Tracking Complex Objects using Graphical Object Models
Adobe Flash Professional CS5 使用手册说明书

Flash Professional CS5Adobe Flash Professional CS5 onDemand, Portable DocumentsTable of ContentsContentsIntroduction1 Getting Started with Flash CS5Preparing to Install FlashInstalling FlashStarting FlashViewing the Flash WindowCreating a Project PlanBuilding a Flash ProjectCreating a New DocumentCreating a New Document from a TemplateOpening an Existing DocumentChanging Document PropertiesWorking with Document WindowsSaving a DocumentSaving a Document in Different FormatsGetting Help While You WorkGetting Online Updates and SupportFinishing Up2 Working Within the Flash EnvironmentExamining the Flash WindowUsing the TimelineTable of ContentsWorking with LayersViewing LayersOrganizing LayersChanging Layer PropertiesUsing Guide LayersWorking with FramesWorking with ScenesUsing the Edit BarUsing the Main ToolbarResizing PanelsUsing the Tools PanelWorking with PanelsDocking and Undocking PanelsGrouping and Ungrouping PanelsCreating a WorkspaceCreating Keyboard ShortcutsSetting General PreferencesSetting Text PreferencesSetting Clipboard PreferencesSetting Warning PreferencesWorking with Page Setup in MacintoshWorking with Page Setup in WindowsPrinting a Document in MacintoshPrinting a Document in Windows3 Creating GraphicsWorking with Object DrawingDrawing with the Line ToolTable of ContentsDrawing with the Pencil ToolDrawing Shapes with the Rectangle and Oval Tools Using the Polystar ToolUnderstanding SelectionsSelecting Strokes with the Selection Tool Selecting Strokes and Fills with the Selection Tool Making Selections with the Lasso ToolZooming In and Out with the Magnifying Glass Moving Around with the Hand ToolDisplaying RulersUsing Grids and GuidesModifying Grid and Guide SettingsUsing Snap AlignChanging Stroke and Fill ColorsCreating Custom ColorsAdding Colors Using the Kuler PanelEditing Strokes with the Ink BottleEditing Fills with the Paint BucketEditing Strokes and Fills with the Eyedropper Creating GradientsUsing the Fill LockUsing Paint Brush ModesUsing the Spray Brush ToolUsing the Deco ToolDrawing with the Pen ToolDrawing Curves with the Pen ToolModifying Shapes with the Selection ToolTable of ContentsModifying Shapes with the Subselection ToolUsing the Free Transform ToolUsing Transform Options for ShapesTransforming Gradient FillsMoving and Rotating Objects in 3D SpaceChanging the Perspective Angle in 3D SpaceAdjusting the Vanishing Point in 3D SpaceCutting and Pasting Graphics Between LayersWorking with Graphics on Different LayersDistributing Graphics to LayersChanging Drawing Settings4 Working with Groups, Symbols, and InstancesCreating GroupsArranging Multiple GroupsOpening the Library PanelWorking with the Library PanelCreating SymbolsEditing in Symbol ModeCreating InstancesChanging Symbol and Instance TypeSwapping Symbol InstancesUsing Graphic SymbolsUsing Button SymbolsEnabling and Disabling ButtonsCreating Invisible ButtonsUsing Movie Clip SymbolsBreaking Symbols ApartTable of ContentsModifying Instance PropertiesModifying Instance Color Styles and BlendsUsing Advanced Color OptionsUsing 9-Slice Scaling on a Movie Clip SymbolSetting Highlight Color Preferences5 Working with TextCreating Classic Static TextCreating TLF TextLinking Text TogetherChanging Font Type, Style, Size, and ColorModifying Tracking and KerningChanging Text AlignmentCreating Text ColumnsChanging Text DirectionChanging Text OrientationChanging Advanced Text OptionsUsing Break Apart to Modify CharactersUsing Anti-Alias TextUsing Font MappingSetting Device Fonts Versus Embedded FontsCreating Dynamic Text and Input TextChecking SpellingUsing Find and ReplaceUsing Cascading Style Sheets with HTML6 Importing GraphicsUnderstanding Vector and Bitmap GraphicsExamining Import File FormatsTable of ContentsSetting Illustrator Import PreferencesSetting Photoshop Import PreferencesImporting Photoshop and Illustrator FilesImporting BitmapsImporting Fireworks PNG FilesImporting Multiple FilesCopying Images from Other ProgramsEditing Bitmaps in an Outside EditorSetting Bitmap CompressionUsing Break Apart to Create Fill PatternsModifying a Bitmap FillEditing a Bitmap with the Magic WandUsing Trace Bitmap to Create Vector Shapes7 Creating Frame-by-Frame AnimationUnderstanding Frame-by-Frame AnimationCreating KeyframesConverting Frames to KeyframesUsing Frame-Based Versus Span-Based Selection Clearing Keyframes Versus Removing FramesEditing KeyframesCreating a Simple Frame-by-Frame AnimationPlaying an AnimationUsing Onion SkinningModifying Onion Skin MarkersEditing Multiple Frames8 Animating with Motion TweeningUnderstanding Motion TweeningTable of ContentsApplying Motion Tween PresetsCreating a Motion TweenAdjusting Motion Tween PropertiesEditing Motion Tween Properties with the Motion Editor Adding Color Effects and FiltersWorking with Property KeyframesEditing the Path of a Motion TweenCopying Motion as ActionScript9 Animating with Classic TweeningWorking with Classic TweeningUnderstanding Frame and Instance PropertiesCreating a Classic TweenAdjusting Classic Tween PropertiesCopying and Pasting a TweenChanging the Length of a TweenChanging the Frame RateReversing FramesAdding and Removing Keyframes from a Classic Tween Scaling and Rotating a Classic TweenAdding Color Effects to a Classic TweenCreating a Classic Motion Guide LayerAnimating Along a Classic Motion GuideOrienting Objects to a Classic Motion PathEasing In and Out of a Classic Tween10 Animating with Shape TweeningUsing Shape TweeningCreating a Shape Tween FormTable of ContentsAdding and Removing Keyframes from a Shape Tween Changing Shape Positions with Shape TweeningChanging Shape Position and Form SimultaneouslyAdjusting Shape Tween PropertiesChanging Shape Tweening Color and Alpha OptionsUsing Shape HintsCreating Animation Using ActionScriptUsing Inverse KinematicsAdding Bones to an ArmatureEditing Armatures and BonesBinding Bones11 Creating MasksUnderstanding MasksCreating a Mask LayerDrawing a MaskActivating a MaskEditing a MaskRemoving a MaskAdding Layers to a MaskAnimating a Mask Layer12 Working with SoundsImporting AudioUsing Audio on the TimelineLoading a Sound from a Shared LibraryUsing Audio with ActionScriptLoading a Streaming MP3 FileSyncing Sounds to the TimelineAdding Effects and Looping SoundsPublishing Documents Containing AudioEditing SoundsEditing Sounds Using Soundbooth13 Working with VideoUsing the Video Import WizardWorking with Video on the StageWorking with Video on the TimelineUsing Movie Clips with Video FilesAdding Cue Points to a VideoUsing Video with ActionScriptControlling Video Through Movie ClipsUsing the FLV Playback ComponentWorking with the Video EncoderWorking with Alpha Channel MasksExporting as a QuickTime VideoExporting as a FLV File14 Using Basic ActionScriptsViewing the Actions PanelSetting ActionScript PreferencesUnderstanding Properties and MethodsApplying Properties and Methods to an Object Using Dot SyntaxUnderstanding Data TypesUsing FunctionsUsing Conditional StatementsAttaching a Mouse Event to a ButtonWorking with Frame EventsWorking with Clip EventsAttaching a Clip Event to a Movie ClipWorking with LoopsUsing For LoopsWorking with ActionScript Behaviors15 Working with ActionScript 3.0Using Object-Oriented ProgrammingEnabling Flash to Execute Solutions Faster with AVM 2.0 Using ActionScript 3.0Changing ActionScript 3.0 SettingsInserting Code with Code HintsInserting and Creating Code SnippetsDeveloping Solutions Built with the DOM3 Event Model Working with ClassesWorking with Objects and ClassesUsing Namespaces in your ProjectsControlling DataManipulating XML with E4XUsing Regular ExpressionsControlling TextDrawing with the Shape Class16 Developing iPhone ApplicationsBecoming an Apple Certified DeveloperRegistering an iPhone and Other Apple Testing Devices Creating App ID'sCreating a Developers Provisioning ProfilesCreating and Publishing an iPhone AppControlling the AccelerometerSaving Images to the Camera RollUnderstanding the Limits of FlashIdentifying Devices to Deploy an Ad Hoc App Creating an Ad Hoc Distribution ProfilePackaging an Ad Hoc AppPackaging an App for the iTunes App StoreUsing iTunes Connect to Publish an AppUsing Screen Orientation in an AppUsing Geolocation in an AppUsing Multitouch in an App17 Debugging a MovieDebugging ConceptsDebugging with the ActionScript EditorUsing the Movie ExplorerDebugging for ActionScript 3.0Resolving Compiler ErrorsDebugging for ActionScript 2.0Viewing VariablesAdding Variables to the Watch ListViewing PropertiesSetting BreakpointsStepping Through CodeDebugging Manually18 Adding and Modifying ComponentsUnderstanding Basic ComponentsUsing the Component InspectorAdding a Text InputAdding a Combo Text BoxAdding a Check BoxAdding a Radio ButtonAdding a Text AreaAdding a ButtonAdding a ListAdding a LabelAdding a Data GridUsing a Local Data ProviderAdding a LoaderAdding a Numeric StepperAdding a Progress BarAdding a Scroll PaneCreating BindingsModifying BindingsModifying SchemaModifying Component AttributesUsing Components to Build a Form 19 Automating Your WorkExamining the History PanelUsing the History PanelWorking with Object-Level Undo Mode Undoing and Redoing StepsReplaying StepsSaving Steps and Using CommandsCopying Steps Between Documents20 Publishing a MoviePublishing ConsiderationsModifying Publish SettingsSpecifying Flash OptionsSpecifying Adobe AIR OptionsInserting File InformationSpecifying HTML OptionsSpecifying GIF OptionsSpecifying PNG OptionsSpecifying JPEG OptionsCreating a Windows or Macintosh ProjectorCreating a Publishing ProfileEditing Profile PropertiesExporting and Importing a ProfileDuplicating a ProfilePreviewing a MovieTesting a MovieUsing the Bandwidth ProfilerExporting a Movie to Different FormatsPrinting from the Flash Player21 Working with Projects and Other ProgramsWorking with Adobe Flash BuilderExchanging Content with Adobe FXGCreating an Adobe AIR ApplicationCreating Content for a Mobile DeviceMapping MIDI Sounds on a Mobile DeviceCreating and Managing a ProjectManaging Project FilesTesting a ProjectSending a Document Using E-mail Exploring CS Live ServicesSharing My ScreenUse Adobe Extension Manager New FeaturesAdobe Certified ExpertIndex。
音响名词中英文对照

音响名词中英文对照更新时间:2004-2-24 13:18:24 文章类别:专业技术AAAC automatic ampltiude control 自动幅度控制AB AB制立体声录音法Abeyancd 暂停,潜态A-B repeat A-B重复ABS absolute 绝对的,完全的,绝对时间ABS american bureau of standard 美国标准局ABSS auto blank secrion scanning 自动磁带空白部分扫描Abstime 绝对运行时间A.DEF audio defeat 音频降噪,噪声抑制,伴音静噪ADJ adjective 附属的,附件ADJ Adjust 调节ADJ acoustic delay line 声延迟线Admission 允许进入,供给ADP acoustic data processor 音响数据处理机ADP(T) adapter 延配器,转接器ADRES automatic dynamic range expansion system 动态范围扩展系统ADRM analog to digital remaster 模拟录音、数字处理数码唱盘ADS audio distribution system 音频分配系统A.DUB audio dubbing 配音,音频复制,后期录音ADV advance 送入,提升,前置量ADV adversum 对抗ADV advancer 相位超前补偿器Adventure 惊险效果AE audio erasing 音频(声音)擦除AE auxiliary equipment 辅助设备Aerial 天线AES audio engineering society 美国声频工程协会AF audio fidelity 音频保真度AF audio frequency 音频频率AFC active field control 自动频率控制AFC automatic frequency control 声场控制Affricate 塞擦音AFL aside fade listen 衰减后(推子后)监听A-fader 音频衰减AFM advance frequency modulation 高级调频AFS acoustic feedback speaker 声反馈扬声器AFT automatic fine tuning 自动微调AFTAAS advanced fast time acoustic analysis system 高级快速音响分析系统After 转移部分文件Afterglow 余辉,夕照时分音响效果Against 以……为背景AGC automatic gain control 自动增益控制AHD audio high density 音频高密度唱片系统AI advanced integrated 预汇流AI amplifier input 放大器输入AI artificial intelligence 人工智能AI azimuth indicator 方位指示器A-IN 音频输入A-INSEL audio input selection 音频输入选择Alarm 警报器ALC automatic level control 自动电平控制ALC automatic load control自动负载控制Alford loop 爱福特环形天线Algorithm 演示Aliasing 量化噪声,频谱混叠Aliasing distortion 折叠失真Align alignment 校正,补偿,微调,匹配Al-Si-Fe alloy head 铁硅铝合金磁头Allegretto 小快板,稍快地Allegro 快板,迅速地Allocation 配置,定位All rating 全(音)域ALM audio level meter 音频电平表ALT alternating 震荡,交替的ALT alternator 交流发电机ALT altertue 转路ALT-CH alternate channel 转换通道,交替声道Alter 转换,交流电,变换器AM amperemeter 安培计,电流表AM amplitude modulation 调幅(广播)AM auxiliary memory 辅助存储器Ambience 临场感,环绕感ABTD automatic bulk tape degausser 磁带自动整体去磁电路Ambient 环境的Ambiophonic system 环绕声系统Ambiophony 现场混响,环境立体声AMLS automatic music locate system 自动音乐定位系统AMP ampere 安培AMP amplifier 放大器AMPL amplification 放大AMP amplitude 幅度,距离Amorphous head 非晶态磁头Abort 终止,停止(录制或播放)A-B TEST AB比较试听Absorber 减震器Absorption 声音被物体吸收ABX acoustic bass extension 低音扩展AC accumulator 充电电池AC adjustment caliration 调节-校准AC alternating current 交流电,交流AC audio coding 数码声,音频编码AC audio center 音频中心AC azimuth comprator 方位比较器AC-3 杜比数码环绕声系统AC-3 RF 杜比数码环绕声数据流(接口)ACC Acceleration 加速Accel 渐快,加速Accent 重音,声调Accentuator 预加重电路Access 存取,进入,增加,通路Accessory 附件(接口),配件Acryl 丙基酰基Accompaniment 伴奏,合奏,伴随Accord 和谐,调和Accordion 手风琴ACD automatic call distributor 自动呼叫分配器ACE audio control erasing 音频控制消磁A-Channel A(左)声道Acoumeter 测听计Acoustical 声的,声音的Acoustic coloring 声染色Acoustic image 声像Across 交叉,并行,跨接Across frequency 交叉频率,分频频率ACST access time 存取时间Active 主动的,有源的,有效的,运行的Active crossover 主动分频,电子分频,有源分频Active loudsperker 有源音箱Armstrong MOD 阿姆斯特朗调制ARP azimuth reference pulse 方位基准脉冲Arpeggio 琶音Articulation 声音清晰度,发音Artificial 仿……的,人工的,手动(控制)AAD active acoustic devide 有源声学软件ABC auto base and chord 自动低音合弦Architectural acoustics 建筑声学Arm motor 唱臂唱机Arpeggio single 琶音和弦,分解和弦ARL aerial 天线ASC automatic sensitivity control 自动灵敏度控制ASGN Assign 分配,指定,设定ASP audio signal processing 音频信号处理ASS assembly 组件,装配,总成ASSEM assemble 汇编,剪辑ASSEM Assembly 组件,装配,总成Assign 指定,转发,分配Assist 辅助(装置)ASSY accessory 组件,附件AST active servo techonology 有源伺服技术A Tempo 回到原速Astigmatism methord 象散法BB band 频带B Bit 比特,存储单元B Button 按钮Babble 多路感应的复杂失真Back 返回Back clamping 反向钳位Back drop 交流哼声,干扰声Background noise 背景噪声,本底噪声Backing copy 副版Backoff 倒扣,补偿Back tracking 补录Back up 磁带备份,支持,预备Backward 快倒搜索Baffle box 音箱BAL balance 平衡,立体声左右声道音量比例,平衡连接Balanced 已平衡的Balancing 调零装置,补偿,中和Balun 平衡=不平衡转换器Banana jack 香蕉插头Banana bin 香蕉插座Banana pin 香蕉插头Banana plug 香蕉插头Band 频段,Band pass 带通滤波器Bandwidth 频带宽,误差,范围Band 存储单元Bar 小节,拉杆BAR barye 微巴Bargraph 线条Barrier 绝缘(套)Base 低音Bass 低音,倍司(低音提琴)Bass tube 低音号,大号Bassy 低音加重BATT battery 电池Baud 波特(信息传输速率的单位)Bazooka 导线平衡转接器BB base band 基带BBD Bucket brigade device 戽链器件(效果器)B BAT Battery 电池BBE 特指BBE公司设计的改善较高次谐波校正程度的系统BC balanced current 平衡电流BC Broadcast control 广播控制BCH band chorus 分频段合唱BCST broadcast (无线电)广播BD board 仪表板Beat 拍,脉动信号Beat cancel switch 差拍干扰消除开关Bel 贝尔Below 下列,向下Bench 工作台Bend 弯曲,滑音Bender 滑音器BER bit error rate 信息差错率BF back feed 反馈BF Backfeed flanger 反馈镶边BF Band filter 带通滤波器BGM background music 背景音乐Bias 偏置,偏磁,偏压,既定程序Bidirectional 双向性的,8字型指向的Bifess Bi-feedback sound system 双反馈系统Big bottom 低音扩展,加重低音Bin 接收器,仓室BNG BNC连接器(插头、插座),卡口同轴电缆连接器Binaural effect 双耳效应,立体声Binaural synthesis 双耳合成法Bin go 意外现象Bit binary digit 字节,二进制数字,位Bitstream 数码流,比特流Bit yield 存储单元Bi-AMP 双(通道)功放系统Bi-wire 双线(传输、分音)Bi-Wring 双线BK break 停顿,间断BKR breaker 断电器Blamp 两路电子分音Blanking 关闭,消隐,断路Blaster 爆裂效果器Blend 融合(度)、调和、混合Block 分程序,联动,中断Block Repeat 分段重复Block up 阻塞Bloop (磁带的)接头噪声,消音贴片BNC bayonet connector 卡口电缆连接器Body mike 小型话筒Bond 接头,连接器Bongo 双鼓Boom 混响,轰鸣声Boomy 嗡嗡声(指低音过强)Boost 提升(一般指低音),放大,增强Booth 控制室,录音棚Bootstrap 辅助程序,自举电路Both sides play disc stereo system 双面演奏式唱片立体声系统Bottoming 底部切除,末端切除Bounce 合并Bourclon 单调低音Bowl 碗状体育场效果BP bridge bypass 电桥旁路BY bypass 旁通BPC basic pulse generator 基准脉冲发生器BPF band pass filter 带通滤波器BPS band pitch shift 分频段变调节器BNC bayonet connector 卡口电缆连接器Body mike 小型话筒Bond 接头,连接器Bongo 双鼓Boom 混响,轰鸣声Boomy 嗡嗡声(指低音过强)Boost 提升(一般指低音),放大,增强Booth 控制室,录音棚Bootstrap 辅助程序,自举电路Bottoming 底部切除,末端切除Bounce 合并Bourclon 单调低音Bowl 碗状体育场效果BP bridge bypass 电桥旁路BY bypass 旁通BPC basic pulse generator 基准脉冲发生器BPF band pass filter 带通滤波器BPS band pitch shift 分频段变调节器BR bregister 变址寄存器BR Bridge 电桥Break 中止(程序),减弱Breathing 喘息效应B.Reso base resolve 基本解析度Bridge 桥接,电桥,桥,(乐曲的)变奏过渡Bright 明亮(感)Brightness 明亮度,指中高音听音感觉Brilliance 响亮BRKRS breakers 断路器Broadcast 广播BTB bass tuba 低音大喇叭BTL balanced transformer-less 桥式推挽放大电路BTM bottom 最小,低音BU backup nuit 备用器件Bumper 减震器Bus 母线,总线Busbar 母线Buss 母线Busy 占线BUT button 按钮,旋钮BW band width 频带宽度,带度BYP bypass 旁路By path 旁路BZ buzzer 蜂音器CC cathode 阴极,负极C Cell 电池C Center 中心C Clear 清除C Cold 冷(端)CA cable 电缆Cable 电缆Cabinet 小操纵台CAC coherent acoustic coding 相干声学编码Cache 缓冲存储器Cal calando 减小音量CAL Calendar 分类CAL Caliber 口径CAL Calibrate 标准化CAL Continuity accept limit 连续性接受极限Calibrate 校准,定标Call 取回,复出,呼出Can 监听耳机,带盒CANCL cancel 删除CANCL Cancelling 消除Cancel 取消Cannon 卡侬接口Canon 规则Cap 电容Capacitance Mic 电容话筒Capacity 功率,电容量CAR carrier 载波,支座,鸡心夹头Card 程序单,插件板Cardioid 心型的CATV cable television 有线电视Crispness 脆声Category 种类,类型Cartridge 软件卡,拾音头Carrkioid 心型话筒Carrier 载波器Cart 转运Cartridge 盒式存储器,盒式磁带Cascade 串联Cassette 卡式的,盒式的CAV constant angular velocity 恒角速度Caution 报警CBR circuit board rack 电路板架CC contour correction 轮廓校正CCD charge coupled device 电荷耦合器件CD compact disc 激光唱片CDA current dumping amplifier 电流放大器CD-E compact disc erasable 可抹式激光唱片CDG compact-disc plus graphic 带有静止图像的CD唱盘CD constant directional horn 恒定指向号角CDV compact disc with video 密纹声像唱片CE ceramic 陶瓷Clock enable 时钟启动Cell 电池,元件,单元Cellar club 地下俱乐部效果Cello 大提琴CEMA consumer electronics manufacturer'sassociation(美国)消费电子产品制造商协会CENELEC connector 欧洲标准21脚AV连接器Cent 音分Central earth 中心接地CES consumer electronic show (美国)消费电子产品展览会CF center frequency 中心频率Cross fade 软切换CH channel 声道,通道Chain 传输链,信道Chain play 连续演奏Chamber 密音音响效果,消声室CHAN channel 通道Change 交换Chapter 曲目Chaper skip 跳节CHAE character 字符,符号Characteristic curve 特性曲线Charge 充电Charger 充电器Chase 跟踪Check 校验CHC charge 充电CH - off 通道切断Choke 合唱Choose 选择Chromatic 色彩,半音Church 教堂音响效果CI cut in 切入CIC cross interleave code 交叉隔行编码CIRC circulate 循环Circuit 电路CL cancel 取消Classic 古典的Clean 净化CLR clear 归零Click 嘀哒声Clip 削波,限幅,接线柱CLK clock 时钟信号Close 关闭,停止CLS 控制室监听Cluster 音箱阵效果CLV ceiling limit value 上限值CMP compact 压缩CMPT compatibility 兼容性CMRR common mode rejection ratio 共模抑制比CNT count 记数,记数器CNTRL central 中心,中央CO carry out 定位输出Coarse 粗调Coax 同轴电缆Coaxial 数码同轴接口Code 码,编码Coefficient 系数Coincident 多信号同步Cold 冷的,单薄的Color 染色效果COM comb 梳状(滤波)COMB combination 组合音色COMBI combination 组合,混合COMBO combination 配合,组合Combining 集合,结合COMM communication 换向的,切换装置Command 指令,操作,信号COMMON 公共的,公共地端Communieation speed 通讯速度选择COMP comparator 比较器COMP compensate 补偿Compact 压缩Compander 压缩扩展器Compare 比拟Compatibility 兼容Compensate 补偿Complex 全套设备Copmoser 创意者,作曲者Compressor 压缩器COMP-EXP 压扩器Compromise (频率)平衡Computer 计算机,电脑CON concentric cable 同轴电缆CON console 操纵台CON controller 控制器Concentric 同轴的,同心的Concert 音乐厅效果Condenser Microphone 电容话筒Cone type 锥形(扬声器)CONFIG 布局,线路接法Connect 连接,联络CORR correct 校正,补偿,抵消Configuration 线路布局Confirmation 确认Consent 万能插座Console 调音台Consonant 辅音Constant 常数CONT continuous 连续的(音色特性)CONT control 控制,操纵Contact 接触器Content 内容Continue 连续,继续Continue button 两录音卡座连续放音键Contour 外形,轮廓,保持Contra 次八度Contrast 对比度Contribution 分配Controlled 可控的Controller 控制器CONV conventional 常规的CONV convert 变换CONV convertible 可转换的Copy 复制Correlation meter 相关表Coupler 耦合Cover 补偿Coverage 有效范围CP clock pulse 时钟脉冲CP control program 控制程序CPU 中央处理器CR card reader 卡片阅读机CRC cyclic redundancy check 循环冗余校验Create 建立,创造Crescendo 渐强或渐弱Crispness 清脆感CRM control room 控制室CROM control read only memory 控制只读存储器Crossfader 交叉渐变器Cross-MOD 交叉调制Crossover 分频器,换向,切断Cross talk 声道串扰,串音Crunch 摩擦音C/S cycle/second 周/秒CSS content scrambling system 内容加密系统CST case style tape 盒式磁带CT current 电流CTM close talking microphone 近讲话筒CU counting unit 计数单元Cue 提示,选听Cue clock 故障计时钟Cueing 提示,指出Cursor 指示器,光标Curve (特性)曲线Custom 常规CUT 切去,硬切换DD double 双重的,对偶的D drum 鼓,磁鼓DA delayed action 延迟作用D/Adigital/analog 数字/模拟DAB digital audio broadcasting 数字音频广播Damp 阻尼DASH digital audio stationar head 数字固定磁头Dashpot 缓冲器,减震器DAT digital audio tape 数字音频磁带,数字录音机DATA 数据DATAtron 数据处理机DATE 日期DB(dB) decibel 分贝DB distribution 分线盒DBA decibel asolute 绝对分贝DBA decibel adjusted 调整分贝DBB dynamic bass boost 动态低音提升DBK decibels referred to one kilowatt 千瓦分贝DBm decibel above one milliwatt in 600 ohms 毫瓦分贝DBS direct broadcast satellite 直播卫星DBX 压缩扩展式降噪系统DC distance controlled 遥控器DCA digital command assembly 数字指令装置DCE data circuit terminating equipment 数据通讯线路终端设备DCF digital comb filter 数字梳状滤波器DCH decade chorus 十声部合唱DCP date central processor 数据中心处理器DD direct drive 直接驱动DD dolby digital 数字杜比DDC direct digital control 直接数字控制DDS digital dynamic sound 数字动态声DDT data definition table 数据定义表Dead 具有强吸声特性的房间的静寂DEC decay 衰减,渐弱,余音效果Decibel 分贝Deck 卡座,录音座,带支加的,走带机构Deemphasis 释放Deep reverb 纵深混响De-esser 去咝声器DEF defeat 消隐,静噪Delete 删除Delivery end 输入端DEMO demodulator 解调器Demo 自动演奏Demoder 解码器Density 密度,声音密度效果Detune 音高微调,去谐DepFin 纵深微调Depth 深度Denoiser 降噪器Design 设计Destroyer 抑制器DET detector 检波器Deutlichkeit 清晰度DEV device 装置,仪器DEX dynamic exciter 动态激励器DF damping factor 动态滤波器DFL dynamic filter 动态滤波DFS digital frequency synthesizer 数字频率合成器DI data input 数据输入Diagram 图形,原理图Dial 调节度盘Difference 不同,差别DIFF differential 差动Diffraction 衍射,绕射Diffuse 传播Diffusion 扩散DIG digit 数字式Digital 数字的,数字式,计数的Digitalyier 数字化装置DIM digital input module 数字输入模块DIM diminished 衰减,减半音Dimension 范围,密度,尺寸,(空间)维,声像宽度Din 五芯插口(德国工业标准)DIN digital input 数字输入DIR direct 直接的,(调音台)直接输出,定向的Direct box 指令盒,控制盒Direct sound 直达声Directory 目录Direction 配置方式Directional 方向,指向的Directivity 方向性DIS display 显示器DISC disconnect 切断,开路DISC discriminator 鉴相器Disc 唱盘,唱片,碟Disc holder 唱片抽屉Disc recorder 盘片式录音机Dischage 释放,解除Disco 迪斯科,迪斯科音乐效果Discord 不谐和弦Disk 唱盘,碟DISP display 显示器,显示屏Dispersion 频散特性,声音分布Displacement 偏转,代换Distortion 失真,畸变DIST distance 距离,间距DIST district 区间Distributer 分配器,导向装置DITEC digital television camera 数字电视摄像机Dim 变弱,变暗,衰减DIV divergence 发散DIV division 分段DIV divisor 分配器Diversity 分集(接收)Divider 分配器Divx 美国数字视频快递公司开发的一种每次观看付费的DVD DJ Disc Jocker 唱片骑士DJ dust jacket 防尘罩DJ delay 延迟DLD dynamic linear drive 动态线性驱动DLLD direct linear loop detector 直接线性环路检波器DME digital multiple effector 数字综合效果器DMS date multiplexing system 数据多路传输系统DMS digital multiplexing synchronizer数字多路传输同步器DMX data multiplex 数据多路(传输)DNL dynamic noise limiter 动态噪声抑制器DNR dynamic noise reduction 动态降噪电路DO dolly out 后移DO dropout 信号失落DOB dolby 杜比DOL dynamic optimum loudness 动态最佳响度Dolby 杜比,杜比功能Dolby Hx Pro dolby Hx pro headroom extension system 杜比Hx Pro动态余量扩展系统Dolby NR 杜比降噪Dolby Pro-logic 杜比定向逻辑Dolby SR-D dolby SR digital 杜比数字频谱记录Dolby Surround 杜比环绕Dome loudspeaker 球顶扬声器Dome type 球顶(扬声器)DOP doppler 多普勒(响应)Double 加倍,双,次八度Doubler 倍频器,加倍器Double speed 倍速复制D.OUT direct output 直接输出Down 向下,向下调整,下移,减少DPCM differential pulse code modulation 差动脉冲调制DPD direct pure MPX decoder 直接纯多路解调器DPL dolby pro logic 杜比定向逻辑DPL duplex 双工,双联DPLR doppler 多普勒(系统)D.Poher effect 德.波埃效应Dr displacement corrector 位移校准器,同步机DR distributor 分配器DR drum 磁鼓Drain 漏电,漏极DRAM direct read after write 一次性读写存储器Drama 剧场效果DRAW 只读追忆型光盘Dr.Beat 取字时间校准器DRCN dynamic range compression and normalization 动态范围压缩和归一化Drive 驱动,激励Dr.Rhythm 节奏同步校准器DRPS digital random program selector 数字式节目随机选择器DDrum 鼓Drum machine 鼓机Dry 干,无效果声,直达声DS distortion 失真DSC digital signal converter 数字信号转换器DSL dynamic super loudness 低音动态超响度,重低音恢复DSM dynamic scan modulation 动态扫描速度调制器DSP digital signal processor 数字信号处理器DSP display simulation program 显示模拟程序DSP digital sound processor 数字声音处理器DSP digital sound field processor 数字声场处理器DSP dynamic speaker 电动式扬声器DSS digital satellite system 数字卫星系统DT data terminal 数据终端DT data transmission 数据传输DTL direct to line 直接去线路DTS digital theater system 数字影剧院系统DTS digital tuning system 数字调谐系统DTV digital television 数字电视Dual 对偶,双重,双Dub 复制,配音,拷贝,转录磁带Dubbing mixer 混录调音台Duck 按入,进入Dummyload 假负载DUP Duplicate 复制(品)Duplicator 复制装置,增倍器Duration 持续时间,宽度Duty 负载,作用范围,功率Duty cycle 占空系数,频宽比DUX duplex 双工DV device 装置,器件DVC digital video cassette 数字录象带DVD digital video disc 数字激光视盘DX 天线收发开关,双重的,双向的DYN dynamic 电动式的,动态范围,动圈式的Dynamic filter 动态滤波(特殊效果处理)器Dynamic Microphone 动圈话筒Dynamic range 动态范围Dynode 电子倍增器电极EE early warning 预警E earth 真地,接地E error 错误,差错(故障显示)EA earth 地线,真地EAR early 早期(反射声)Earphone 耳机Earth terminal 接地端EASE electro-acooustic simulators for engineers 工程师用电声模拟器,计算机电声与声学设计软件Eat 收取信号EBU european broadcasting union 欧洲广播联盟EC error correction 误差校正ECD electrochomeric display 电致变色显示器Echo 回声,回声效果,混响ECL extension zcompact limitter 扩展压缩限制器ECM electret condenser microphone 驻极体话筒ECSL equivalent continuous sound level 等级连续声级ECT electronec controlled transmission 电控传输ED edit editor 编辑,编辑器Edit 编辑Edge tone 边棱音EDTV enhanced definition television 增强清晰度电视(一种可兼容高清晰度电视)E-DRAW erasable direct after write 可存可抹读写存储器EE errors excepted 允许误差EFF effect efficiency 效果,作用Effector 操纵装置,效果器Effects generator 效果发生器EFM 8/14位调制法EFX effect 效果EG envelope generator 包络发生器EIA electronec industries association (美国)电子工业协会EIAJ electronic industries association Japan 日本电子工业协会EIN einstein 量子摩尔(能量单位)EIN equivalent input noise 等效输入噪声EIO error in operation 操作码错误Eject 弹起舱门,取出磁带(光盘),出盒EL electro luminescence 场致发光ELAC electroacoustic 电声(器件)ELEC electret 驻极体Electret condenser microphone 驻极体话筒ELF extremely low frequency 极低频ELEC electronec 电子的Electroacoustics 电声学EMI electro magnetic interference 电磁干扰Emission 发射EMP emphasispo 加重EMP empty 空载Emphasis 加重EMS emergency switch 紧急开关Emulator 模拟器,仿真设备EN enabling 启动Enable 赋能,撤消禁止指令Encoding 编码End 末端,结束,终止Ending 终端,端接法,镶边ENG engineering 工程Engine 运行,使用ENG land 工程接地Enhance 增强,提高,提升ENS ensemble 合奏ENS envelope sensation 群感Eensemble 合奏Eensemble 合奏ENT enter 记录Enter 记入,进入,回车Entering 插入,记录Entry 输入数据,进入ENV envelope 包络线Envelopment 环绕感EOP electronic overload protection 电子过载保护EOP end of program 程序结束EOP end output 末端输出EOT end of tape 磁带尾端EP extend playing record 多曲目唱片EP extended play 长时间放录,密录EPG edit pulse generator 编辑脉冲发生器EPS emergency power supply 应急电源EQ equalizer 均衡器,均衡EQ equalization 均衡EQL equalization 均衡Equal-loudness contour 等响曲线Equipped 准备好的,已装备Equitonic 全音Equivalence 等效值ER erect 设置ER error 错误,误差ERA earphone 耳机Eraser 抹去,消除Erasing 擦除,清洗Erasure 抹音Erase 消除,消Er early 早期的ERCD extended resolution CD 扩展解析度CDEREQ erect equalizer 均衡器(频点)位置(点频补偿电路的中点频率)调整ERF early reflection 早期反射(声)Ernumber 早期反射声量Error 错误,出错,不正确ES earth swith 接地开关ES electrical stimulation 点激励Escqpe 退出ETER eternity 无限Euroscart 欧洲标准21脚AV连接器Event 事件EVF envelope follower 包络跟随器(音响合成装置功能单元)EX exciter 激励器EX exchange 交换EX expanding 扩展EXB expanded bass 低音增强EXC exciter 激励器EXCH exchange 转换Exclusive 专用的Excursion 偏移,偏转,漂移,振幅EXP expender 扩展器,动态扩展器EXP export 输出Exponential horn tweeter 指数型高音号角扬声器Expression pedal 表达踏板(用于控制乐器或效果器的脚踏装置)EXT extend 扩展EXT exterior 外接的(设备)EXT external 外部的,外接的EXT extra 超过EXTN extension 扩展,延伸(程控装置功能单元)Extract 轨道提出EXTSN extension 扩展,延伸(程控装置功能单元)FF fast 快(速)F feedback 反馈F forward 向前F foot 脚踏(装置)F frequency 频率F function 功能Ffactor 因子,因素,系数,因数Fade 衰减(音量控制单元)Fade in-out 淡入淡出,慢转换Fader 衰减器Fade up 平滑上升Failure 故障Fall 衰落,斜度Faraday shield 法拉第屏蔽,静电屏蔽FAS full automatic search 全自动搜索Fast 快速(自动演奏装置的速度调整钮)Fastener 接线柱,闭锁Fat 浑厚(音争调整钮)Fattens out 平直输出Fault 故障,损坏Fader 衰减器,调音台推拉电位器(推子)Fading in 渐显Fading out 渐显False 错误Fancier 音响发烧友Far field 远场FatEr 丰满的早期反射FB feedback 反馈,声反馈FB fuse block 熔丝盒F.B fiver by 清晰FBO feedback outrigger 反馈延伸FCC federal communications commission (美国)联邦通信委员会FD fade depth 衰减深度FD feed 馈入信号FDR fader 衰减器FeCr 铁铬磁带Feed 馈给,馈入,输入Feeder 馈线Feed/Rewind spool 供带盘/倒带盘Ferrite head 铁氧体磁头F.&B. forward and back 前后FET field effect technology 场效应技术FF flip flop 触发器FF fast forward 快进FG flag generator 标志信号发生器FI fade in 渐进Field 声场Field pickup 实况拾音File 文件,存入,归档,数据集,(外)存储器Fill-in 填入FILT filter 滤波器Final 韵母Fine 微调Fingered 多指和弦Finger 手指,单指和弦FIN GND 接地片Finish 结束,修饰FIP digital frequency display panel 数字频率显示板FIR finite-furation impulse response 有限冲激响应(滤波器)Fire 启动Fix 确定,固定Fizz 嘶嘶声FL fluorescein 荧光效果Flange 法兰音响效果,镶边效果Flanger 镶边器Flanging 镶边Flash 闪光信号Flat 平坦,平直Flat noise 白噪声Flat tuning 粗调Flex 拐点FLEX flexible cord 软线,塞绳FLEX frequency level expander 频率扩展器FLEXWAVE flexible waveguide 可弯曲波导管FLG flanger 镶边器Flip 替换,调换Floating 非固定的,悬浮式的Floppy disc 软磁盘FLTR filter 滤波器Fluorescent display 荧光显示器Flute 长笛Flutter 一种放音失真,脉冲干扰,颤动FLW follow 跟踪,随动FLY 均衡器FM fade margin 衰落设备FM frequency modulation 调频广播FM/SW telescopic rod aerial 调频/短波拉杆天线FO fade out 渐隐Focus 焦点,中心点Foldback 返送,监听Foot(board) 脚踏板(开关控制)Fomant 共振峰Force 过载,强行置入Format 格式,格式化,规格,(储存器中的)信息安排Forward 转送FPR floating point routine 浮点程序FPR full power response 全功率响应FR frequency 频率FR frequency response 频率响应Frame 画面,(电视的)帧Frames 帧数Free 剩余,自由Free echoes 无限回声(延时效果处理的一种)Free edge 自由折环(扬声器)FREEQ frequency 频率F.Rew fast rewind 快倒Freeze 凝固,声音骤停,静止Frequency divider 分频器Frequency shifter 移频器,变频器Fricative 擦音Front 前面的,正面的Front balance 前置平衡Front process 前声场处理FRU field replaceable unit 插件,可换部件FS frequency shift 频移,变调FS full short 全景FT facility terminal 设备(输出)端口FT fine tuning 微调FT foot 脚踏装置FT function tist 功能测试FT frequency tracke 频率跟踪器FTG fitting 接头,配件FTS faverate track selection 最佳声迹选择Full 丰满,饱和Full auto 全自动Full effect recording 全效果录音Full range 全音域,全频GG gate 门(电路)G ground 接地GA general average 总平均值Gain 增益,提衰量Game 卡拉OK音响效果Gamut 音域Gap 间隔,通道Gate 噪声门,门,选通Gated Rev 选通混响(开门的时间内有混响效果)GB 吉字节Gear 风格,格调GEN generator (信号)发生器General 综合效果Generator 信号发生器GEQ graphie equalizier 图示均衡器GD ground 接地Girth 激励器的低音强度调节Glide strip 滑奏条(演奏装置)GLLS-sando 滑降(演奏的效果)Global 总体设计GM genertal MIDI 通用乐器数字接器GND ground 地线,接地端GP group 编组GPR general purpose receiver 通用接收机GPI general purpose interface 通用接口设备Govern 调整,控制,操作,运转GR group 组合Gramophone 留声机,唱机Graphic equalizer 图示均衡器,图表均衡器GRND ground 接地Groove 光盘螺旋道的槽Group 编组(调音台),组Growler 线圈短路测试仪GT gate 门,噪声门GT gauge template 样板GTE gate 门(电路)GTR gate reverb 门混响Guard 保护,防护装置GUI graphical user interface 图形用户接口Guitar 吉它Guy 拉线Gymnasium 体育馆效果Gyrator 回旋器HHQAD high quality audio disc 高品位音频光盘HR handing room 操作室HR high resistance 高阻抗(信号端子的阻抗特性)HRTF head-related transfer function 人脑相关转换功能HS head set 头戴式耳机HS hybrid system 混合系统HT home theater 家庭影院,家庭剧场Hubrid 混合网络,桥接岔路Hum 交流哼声,交流低频(50Hz)噪声Hum and Noise 哼杂声,交流噪声Humidity 湿度,湿气HUT homes using TV 家用电视HVDS Hi-visual dramatic sound 高保真现场感音响系统HX headroom extension 动态余量扩展(系统)(一种杜比降噪系统),净空延伸H horizonal 水平(状态)H hot 热(平衡信号端口的“热端”)Hall 厅堂效果Handle 手柄,控制HAR harmonec 谐波Hard knee 硬拐点(压限器)Harmonic 谐波Harmonic distortion 谐波失真Harmonic Generator 谐波发生器Harmonize (使)和谐,校音Harmony 和谐Harp 竖琴Hash 杂乱脉冲干扰Hass effect 哈斯效应HD harmonic distortion 谐波失真HDCD high definition compatible digital 高分辨率兼容性数字技术HDTV hight definiton television 高清晰度电视Head 录音机磁头,前置的,唱头Head azimuth 磁头方位角Head gap 磁头缝隙Headroom 动态余量,动态范围上限,电平储备Headphone 头戴式耳机Headset 头带式耳机Heavy metel 重金属HeiFin 垂直微调Hearing 听到,听觉Heat sink 散热板Help (对程序的)解释HF high frequency 高频,高音Hi hign 高频,高音HI band 高频带Hi-end 最高品质,顶级Hi-BLEND 高频混合指示High cut 高切High pass 高通Highway 总线,信息通道Hi-Fi high fidelity 高保真,高保真音响Hiss 咝声Hi-Z 高阻抗HL half reverb 大厅混响Hoghorn 抛物面喇叭Hoisting 提升Hold 保持,无限延续,保持时间Holder 支架,固定架Hold-off 解除保持Home 家庭,实用Home theatre 家庭影院Horizontal 水平的,横向的Horn 高音号角,号筒,圆号Hornloaded 号角处理Hot 热端,高电位端Hour 小时Howling 啸叫声Howlround 啸叫H.P headphone 头戴式耳机HPA haas pan allochthonous 哈斯声像漂移HPF high pass filter 高通滤波器HQ high quality 高质量,高品位Hyper Condenser 超心型的HZ hertz 赫兹H hard 硬的(音响效果特征IC integrated circuit 集成电路ID identification 识别ID identify 标志Idle 空载的,无效果的IDTV improved definition television 改进清晰度电视系统IEC international electrical commission 国际电工委员会IEEE institute of electrical&electronic engineers 电气及电子工程师学会IF intermidiate frequency 中频的I/F interface 接口IHF the institute of high fidelity 高保真学会IIR infinite-duration impulse response 无限冲激响应IKA Interactive knee adapt 互调拐点适配,软拐点I/O input/output 输入/输出IM impulse modulation 脉冲调剂IM image 影象IMD intermodulation distortion 互调失真IMP impedance 阻抗IMP impedence 阻抗IMP interface message processor 接口信息处理机Improper 错误的IN inductor 感应器IN input 输入IN inverter 反演器,倒相器Inactive 暂停,失效的INC incoming 引入线INC increase 增高INCOM intercom 内部通话(系统)In phase 同相IND index 索引,标志,指数IND indicator 指示器Indicator 显示器,指示器Indirect 间接Inductance 电感Induction 感应,引入INF infinite 无限大Infrared 红外线的Infra-red remote control 红外线遥控INH inhibit 抑制,禁止Initial 声母,初始化In/Out 加与不加选择(相当于旁路)开关,接通开关Infinite 无限的,非限定的Increase 增加Initial Delay 早期延时,初次延时Inject 注入,置入Inlead 引入线Inlet 引入线,插入In-line 串联的,在线的INP input 输入(端口)INV invertor 倒相器,翻转器,反相器,变换器Inverse 倒相Inverseve Rev 颠倒式混响效果Invert 轮流,反转I/O in/out 输入/输出(接口),信号插入接口I/Oinstead of 替代IPE integrated parameter editing 综合参量编辑IR infrared sensor 红外线传感器IROA impulse response optimum algorithm 脉冲响应最佳算法IS information separators 信息分隔字符IS in service 不中断服务ISO International Standardization Organization 国际标准化组织Input 输入Indicator 显示器,指示灯INS insert 插入(信号),插入接口INSEL input select 输入选择INST instant 直接的,实时INST institution 建立,设置INST instrument 仪器,乐器Instrument 乐器Insulator 绝缘体INT intake 进入,入口INT intensity 强度,烈度INT interior 内部INT interrupter 断路器Integrated 组合的Integrated amplifier 前置-功率放大器,综合功率放大器Intelligate 智能化噪声门Intelligibility 可懂度Interactie 相互作用,人机对话,软拐点Interval 音高差别Integrated 集成的,完全的Intercom 对讲,通话Interconnect 互相联系Inter cut 插播Interface 接口,对话装置Interference 干扰,干涉,串扰Interim 临时的,过渡特征Intermodulation 互调,内调制Intermodulation distortion 交越失真Internal 内存,对讲机Internally 在内部,内存Inter parameter 内部参数Interval 音高差别Interplay 相互作用,内部播放Interval shifter 音歇移相器Intimacy 亲切感Intonation 声调INTRO introduction 介绍,浏览,引入,(乐曲的)前奏INTRO sacn 曲头检索(节目搜索)INTRO sensor 曲头读出器(节目查询)Introskip 内移,内跳ISS insertion test signal 插入切换信号ISS interference suppression switch 干扰抑制开关ITS insertion test signal 插入测试信号IV interval 间隔搜索IV inverter 倒相器IWC interrupted wave 断续波IX index 标盘,指针,索引JJ jack 插孔,插座,传动装置Jack socket 插孔Jaff 复干扰Jagg club 爵士乐俱乐部效果Jam 抑制,干扰Jamproof 抗干扰的Jazz 爵士JB junction box 接线盒JIS 日本工业标准Job 事件,作业指令,成品Jog 旋盘缓进,慢进,突然转向Joker 暗藏的不利因素,含混不清Joystick 控制手柄,操纵杆,摇杆JSS jet servo system 喷射伺服式重低音扬声器系统Jumper 跳线,条形接片Justify 调整K。
全国计算机等级考试三级网络技术英文单词

第一章计算机基础Computer计算机Client客户机Server服务器Peer To Peer对等,P2P计算机辅助工程:Computer Aided Design CAD计算机辅助设计Computer Aided Manufacturing CAM计算机辅助制造Computer Aided Engineering CAE计算机辅助工程Computer Aided Instruction CAI计算机辅助教学Computer Aided Testing CAT计算机辅助测试GIS地理信息系统计算机分类:Mainframe大型主机Minicomputer小型计算机/迷你电脑Personal Computer个人计算机,Microcomputer微型计算机Workstation工作站Supercomputer巨型计算机/超级计算机Minisuper小巨型计算机/小超级计算机服务器按处理器体系结构划分:Complex Instruction Set Computer CISC复杂指令集计算机Reduced Instruction Set Computer RISC精简指令集计算机Very Long Instruction Word VLIW超长指令字Explicitly Parallel Instruction Computing EPIC清晰并行指令计算/简明平行指令计算Intel Architecture IA英特尔架构Blade Serer刀片式服务器计算机分类:Server服务器Workstation工作站Desktop PC台式机Notebook笔记本,Mobile PC便携机/移动PCHandheld PC掌上电脑,Sub-Notebook亚笔记本Ultra Mobile PC UMPC超便携计算机PDA个人数字助理LCD液晶显示器Serial Advanced Technology Attachment SATA串行高级技术附件Serial Attached SCSI串行SCSI硬盘Redundant Array Of Independent Disks RIAD独立磁盘冗余阵列,Disk Array磁盘阵列计算机的技术指标:Million Instruction Per Second,MIPS,单字长定点指令的平均执行速度Million Floating Instruction Per Second,MFLOPS,单字长浮点指令的平均执行速度Bits Per Second,Bps,每秒传输位数Mean Time Between Failure,MTBF,平均无故障时间Mean Time To Repair,MTTR,平均故障修复时间奔腾芯片的技术特点:Superscalar超标量Superpipeline,超流水线Peripheral Component Interconnect,PCI,外围部件互联Video Electronic Standard Association,VESA,视频电子标准协会Streaming SIMD Extension,SSE,流式的单指令流、多数据流扩展指令Mainboard主板、主机板,Motherboard,母版Adapter Card网卡、适配卡软件按授权方式分类:Commercial-Ware商业软件Share Ware共享软件Freeware自由软件信息的形式:Number数字Text文本Graphic图形Image图像Sound声音Media媒体Multimedia多媒体Videodisk视频光盘Speech语音Audio音响Multimedia PC,MPC,多媒体计算机Media Player媒体播放器Sound Recorder录音机Object Linking And Embedding,OLE,对象链接和嵌入数据压缩编码方法:Source Coding源编码Hybrid Coding混合编码Entropy Coding信息熵编码法Huffman Coding哈尔曼编码Run Length Coding游程编码Arithmetic Coding算术编码Prediction Coding预测编码法Differential Pulse Code Modulation,DPCM,微分脉码调制Delta Modulation,DM,Δ调制Transformation Coding变换编码法Discrete Fourier Transform,DFT,离散傅里叶变换Discrete Cosine Transform,DCT,离散余弦变换Discrete Hadamard Transform,DHT,离散哈达玛变换Vector Quantization Coding矢量量化编码法Joint Photographic Experts Group,JPEG,联合图像专家组International Organization For Standardization,ISO,国际标准化组织CCITT国际电报电话咨询委员会Baseline Sequential Codec基线顺序编解码Moving Picture Experts Group,MPEG,运动图像专家组HDTV高清晰度电视ITU国际电信联盟ISDN综合业务数字网IECNode结点Link链接Streaming Media流媒体第二章网络技术基础Advanced Research Projects Agency,ARPA,美国国防部高级研究计划局System Network Architecture,SNA,系统网络体系结构Distributed Computer Architecture,DCA,数字网络体系结构Open System Interconnection,OSI,开放系统互连Ethernet以太网Token Bus令牌总线Token Ring令牌环Fiber Distributed Data Interface,FDDI,光纤分布式数据接口National Information Infrastructure,NII,国家信息基础设施Global Information Infrastructure Committee,GIIC,全球信息基础设施委员会B-ISDN宽带业务综合数据网ATM异步传输模式IEEE美国电子电气工程师协会PSTN公用电话交换网CNNIC中国互联网网络信息中心计算机网络按覆盖的地理范围分类:Local Area Network,LAN,局域网Metropolitan Area Network,MAN,城域网Wide Area Network,WAN,广域网CATV有线电视网Nyquist奈奎斯特Shannon香农Circuit Switching电路交换Store-And-Forward Switching存储转发交换Message Switching报文交换Packet Switching报文分组交换Datagram,DG,数据报Virtual Circuit,VC,虚电路Message报文Packet报文分组Protocol协议Network Architecture计算机网络体系结构Implementation实现Interconnection互连性Interoperation互操作性Portability可移植性Service Definition服务定义Protocol Specification协议规格说明Physical Layer物理层Data Link Layer数据链路层Network Layer网络层Transport Layer传输层Session Layer会话层Presentation Layer表示层Application Layer应用层End-To-End端到端User Agent用户代理FTAM文件传送访问和管理VT虚拟终端TP事务处理RDA远程数据库访问MMS制造业报文规范Intercommunication互通Internet Layer互联层Host-To-Network Layer主机-网络层Transport Control Protocol,TCP,传输控制协议User Datagram Protocol,UDP,用户数据报协议Byte Stream字节流Byte Segment字节段Telnet远程登录协议File Transfer Protocol,FTP,文件传输协议Simple Mail Transfer Protocol,SMTP,简单邮件传输协议Domain Name Service,DNS,域名服务Router Information Protocol,RIP,路由信息协议Network File System,NFS,网络文件系统Hypertext Transfer Protocol,HTTP,超文本传输协议Page页面Web Site Web站点CERN欧洲粒子物理实验室Podcast播客Blog,Weblog博客,网络日志,网志Internet Protocol Television,IPTV,互联网协议电视/网络电视:Video On Demand,VOD,视频点播技术Live TV直播电视Time Shift TV时移电视Instant Messaging,IM,即时通信Wireless MAN,WMAN,无线城域网Bluetooth蓝牙Personal Operating Space,POS,个人操作空间Personal Area Network,PAN,个人区域网络Wireless Personal Area Network,WPAN,无线个人区域网络Mobile Ad Hoc Network,MANET,移动Ad Hoc网络Wireless Sensor Network,WSN,无线传感器网络Packet Radio Network,PRNET,分组无线网第三章局域网基础Fast Ethernet,FE,快速以太网Gigabit Ethernet,GE,千兆以太网Collision冲突Media Access Control,MAC,介质访问控制Logical Link Control,LLC,逻辑链路控制WG工作组TAG技术行动组Carrier Sense Multiple Access With Collision Detection,CSMA/CD,带冲突检测的载波侦听多路访问Truncated Binary Exponential Backoff截止二进制指数后退延迟Unicast Address单一节点地址Multicast Address多点地址Broadcast Address广播地址FCS帧校验字段CRC循环冗余校验Registration Authority Committee,RAC,注册管理委员会Company-Id公司标识Organizationally Unique Identifier,OUI,机构唯一标识符Extended Unique Identifier扩展的唯一标识符EPROM网卡的只读存储器Share LAN共享式局域网Switched LAN交换式局域网Media Independent Interface,MII,介质独立接口Gigabit Media Independent Interface,GMII,千兆介质独立接口High Speed Study Group,HSSG,高速研究组Switched Ethernet交换式以太网Ethernet Switch以太网交换机Hub集线器Cut Through直通Store And Forward存储转发Virtual Network虚拟网络Virtual LAN,VLAN,虚拟局域网Nomadic Access漫游访问Infrared Radio,IR,红外无线Channel Encoder信道编码器Frequence Hopping Spread Spectum,FHSS,跳频扩频通信Direct Sequence Spread Spectrum,DSSS,直接序列扩频Point Coordination Function,PCF,点协调功能Distributed Coordination Function,DCF,分布协调功能Collision Avoidance,CA,冲突避免Interframe Space,IFS,帧间间隔Bridge网桥网桥按路由表的建立方法分类:Transparent Bridge透明网桥Source Routing Bridge源路由网桥Spanning Tree生成树Discovery Frame发现帧第四章服务器操作系统Network Operating System,NOS,网络操作系统Process进程File Handle文件句柄File Allocation Table,FAT,文件表Virtual File Allocation Table,VFAT,虚拟文件表High Performance File System,HPFS,高性能文件系统Basic Input/Output System,BIOS,基本输入/输出系统Graphics Device Interface,GDI,图形设备接口Application Programming Interface,API,应用编程接口Kernel内核Monolithic Kernel单内核Microkernel微内核Nanokernel超微内核Exokernel外核Hardware Abstract Layer,HAL,硬件抽象层Directory Service,DS,目录服务Network Server网络服务器Network Station网络工作站网络操作系统的基本功能:File Service文件服务Print Service打印服务Database Service数据库服务Communication Service通信服务Message Service信息服务Distributed Service分布式服务Network Management Service网络管理服务IntranetSQL结构化查询语言Graphic User Interface,GUI,图形用户界面Domain域Primary Domain Controller主域控制器Backup Domain Controller备份域控制器Thread线程Preemptive抢占式NDIS网络驱动接口规范TDI传输驱动接口Netbeui扩展用户接口Active Directory Manager活动目录管理Tree域树Forest域森林Organizational Unit,OU,组织单元Role角色DEP数据执行保护NAP网络访问保护NAT自动网络地址转换Server Core服务器内核Powershell外壳Business Intelligence,BI,商务智能Netware Core Protocol,NCP,Netware核心协议System Failure Tolerance,SFT,系统容错File Server Mirroring文件服务器镜像Transaction Tracking System,TTS,事物跟踪系统Novell Directory Services,NDS,Novell目录服务Swapping对换Independent Software Vendors,ISV,独立软件厂商Dynamic Logic Partition动态处理器备用SWA软件助手OE操作环境第五章Internet基础ISP互联网服务提供商Remote Access Server远程访问服务器Modem调制解调器ADSL非对称数字用户线路Hybrid Fiber Coaxial,HFC,混合光纤同轴电缆网Cable TV,CATV,有线电视网DDNATMNetid网络号Hosted主机号NATAddress Resolution Protocol,ARP,地址解析协议Dynamic Binding动态绑定Cache缓存区Datagram数据报Maximum Transmission Unit,MTU,最大传输单元源路由选项的分类:Strict Source Route严格源路由选项Loose Source Route松散源路由选项Time Stamp时间戳Universal Time格林尼治时间Internet Control Message Protocol,ICMP,互联网控制报文协议Source Quench源站抑制Routing路由选择Router路由器Metric度量值度量值中经常使用的特征:Hop Count跳数Bandwidth带宽Delay延迟Load负载Reliability可靠性Cost开销应用最广的路由选择协议:Routing Information Protocol,RIP,路由信息协议Open Shortest Path First,OSPF,开放式最短路径优先协议Vector-Distance,V-D,向量-距离,Bellman-FordLink-Status,L-S,链路-状态Convergence收敛CIDR无类域间寻址DHCP动态主机配置协议Qos服务质量保证TCP提供的服务的特征:Connection Orientation面向连接Complete Reliability完全可靠性Full Duplex Communication全双工通信Stream Interface流接口Reliable Connection Startup&Graceful Connection Shutdown连接的可靠建立和优雅关闭Retransmission重发Acknowledgement确认Round Trip Time,RTT,往返时间3-Way Handshake3次握手Window窗口Well-Known Port著名端口第六章Internet基本服务服务器处理多个并发请求的方案:Iterative Server重复服务器Concurrent Server并发服务器First In,First Out先进先出Daemon守护进程Master主服务器Slave从服务器Worm蠕虫互联网的命名机制:Flat Naming无层次命名机制Hierarchy Naming层次型命名机制Label标号Domain域域名解析的两种方式:Recursive Resolution递归解析Iterative Resolution反复解析资源记录的组成:Domain Name域名Time To Live,TTL,最大生存周期,有效期Type类型Class类别Value(域名的)具体值Network Virtual Terminal,NVT,网络虚拟终端Real Terminal实终端数据连接建立的模式:Active主动模式Passive被动模式电子邮件传输协议:Simple Mail Transfer Protocol,SMTP,简单邮件传输协议Post Office Protocol,POP,邮局协议Interactive Mail Access Protocol,IMAP,RFC822将电子邮件报文分为两部分:Mail Header邮件头Mail Body邮件体Multipurpose Internet Mail Extensions,MIME,多用途Internet邮件扩展MIME-Version版本号Content-Type数据类型Content-Transfer-Encoding数据编码类型Quoted-Printable打印编码World Wide Web,WWW,European Center For Nuclear Research,CERN,欧洲核物理研究中心Hyper Text Markup Language,HTML,超文本标记语言Uniform Resource Locator,URL,统一资源定位符History历史Bookmark书签Default默认状态Tag标记Attitude属性Secure Sockets Layer,SSL,安全套接层NTFS第七章网络管理与网络安全网络管理的功能:Configuration Management配置管理Fault Management故障管理Accounting Management计费管理Performance Management性能管理Security Management安全管理NME网管代理模块IETF Internet工程任务组SNMP简单网络管理协议Manager管理者Agent代理者Polling轮询Interrupt-Based基于中断MIB管理信息库Trap-Directed Polling陷入制导轮询方法CIMP公共管理信息协议Association Control Protocol,ACP,联系控制协议Remote Operation Protocol,ROP,远程操作协议Protocol Data Unit,PDU,协议数据单元NCSC国家计算机安全中心Trusted Computer Standard Evaluation Criteria可信任计算机标准评估准则Orange Book橘皮书Dos拒绝服务Ddos分布式拒绝服务DES数据加密标准DEA数据加密算法AES高级加密算法RSANIST美国国家标准和技术研究所Key Distribution Center,KDC,密钥分发中心Certification Authority,CA,认证中心信息完整性认证方法:Massage Authentication Code,MAC,消息认证码Manipulation Detection Code,MDC,篡改检测吗认证函数:Message Encryption Function,MEF,信息加密函数Massage Authentication Code,MAC,信息认证码Hash Function散列函数DSS数字签名标准Token持证MIT麻省理工学院安全电子邮件常用技术:Pretty Good Privacy,PGP,非常好的私密性Secure/Multipurpose Internet Mail Extension,S/MIME,安全/通用Internet邮件扩充Passphrase口令短语Clear-Signed透明签名Ipsec IP安全协议:Authentication Head,AH,身份认证头Encapsulation Security Payload,ESP,封装安全负载TLS运输层安全Internetwork Security Monitor,互联网安全监视器HAR主机审计记录Generic Decryption,GD,类属解密第八章网络应用技术Multicast Backbone,Mbone,组播主干网Unicast单播Broadcast广播Multicast组播IANA管理局组播的相关协议:Internet Group Management Protocol,IGMP,互联网组管理协议CGMPRouter-Port Group Management Protocol,RGMP,路由器-端口组管理协议Dense-Mode Multicast Routing Protocol密集模式组播路由协议Flooding洪泛Distance Vector Multicast Routing Protocol,DVMRP,距离矢量组播路由协议Multicast For Open Shortest Path First,MOSPF,开放最短路径优先的组播扩展协议Protocol Independent Multicast-Dense Mode,PIM-DM,独立组播密集模式Core Based Trees,CBT,基于核心的Multiprotocol Border Gateway Protocol,MBGP,多协议边界网关协议Multicast Source Discovery Protocol,MSDP,组播源发现协议Centralized Topology集中式拓扑结构Decentralized Unstructured Topology分布式非结构化拓扑Distributed Hash Table,DHT,分布式散列表Node ID结点标识符Object ID资源标识符Chum波动Hybrid Structure混合式结构Instant Messaging And Presence Protocol Working Group,IPPWG,IMPP工作小组Request For Comment,RFC,请求评论Internet Engineering Task Force,IETF,Internet工程任务组IM系统的附加功能:Voice/Video Chat音频/视频聊天Application Sharing应用共享File Transfer文件传输File Sharing文件共享Game Request游戏邀请Remote Assistance远程助理Whiteboard白板Session会话Session Initiation Protocol,SIP,会话初始化协议SIP For Instant Messaging And Presence Leverage Extension,SIMPLEExtensible Messaging And Presence Protocol,XMPP,SIP系统的组成:User Agent用户代理User Agent Client,UAC,用户代理客户机User Agent Server,UAS,用户代理服务器Proxy Server代理服务器Redirect Server重定向服务器Registrar注册服务器SIP消息的类型:Request请求Response响应SIP消息的组成:Start-Line起始行Field字段Message Body消息体Entity Header实体头Request-Line请求行Status-Line状态行Message Session Relay Protocol,MSRP,消息中断协议Presence Information呈现信息Presence Service呈现服务呈现服务包括:Presence User Agent,PUA,呈现用户代理Presence Agent,PA,呈现代理Presence Server,PS,呈现服务器Watcher申请者Set Top Box机顶盒Near Video On Demand,NVOD,就近式点播电视True Video On Demand,TVOD,真实点播电视Interactive Video On Demand,IVOD,交互式点播电视Voice Over IP,Voip,IP电话,Internet Protocol PhoneIP电话的实现方法:PC-to-PCPC-to-PhonePhone-to-PhoneIP电话的组成:Terminal终端设备Gateway网关Multipoint Control Unit,MCU,多点控制单元Gatekeeper网守Common Gate Interface,CGI,公共网关接口Page Rank网页等级Store Server存储服务器Searcher搜索器Spiders蜘蛛/搜索器Robot机器人/搜索器Crawlers爬虫/搜索器Indexer索引器Sorter排序器Repository知识库Work Stemming词干法Word Truncation截词Link popularity链接流行度Hyperlink超链接。
关于电脑软件英语作文

关于电脑软件英语作文在本次作文中,我将以一篇网上下载量最高的电脑软件英语作文为参考,并根据原文进行高质量的仿写。
下面是原文:---。
Title: The Importance of Computer Software。
In today's digital age, computer software plays a crucial role in almost every aspect of our lives. From personal use to business operations, the significance of software cannot be overstated.Firstly, computer software enhances productivity and efficiency. With the right software tools, tasks that used to take hours can now be completed within minutes. For example, office suites like Microsoft Office streamline document creation, spreadsheet management, and presentation design, enabling workers to accomplish more in less time. This increased efficiency translates to cost savings andimproved competitiveness for businesses.Secondly, computer software facilitates communication and collaboration. Email clients, instant messaging apps, and video conferencing software enable seamless communication between individuals and teams regardless of geographical location. This is especially vital in today's globalized world where remote work is becoming increasingly common. Moreover, collaborative tools such as Google Drive and Dropbox allow multiple users to work on the same documents simultaneously, fostering teamwork and innovation.Furthermore, computer software drives innovation and creativity. From graphic design software like Adobe Photoshop to music production software like Ableton Live, creative professionals rely on specialized tools to bring their ideas to life. These software applications not only provide advanced features and functionalities but also empower users to experiment and push the boundaries oftheir creativity.Additionally, computer software plays a pivotal role ineducation and skill development. Educational software, such as interactive learning platforms and simulation tools, enhances the learning experience by making complex concepts more engaging and accessible. Furthermore, programming environments like Scratch and Python enable students to develop computational thinking and coding skills from an early age, preparing them for future careers in technology.In conclusion, computer software is indispensable in today's interconnected world. Its role in enhancing productivity, facilitating communication and collaboration, driving innovation, and supporting education cannot be ignored. As technology continues to evolve, the importance of computer software will only grow, shaping the way we live, work, and interact with the world around us.---。
想成为一名自由职业者的英文作文

想成为一名自由职业者的英文作文## Embracing the Path to Freelance Success.In the ever-evolving landscape of the professional world, the concept of freelancing has emerged as a liberating force, empowering individuals with the freedom to craft a work life that aligns with their aspirations and values. Embarking on the freelance journey can be both an exhilarating and daunting endeavor, but with careful planning and unwavering determination, it can lead to a fulfilling and prosperous career.Defining the Freelance Landscape.Freelancing, in its essence, is the practice ofoffering one's skills and expertise on a project-based or contract basis, rather than being bound to a traditional employer-employee relationship. Freelancers often operate as their own sole proprietorships or limited liability companies, allowing them to have complete autonomy overtheir work hours, project selection, and business operations.The freelance landscape encompasses a vast spectrum of professions, including writing, graphic design, web development, marketing, consulting, and more. With the rise of the digital age, online platforms such as Upwork, Freelancer, and Fiverr have facilitated the connection between freelancers and clients worldwide.Unveiling the Benefits of Freelancing.The allure of freelancing stems from its inherent advantages, which include:Flexibility and Control: Freelancers enjoy unparalleled flexibility in setting their own schedules and choosing the projects they pursue. This allows them to balance their work and personal lives, pursue passions outside of work, and travel as desired.Entrepreneurial Spirit: Freelancing fosters anentrepreneurial mindset, empowering individuals to take ownership of their careers and build a business aroundtheir skills. This involves setting rates, managing finances, and marketing themselves to potential clients.Diversity of Work: Freelancers often work on a wide range of projects for different clients, which exposes them to a variety of industries, perspectives, and challenges. This diversity keeps work engaging and intellectually stimulating.Income Potential: While freelancing can be a lucrative career path, it is important to note that income can vary depending on factors such as skill level, industry, and market conditions. However, with hard work and dedication, freelancers have the potential to earn competitive rates.Embarking on the Freelance Journey.Becoming a successful freelancer requires a combination of skill, strategy, and dedication. Here are some key steps to consider:Develop In-Demand Skills: Identify your strongestskills and areas of expertise that are in high demand inthe freelance market. Consider developing specializedskills through certifications, workshops, or online courses.Build a Professional Portfolio: Create a portfolio that showcases your best work and highlights your capabilities. This portfolio should include a variety of projects that demonstrate your range of skills.Establish a Strong Online Presence: Create aprofessional website and social media profiles thathighlight your services and portfolio. Engage withpotential clients online to build relationships and showcase your expertise.Network and Market Yourself: Attend industry events,join online communities, and actively network withpotential clients and other freelancers. Share your knowledge and expertise through blog posts, articles, or webinars to establish yourself as a thought leader in yourfield.Manage Your Finances Effectively: Set up a system for invoicing, tracking expenses, and managing taxes. Consider using accounting software or working with a bookkeeper to ensure financial transparency and compliance.Set Boundaries and Protect Yourself: Establish clear boundaries between work and personal time. Use contracts to define project scope, payment terms, and intellectual property rights. Consider obtaining liability insurance to protect yourself from potential claims.Navigating the Challenges of Freelancing.While freelancing offers numerous benefits, it also comes with its unique challenges:Income Fluctuation: Freelancing income can be unpredictable, especially in the early stages of your career. It is important to manage your finances carefully and have a financial cushion in place.Isolation and Self-Discipline: Freelancing can be an isolating experience, as you often work independentlywithout direct supervision. Maintaining self-discipline and staying motivated is crucial to success.Competition: The freelance market is competitive, andit is important to differentiate yourself from other freelancers and establish your value proposition.Legal and Administrative Responsibilities: Freelancers are responsible for their own taxes, insurance, and legal compliance. Understanding these responsibilities isessential for avoiding potential pitfalls.Conclusion.Embracing the freelance lifestyle can be atransformative experience, empowering individuals with the freedom and flexibility to design their ideal work lives.By developing in-demand skills, building a strong portfolio, and marketing themselves effectively, aspiring freelancerscan establish successful careers and enjoy the numerous advantages that come with charting their own professional course. However, it is important to approach freelancing with a clear understanding of its challenges and to navigate them with determination and a proactive mindset.。
本科毕业论文图像识别系统的设计[管理资料]
![本科毕业论文图像识别系统的设计[管理资料]](https://img.taocdn.com/s3/m/dc5c1c7dcc22bcd127ff0cad.png)
摘要随着计算机软硬件技术的高速发展,计算机数字图像处理技术在各个领域得到了广泛的应用,如计算机图像识别、图像检索、图像工业化应用等。
尤其是计算机识别技术,通过数字图像处理中的模式识别技术,可以将人眼无法识别的图像进行分类处理,可以快速准确的检索、匹配和识别出各种东西。
虽然某些处理也可以用光学方法或模拟技术实现,但它们远不及数字图像处理那样灵活和方便,因而数字图像处理成为图像处理的主要方面。
图形辨别是图像识别技术的一个重要分支,图形辨别指通过对图形的图像采用特定算法,从而辨别该图形,例如,辨别三角形、矩形、圆形、六边形等。
本系统使用摄像头对图像进行采集图像,~,对采集图像进行图像分割,得到二值化图像,然后通过轮廓跟踪获得图形轮廓信息,最后使用基于轮廓跟踪的图像辨别算法在空域上辨别三角形、矩形、圆形,并在特定的区域上显示相应信息。
关键词:图形辨别角度判别轮廓跟踪ABSTRACTWith the rapid development of computer hardware and software technology, computer digital image processing technology have been widely applied in many fields,Such as image recognition,image retrieval,and image industrial computers recognition technology, by the pattern of recognition techniques,it can recognize the image classification what human eye can not recognize, it can be fast and accurate search, match and identify all sorts of some treatment methods can also use optical or analog technology, but they are nowhere near as flexible digital image processing and convenience, digital image processing, and thus digital image processing become the main aspects of image processing.Graphic distinguish is an important branch of image recognition,graphic distinguish means graphic images by using a specific algorithm,to identify the graphics,for example, identify the triangle, rectangle, round, hexagon and so on. The system uses the image capture camera images from the cameras capture images, and the camerra to the in the image in range of the ~ is Process the collected image, get the binary image, and then contour tracking access to graphics, the outlines of the final image-based contour tracking algorithm to identify the airspace on the identification triangle, rectangle, circle, and in particular to display the corresponding region information.Key words:graphic distinguish angle judgement contour tracking第一章绪论1.1研究内容图形辨别是图像识别技术中一个重要分支,图形辨别指通过对图形的图像采用特定算法,从而辨别该图形,例如,辨别三角形、矩形、圆形、六边形等。
CorelDRAW(2024)

• Grouping and Ungrouping: Combine multiple objects into a single group for individual manipulation or ungrouping them to edit individual components
2024/1/29
Suitable for creating illustrations, cartons, comics, and other visual works
Can be used to design web graphics, icons, and other web elements
Fill and Outline
Apply colors, gradients, patterns, or textures to the fill or outline of selected objects using the Fill tool and Outline color picker
application skills
2
目录
2024/1/29
• Layer management and special effects production
• Symbol library and automation functions
3
Overview of CorelDRAW 01 software
地理信息科学专业英语

专业术语英译汉affine 仿射band 波段cartography 制图学clip 剪切digitizer 数字化仪DLG 数字线划图dpi 每英寸点数edgematching 边缘匹配equator 赤道equiarea 等积geoid 大地水准面geospatial 地理空间GPS 全球定位系统Habitat 栖息地Interface 接口Item 项目Latitude 纬度legend 图例longitude 经度median 中值meridian 子午线metadata 元数据neatline 图廓线Object-Based 基于对象的parcel 宗地photogrammetry 摄影测量precipitation 降水量range 范围raster 栅格resample 重采样resolution 分辨率RMS 均方根scanner 扫描仪siting 选址TIGER 拓扑统一地理编码topology 拓扑tuple 数组UTM 通用横轴墨卡托投影vector 矢量专业术语汉译英保护区protected area比例尺Scale bar标准差Standard deviation标准图幅Standard picture frame 单精度Single precision地理空间数据Geospatial data点缓冲区Point buffer动态分段Dynamic segmentation度量标准Metrics多项式变换Polynomial transformation 高程基准Elevation base跟踪算法Tracking algorithm规则格网Rules grid过渡带Transition zone基于位置服务Based on location service畸形线Malformation line几何变换Geometric transformation 检验图Inspection chart解析几何Analytic geometry空间要素Space element平面坐标系统Planar coordinate system曲流河Meandering river人口普查地段Census Lot上四分位数The upper quartile矢量数据模型Vector data model数据可视化data visualization数据探查Data exploration双精度Double precision水文要素Hydrological elements泰森多边型Tyson Polygons统一建模语言Unified Modeling Language投影坐标系统Projection coordinate system 线缓冲区Line buffer遥感数据Remote sensing data用材林Timber forest晕渲法Halo rendering method 指北针Compass属性表Property sheet最短路径分析Shortest path analysis最小二乘法Least squares method翻译例子如下。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Tracking Complex Objects usingGraphical Object ModelsLeonid Sigal1,Ying Zhu3,Dorin Comaniciu2and Michael Black1 1Department of Computer Science,Brown University,Providence,RI02912{ls,black}@2Integrated Data Systems,Siemens Corporate Research,Princeton,NJ08540aniciu@3Real Time Vision&Modeling,Siemens Corporate Research,Princeton,NJ08540ying.zhu@Abstract.We present a probabilistic framework for component-basedautomatic detection and tracking of objects in video.We represent ob-jects as spatio-temporal two-layer graphical models,where each nodecorresponds to an object or component of an object at a given time,andthe edges correspond to learned spatial and temporal constraints.Objectdetection and tracking is formulated as inference over a directed loopygraph,and is solved with non-parametric belief propagation.This typeof object model allows object-detection to make use of temporal consis-tency(over an arbitrarily sized temporal window),and facilitates robusttracking of the object.The two layer structure of the graphical modelallows inference over the entire object as well as individual components.AdaBoost detectors are used to define the likelihood and form proposaldistributions for components.Proposal distributions provide‘bottom-up’information that is incorporated into the inference process,enablingautomatic object detection and tracking.We illustrate our method bydetecting and tracking two classes of objects,vehicles and pedestrians,in video sequences collected using a single grayscale uncalibrated car-mounted moving camera.1IntroductionThe detection and tracking of complex objects in natural scenes requires rich models of object appearance that can cope with variability among instances of the object and across changing viewing and lighting conditions.Traditional opticalflow methods are often ineffective for tracking objects because they are memoryless;that is,they lack any explicit model of object appearance.Here we seek a model of object appearance that is rich enough for both detection and tracking of objects such as people or vehicles in complex scenes.To that end we develop a probabilistic framework for automatic component-based detection and tracking.By combining object detection with tracking in a unified framework we can achieve a more robust solution for both problems.Tracking can make use of object detection for initialization and re-initialization during transient failures orocclusions,while object detection can be made more reliable by considering the consistency of the detection over time.Modeling objects by an arrangement of image-based(possibly overlapping)components,facilitates detection of complex articulated objects,as well as helps in handling partial object occlusions or local illumination changes.Object detection and tracking is formulated as inference in a two-layer graph-ical model in which the coarse layer node represents the whole object and the fine layer nodes represent multiple component“parts”of the object.Directed edges between nodes represent learned spatial and temporal probabilistic con-straints.Each node in the graphical model corresponds to a position and scale of the component or the object as a whole in an image at a given time instant. Each node also has an associated AdaBoost detector that is used to define the local image likelihood and a proposal process.In general the likelihoods and de-pendencies are not Gaussian.To infer the2D position and scale at each node we exploit a form of non-parametric belief propagation(BP)that uses a variation of particlefiltering and can be applied over a loopy graph[8,15].The problem of describing and recognizing categories of objects(e.g.faces, people,cars)is central to computer vision.It is common to represent objects as collections of features with distinctive appearance,spatial extent,and position [2,6,10,11,16,17].There is however a large variation in how many features one must use and how these features are detected and represented.Most algorithms rely on semi-supervised learning[11,16,17]schemes where examples of the de-sired class of objects must be manually aligned,and then learning algorithms are used to automatically select the features that best separate the images of the desired class from background image patches.More recent approaches learn the model in an unsupervised fashion from a set of unlabeled and unsegmented images[2,6].In particular,Fergus et al[6]develop a component based object detection algorithm that learns an explicit spatial relationship between parts of an object,but unlike our framework assumes Gaussian likelihoods and spatial relationships and does not model temporal consistency.In contrast to part-based representations,simple discriminative classifiers treat an object as a single image region.Boosted classifiers[16],for example, while very successful tend to produce a large set of false positives.While this problem can be reduced by incorporating temporal information[17],discrimina-tive classifiers based on boosting do not explicitly model parts or components of objects.Such part-based models are useful in the presence of partial occlu-sions,out-of-plane rotation and/or local lighting variations[5,11,18].Part-or component-based detection is also capable of handling highly articulated objects [10],for which a single appearance model classifier may be hard to learn.An il-lustration of the usefulness of component-based detection for vehicles is shown in Fig.1.While all vehicles have almost identical parts(tires,bumper,hood, etc.)their placement can vary significantly due to large variability in the height and type of vehicles.Murphy et al[12]also use graphical models in the patch-based detection scheme.Unlike our approach they do not incorporate temporal information orFig.1.Variation in the vehicle class of objects is shown.While objects shown here have a drastically different appearance as a whole due to the varying height and type of the vehicle,their components tend to be very homogeneous and are easy to model. explicitly reason about the object as a whole.Also closely related is the work of [13]which uses AdaBoost for multi-target tracking and detection.However,their Boosted Particle Filter[13]does not integrate component-based object detection and is limited to temporal propagation in only one direction(forward in time).In contrast to these previous approaches we combine techniques from discriminative learning,graphical models,belief propagation,and particlefiltering to achieve reliable multi-component object detection and tracking.In our framework,object motion is represented via temporal constraints (edges)in the graphical model.These model-based constraints for the object and components are learned explicitly from the labeled data,and make no use of the opticalflow information.However the model could be extended to use ex-plicitflow information as part of the likelihood model,or as part of the proposal process.In particular,as part of the proposal process,opticalflow information can be useful in focusing the search to the regions with“interesting”motion, that are likely to correspond to an object or part/component of an object.2Graphical Object ModelsFollowing the framework of[14]we model an object as a spatio-temporal di-rected graphical model.Each node in the graph represents either the object or a component of the object at time t.Nodes have an associated state vector X T=(x,y,s)defining the component’s real-valued position and scale within an image.The joint probability distribution for this spatio-temporal graphical object model with N components and over T frames can be written as:P(X O0,X C00,X C10,...,X C N0,......,X O T,X C0T,X C1T,...,X C NT,Y0,Y1,...,Y T)=1spatial compatibility of the object and it’s components at frame i;ψkl(X C k i,X C l i) is the spatial compatibility between object components at frame i;andφi(Y i,X O i) andφi(Y i,X C k i)denote the local evidence(likelihood)for the object and com-ponent states respectively.Our framework can be viewed as havingfive distinct components:(i)a graph-ical model,(ii)an inference algorithm that infers a probability distribution over the state variables at each node in the graph,(iii)a local evidence distribution (or image likelihood),(iv)a proposal process for some or all nodes in a graphical model,and(v)a set of spatial and/or temporal constraints corresponding to the edges in a graph.We will now discuss each one of these in turn.2.1Building the Graphical ModelFor a single frame we represent objects using a two-layer spatial graphical model. Thefine,component,layer contains a set of loosely connected“parts.”The coarse,object,layer corresponds to an entire appearance model of the object and is connected to all constituent components.Examples of such models for pedestrian and vehicle detection are shown in a the shaded regions of Fig.2a and2b respectively.In both cases objects are modeled using four overlapping image components.For the vehicle the components are:top-left(TL),top-right (TR),bottom-right(BR)and bottom-left(BL)corners;while for the pedestrian, they are:head(HD),left arm(LA),right arm(RA)and legs(LG)(see Fig.3ab).To integrate temporal constraints we extend the spatial graphical models over time to an arbitrary-length temporal window.The resulting spatio-temporal graphical models are shown in Fig.2a and2b.Having a two-layer graphical model,unlike the single component layer model of[14],allows the inference pro-cess to reason explicitly about the object as a whole,as well as helps reduce the complexity of the graphical model,by allowing the assumption of indepen-dence of components over time conditioned on the overall object appearance. Alternatively,one can also imagine building a single object layer model,which would be similar to the Boosted Particle Filter[13](with bi-directional temporal constraints).2.2Learning Spatial and Temporal ConstraintsEach directed edge between components i and j has an associated potential func-tionψij(X i,X j)that encodes the compatibility between pairs of node states.The potentialψij(X i,X j)is modeled using a mixture of M ij Gaussians(following [14])ψij(X i,X j)=λ0N(X j;µij,Λij)+(1−λ0)M ijm=1πijm N(X j;F ijm(X i),G ijm(X i))whereλ0is afixed outlier probability,µij andΛij are the mean and covari-ance of the Gaussian outlier process,and F ijm(X i)and G ijm(X i)are functions that return the mean and covariance matrix respectively of the m-th Gaussian(a)(b)Fig.2.Graphical models for the(a)pedestrian and(b)vehicle detection and tracking. Spatio-temporal models are obtained by replicating a spatial model(shown by the shaded region)along the temporal domain to a w-length window and then connecting the object layer nodes across time.mixture component.πijm is the relative weight of an individual component and M ij m=1πijm=1.For experiments in this paper we used M ij=2mixture com-ponents.Given a set of labeled images,where each component is associated with a single reference point,we use standard iterative Expectation-Maximization(EM) algorithm with K-means initialization to learn F ijm(X i)of the form:F ijm(X i)=X i+ µx ijmµs ijm,µs ijm T(1) whereµx ijm,µy ijm,µs ijm is the mean position and scale of component or ob-ject j relative to i.G ijm(X i)is assumed to be diagonal matrix,representing the variance in relative position and scale.Examples of the learned conditional distributions can be seen in Fig.3cde.2.3AdaBoost Image LikelihoodsThe likelihood,φ(Y,X i)models the probability of observing the image Y con-ditioned on the state X i of the node i,and ideally should be robust to partial occlusions and the variability of image statistics across many different inputs. To that end we build our likelihood model using a boosted classifier.Following[16]we train boosted detectors for each component.For simplicity we use AdaBoost[16]without a cascade(training with a cascade would likely improve the computational efficiency of the system).In order to reduce the num-ber of false positives produced by the detectors,we use a bootstrap procedure that iteratively adds false positives that are collected by running the trained strong classifier over the set of background images(not containing the desired object)and then re-training the detectors using the old positive and the new extended negative sets.(d)(e)ponents for the(a)pedestrian and(b)vehicle object models(entire ap-pearance model is in cyan)and learned conditional distributions from(c)Bottom-Left (BL)to Top-Left(TL)component,(d)Bottom-Left(BL)to the whole appearance model,and(e)whole appearance model to the Bottom-Left(BL)component.Given a set of labeled patterns the AdaBoost procedure learns a weighted combination of base weak classifiers,h(I)= K k=1αk h k(I),where I is an image pattern,and h k(I)is the weak classifier chosen for the round k of boosting,and αk is the corresponding weight.We use a weak classifier scheme similar to the one discussed in[16]:h k(I)=p k βk2 K k=1αk.We convert this confidence into a likelihood function by first normalizing theαk’s,so that h(I)∈[0,1],and then exponentiatingφ(Y,X i)∝exp(h(I)/T)(2)where image pattern I is obtained by cropping full image Y based on the state of the object or component X i;and T is an artificial temperature parameter that controls the smoothness of the likelihood function,with smaller values of T leading to peakier distribution.Consequently we can also anneal the likelihood by deriving a schedule with which T changes.We found an exponential annealing schedule T=T0υκ,where T0is the initial temperature,υis a fraction∈(0,1), andκis the annealing iteration,to work well in practice.AdaBoost classifiers are learned using a database of861vehicles and662pedestrians[11].The number of negative examples after bootstrapping tends to be on the order of2000to3000.Depending on an object one may or may not have a likelihood or a proposal process for the object layer nodes.For example if the whole appearance of an object is indeed too complicated to model as a whole(e.g.arbitrary size vehicles) and can only be modeled in terms of components,we can simply assume a uniform likelihood over the entire state space.In such cases the object layernodes simply fuse the component information to produce estimates for the object state that are consistent over time.It is worth noting that the assumption of local evidence independence im-plicit in our graphical model is only approximate,and may be violated in the regions where object and components overlap.In such cases the correlation or bias introduced into the inference process will depend on the nature of thefil-ters chosen by the boosting procedure.While this approximation works well in practice,we plan to study it more formally in the future.2.4Non-parametric BPInferring the state of the object and it’s components in our framework is defined as estimating belief in a graphical model.We use a form of non-parametric belief propagation[8]Pampas to deal with this task.The approach is a generalization of particlefiltering[4]which allows inference over arbitrary graphs rather then a simple chain.In this generalization the‘message’used in standard belief propa-gation is approximated with a kernel density(formed by propagating a particle set through a mixture of Gaussians density),and the conditional distribution used in standard particlefiltering is replaced by product of incoming messages. Most of the computational complexity lies in sampling from a product of ker-nel densities required for message passing and belief estimation;we use efficient sequential multi-scale Gibbs sampling and epsilon-exact sampling[7]to address this problem.Individual messages may not constrain a node well,however the product over all incoming messages into the node tends to produce a very tight distribution in the state space.For example,any given component of a vehicle is incapable of estimating the height of the vehicle reliably,however once we integrate infor-mation from all components in the object layer node,we can get a very reliable estimate for the overall object size.More formally a message m ij from node i to node j is written asm ij(X j)= ψij(X i,X j)φi(Y i,X i) k∈A i/j m ki(X i)d X i,(3) where A i/j is the set of neighbors of node i excluding node j andφi(Y i,X i)is the local evidence(or likelihood)associated with the node i,andψij(X i,X j)is the potential designating the compatibility between the states of node i and j. The details of how the message updates can be carried out by stratified sampling from belief and proposal function see[14].While it is possible and perhaps beneficial to perform inference over the spatio-temporal model defined for the entire image sequence,there are many applications for which this is impractical due to the lengthy off-line processing required.Hence,we use a w-frame windowed smoothing algorithm where w is an odd integer≥1(see Fig.2).There are two ways one can do windowed smoothing:in an object-detection centric way or a tracking-centric way.In the former we re-initialize all nodes every time we shift a window,hence the temporalintegration is only applied in the window of size w.In the tracking centric way we only initialize the nodes associated with a new frame,which tends to enforce temporal consistency from before t−(w−1)/2.While the later tends to converge faster and produce more consistent results over time,it is also less sensitive to objects entering and leaving the scene.Note that with w=1,the algorithm resembles single-frame component-based fusion[18].2.5Proposal ProcessTo reliably detect and track the object non-parametric BP makes use of the bottom-up proposal process,that constantly looks for and suggests alternative hypothesis for the state of the object and components.We model a proposal distribution using a weighted particle set.To form a proposal particle set for a component,we run the corresponding AdaBoost detector over an image at a number of scales to produce a set of detection results that score above the 1filters in general have been shown to have difficulties when tracking multi-modal distributions[13].The Pampas framework used here is an extension of parti-clefiltering,and the message update involves taking a product over particle sets,consequently,Pampas suffers from similar problems.Furthermore,belief propagation over a loopy graph such as ours may further hinder the modeling of multi-modal distributions.To enable multi-target tracking then we employ a peak suppression scheme,where modes are detected one at a time,and then the response of the likelihood function is suppressed in the regions where peaks have already been found.An example of this obtained by running a purely spatial graphical model over the image containing6vehicles is shown in Fig.4.4ConclusionIn this paper we present a novel object detection and tracking framework ex-ploiting boosted classifiers and non-parametric belief propagation.The approach provides component-based detection and integrates temporal information over an arbitrary size temporal window.We illustrate the performance of the frame-work with two classes of objects:vehicles and pedestrians.In both cases we can reliably infer position and scale of the objects and their components.Further work needs to be done to evaluate how the method copes with changing lighting and occlusion.Additional work is necessary to develop a mutli-target scheme that incorporates a probabilistic model of the entire image.The algorithm developed here is quite general and might be applied to other objection tracking and motion estimation problems.For example,we might for-mulate a parameterized model of facial motion in which the opticalflow in dif-ferent image regions(mouth,eyes,eyebrows)are modeled independently.These motion parameters for these regions could then be coupled via the graphical model and combined with a top-level head tracker.Such an approach might offer improved robustness over previous methods for modeling face motion[1]. References1.Recognizing facial expressions in image sequences using local parameterized modelsof image motion,M.J.Black and Y.Yacoob.International Journal of Computer Vision,25(1),pp.23–48,1997.2.M.Burl,M.Weber and P.Perona.A probabilistic approach to object recognitionusing local photometry and global geometry,ECCV,pp.628–641,1998.3.J.Coughlan and S.Ferreira.Finding deformable shapes using loopy belief propa-gation,ECCV Vol.3,pp.453–468,2002.4. A.Douce,N.de Freitas and N.Gordon.Sequential Monte Carlo methods in practice,Statistics for Engineering and Information Sciences,pp.3–14,Springer Verlag,2001.5.P.Felzenszwalb and D.Huttenlocher.Efficient matching of pictorial structures,CVPR,Vol.2,pp.66–73,2000.6.R.Fergus,P.Perona and A.Zisserman.Object class recognition by unsupervisedscale-invariant learning,CVPR,2003.7. A.Ihler,E.Sudderth,W.Freeman and A.Willsky.Efficient multiscale sampling from products of Gaussian mixtures,Advances in Neural Info.Proc.Sys.16,2003.8.M.Isard.Pampas :Real-valued graphical models for computer vision,CVPR ,Vol.1,pp.613–620,2003.9.M.Jordan,T.Sejnowski and T.Poggio.Graphical models:Foundations of neural computation,MIT Press ,2001.10.K.Mikolajczyk,C.Schmid,and A.Zisserman.Human detection based on a prob-abilistic assembly of robust part detectors,ECCV ,2004.11. A.Mohan,C.Papageorgiou and T.Poggio.Example-based object detection in images by components,IEEE PAMI ,23(4):349–361,2001.12.K.Murphy,A.Torralba and ing the forest to see the trees:A graphical model relating features,objects,and scenes,Advances in Neural Info.Proc.Sys.16,2003.13.K.Okuma,A.Teleghani,N.de Freitas,J.Little and D.Lowe.A boosted particle filter:Multitarget detection and tracking,ECCV ,2004.14.L.Sigal,S.Bhatia,S.Roth,M.Black and M.Isard.Tracking loose-limbed people,CVPR ,2004.15. E.Sudderth,A.Ihler,W.Freeman and A.Willsky.Nonparametric belief propa-gation,CVPR ,Vol.1,pp.605–612,2003;(see also MIT AI Lab Memo 2002-020).16.P.Viola and M.Jones.Rapid object detection using a boosted cascade of simple features,CVPR ,2001.17.P.Viola,M.Jones and D.Snow.Detecting pedestrians using patterns of motion and appearance,ICCV ,pp.734–741,2003.18.for 12345678for have already been found.)。