数据结构知识点(含算法)
复习提纲:算法与数据结构

1、算法的概念是为了解决某类问题而规定的一个有限长的操作序列。
特性:①有穷性②确定性③可行性④输入⑤输出评价标准:①正确性②可读性③健壮性④高效性2、算法的复杂度: 算法计算量所需资源的大小时间复杂度:T(n)=O(f(n)),他表示随问题规模n的增大,算法执行时间的增长率和f(n)的增长率相同,称作算法的时间复杂度空间复杂度:S(n)=O(f(n)),算法所需空间的度量。
3、数据结构中的逻辑结构分为:线性和非线性结构4、线性表的两种存储方式:顺序存储和链式存储的特点及比较。
顺序存储:指用一组地址连续的存储单元依次存储线性表的数据元素链式存储:用一组任意的存储单元存储线性表的数据元素。
5、线性表的特点①存在唯一的一个被称作“第一个”的数据元素②存在唯一的一个被称作“最后一个”的数据元素③除第一个之外,结构中的每一个数据元素均只有一个前驱④除最后一个之外,结构中的每一个数据元素均只有一个后继6、在长度为n的顺序表中的第i个位置处插入一个元素,需要移动多少个元素?n-i+17、理解算法:线性表La和Lb,将两个表合并成一个新的线性表并存于La中。
8、带头结点的单链表和不带头结点的单链表为空的条件分别是?带头结点的循环单链表为空的条件是?带头结点的单链表为空的条件:没有下一个节点L->next=NULL不带头结点的单链表为空的条件:L=NULL循环单链表为空的条件:head->next=head带头结点的循环单链表为空的条件是9、在单链表中插入结点的算法中,指针如何修改。
P3410、理解单链表中插入新结点的算法p3411、理解双向链表中插入新结点的算法p4012、理解栈和队列的操作特点:先进后出,先进先出。
已知进栈顺序,求可能的出栈顺序。
链栈相对于顺序栈的优点是什么?链栈在入栈前不需要判断栈是否为满,只需要为入栈元素动态分配一个节点空间13、理解算法:执行进栈操作,则先要判断栈S是否为满,若不满再将记录栈顶的下标变量top加1,再将进栈元素放进栈顶位置上。
数据库技术知识数据结构的算法

数据库技术知识数据结构的算法对于将要参加计算机等级考试的考生来说,计算机等级考试的知识点辅导是非常重要的复习资料。
以下是收集的数据库技术知识数据结构的算法,希望大家认真阅读!1、数据:数据的基本单位是数据元素。
数据元素可由一个或多个数据项组成。
数据项是数据的不可分割的最小单位2、数据结构:数据的逻辑结构、数据的存储结构、数据的运算3、主要的数据存储方式:顺序存储结构(逻辑和物理相邻,存储密度大)和链式存储结构顺序存储结构:顺序存储计算公式Li=L0+(i-1)×K顺序结构可以进行随机存取;插人、删除运算会引起相应节点的大量移动链式存储结构:a、指针域可以有多个,可以指向空,比比顺序存储结构的存储密度小b、逻辑上相邻的节点物理上不一定相邻。
c、插人、删除等不需要大量移动节点4、顺序表:一般情况下,若长度为n的顺序表,在任何位置插入或删除的概率相等,元素移动的平均次数为n/2(插入)和(n-1)/2(删除)。
5、链表:线性链表(单链表和双向链表等等)和非线性链表线性链表也称为单链表,其每个一节点中只包含一个指针域,双链表中,每个节点中设置有两个指针域。
(注意结点的插入和删除操作)6、栈:“后进先出”(LIFO)表。
栈的应用:表达式求解、二叉树对称序周游、快速排序算法、递归过程的实现等7、队列:“先进先出”线性表。
应用:树的层次遍历8、串:由零个或多个字符组成的有限序列。
9、多维数组的顺序存储:10、稀疏矩阵的存储:下三角矩阵顺序存储其他常见的存储方法还有三元组法和十字链表法11、广义表:由零个或多个单元素或子表所组成的有限序列。
广义表的元素可以是子表,而子表的元素还可以是子表12、树型结构:非线性结构。
常用的树型结构有树和二叉树。
二叉树与树的区别:二叉树不是树的特殊情况,树和二叉树之间最主要的区别是:二叉树的节点的子树要区分左子树和右子树,即使在节点只有一棵子树的情况下也要明确指出该子树是左子树还是右子树。
数据结构的重点知识点

数据结构的重点知识点数据结构是计算机科学中非常重要的基础知识,它主要研究数据的组织、存储和管理方式。
在学习数据结构的过程中,有一些重点知识点需要特别关注和理解。
本文将从以下几个方面介绍数据结构的重点知识点。
一、线性表线性表是数据结构中最基本、最简单的一种结构。
它包括顺序表和链表两种实现方式。
1. 顺序表顺序表是线性表的一种实现方式,它使用一个连续的存储空间来存储数据。
顺序表的主要操作包括插入、删除和查找等。
2. 链表链表是线性表的另一种实现方式,它使用节点来存储数据,并通过指针将这些节点连接起来。
链表的主要操作包括插入、删除和查找等。
二、栈和队列栈和队列是线性表的特殊形式,它们的主要特点是插入和删除操作只能在特定的一端进行。
1. 栈栈是一种先进后出(LIFO)的数据结构,它的插入和删除操作都在栈顶进行。
栈的主要操作包括入栈和出栈。
2. 队列队列是一种先进先出(FIFO)的数据结构,它的插入操作在队尾进行,删除操作在队头进行。
队列的主要操作包括入队和出队。
三、树和二叉树树是一种用来组织数据的非线性结构,它由节点和边组成。
树的重点知识点主要包括二叉树、二叉搜索树和平衡树等。
1. 二叉树二叉树是一种特殊的树结构,它的每个节点最多只能有两个子节点。
二叉树的主要操作包括遍历、插入和删除等。
2. 二叉搜索树二叉搜索树是一种特殊的二叉树,它的左子树中的所有节点的值都小于根节点的值,右子树中的所有节点的值都大于根节点的值。
二叉搜索树的主要操作包括查找、插入和删除等。
四、图图是由节点和边组成的一种复杂数据结构。
图的重点知识点主要包括有向图和无向图、图的遍历和最短路径算法等。
1. 有向图和无向图有向图和无向图是图的两种基本形式,它们的区别在于边是否有方向。
有向图的边是有方向的,而无向图的边没有方向。
2. 图的遍历图的遍历是指对图中的每个节点进行访问的过程。
常见的图遍历算法有深度优先搜索(DFS)和广度优先搜索(BFS)。
数据结构知识点总结

数据结构知识点总结数据结构是计算机科学中非常重要的一个概念,它是指一组数据的组织方式,以及对这组数据进行操作的方法。
数据结构可以分为线性结构和非线性结构两种。
下面将对常见的数据结构进行总结,希望能对读者有所帮助。
一、线性结构1. 数组:数组是一种最基本的数据结构,它可以存储一组具有相同类型的数据。
数组的访问时间复杂度为O(1),但插入和删除的时间复杂度较高,为O(n)。
2. 链表:链表是由一系列的节点组成,每个节点包含数据以及指向下一个节点的指针。
链表的访问时间复杂度为O(n),但插入和删除的时间复杂度较低,为O(1)。
3. 栈:栈是一种具有后进先出(LIFO)特点的数据结构,只能在栈顶进行插入和删除操作。
栈的访问、插入、删除的时间复杂度均为O(1)。
4. 队列:队列是一种具有先进先出(FIFO)特点的数据结构,只能在队尾插入元素,在队头删除元素。
队列的访问、插入、删除的时间复杂度均为O(1)。
5. 双向链表:双向链表是在链表的基础上发展而来的数据结构,每个节点不仅包含指向下一个节点的指针,还包含指向上一个节点的指针。
双向链表的插入和删除操作时间复杂度为O(1)。
二、非线性结构1. 树:树是一种由节点和边组成的数据结构,每个节点可以有多个子节点。
树有很多种类型,如二叉树、AVL树、红黑树等。
树的遍历可以分为前序遍历、中序遍历、后序遍历和层序遍历等。
2. 图:图是一种由顶点和边组成的数据结构,每个顶点可以与其他顶点相连。
图可以分为有向图和无向图,常用的应用场景有社交网络和地图导航等。
图的遍历可以分为深度优先搜索和广度优先搜索等算法。
3. 堆:堆是一种特殊的树结构,具有以下特点:每个节点的值都大于等于(或小于等于)其子节点的值,且左子树和右子树都是堆。
堆常用来实现优先队列,常见的堆有二叉堆和斐波那契堆。
4. 哈希表:哈希表是一种根据关键码值(Key value)而直接进行访问的数据结构,通过将关键码值映射到表中的某个位置来实现访问的。
考研数据结构图的必背算法及知识点

考研数据结构图的必背算法及知识点Prepared on 22 November 20201.最小生成树:无向连通图的所有生成树中有一棵边的权值总和最小的生成树问题背景:假设要在n个城市之间建立通信联络网,则连通n个城市只需要n—1条线路。
这时,自然会考虑这样一个问题,如何在最节省经费的前提下建立这个通信网。
在每两个城市之间都可以设置一条线路,相应地都要付出一定的经济代价。
n个城市之间,最多可能设置n(n-1)/2条线路,那么,如何在这些可能的线路中选择n-1条,以使总的耗费最少呢分析问题(建立模型):可以用连通网来表示n个城市以及n个城市间可能设置的通信线路,其中网的顶点表示城市,边表示两城市之间的线路,赋于边的权值表示相应的代价。
对于n个顶点的连通网可以建立许多不同的生成树,每一棵生成树都可以是一个通信网。
即无向连通图的生成树不是唯一的。
连通图的一次遍历所经过的边的集合及图中所有顶点的集合就构成了该图的一棵生成树,对连通图的不同遍历,就可能得到不同的生成树。
图G5无向连通图的生成树为(a)、(b)和(c)图所示:G5G5的三棵生成树:可以证明,对于有n个顶点的无向连通图,无论其生成树的形态如何,所有生成树中都有且仅有n-1条边。
最小生成树的定义:如果无向连通图是一个网,那么,它的所有生成树中必有一棵边的权值总和最小的生成树,我们称这棵生成树为最小生成树,简称为最小生成树。
最小生成树的性质:假设N=(V,{E})是个连通网,U是顶点集合V的一个非空子集,若(u,v)是个一条具有最小权值(代价)的边,其中,则必存在一棵包含边(u,v)的最小生成树。
解决方案:两种常用的构造最小生成树的算法:普里姆(Prim)和克鲁斯卡尔(Kruskal)。
他们都利用了最小生成树的性质1.普里姆(Prim)算法:有线到点,适合边稠密。
时间复杂度O(N^2)假设G=(V,E)为连通图,其中V为网图中所有顶点的集合,E为网图中所有带权边的集合。
数据结构总结知识点

第一章数据结构概念——数据结构,数据元素,数据项,数据类型,抽象数据类型,算法,等。
数据结构定义——指互相有关联的数据元素的集合,用D_S=( D, S ) 或S=( D, R) 表示。
数据结构内容——数据的逻辑结构、存储结构和运算算法效率指标——时间效率(时间复杂度)和空间效率(空间复杂度)总结:数据的逻辑结构和存储结构数据的逻辑结构是数据的机外表示,数据的存储结构是数据的机内表示。
(2) 一种数据的逻辑结构可以用多种存储结构来存储。
(3) 数据结构的基本操作是定义(存在)于逻辑结构,计算机程序设计过程中实现于存储结构。
(4) 采用不同的存储结构,其数据处理的效率往往是不同的。
数据结构?有限个同构数据元素的集合,存在着一定的结构关系,可进行一定的运算。
算法--是对特定问题求解步骤的一种描述,是指令的有限序列。
算法有5个基本特性:有穷性、确定性、可行性、输入和输出第二章1. 数据的逻辑结构是指数据元素之间的逻辑关系,是用户按使用需要建立的。
对2. 线性表的逻辑结构定义是唯一的,不依赖于计算机。
对3. 线性结构反映结点间的逻辑关系是一对一的。
对4. 一维向量是线性表,但二维或N维数组不是。
错5. “同一数据逻辑结构中的所有数据元素都具有相同的 特性”是指数据元素所包含的数据项的个数都相等。
错 插入概率p(i)=1/(n+1) ,删除概率q(i)=1/n插入操作时间效率(平均移动次数)2)1(11)1(1111ni n n i n p E n i n i i is =+-+=+-=∑∑+=+=删除操作时间效率(平均移动次数)21)(1)(11-=-=-=∑∑==n i n n i n q E ni n i i dl 线性表顺序存储结构特点:逻辑关系上相邻的两个元素在物理存储位置上也相邻; 优点:可以随机存取表中任一元素;无需为表示表中元素 之间的逻辑关系而增加额外的存储空间;缺点:在插入、删除某一元素时,需要移动大量元素;表的容量难以确定,表的容量难以扩充。
数据结构与算法基础知识总结

数据结构与算法基础知识总结1 算法算法:是指解题方案的准确而完整的描述。
算法不等于程序,也不等计算机方法,程序的编制不可能优于算法的设计。
算法的基本特征:是一组严谨地定义运算顺序的规则,每一个规则都是有效的,是明确的,此顺序将在有限的次数下终止。
特征包括:(1)可行性;(2)确定性,算法中每一步骤都必须有明确定义,不充许有模棱两可的解释,不允许有多义性;(3)有穷性,算法必须能在有限的时间内做完,即能在执行有限个步骤后终止,包括合理的执行时间的含义;(4)拥有足够的情报。
算法的基本要素:一是对数据对象的运算和操作;二是算法的控制结构。
指令系统:一个计算机系统能执行的所有指令的集合。
基本运算和操作包括:算术运算、逻辑运算、关系运算、数据传输。
算法的控制结构:顺序结构、选择结构、循环结构。
算法基本设计方法:列举法、归纳法、递推、递归、减斗递推技术、回溯法。
算法复杂度:算法时间复杂度和算法空间复杂度。
算法时间复杂度是指执行算法所需要的计算工作量。
算法空间复杂度是指执行这个算法所需要的内存空间。
2 数据结构的基本基本概念数据结构研究的三个方面:(1)数据集合中各数据元素之间所固有的逻辑关系,即数据的逻辑结构;(2)在对数据进行处理时,各数据元素在计算机中的存储关系,即数据的存储结构;(3)对各种数据结构进行的运算。
数据结构是指相互有关联的数据元素的集合。
数据的逻辑结构包含:(1)表示数据元素的信息;(2)表示各数据元素之间的前后件关系。
数据的存储结构有顺序、链接、索引等。
线性结构条件:(1)有且只有一个根结点;(2)每一个结点最多有一个前件,也最多有一个后件。
非线性结构:不满足线性结构条件的数据结构。
3 线性表及其顺序存储结构线性表由一组数据元素构成,数据元素的位置只取决于自己的序号,元素之间的相对位置是线性的。
在复杂线性表中,由若干项数据元素组成的数据元素称为记录,而由多个记录构成的线性表又称为文件。
计算机数据结构知识点梳理 顺序查找法、折半查找法

typedef struct node{ int A[m];
//每个结点含有m个整数,本例m为5 struct node *next;
}LNode, *LinkList; typedef struct{
int j; //正整数在结点内的序号 LNode *s; //结点的指针 }rcd;
}
[题2]顺序存储的某线性表共有123个元素,按分块查找的要求等分为3块。若对索引 表采用顺序查找方法来确定子块,且在确定的子块中也采用顺序查找方法,则在等 概率的情况下,分块查找成功的平均查找长度为( )。
A.21
B. 23
C. 41
D. 62
分析:分块查找成功的平均查找长度为ASL=(s2+s+n)/2s。在本题中,n=123, s=123/3=41,故平均查找长度为23。
对表中每个数据元素的查找过程,可用二叉树来描述,称这个描述折半查找过 程的二叉树为判定树,表的中间结点是二叉树的根,左子表相当于左子树, 右子表相当于右子树。折半查找的过程是从根结点到待查找结点的过程,不 论查找成功或失败,查找长度均不超过树的高度,因此,如果有序表的长度 为n,那么在查找成功时与给定值进行比较的关键字个数至多为[㏒2n] +1。
4 、分块查找法
分块查找法要求将列表组织成以下索引顺序结构: (1)首先将列表分成若干个块(子表)。一般情况下,块的长度均匀, 最后一块 可以不满。每块中元素任意排列,即块内无序,但块与块之间有序。 (2)构造一个索引表。其中每个索引项对应一个块并记录每块的起始位置,以及每 块中的最大关键字(或最小关键字)。索引表按关键字有序排列。
假定将长度为n的表分成b块,且每块含s个元素,则b=n/s。又假定表中每个元素的查 找概率相等,则每个索引项的查找概率为1/b,块中每个元素的查找概率为1/s。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概念总结第一章概论1.数据结构描述的是按照一定逻辑关系组织起来的待处理数据元素的表示及相关操作,涉及数据的逻辑结构、存储结构和运算2.数据的逻辑结构是从具体问题抽象出来的数学模型,反映了事物的组成结构及事物之间的逻辑关系可以用一组数据(结点集合K)以及这些数据之间的一组二元关系(关系集合R)来表示:(K, R)结点集K是由有限个结点组成的集合,每一个结点代表一个数据或一组有明确结构的数据关系集R是定义在集合K上的一组关系,其中每个关系r(r∈R)都是K×K上的二元关系3.数据类型a.基本数据类型整数类型(integer)、实数类型(real)、布尔类型(boolean)、字符类型(char)、指针类型(pointer)b.复合数据类型复合类型是由基本数据类型组合而成的数据类型;复合数据类型本身,又可参与定义结构更为复杂的结点类型4.数据结构的分类:线性结构(一对一)、树型结构(一对多)、图结构(多对多)5.四种基本存储映射方法:顺序、链接、索引、散列6.算法的特性:通用性、有效性、确定性、有穷性7.算法分析:目的是从解决同一个问题的不同算法中选择比较适合的一种,或者对原始算法进行改造、加工、使其优化8.渐进算法分析a.大Ο分析法:上限,表明最坏情况b.Ω分析法:下限,表明最好情况c.Θ分析法:当上限和下限相同时,表明平均情况第二章线性表1.线性结构的基本特征a.集合中必存在唯一的一个“第一元素”b.集合中必存在唯一的一个“最后元素”c.除最后元素之外,均有唯一的后继d.除第一元素之外,均有唯一的前驱2.线性结构的基本特点:均匀性、有序性3.顺序表a.主要特性:元素的类型相同;元素顺序地存储在连续存储空间中,每一个元素唯一的索引值;使用常数作为向量长度b. 线性表中任意元素的存储位置:Loc(ki) = Loc(k0) + i * L(设每个元素需占用L个存储单元)c. 线性表的优缺点:优点:逻辑结构与存储结构一致;属于随机存取方式,即查找每个元素所花时间基本一样缺点:空间难以扩充d.检索:ASL=【Ο(1)】e.插入:插入前检查是否满了,插入时插入处后的表需要复制【Ο(n)】f.删除:删除前检查是否是空的,删除时直接覆盖就行了【Ο(n)】4.链表4.1单链表a.特点:逻辑顺序与物理顺序有可能不一致;属于顺序存取的存储结构,即存取每个数据元素所花费的时间不相等b.带头结点的怎么判定空表:head和tail指向单链表的头结点c.链表的插入(q->next=p->next; p->next=q;)【Ο(n)】d.链表的删除(q=p->next;p->next = q->next;delete q;)【Ο(n)】e.不足:next仅指向后继,不能有效找到前驱4.2双链表a.增加前驱指针,弥补单链表的不足b.带头结点的怎么判定空表:head和tail指向单链表的头结点c.插入:(q->next = p->next; q->prev = p; p->next = q; q->next->prev = q;)d.删除:(p->prev->next = p->next;p->next->prev = p->prev; p->prev = p->next = NULL; delete p;)4.3顺序表和链表的比较4.3.1主要优点a.顺序表的主要优点没用使用指针,不用花费附加开销;线性表元素的读访问非常简洁便利b.链表的主要优点无需事先了解线性表的长度;允许线性表的长度有很大变化;能够适应经常插入删除内部元素的情况4.3.2应用场合的选择a.不宜使用顺序表的场合经常插入删除时,不宜使用顺序表;线性表的最大长度也是一个重要因素b.不宜使用链表的场合当不经常插入删除时,不应选择链表;当指针的存储开销与整个结点内容所占空间相比其比例较大时,应该慎重选择第三章栈与队列1.栈a.栈是一种限定仅在一端进行插入和删除操作的线性表;其特点后进先出;插入:入栈(压栈);删除:出栈(退栈);插入、删除一端被称为栈顶(浮动),另一端称为栈底(固定);实现分为顺序栈和链式栈两种b.应用:1)数制转换while (N) {N%8入栈; N=N/8;}while (栈非空){出栈; 输出;}2)括号匹配检验不匹配情况:各类括号数量不同;嵌套关系不正确 算法:逐一处理表达式中的每个字符ch :ch=非括号:不做任何处理 ch=左括号:入栈ch=右括号:if (栈空) return falseelse {出栈,检查匹配情况, if (不匹配) return false }如果结束后,栈非空,返回false 3)表达式求值 3.1中缀表达式:计算规则:先括号内,再括号外;同层按照优先级,即先乘*、除/,后加+、减-;相同优先级依据结合律,左结合律即为先左后右 3.2后缀表达式:<表达式> ::= <项><项> + | <项><项>-|<项><项> ::= <因子><因子> * |<因子><因子>/|<因子><因子> ::= <常数> • <常数> ::= <数字>|<数字><常数> <数字> ∷= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 3.3中缀表达式转换为后缀表达式InfixExp 为中缀表达式,PostfixExp 为后缀表达式初始化操作数栈OP ,运算符栈OPND ;OPND.push('#'); 读取InfixExp 表达式的一项操作数:直接输出到PostfixExp 中; 操作符: 当‘(’:入OPND; 当‘)’:OPND 此时若空,则出错;OPND 若非空,栈中元 素依次弹出,输入PostfixExpz 中,直到遇到‘(’为止;若 为‘(’,弹出即可 当‘四则运算符’:循环(当栈非空且栈顶不是‘(’&& 当前运算符优先级>栈顶运算符优先级),反复弹出栈顶运 算符并输入到PostfixExp 中,再将当前运算符压入栈 3.4后缀表达式求值 初始化操作数栈OP ;while (表达式没有处理完) { item = 读取表达式一项; 操作数:入栈OP ;运算符:退出两个操作数,重复计算,并将结果入栈}c.递归使用的场合:定义是递归的;数据结构是递归的;解决问题的方法是递归的2.队列a.若线性表的插入操作在一端进行,删除操作在另一端进行,则称此线性表为队列b.循环队列判断队满对空:队空:front==rear;队满:(rear+1)%n==front第五章二叉树1.概念a. 一个结点的子树的个数称为度数b.二叉树的高度定义为二叉树中层数最大的叶结点的层数加1c.二叉树的深度定义为二叉树中层数最大的叶结点的层数d.如果一棵二叉树的任何结点,或者是树叶,或者恰有两棵非空子树,则此二叉树称作满二叉树e.如果一颗二叉树最多只有最下面的两层结点度数可以小于2;最下面一层的结点都集中在该层最左边的位置上,则称此二叉树为完全二叉树f.当二叉树里出现空的子树时,就增加新的、特殊的结点——空树叶组成扩充二叉树,扩充二叉树是满二叉树外部路径长度E:从扩充的二叉树的根到每个外部结点(新增的空树叶)的路径长度之和内部路径长度I:扩充的二叉树中从根到每个内部结点(原来二叉树结点)的路径长度之和2.性质a. 二叉树的第i层(根为第0层,i≥0)最多有2^i个结点b. 深度为k的二叉树至多有2k+1-1个结点c. 任何一颗二叉树,度为0的结点比度为2的结点多一个。
n0 = n2 + 1d. 满二叉树定理:非空满二叉树树叶数等于其分支结点数加1e. 满二叉树定理推论:一个非空二叉树的空子树(指针)数目等于其结点数加1f. 有n个结点(n>0)的完全二叉树的高度为⌈log2(n+1)⌉,深度为⌈log2(n+1)⌉−1g. 对于具有n个结点的完全二叉树,结点按层次由左到右编号,则有:1) 如果i = 0为根结点;如果i>0,其父结点编号是(i-1)/22) 当2i+1<n,i结点的左子结点是2i+1;否则i结点没有左子结点3) 当2i+2<n,i结点的右子结点是2i+2;否则i结点没有右子结点3.周游(重点为由前序中序/中序后序求得二叉树)a.深度优先周游二叉树,可以有下列三种周游顺序:(实现:栈)1) 前序周游(tLR次序):访问根结点;前序周游左子树;前序周游右子树2) 中序周游(LtR次序):中序周游左子树;访问根结点;中序周游右子树3) 后序周游(LRt次序):后序周游左子树;后序周游右子树;访问根结点b. 广度周游二叉树:从二叉树的顶层(根结点)开始,自上至下逐层遍历;在同一层中,按照从左到右的顺序对结点逐一访问(实现:队列)4.存储链式存储结构,顺序存储结构(仅限完全二叉树:因为完全二叉树排列紧凑)5.二叉搜索树(BST)a.判定:是一颗空树;或者是具有下列性质的二叉树:对于任何一个结点,设其值为K,则该结点的左子树(若不空)的所有结点的值都小于K;右子树(若不空)的所有结点的值都大于K;它的左右子树也分别为二叉搜索树b.性质:按照中序周游将各结点打印出来,得到的排列按照由小到大有序c.检索:从根结点开始,在二叉搜索树中检索值K如果根结点储存的值为K,则检索结束如果K小于根结点的值,则只需检索左子树如果K大于根结点的值,则只检索右子树该过程一直持续到找到K或者遇上叶子结点如果遇上叶子结点仍没有发现K,则查找失败**查找关键码:把查找时所经过的点一次写出d.插入:用待插入结点与树根比较,若待插入的关键值小于树根的关键值,就进入左子树,否则进入右子树;在子树中,按照同样的方式沿检索路径直到叶结点,将新结点插入到二叉搜索树的叶子结点位置e.创建:从空的BST开始,将关键码按BST定义一次插入f.删除:与插入相反,删除在查找成功之后进行,并且要求在删除二叉排序树上某个结点之后,仍然保持二叉排序树的特性,删除过程分为如下情况:1)被删除的结点是叶子:直接将其删除即可2)被删除的结点只有左子树或只有右子树:直接将要删除的点删除后,将该点的左(右)孩子和上面结点相连3)被删除结点有左、右子树:若p有左右子树,则在左子树里找中序周游的最后一个结点r,将r的右指针置成指向p的右子树的根,用结点p的左子树的根去代替被删除的结点p6.堆a.最小/大堆定义:最小堆:是个关键码序列{k0, k1…kn-1},具有如下特性(i=0,1,…,⌊n/2⌋-1)k i ≤k 2i+1(左孩子)k i ≤k 2i+2(右孩子)(即父≤2个孩子)类似可以定义最大堆k i ≥k 2i+1k i ≥k 2i+2 (即父≥2个孩子)b.建“初堆”:按序列建立完全二叉树,从其中最后一个有孩子的结点开始按堆的定义调整c.插入:插入点追加到最后,自下而上依次比较父与子,直到满足堆的定义d.删除:用最后结点替换被删结点,自上至下调整成堆e.移出最小/大值:可以将堆中最后一个位置上的元素(数组中实际的最后一个元素)移到根的位置上,利用从左开始向下筛选对堆重新调整7.Huffman树a.概念路径:从树中一个结点到另一个结点之间的分支构成这两个结点间的路径结点路径长度:从根结点到该结点的路径上分支的数目树的路径长度:树中每个结点的路径长度之和b.带权的路径长度树中所有叶子结点的带权路径长度之和=其中:w k:权值l k:结点到根的路径长度c.编码:左0右1d.如何构建:选取序列中最小的相加生成树如此反复第六章树1.概念若<k,k'>∈N,则称k是k'的父结点,k'是k的子结点若有序对<k,k'>及<k,k″>∈N,则称k'和k″互为兄弟若有一条由k到达ks的路径,则称k是ks的祖先,ks是k的子孙2.树/森林与二叉树的相互转换a.树转换成二叉树加线: 在树中所有兄弟结点之间加一连线抹线: 对每个结点,除了其最左孩子外,去除其与其余孩子之间的连线旋转: 以树的根结点为轴心,将整树顺时针转45°b.二叉树转化成树加线:若p结点是双亲结点的左孩子,则将p的右孩子,右孩子的右孩子,……沿分支找到的所有右孩子,都与p的双亲用线连起来抹线:抹掉原二叉树中双亲与右孩子之间的连线调整:将结点按层次排列,形成树结构c.森林转换成二叉树将各棵树分别转换成二叉树将每棵树的根结点用线相连以第一棵树根结点为二叉树的根,再以根结点为轴心,顺时针旋转,构成二叉树型结构d.二叉树转换成森林抹线:将二叉树中根结点与其右孩子连线,及沿右分支搜索到的所有右孩子间连线全部抹掉,使之变成孤立的二叉树还原:将孤立的二叉树还原成树3.周游a.先根(次序)周游若树不空,则先访问根结点,然后依次先根周游各棵子树b.后根(次序)周游若树不空,则先依次后根周游各棵子树,然后访问根结点c.按层次周游若树不空,则自上而下自左至右访问树中每个结点4.存储结构“左子/右兄”二叉链表表示法:结点左指针指向孩子,右结点指向右兄弟,按树结构存储,无孩子或无右兄弟则置空5. “UNION/FIND算法”(等价类)判断两个结点是否在同一个集合中,查找一个给定结点的根结点的过程称为FIND归并两个集合,这个归并过程常常被称为UNION“UNION/FIND”算法用一棵树代表一个集合,如果两个结点在同一棵树中,则认为它们在同一个集合中;树中的每个结点(除根结点以外)有仅且有一个父结点;结点中仅需保存父指针信息,树本身可以存储为一个以其结点为元素的数组6.树的顺序存储结构a. 带右链的先根次序表示法在带右链的先根次序表示中,结点按先根次序顺序存储在一片连续的存储单元中每个结点除包括结点本身数据外,还附加两个表示结构的信息字段,结点的形式为:info是结点的数据;rlink是右指针,指向结点的下一个兄弟;ltag是一个左标记,当结点没有子结点(即对应二叉树中结点没有左子结点时),ltag为1,否则为0b. 带双标记位的先根次序表示法规定当结点没有下一个兄弟(即对应的二叉树中结点没有右子结点时)rtag为1,否则为0 c. 带双标记位的层次次序表示法结点按层次次序顺序存储在一片连续的存储单元中第七章图1.定义a.假设图中有n个顶点,e条边:含有e=n(n-1)/2条边的无向图称作完全图含有e=n(n-1) 条弧的有向图称作有向完全图若边或弧的个数e < nlogn,则称作稀疏图,否则称作稠密图b. 顶点的度(TD)=出度(OD)+入度(ID)顶点的出度: 以顶点v为弧尾的弧的数目顶点的入度: 以顶点v为弧头的弧的数目c.连通图、连通分量若图G中任意两个顶点之间都有路径相通,则称此图为连通图若无向图为非连通图,则图中各个极大连通子图称作此图的连通分量d.强连通图、强连通分量对于有向图,若任意两个顶点之间都存在一条有向路径,则称此有向图为强连通图否则,其各个极大强连通子图称作它的强连通分量e.生成树、生成森林假设一个连通图有n个顶点和e条边,其中n-1条边和n个顶点构成一个极小连通子图,称该极小连通子图为此连通图的生成树对非连通图,则将由各个连通分量构成的生成树集合称做此非连通图的生成森林2.存储结构a.相邻矩阵表示法表示顶点间相邻关系的矩阵若G是一个具有n个顶点的图,则G的相邻矩阵是如下定义的n×n矩阵:A[i,j]=1,若(Vi, Vj)(或<Vi, Vj>)是图G的边A[i,j]=0,若(Vi, Vj)(或<Vi, Vj>)不是图G的边b.邻接表表示法为图中每个顶点建立一个单链表,第i个单链表中的结点表示依附于顶点Vi的边(有向图中指以Vi为尾的弧)(建立单链表时按结点顺序建立)3.周游a. 深度优先周游:从图中某个顶点V0出发,访问此顶点,然后依次从V0的各个未被访问的邻接点出发,深度优先搜索遍历图中的其余顶点,直至图中所有与V0有路径相通的顶点都被访问到为止b. 广度优先周游:从图中的某个顶点V0出发,并在访问此顶点之后依次访问V0的所有未被访问过的邻接点,随后按这些顶点被访问的先后次序依次访问它们的邻接点,直至图中所有与V0有路径相通的顶点都被访问到为止,若此时图中尚有顶点未被访问,则另选图中一个未曾被访问的顶点作起始点,重复上述过程,直至图中所有顶点都被访问到为止4.拓扑排序拓扑排序的方法是:1)选择一个入度为0的顶点且输出之2)从图中删掉此顶点及所有的出边3)回到第1步继续执行,直至图空或者图不空但找不到无前驱(入度为0)的顶点为止5.单源最短路径(Dijkstra算法)6.每对顶点间的最短路径(Floyd算法)7.最小生成树a.Prim算法b.Kruskal算法c.两种算法比较:Prim算法适合稠密图,Kruskal算法适合稀疏图第八章内排序第十章检索1.平均检索长度(ASL)是待检索记录集合中元素规模n的函数,其定义为:ASL=Pi为检索第i个元素的概率;Ci为找到第i个元素所需的比较次数2.散列a.除余法用关键码key除以M(取散列表长度),并取余数作为散列地址散列函数为:hash(key) =key mod Mb.解决冲突的方法开散列方法:把发生冲突的关键码存储在散列表主表之外(在主表外拉出单链表)闭散列方法:把发生冲突的关键码存储在表中另一个位置上c.线性探查基本思想:如果记录的基位置存储位置被占用,就在表中下移,直到找到一个空存储位置;依次探查下述地址单元:d0+1,d0+2,...,m-1,0,1,...,d0-1;用于简单线性探查的探查函数是:p(K, i) = id.散列表的检索1.假设给定的值为K,根据所设定的散列函数h,计算出散列地址h(K)2. 如果表中该地址对应的空间未被占用,则检索失败,否则将该地址中的值与K比较3. 若相等则检索成功;否则,按建表时设定的处理冲突方法查找探查序列的下一个地址,如此反复下去,直到某个地址空间未被占用(可以插入),或者关键码比较相等(有重复记录,不需插入)为止e.散列表的删除:删除后在删除地点应加上墓碑(被删除标记)f.散列表的插入:遇到墓碑不停止,知道找到真正的空位置第十一章索引技术1.概念:a.主码:数据库中的每条记录的唯一标识b.辅码:数据库中可以出现重复值的码2.B树a.定义:B树定义:一个m阶B树满足下列条件:(1) 每个结点至多有m个子结点;(2) 除根和叶外其它每个结点至少有⌈⌉个子结点;(3) 根结点至少有两个子结点例外(空树,or独根)(4) 所有的叶在同一层,可以有⌈⌉- 1到m-1个关键码(5) 有k个子结点的非根结点恰好包含k-1个关键码b.查找在根结点所包含的关键码K1,…,Kj中查找给定的关键码值(用顺序检索(key少)/二分检索(key 多));找到:则检索成功;否则,确定要查的关键码值是在某个Ki和Ki+1之间,于是取pi所指结点继续查找;如果pi指向外部结点,表示检索失败.c.插入找到的叶是插入位置,若插入后该叶中关键码个数<m,插入完成;否则分裂,中间为分界码(插入到父结点),若父结点上溢则继续向上分裂d.删除删除的关键码不在叶结点层:先把此关键码与它在B树里的后继对换位置,然后再删除该关键码(叶中删)删除的关键码在叶结点层:删除后关键码个数不小于⌈⌉- 1——直接删除关键码个数小于⌈⌉- 1,如果兄弟结点关键码个数不等于⌈⌉- 1——从兄弟结点移若干个关键码到该结点中来(父结点中的一个关键码要做相应变化)如果兄弟结点关键码个数等于⌈⌉- 1——合并3.B+树m阶B+树的结构定义如下:(1)每个结点至多有m个子结点;(2)每个结点(除根外)至少有⌈⌉个子结点;(3)根结点至少有两个子结点;(4)叶在同一层,有⌈⌉..m个key,叶包含全部key,B+树的叶结点链接成一个双链表(5)有k个子结点的结点必有k个关键码。