结果;3.试验前不能确定到底会出现哪一个结果.随机试验一般用大写英文字母E 表示.如:1E :抛一枚硬币,观察出现正面还是反面(分别用“H ” 和“T ” 表示出现正面和反面);2E :抛两枚硬币,观察出现的结果;3E :掷一颗骰子,观察出现的点数;4E :记录某网站一分钟内被点击的次数;5E :对一目标进行射击,直到命中为止,观察其结果;6E :在一批灯泡中任取一只,测其寿命.1.1.2 样本空间与随机事件对于随机试验,虽然在我们试验之前不能预知试验的结果,但可以确定试验的所有可能的结果.定义1.1.1 样本空间:随机试验所有可能的结果组成的集合称为样本空间,通常用字母Ω表示.定义1.1.2 样本点:随机试验每一个可能的结果称为样本点,通常用字母ω表示样本点,即为Ω中的元素.例1.1.1 一盒子中有黑球、白球,从中任取一球,观察其颜色,记1ω={取得白球},2ω={取得黑球},则12{,}ωωΩ=.例 1.1.2 一个盒子中有十个完全相同球,分别标以号码1210,,,,从中任取一球,令 i ={取得球的号码为i },则{1,210}Ω=.例1.1.3 写出16~E E 的样本空间.解 16~E E 的样本空间分别为:(1) 1{,}H T Ω=;(2) 2{,,,}HH HT TH TT Ω=;(3) 3{1,2,3,4,5,6}Ω=;(4) 4{0,1,2}Ω=;(5) 5{(,)|0,0}x y x y Ω=>>;(6) 6{|0}t t Ω=≥.在实际中,我们通常并不关心所有的样本点,而是只关注一些满足一定条件的样本点,如在随机试验6E 中,若规定这种灯泡的寿命超过1000小时为一级品,那么我们只关心{|1000}t t >中的样本点,所以我们有如下定义:定义1.1.3 随机事件:样本空间Ω的子集,称为随机事件,用大写字母,,,,A B C D 表示,即随机事件为满足一定条件的样本点组成的集合.特别的,仅由一个样本点的事件称为基本事件,它是随机试验的直接结果,每次试验必定发生且只可能发生一个基本事件;全体样本点组成的事件称为必然事件,记为Ω,每次试验必然事件必定发生;不包含任何样本点的事件称为不可能事件,记为∅,每次试验不可能事件必定不发生.在每次试验中,当且仅当事件A 中的一个样本点出现时,称事件A 发生.例如在3E 中,如果用A 表示事件“掷出奇点数”,那么A 是一个随机事件.由于在一次投掷中,当且仅当掷出的点数是1,3,5中的任何一个时才称事件A 发生了,所以我们把事件A 表示为{}1,3,5A =;“掷出的点数不超过6”就是必然事件,用集合表示这一事件就是3E 的样本空间{}1,2,3,4,5,6Ω=.而事件“掷出的点数大于6”是不可能事件,这个事件不包括3E 的任何一个可能结果,所以用空集∅表示.一个样本空间Ω中,可以有很多的随机事件.概率论的任务之一,是研究随机事件的规律,通过对较简单事件规律的研究去掌握更复杂事件的规律.下面我们来介绍事件之间的关系和事件之间的运算规律.1.1.3 事件的关系及运算因为事件是一个集合,因而事件间的关系和运算是按集合间的关系和运算来处理的.下面给出这些关系和运算在概率中的提法,并根据“事件发生”的含义,给出它们在概率中的含义.设随机试验E 的样本空间为Ω,,,(1,2,)k A B A k =是Ω的子集.1. 事件的关系(1) 事件的包含与相等:若事件A 发生必然导致事件B 发生,则称事件A 包含于事件 B ,记为A B ⊃或者B A ⊂.:{}A B A,B ⊂∈∈ωω则.见文氏(Venn )图1.1.若B A ⊂且A B ⊂,即B A =,则称事件A 与事件B 相等.(2) 事件的和:事件A 与事件B 至少有一个发生的事件称为事件A 与事件B 的和事件, 记为A B .事件A B 发生意味着:或事件A 发生,或事件B 发生,或事件A 与事件B 都发生.{}A B A,B =∈∈ωω或.见文氏(Venn )图1.1.推广121ni n i A A A A ==,表示12,,,n A A A 至少有一个发生, 121i i A A A ∞==,表示12,,A A 至少有一个发生.(3) 事件的积:事件A 与事件B 都发生的事件称为事件A 与事件B 的积事件,记为A B ,也简记为AB .事件A B (或AB )发生意味着事件A 发生且事件B 也发生,即A 与B 都发生.{}A B A,B =∈∈ωω且.见文氏图1.1.推广121ni n i A A A A ==,表示12,,,n A A A 同时发生, 121i i A A A ∞==,表示12,,A A 同时发生.(4) 事件的差:事件A 发生而事件B 不发生的事件称为事件A 与事件B 的差事件,记为B A -,}A B {A,B -=ω∈ω∉且.见文氏图1.1.注:A B A AB -=-.(5) 互不相容事件(互斥): 若事件A 与事件B 不能同时发生,即AB =∅,则称事件A 与事件B 是互斥的,或称它们是互不相容的.见文氏图1.1.若事件12,,,n A A A 中的任意两个都互斥,则称这些事件是两两互斥的. (6) 对立事件:“A 不发生”的事件称为事件A 的对立事件,记为A .A 和A 满足:A A =Ω,AA =∅.见文氏图1.1:注:① __A A =Ω-;②在一次随机试验中A 和A 有一个发生而且只有一个发生.图1.1事件的关系图 由上述可见概率论中事件间的关系与集合论中集合之间的关系是一致的,于是事件之间的运算规律与集合之间的运算规律也是一致的.2.事件的运算规律设C B A ,,为事件,则事件之间的运算满足:(1) 交换律:A B B A =,BA AB =.(2) 结合律:()()A B C A B C =,)()(BC A C AB =.(3) 分配律:()()()A B C AC BC =,()()()AB C A C B C =. (4) 对偶律:A B AB =;___AB A B =.例1.1.4 甲,乙,丙三人各射一次靶,记事件A ={甲中靶},事件B ={乙中靶},事件C ={丙中靶},用上述三个事件的运算来分别表示下列各事件:(1)“甲未中靶”;(2)“甲中靶而乙未中靶”;(3)“三人中只有丙未中靶”;(4)“三人中恰好有一人中靶”;(5)“ 三人中至少有一人中靶”;(6)“三人中至少有一人未中靶”;(7)“三人中恰有两人中靶”;(8)“三人中至少两人中靶”;(9)“三人均未中靶”;(10)“三人中至多一人中靶”;(11)“三人中至多两人中靶”.解(1)“甲未中靶”=A;=;(2)“甲中靶而乙未中靶”AB=;(3)“三人中只有丙未中靶”ABC=;(4)“三人中恰好有一人中靶”ABC ABC ABC=;(5)“三人中至少有一人中靶”A B C==ABC;(6)“三人中至少有一人未中靶”A B C=;(7)“三人中恰有两人中靶”ABC ABC ABC=;(8)“三人中至少两人中靶”AB AC BC=;(9)“三人均未中靶”ABC=;(10)“三人中至多一人中靶”ABC ABC ABC ABC==A B C.(11)“三人中至多两人中靶”ABC注:用其它事件的运算来表示一个事件,方法往往不唯一,如上例1.1.4中的(6)和(11)所表示的事件实际上是同一事件.1.2 随机事件的概率在一次随机试验中,除必然事件一定发生,不可能事件不发生外,一般的随机事件可能发生,也可能不发生,于是需要知道它发生的可能性到底有多大.概率是用来描述随机事件发生的可能性的大小的一种数量指标,它是逐步形成和完善起来的.下面我们就先引入频率的概念,然后研究频率的性质,进而引出概率的定义.1.2.1事件的频率定义 1.2.1 对于一个随机事件A 来说,在n 次重复试验中,记A n 为随机事件A 出现的次数,又A n 称为事件A 的频数,称()n f A = A n n为事件的频率. 由上述定义,对于事件的频率,我们很容易得到如下性质:(1)0()1n f A ≤≤;(2)()1n f Ω=;(3)对于k 个两两互斥的事件12,,,k A A A ,有11()k kn i n i i i f A f A ==⎛⎫= ⎪⎝⎭∑.根据上述定义可知频率反应了一个随机事件发生的频繁程度,人们经过长期的实践发现,虽然个别随机事件在某次试验或观察中可能出现也可能不出现,但在大量试验中它却呈现出明显的规律性——频率稳定性.在掷一枚均匀的硬币时,既可能出现正面,也可能出现反面,在大量试验中出现正面和反面的频率,都应接近于50%,为了验证这点,历史上曾有不少数学家做过这个试验,其结果如下:又如,在英语中某些字母出现的频率远远高于另外一些字母.而且各个字母被使用的频率相当稳定.例如,下面就是英文字母使用频率的一份统计表.对一随机事件来说,如果它发生的频率越大,自然这个事件在一次试验中发生的可能性就越大,所以频率在一定程度上反映了事件发生可能性的大小.如上述两个试验,尽管每做n 次试验,所得到的频率()n f A 各不相同,但随着试验次数n 的增加,事件A 的频率()n f A 与会逐渐稳定在一个常数附近,而实际上这一常数即为事件A 的概率.下面给出概率的一个严密的定义.20世纪30年代中期,柯尔莫哥洛夫给出了概率的严密的公理化定义.定义1.2.2 设Ω是随机试验E 的样本空间,对于E 的每一个随机事件A ,定义一个实数()P A 与之对应.若实值集合函数()P ⋅满足下列条件:(1)非负性:对于每个随机事件A ,都有()0;P A ≥(2)规范性:()1P Ω=;(3)可列可加性:若事件12,,,A A 两两互斥,则有 11()i i i i P A P A ∞∞==⎛⎫= ⎪⎝⎭∑, (1.2.1)则称()P ⋅为概率,()P A 为事件A 的概率.由概率的定义,可得到概率的以下性质:性质1 ()0P ∅=.性质2 (有限可加性) 设12,,,n A A A 是两两互斥的事件,则 121()()nn k k P A A A P A ==∑ (1.2.2)性质3 对任意事件A ,有()1()P A P A =-.性质4 对任意事件,A B ,若,A B ⊂则()()()P B A P B P A -=-. (1.2.3)性质5 若,B A ⊂则有()()P B P A ≥.性质6 对于任一事件A ,有0()1P A ≤≤.性质7(减法公式) 对任意事件,A B ,有()()()P B A P B P AB -=-. (1.2.4) 证 因为B A B AB -=-,且AB B ⊂,由(1.2.3),()()()()P B A P B AB P B P AB -=-=-.性质8 (加法公式) 对任意事件,A B ,有()()()() P P AB A P B P AB =+-.(1.2.5) 证 由于 ()A B A B AB =-,且(),A B AB -=∅于是有()()()()()()P A B P A P B AB P A P B P AB =+-=+-.推广 ,,A B C 是任意三个事件,则有()()()()()()()().P A B C P A P B P C P AB P AC P BC P ABC =++---+一般,对于任意n 个事件12,,,n A A A 有1121111()()()()...(1)()n n n i i i j i j k n i i j n i j k n i P A P A P A A P A A A P A A A -=≤<≤≤<<≤==-+++-∑∑∑.1.3 古典概率模型古典概型是人们最初讨论的一种随机试验,本节即要讨论古典概型中随机事件的概率.下面先看第1节的三个例子:1E : 抛一枚硬币,观察出现正面还是反面.(分别用“H ” 和“T ” 表示出正面和反面); 2E :抛两枚硬币,观察出现的结果;3E :掷一颗骰子,观察出现的点数.上述三个例子即为古典概型随机试验,它们有共同的特点:(1)样本空间只包含有限个样本点;(2)每个样本点在每次随机试验中等可能出现.凡是具有上述两个特点的随机试验就称为是古典概型,那么在古典概型中随机事件的概率应该如何计算?定义1.3.1 随机试验E 是古典概型,样本空间Ω共含有n 个样本点,随机事件A 含有r 个样本点,则定义事件A 的概率为: () A r P A n==Ω中本中本样点个数 样点个数. (1.3.1) 古典概型中许多概率的计算相当困难而富有技巧,按照上述概率的计算公式,计算的要点是给定样本点,并计算它的总数,而后再计算所求事件中含的样本点的数目.下面我们看一些典型的古典概率计算的例子.例1.3.1 将一枚硬币抛掷两次,设事件1A ={恰有一次出现正面};事件2A ={至少有一次出现正面},求1()P A 和2()P A .解 正面记为“H ”,反面记为“T ”,则随机试验的样本空间为{,,,}HH HT TH TT Ω=, 而 {}1,A HT TH =,{},,2A HH HT TH =,于是121()42P A ==,23()4P A =. 例1.3.2 有10个电阻,其电阻值分别为1210ΩΩ⋯Ω,,,,从中取出三个,求取出的三个电阻,一个小于5Ω,一个等于5Ω,另一个大于5Ω的概率.解 把从10个电阻中取出3个的各种可能取法作为样本点全体,这是古典概型,样本空间的样本点数为103⎛⎫ ⎪⎝⎭,所求事件含样本点数为⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛151114.故所求概率为 41511111063P ⎛⎫⎛⎫⎛⎫ ⎪⎪⎪⎝⎭⎝⎭⎝⎭==⎛⎫ ⎪⎝⎭. 例1.3.3 30名学生中有3名运动员,将这30名学生平均分成3组,求:(1)每组有一名运动员的概率;(2)3名运动员集中在一个组的概率.解 设事件A={每组有一名运动员},B={3名运动员集中在一组},30名学生平均分成3组共有30201030!10101010!10!10!⎛⎫⎛⎫⎛⎫= ⎪⎪⎪⎝⎭⎝⎭⎝⎭种分法. (1)保证每组有一名运动员则有27!3!9!9!9!分法,所以50()30!20310!10!10!P A =27!3!9!9!9!=; (2)让3名运动员集中在一个组,则有272010371010⎛⎫⎛⎫⎛⎫⨯ ⎪⎪⎪⎝⎭⎝⎭⎝⎭分法,所以27201037101018()30!20310!10!10!P B ⎛⎫⎛⎫⎛⎫⨯ ⎪⎪⎪⎝⎭⎝⎭⎝⎭==. 例1.3.4(摸球模型)(1) (无放回地摸球)设袋中有M 个白球和N 个黑球,现从袋中无放回地依次摸出m n +个球,求所取球恰好含m 个白球,n 个黑球的概率.解 样本空间所含样本点总数为,M N m n +⎛⎫⎪+⎝⎭所求事件含的样本点数为,M N m n ⎛⎫⎛⎫ ⎪⎪⎝⎭⎝⎭所以所求概率为 M N m n P M N m n ⎛⎫⎛⎫ ⎪⎪⎝⎭⎝⎭=+⎛⎫ ⎪+⎝⎭. (2) 有放回地摸球设袋中有4只红球和6只黑球,现从袋中有放回地摸球3次,求前2 次摸到黑球、第3 次摸到红球的概率.解 样本空间点总数为310101010⨯⨯=,所求事件所含样本点数为664⨯⨯,故 366410P ⨯⨯= 0.144=. 例1.3.5(盒子模型)设有n 个球,每个都能以相同的概率被放到N 个盒子()N n ≥的每一个盒子中,试求:(1)某指定的n 个盒子中各有一个球的概率;(2)恰好有n 个盒子中各有一个球的概率.解 设事件A={某指定的n 个盒子中各有一个球},B={任意n 个盒子中各有一个球}. 由于每个球可落入N 个盒子中的任一个,所以n 个球在N 个盒子中的分布相当于从N 个元素中选取n 个进行有重复的排列,故共有nN 种可能分布.对于事件A ,相当于n 个球在那指定的n 个盒子中全排列,总数为!n ,所以 !()n n P A N=. 对于事件B ,n 个盒子可以任意,即可以从N 个盒子中任意选出n 个来,这种选法共有⎪⎪⎭⎫ ⎝⎛n N 种,对于每种选定的n 个盒子,再全排列,所以事件B 放法共有!N n n ⎛⎫ ⎪⎝⎭种,所以!()n N n n P B N⎛⎫ ⎪⎝⎭=. 上述例子是古典概型中一个比较典型的问题,不少问题都可以归结为它.例如概率论历史上有一个颇为有名的问题:要求参加某次集会的n 个人中没有两个人生日相同的概率.若把n个人看作上面问题中的n 个球,而把一年的365天作为盒子,则365N =,这时按照上述事件B 概率的求法就给出所求的概率.例如当40n =时,0109P =.,即40人中至少有两个人生日相同的概率为0891.,这个概率已经相当大了.例1.3.6 袋中有a 只黑球,b 只白球,它们除颜色不同外,其他方面没有差别,把球均匀混合,然后随机取出来,一次取一个,求第k 次取出的球是黑球的概率()1k a b ≤≤+. 解 设事件A ={第k 次取出的球是黑球}.法1 把a 只黑球及b 只白球都看作是不同的(例如设想把它们进行编号),若把取出的球依次放在排列成一行的a b +个位置上,则可能的排列法相当于把a b +个元素进行全排列,总数为()!a b +,把它们作为样本点全体.A 事件所含样本点数为(1)!a a b ⨯+-,这是因为第k 次取得黑球有a 种取法,而另外1a b +-次取球相当于1a b +-只球进行全排列,有(1)!a b +-种取法,故所求概率为(1)!()()!a a b a P A a b a b⨯+-==++, 结果与k 无关.实际上本例就是一抽签模型,例如在体育比赛中进行抽签,对各队机会均等,与抽签的先后次序无关.法2 把a 只黑球看作是没有区别的,把b 只白球也看作是没有区别的.仍把取出的球依次放在排列成一行的a b +位置上,因若把a 只黑球的位置固定下来则其他位置必然是放白球,而黑球的位置可以有⎪⎪⎭⎫⎝⎛+b b a 种放法,以这种放法作为样本点.对于事件A ,由于第k 次取得黑球,这个位置必须放黑球,剩下的黑球可以在1a b +-个位置上任取1a -个位置,因此共有⎪⎪⎭⎫ ⎝⎛--+11a b a 种放法.所以所求概率为b a a a b a a b a P k +=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛--+=11. 两种不同的解法答案相同,两种解法的区别在于,选取的样本空间不同.在[法一]中把球看作是“有区别的”,而在[法二]中则对同色球不加区别,因此在第一种解法中要顾及各黑球及各白球间的顺序而用排列,第二种解法则不注意顺序而用组合,但最后还是得出了相同的答案.由本例,我们必须注意,在计算样本点总数及所求事件含的样本点数时,必须对同一个确定的样本空间考虑,因此其中一个考虑顺序,另一个也必须考虑顺序,否则结果一定不正确.1.4 条件概率在许多实际问题中,除了考虑()P B 外,有时还需要考虑在一定条件下事件B 发生的概率,比如,已知事件A 发生的条件下,事件B 发生的概率,我们称这种概率为事件A 发生的条件下事件B 发生的条件概率,记为(|)P B A .1.4.1 条件概率的定义引例 盒中有4个外形相同的球,分别标有1,2,3,4,现在从盒中有放回的取两次球,每次取一球.则该试验的所有可能的结果为(1,1) (1,2) (1,3) (1,4)(2,1) (2,2) (2,3) (2,4)(3,1) (3,2) (3,3) (3,4)(4,1) (4,2) (4,3) (4,4)其中(,)i j 表示第一次取i 号球,第二次取j 号球,设A ={ 第一次取出球的标号为2},B ={ 取出的两球标号之和为4}, 则事件{(13),(2,2),(3,1)}B =,,因此事件B 的概率为 ()316P B =. 下面我们考虑在事件A 发生的条件下,事件B 发生的概率(|)P B A .由于已知事件A 已经发生,{(21),(2,2),(2,3),(2,4)}A =,,这时,事件B 在事件A 已经发生的条件下发生,那么只可能出现样本点(2,2),因此A 发生的条件下B 发生的概率为14,即 1(|)4P B A =. 由引例可以看出,事件B 在“条件A 已发生”这附加条件下的概率与不附加这个条件的概率是不同的.那么如何计算条件概率(|)P B A 呢?定义1.4.1 设A 、B 是两个随机事件,()0P A >,称()(|)()P AB P B A P A = (1.4.1) 为在事件A 已发生的条件下事件B 发生的条件概率. 在上述引例中,41(),()1616P A P AB ==,显然有()(|)()P AB P B A P A ==14. 例1.4.1 10个产品中有7个正品,3个次品,按照不放回抽样,每次一个,抽取两次,求(1) 两次都抽到次品的概率;(2 ) 第二次才取到次品的概率;(3)已知第一次取到次品,第二次又取到次品的概率.解 设A ,B 分别表示第一次和第二次抽到的是次品.(1) ()P AB =32110915⨯⨯=; (2) 737()10930P AB ⨯==⨯;(3) 12()215(|)39()1510P AB P B A P A ====.例 1.4.2 某种动物由出生算起活20岁以上的概率为0.8,活到25岁以上的概率为0.4, 如果现在有一个20岁的这种动物,问它能活到25岁以上的概率是多少?解 设事件A ={能活20岁以上},事件B ={能活25岁以上},即要求条件概率P(B A),由题()0.8P A =,()0.4P B =,()()P AB P B =,于是()(|)()P AB P B A P A =0.410.82==. 1.4.2 条件概率)|(A P ⋅的性质容易验证条件概率|P A ⋅()也有非负性、规范性和可列可加性三条性质: (1) 非负性:对任意的B ,(|)P B A ≥0; (2) 规范性: (|)1P A Ω=;(3) 可列可加性:对任意的一列两两互斥的事件,(1,2,)i B i ⋯=,有 11(|)(|)i i i i P B A P B A ∞∞===∑.因此,条件概率仍然是概率,所以条件概率也具有有限可加性、减法公式、加法公式等无条件概率所具有的一些性质.如对任意的12,B B ,有:(1) 121212(|)(|)(|)(|)P B B A P B A P B A P B B A =+-;(2)12112(|)(|)(|)P B B A P B A P B B A -=-; (3)若()(|)1()P B A B P B A P A ⊂==,则. 例1.4.3 一张储蓄卡的密码共6位数字,每位数字都可从0~9中任选一个.某人在银行自动提款机上取钱时,忘记了密码的最后一位数字,求:(1)任意按最后一位数字,不超过2次就按对的概率;(2)如果他记得密码的最后一位是偶数,不超过2次就按对的概率.解 设事件A ={任意按最后一位数字,不超过2次就按对},事件i A ={第i 次按对密码}(1,2i =),则__112()A A A A =,(1)因为事件1A 与事件12A A 互斥,由概率的加法公式得__1121911()()()101095P A P A P A A ⨯=+=+=⨯;(2)事件B ={最后一位按偶数},则____112112(|)(()|)(|)(|)P A B P A A A B P A B P A A B ==+14125545⨯=+=⨯. 1.4.3 乘法公式由条件概率定义的(1.4.1)可得,当()0P A >时,有()(|)P AB P A P B A =(), (1.4.2) 及()0P B >时,()(|)P AB P B P A B =(). (1.4.3) 推广 12,,,n A A A 为n 个事件,且12n-1()0P A A A >,则有 12n 121321n 121()()(|)(|)(|)n P A A A P A P A A P A A A P A A A A -=. (1.4.4)特别的,当3n =时,有()(|)(|)P ABC P A P B A P C AB =().乘法公式一般用于计算多个事件同时发生的概率.例1.4.4设袋中装有r 只红球,t 只白球.每次取一只观察其颜色并放回,并同时再放入a 只同色球,连续取四次,试求第一次、第二次取到红球且第三、四次取到白球的概率.解 以i A 表示事件“第i 次取到红球”1,2,3,4i =,则43,A A 分别表示第三次、第四次取到白球,即要求事件1234A A A A 的概率,由乘法公式(1.4.4)得12341213124123()()(|)(|)(|)P A A A A P A P A A P A A A P A A A A =r r a t t ar t r t a r t a a r t a a a ++=⋅⋅⋅++++++++++ ()()()()(2)(3)rt r a t a r t r t a r t a r t a ++=+++++++.1.4.4全概率公式和贝叶斯公式全概率公式和贝叶斯公式是概率论中两个比较重要的公式,它们将一个比较复杂事件的概率转化为不同条件下发生的比较简单的条件概率来计算.下面首先介绍一下样本空间划分的概念.定义 1.4.2 设Ω是随机试验E 的样本空间,12,,,n B B B 是E 的一列随机事件,若 (1),,,1,2,,i j B B i j i j n =∅≠=;(2)12n B B B =Ω,则称12,,,n B B B 为样本空间Ω的一个有限划分.定理 1.4.1 (全概率公式)设12,,,n B B B 是样本空间Ω的一个有限划分,且()0,1,2,i P B i n >=,则对任一事件A ,有()1()(|)iii P A P B P A B ∞==∑. (1.4.5)证1()()[()]ni i P A P A P A B ==Ω=1(())ni i P AB ==,对任意i j i j,B B ≠=∅,得()i AB ()()=Φi j AB AB ,由概率的有限可加性得11(())()nn i i i i P AB P AB ===∑=1()(|)ni i i P B P A B =∑.例1.4.5 有一批同一型号的产品,其中由甲厂生产的占30%,乙厂生产的占50%,丙厂生产的占20%,又知这甲、乙、丙三个厂的产品次品率分别为2%,1%,1%,问从这批产品中任取一件,取到次品的概率是多少?解 设事件A 为“任取一件为次品”,事件123,,B B B 分别为产品由甲、乙、丙厂生产,显然123,B B B =Ω且,,1,2,3i j B B i j =∅=,即123B ,B ,B 构成样本空间的划分.所以由(1.4.5)112233()()()()()()()P A P A B P B P A B P B P A B P B =++,123()0.02()0.01()0.01P A B P A B P A B ===,,,故112233()()()()()()()P A P A B P B P A B P B P A B P B =++0020300105001020013.......=⨯+⨯+⨯=.定理 1.4.2 (贝叶斯公式)设12,,,n B B B 是样本空间Ω的一个划分,()i P B 0>,1,2,3,,i n =,对任意事件A ,有1()(|)(|),1,2,...()(|)i i i njjj P B P A B P B A i n P B P A B ===∑. (1.4.6)证 i i P(B A )P(B A )P(A )=1i i njj j P(A B )P(B ),P(A B)P(B )==∑ 1,2,,i n =.例1.4.6 (续例1.4.5) 有一批同一型号的产品,其中由甲厂生产的占30%,乙厂生产的占50%,丙厂生产的占20%,又知这甲、乙、丙三个厂的产品次品率分别为2%,1%,1%,问从这批产品中任取一件,发现是次品,那么它分别由甲、乙、丙厂生产的概率是多少?解 123(),(),()P B A P B A P B A 即为所要求的条件概率,由贝叶斯公式(1.4.6),11131()(|)0.020.3(|)0.460.020.30.010.50.010.2()(|)jjj P B P A B P B A P B P A B =⨯===⨯+⨯+⨯∑;22231()(|)0.010.5(|)0.380.020.30.010.50.010.2()(|)jjj P B P A B P B A P B P A B =⨯===⨯+⨯+⨯∑;33331()(|)0.010.2(|)0.150.020.30.010.50.010.2()(|)jjj P B P A B P B A P B P A B =⨯===⨯+⨯+⨯∑.例1.4.7袋中有4个红球,6个白球,作不放回的摸球两次,求(1)第二次摸到红球的概率;(2)已知第二次摸到红球,求第一次摸到的也是红球的概率.解 设A ={第一次摸到红球},A ={第一次摸到白球},B ={第二次摸到红球}.显然11114634(),(),(|),(|)101099P A P A P B A P B A ====; (1)由全概率公式(1.4.5)111143642()()(|)()(|)1091095P B P A P B A P A P B A =+=⨯+⨯=; (2)由贝叶斯公式(1.4.5)1111111()(|)1(|)()(|)()(|)3P A P B A P A B P A P B A P A P B A ==+.例1.4.8 某一地区患有癌症的人占0.005,患者对一种试验反应是阳性的概率为0.95,正常人对这种试验反应是阳性的概率为0.04,现抽查了一个人,试验反应是阳性,问此人是癌症患者的概率有多大?解 设A ={抽查的人患有癌症},B ={试验结果是阳性},则__A ={抽查的人没有患癌症}.()0.005, ()0.995 ,(|)0.95, (|)0.04P A P A P B A P B A ====.由贝叶斯公式(1.4.5),得()(|)(|)0.1066 ()(|)()(|)P A P B A P A B P A P B A P A P B A ==+.这表明某人的试验结果为阳性,但此人确患癌症的概率却非常小,只有0.1066,即平均来说,1000个检查结果呈阳性的人中大约只有107人确患癌症.那是否说明该试验对于诊断一个人是否患有癌症没有意义?我们来分析一下.如果不做试验,随机抽取一人,那么他是癌症患者的概率为()0.005P A =,若进行试验,试验后呈阳性反应,则根据试验得到的信息:此人是癌症患者的概率为P (|)0.1066A B =.概率从0.005增加到0.1066,约增加了21倍,说明试验对于诊断一个人是否患癌症有意义.至于试验结果呈阳性患癌症的概率还如此低,是由癌症的患病率非常低0.005导致的.1.5 事件的独立性条件概率(|)P B A 通常来说与()P B 不相等,这反映了事件A 的发生与否对事件B 有影响;若(|)P B A 与()P B 相等,则反映了事件A 的发生与否对事件B 无影响.如:抛硬币两次,事件A ={第一次正面向上},B ={第二次正面向上}.1()(|)2P B P B A ==. 所以两个事件A 、B 其中一个发生与否,不影响另一件事件发生的可能性大小,此时 (|)()P B A P B =,即:()(|)()()P AB P B A P B P A ==, 于是得到()()()P AB P A P B =,我们称A 与B 相互独立.定义 1.5.1 对事件A 和B ,如果()()()P AB P A P B =,则称事件A 与事件B 相互独立.定理1.5.1 设A ,B 是两个事件, 且0)(>A P ,若A ,B 相互独立,则)()|(A P B A P =. 定理1.5.2 设事件A ,B 相互独立,则A 与B ,A 与B ,A 与B 各对事件也相互独立. 证 因为____()A A A BB ABA B =Ω==,显然__,AB A B 互斥,故______()()()()()()()P A P ABAB P AB P AB P A P B P AB ==+=+,于是____()()()()()(1())()()P A B P A P A P B P A P B P A P B =-=-=,所以A 与B 相互独立.由A ,B 相互独立可以推出A 与B 相互独立,于是,A 与B 相互独立可推出A 与B 相互独立,再由B =B ,又可推出A 与B 相互独立.定理1.5.3 若事件A ,B 相互独立,且0()1P A <<,则__(|)(|)()P B A P B A P B ==.证()()()(|)()()()P AB P A P B P B A P B P A P A ===,__________()()()(|)()()()P A B P A P B P B A P B P A P A ===. 定义1.5.2 (三个事件相互独立) 设C B A ,,为三个事件,若等式),()()()(),()()(),()()(),()()(C P B P A P ABC P C P B P BC P C P A P AC P B P A P AB P ====同时满足,则称事件C B A ,,相互独立.类似的可以定义n 个事件相互独立.定义1.5.3 设12,,,n A A A 是n 个事件,若对其中任意k 个事件12,,,k i i i A A A(2)k n ≤≤有1212()()()()k k i i i i i i P A A A P A P A P A =,则称这n 个事件是相互独立的.定义 1.5.4 设有n 个事件12,,,n A A A (3≥n ),若对其中任意两个事件i A 与)1(n j i A j ≤<≤有)()()(j i j i A P A P A A P =则称这n 个事件是两两相互独立的.显然,若n 个事件12,,,n A A A 相互独立,则n 个事件一定是两两相互独立,但反之不一定成立.在实际应用中,独立性的判断一般不会采用定义判断,而是根据问题的实际意义去判断,如抛硬币两次,事件A ={第一次正面向上},B ={第二次正面向上},第一次出现哪一面并不影响第二次出现正面的概率,所以事件,A B 相互独立.例1.5.1甲、乙两射手独立地向同一目标射击一次,其中命中率分别为0.9和0.8, (1) 求目标被击中的概率;(2) 现已知目标被击中,求它是由甲击中的概率. 解 设A ={甲命中},B ={乙命中},C ={目标被击中},(1) () () ()()()()0.90.80.90.80.98P C P A B P A P B P A P B ==+-=+-⨯=; (2) ()()(|)()[()()()()]P AC P A P A C P C P A P B P A P B ==+-0.90.920.98==. 例1.5.2 设高射炮每次击中飞机的概率为0.2,问至少需要多少门这种高射炮同时独立发射(每门射一次)才能使击中飞机的概率达到95%以上?解 设需要n 门高射炮,A ={飞机被击中},A i ={第i 门高射炮击中飞机},12)i n =⋯(,,,,则12()()n P A P A A A =⋯=_____________________121()n P A A A -______121()n P A A A =-,由相互独立的性质____________1212()()()()n n P A A A P A P A P A =,于是______12()1()()()1(10.2)n n P A P A P A P A =-=--,令1(10.2)0.95n--≥,得08005n≤..,即得14n ≥.即至少需要14门高射炮才能有95%以上的把握击中飞机.例 1.5.3 一个元件能正常工作的概率称为这个元件的可靠性,一个系统能正常工作的概率称为这个系统的可靠性.设一个系统由四个元件按图示方式(图1.2)组成,各个元件相互独立,且每个元件的可靠性都等于)10(<<p p ,求这个系统的可靠性.。

概率论与数理统计(经管类)复习要点 第1章 随机事件与概率

概率论与数理统计(经管类)复习要点 第1章 随机事件与概率

第一章随机事件与概率1. 从发生的必然性角度区分,现象分为确定性现象和随机现象。

随机现象:在一定条件下,可能出现这样的结果,也可能出现那样的结果,预先无法断言。

统计规律性:在大量重复试验或观察中所呈现的固有规律性。

概率论与数理统计就是研究和揭示随机现象统计规律的一门数学学科,随机现象是概率论与数理统计的主要对象。

(1)概率论:从数量上研究随机现象的统计规律性的科学。

(2)数理统计:从应用角度研究处理随机性数据,建立有效的统计方法,进行统计推理。

2. (1)试验的可重复性——可在相同条件下重复进行;(2)一次试验结果的随机性——一次试验之前无法确定具体是哪种结果出现,但能确定所有的可能结果;(3)全部试验结果的可知性——所有可能的结果是预先可知的。

在概率论中,将具有上述三个特点的试验成为随机试验,简称试验,记作E。

样本点:试验的每一个可能出现的结果称为一个样本点,记为ω。

样本空间:试验的所有可能结果所组成的集合称为试验E的样本空间,记为Ω。

3. 在一次试验中可能出现也可能不出现的事件,统称为随机事件,记作A,B,C或A1,A2,…随机事件:样本空间Ω的任意一个子集称, 简称“事件”,记作A、B、C等。

事件发生:在一次试验中,当这一子集中的一个样本点出现时。

基本事件:样本空间Ω仅包含一个样本点ω的单点子集{ω}。

两个特殊事件:必然事件Ω、不可能事件φ样本空间Ω包含所有的样本点,它是Ω自身的子集,在每次试验中它总是发生,称为必然事件。

空集φ不包含任何样本点,它也作为样本空间Ω的子集,在每次试验中都不发生,称为不可能事件。

4. 随机事件的关系与运算(1)事件的包含与相等设A,B为两个事件,若A发生必然导致B发生,则称事件B包含A,或称事件A包含在B中,记作B⊃A,A⊂B。

①φ⊂A⊂Ω②若A⊂B且B⊂A,则称A与B相等,记作A=B。

事实上,A和B在意义上表示同一事件,或者说A和B 是同一事件的不同表述。

(2)和事件称事件“A,B中至少有一个发生”为事件A与事件B的和事件,也称为A与B的并,记作A∪B或A+B。

《概率论与数理统计》1.1 随机试验与随机事件

《概率论与数理统计》1.1 随机试验与随机事件

i点 5, 6
}
在一起所构成的事件)
复合事件
事件 B = { 掷出奇数点 }
五. 随机事件间的关系及其运算
设试验 E 的样本空间为 S, A, B, Ak (k 1, 2, ) 是 S 的子集.
1. 事件的包含:如( A果中事的件每A个发样生本必点然都导包致含事在件BB中发)生.
注 ▲
则称 事件 B 包含事件 A 或 A 含于事 件 B 。记作:B A或 A B
从观察试验开始 研究随机现象,首先要对 研究对象进行观察或试验.
这里的试验指的是随机试验.
第一节 随机试验与随机事件
一. 试 验 : 为了研究随机现象,就要对客观事物进行 观察,观察的过程称之为试验。记为 E。
例1 E1:掷一枚硬币观察正面,反面出现的情况。 E2:记录一小时内,到某保险公司投保的户数 E3:射手射击一个目标,直到射中为止,观察 其射击的次数。 E4:从一批产品中抽取十件,观察其次品数。 E5:抛一颗骰子,观察其出现的点数。
A
B
为 A 与 B 的和 (并), 记作:
A B 或 A B x xA 或 xB
AB

▲ 它是由事件 A 和 B 所有样本点构成的集合 n
▲ 称 Ak 为 n 个事件 A1 , A2 , , An 的和事件
k1
k 1 Ak 为可列个事件 A1 , A2 ,
的和事件
4. 事件的积(交): 若 “两个事件A与 B 同时发生” 也是一个事件,
样本空间元素 是由试验目的 所确定的,不 同的试验目的 其样本空间也 是不一样的。
S
.e
样本点e
例 3.若试验 E是将一枚硬币抛掷两次. 试写出该试验 E 的样本空间.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本点相同.
(3)事件的和(或并) 事件 A U B {x | x A 或 x B} 称为
事件 A 与事件 B 的和事件.其含义为:事件 A 与 B 中至少有一个发
生。
第一章 随机事件
四.随机事件的关系
n
U 称 Ai 为 n 个事件 A1, A2 ,L , An 的和事件,
i 1
§1.1 基本概念
抓一个,观察出现的结果. (2)掷两颗骰子, 观察骰子朝上的点数.
解:(1) {A, B,C, D, E}.
解:(2) {(i, j) | i, j 1, 2,3, 4,5, 6},其中 (i, j) 表示第一颗
骰子朝上的点数为 i ,第二颗骰子朝上的点数为 j .
第一章 随机事件
§1.1 基本概念
U 称 Ai 为可列个事件 A1, A2,L , An ,L 的和事件.
i 1
(4)事件的积(或交) 事件 A I B {x | x A 且 x B} 称为事件
A 与事件 B 的积事件.其含义为:事件 A 与事件 B 同时发生.事件
n
I I A I B 也记作 AB .称 Ai 为 n 个事件 A1, A2,L , An 的积事件,称 Ai
概率论与数理统计
第1章 随机事件
§1.1 基本概念 §1.2 事件的概率 §1.3 古典概率模型 §1.4 条件概率 §1.5 事件的独立性
§1.2 §1.3 §1.4 §1.5
第1章 随机事件
§1.1 基本概念
§1.2 §1.3 §1.4 §1.5
第一章 随机事件
§1.1 基本概念
一.研究对象
必然事件 每次实验总发生 不可能事件 每次实验总不发生
注意 :一旦做试验,就会出现一个结果,即有一个样 本点出现。
第一章 随机事件三Leabharlann 随机事件§1.1 基本概念
例 1.3 掷一颗骰子的样本空间为 S {1, 2,3, 4,5, 6}.
记 A {出现1点} , A 为基本事件;
C {出现的点数不超过 6 } , C 为必然事件;
先明确试验的所有可能结果; (3)不确定性 每次试验前不能确定哪个结果将出现.
称这样的试验为随机试验, 通常用字母E 表示。
第一章 随机事件
§1.1 基本概念
实例1 “在相同条件下掷一枚均匀的硬币,观
察正反两面出现的情况”。
实例2 “抛掷一枚骰子,观察出现的点数”。
实例3 “测试在同一工艺条件下生产出的灯泡的 寿命.”
i 1
i 1
为可列个事件 A1, A2 ,L , An ,L 的积事件.
第一章 随机事件
§1.1 基本概念
四.随机事件的关系
(5)事件的差 事件 A B {x | x A且 x B}称为事件 A
与事件 B 的差事件.其含义为:事件 A 发生且事件 B 不发生.
(6)互不相容(互斥) 若 A I B ,则称事件 A 与事件 B 是互不相容的或互斥的.其含义为:事件 A 和事件 B 不同时
1. 确定性现象 在一定条件下必然发生或不发生的现象称为确定性现
象。
例如 “冬天过去,春天就会来”
“同性电荷互斥” 2. 随机现象
它是事前不可预言的,即在相同条件下重复进行试验,每 次的结果不一定相同,这一类现象我们称之为偶然性现象或 随机现象.
例如 “抛掷一枚骰子,观察出现的点数”。
第一章 随机事件
D {出现8 点} , D 为不可能事件.
第一章 随机事件
四.随机事件的关系
§1.1基本概念
(1)包含关系 若 A B ,称事件 B 包含事件 A ,或事件 A 包 含于事件 B ,或 A 是 B 的子事件. 其含义为:如果事件 A 发生必然导致事件 B 发生.
(2)相等关系 若 A B ,称事件 A 与事件 B 相等.其含义为: 若事件 A 发生必然导致事件 B 发生,同时若事件 B 发生也必然导致 事件 A 发生,即 A B 且 B A .此时事件 A 与事件 B 所包含的样
第一章 随机事件
§1.1 基本概念
3.样本空间、样本点
随机试验 E ,所有可能的结果组成的集合为样本空间,记为
(或 S ).
样本空间的元素,即随机试验的单个结果,称为一个样本点。
例 写出下列试验的样本空间:
(1)考试结束后,某个学生做了这样几个阄: A “ 90 分以上”, B “ 80 - 89 分”, C “ 70 - 79 分”, D “ 60 - 69 分”, E “不及格”,从中
发生.
(7)对立事件(补事件) 若 A U B 且 A I B ,则称事 件 A 与事件 B 互为对立事件,或称事件 A 与事件 B 互为补事件.其 含义是:在每次试验中,事件 A 与事件 B 中有且仅有一个发生.
察取出的电脑是合格品还是不合格品.
解:(4) (i) 1 {t t 0} ;(ii) 2 { 合格品, 不合格品} .
第一章 随机事件
三.随机事件
§1.1 基本概念
样本空间的任意一个子集称为随机事件,简称事件。常 用大写字母A、B、C…表示。
基本事件:事件只含一个实验结果
事件A发生:事件(集合)A中的一个样本点(元素)出 现
3.随机现象的统计规律性
§1.1基本概念
在一定条件下,随机现象有多种可能的结果发生, 事前不能预知将出现哪种结果,但通过大量的重复观察, 出现的结果会呈现出某种规律,称为随机现象的统计规 律性.
例如: 掷硬币观察正反面出现的次数; 各国新生儿的统计资料显示,男孩和女孩人数; 统计一个地区的人的身高比例。
概率论与数理统计是研究随机现象统计规律性的一门
数学学科。
第一章 随机事件
二.基本概念
§1.1基本概念
1.试验
不但指各种各样的科学实验,也包括对各种现象的 “观察”、“测量”、“实验”等。
2.随机试验
如果这个试验具有如下特点: (1)可重复性 试验可以在相同条件下重复进行; (2)可观察性 每次试验的可能结果不止一个,但能事
(3) 3 件产品中两件正品,1件次品,(i)依次取出两件;(ii)同时取出
两件,观察结果.
解:(3) (i) 1 {( 正品,次品 ),( 正品,正品 ),( 次品,正品 )} ;
(ii) 2 {( 正品,次品 ),( 正品,正品 )} .
(4)从一批电脑中,任取一台,
(i)观察无故障运行的时间 t ; (ii)若电脑无故障运行1 000 小时以上为合格品,否则为不合格品,观
相关文档
最新文档