Matlab矩阵的基本操作
MATLAB中对矩阵的基本操作

MATLAB中对矩阵的基本操作在MATLAB中,可以对矩阵进行多种基本操作,包括创建矩阵、访问元素、改变矩阵的大小、插入和删除元素、矩阵的运算等。
以下是对这些操作的详细说明:1.创建矩阵:在MATLAB中,可以使用多种方式创建矩阵。
其中最常用的方式是使用方括号将元素排列成行或列,例如:```A=[1,2,3;4,5,6;7,8,9];```这将创建一个3x3的矩阵A,其元素为1到92.访问元素:可以使用括号和下标来访问矩阵中的元素。
下标从1开始计数。
例如,要访问矩阵A的第二行第三列的元素,可以使用以下代码:```A(2,3);```这将返回矩阵A的第二行第三列的元素。
3.改变矩阵的大小:可以使用函数如reshape和resize来改变矩阵的大小。
reshape函数可以将矩阵重新组织为不同的行和列数。
例如,以下代码使用reshape 将3x3的矩阵A重新组织为1x9的矩阵B:```B = reshape(A, 1, 9);```resize函数可以改变矩阵的大小,可以用来增加或减少矩阵的行和列数。
例如,以下代码将矩阵A的大小改变为2x6:```A = resize(A, 2, 6);```4.插入和删除元素:可以使用括号和下标来插入和删除矩阵中的元素。
例如,以下代码会在矩阵A的第二行的末尾插入一个元素10:```A(2, end+1) = 10;```同时,可以使用括号和下标来删除矩阵中的元素。
以下代码将删除矩阵A的第一行的第二个元素:```A(1,2)=[];```这将删除矩阵A的第一行的第二个元素。
5.矩阵的运算:-矩阵乘法:使用*符号进行矩阵乘法运算。
例如,以下代码将矩阵A 与矩阵B相乘:```C=A*B;```-矩阵加法和减法:使用+和-符号进行矩阵加法和减法运算。
例如,以下代码将矩阵A和矩阵B相加得到矩阵C:```C=A+B;```-矩阵转置:使用'符号进行矩阵的转置操作。
例如,以下代码将矩阵A转置:```B=A';```-矩阵相乘:使用.*符号进行矩阵的元素级相乘运算。
MATLAB矩阵操作大全

MATLAB矩阵操作大全1. 创建矩阵:可以使用函数`zeros`、`ones`、`eye`、`rand`等来创建全零矩阵、全一矩阵、单位矩阵和随机矩阵。
2.矩阵索引:可以使用`(`或`[]`来访问矩阵中的元素。
例如,`A(3,2)`表示访问矩阵A中第3行第2列的元素。
3.矩阵运算:可以使用`+`、`-`、`*`、`/`等运算符对矩阵进行加法、减法、乘法和除法运算。
4. 矩阵转置:可以使用`'`符号或`transpose`函数来对矩阵进行转置操作。
例如,`B = A'`表示将矩阵A转置为矩阵B。
5.矩阵加法和减法:可以使用`+`和`-`运算符对两个矩阵进行逐元素的加法和减法运算。
6.矩阵乘法和除法:可以使用`*`和`/`运算符对矩阵进行乘法和除法运算。
注意,矩阵乘法是按照矩阵相应元素进行乘法运算,并不是简单的逐元素乘法。
7. 矩阵求逆:可以使用`inv`函数来求矩阵的逆矩阵。
例如,`B =inv(A)`表示求矩阵A的逆矩阵,并将结果保存在矩阵B中。
8. 矩阵转换:可以使用转换函数`double`、`single`、`int8`、`int16`、`int32`、`int64`等将矩阵的数据类型转换为指定类型。
9. 矩阵求解线性方程组:可以使用`solve`函数来求解线性方程组。
例如,`x = solve(A, b)`表示求解线性方程组Ax = b,并将结果保存在向量x中。
10. 矩阵求特征值和特征向量:可以使用`eig`函数来求矩阵的特征值和特征向量。
例如,`[V, D] = eig(A)`表示求矩阵A的特征值和特征向量,并将结果保存在矩阵V和对角矩阵D中。
11. 矩阵的行列式:可以使用`det`函数来计算矩阵的行列式。
例如,`D = det(A)`表示计算矩阵A的行列式,并将结果保存在变量D中。
12. 矩阵的秩:可以使用`rank`函数来计算矩阵的秩。
例如,`r = rank(A)`表示计算矩阵A的秩,并将结果保存在变量r中。
Matlab中的矩阵操作技巧指南

Matlab中的矩阵操作技巧指南在科学计算和数据处理中,矩阵操作是一个非常重要的环节。
Matlab作为一种功能强大的计算工具,提供了丰富的矩阵操作函数和技巧,帮助用户更高效地处理数据。
本文将为大家介绍一些在Matlab中常用的矩阵操作技巧,希望对广大Matlab用户有所帮助。
一、矩阵的创建和赋值在Matlab中,创建矩阵有多种方式。
可以使用数组、函数、特殊值或其他操作创建矩阵。
下面是一些常见的创建矩阵的方法。
1.1 使用数组创建矩阵使用数组创建矩阵是一种简单直观的方式。
可以通过一维或多维数组来创建矩阵。
```matlabA = [1, 2, 3; 4, 5, 6; 7, 8, 9] % 创建一个3x3的矩阵B = [1, 2, 3; 4, 5, 6] % 创建一个2x3的矩阵```1.2 使用函数创建矩阵除了使用数组,还可以使用Matlab提供的函数来创建矩阵。
常用的函数有zeros, ones, eye等。
```matlabC = zeros(3, 3) % 创建一个3x3的全零矩阵D = ones(2, 4) % 创建一个2x4的全一矩阵E = eye(5) % 创建一个5x5的单位矩阵```1.3 特殊值的矩阵Matlab中还提供了一些特殊值的矩阵,如全1矩阵、全0矩阵等。
```matlabF = ones(3, 3) % 创建一个3x3的全1矩阵G = zeros(2, 4) % 创建一个2x4的全0矩阵```二、矩阵的索引和切片在Matlab中,可以使用索引和切片操作来获取矩阵的元素或对矩阵进行切片操作。
2.1 矩阵的索引可以使用单个索引、行索引或列索引来获取矩阵的元素。
```matlabA = magic(3) % 创建一个3x3的魔方矩阵element = A(2, 3) % 获取第2行第3列的元素row = A(1, :) % 获取第1行的所有元素column = A(:, 2) % 获取第2列的所有元素```2.2 矩阵的切片可以使用切片操作来获取矩阵的子矩阵。
matlab矩阵及矩阵的操作

矩阵的操作
1、矩阵下标
MATLAB通过确认矩阵下标,可以对矩阵进行插入子块,提取子块和重排子块的操作。
A(m,n):提取第m行,第n列元素
A(:,n):提取第n列元素
A(m,:):提取第m行元素
A(m1:m2,n1:n2):提取第m1行到第m2行和第n1列到第n2列的所有元素(提取子块)。
A(:):得到一个长列矢量,该矢量的元素按矩阵的列进行排列。
矩阵扩展:如果在原矩阵中一个不存在的地址位置上设定一个数(赋值),则该矩阵会自动扩展行列数,并在该位置上添加这个数,而且在其他没有指定的位置补零。
消除子块:如果将矩阵的子块赋值为空矩阵[ ],则相当于消除了相应的矩阵子块。
2、矩阵的大小
[m,n]=size(A,x):返回矩阵的行列数m与n,当x=1,则只返回行数m,当x=2,则只返回列数n。
length(A)=max(size(A)):返回行数或列数的最大值。
rank(A):求矩阵的秩
矩阵分解
(1)奇异值分解
[U,S,V]=svd(A)
求矩阵A的奇异值及分解矩阵,满足U*S*V’=A,其中U、V矩阵为正交矩阵
(U*U’=I),S矩阵为对角矩阵,它的对角元素即A矩阵的奇异值。
特征值分解
[V,D]=eig(A)
正交分解
[Q,R]=qr(A)
三角分解
[L,U]=lu(A)
将A做对角线分解,使得A=L*U,其中L为下三角矩阵,U为上三角矩阵。
数学建模实验报告(一)MATLAB中矩阵的基本操作

1.5270
j =
2 3 2 5 1 4
>> min(a,[],1)
ans =
Columns 1 through 5
-2.3299 -0.1303 -1.3617 -1.1176 -0.3031
Column 6
0.0230
>> min(a,[],2)
ans =
-0.4762
-0.0679
-2.3299 -0.1303 0.4550 -1.1176 -0.2176
-1.4491 0.1837 -0.8487 1.2607 -0.3031
Column 6
0.0230
0.0513
0.8261
1.5270
0.4669
>> size(a)
ans =
5 6
>> [i,j]=find(a==max(max(a)))
-1.0000 2.5000 1.0000
3.5000 5.5000 2.5000
>> X=D
X =
4.0000 1.5000 -1.0000
-1.0000 2.5000 1.0000
3.5000 5.5000 2.5000
5、利用randn(5,6)命令生成一个随机矩阵T,求T的矩阵大小,每一行、每一列的最大值和最小值,整个矩阵的最大值与最小值;然后将整个矩阵的最大值所在位置的元素换为100,将最小值所在位置的元素取为-100。
(2):>> a=[2 5 8;7 1 9]
a =
2 5 8
7 1 9
>> b=[4 2 1 3;0 7 6 2;-3 5 9 -1]
matlab矩阵的表示和简单操作

matlab矩阵的表示和简单操作一、矩阵的表示在MATLAB中创建矩阵有以下规则:a、矩阵元素必须在”[ ]”内;b、矩阵的同行元素之间用空格(或”,”)隔开;c、矩阵的行与行之间用”;”(或回车符)隔开;d、矩阵的元素可以是数值、变量、表达式或函数;e、矩阵的尺寸不必预先定义。
二,矩阵的创建:1、直接输入法最简单的建立矩阵的方法是从键盘直接输入矩阵的元素,输入的方法按照上面的规则。
建立向量的时候可以利用冒号表达式,冒号表达式可以产生一个行向量,一般格式是: e1:e2:e3,其中e1为初始值,e2为步长,e3为终止值。
还可以用linspace函数产生行向量,其调用格式为:linspace(a,b,n) ,其中a和b是生成向量的第一个和最后一个元素,n是元素总数。
2、利用MATLAB函数创建矩阵基本矩阵函数如下:(1) ones()函数:产生全为1的矩阵,ones(n):产生n*n维的全1矩阵,ones(m,n):产生m*n 维的全1矩阵;(2) zeros()函数:产生全为0的矩阵;(3) rand()函数:产生在(0,1)区间均匀分布的随机阵;(4) eye()函数:产生单位阵;(5) randn()函数:产生均值为0,方差为1的标准正态分布随机矩阵。
3、利用文件建立矩阵当矩阵尺寸较大或为经常使用的数据矩阵,则可以将此矩阵保存为文件,在需要时直接将文件利用load命令调入工作环境中使用即可。
同时可以利用命令reshape对调入的矩阵进行重排。
reshape(A,m,n),它在矩阵总元素保持不变的前提下,将矩阵A重新排成m*n的二维矩阵。
二、矩阵的简单操作1.获取矩阵元素可以通过下标(行列索引)引用矩阵的元素,如 Matrix(m,n)。
也可以采用矩阵元素的序号来引用矩阵元素。
矩阵元素的序号就是相应元素在内存中的排列顺序。
在MATLAB中,矩阵元素按列存储。
序号(Index)与下标(Subscript )是一一对应的,以m*n矩阵A为例,矩阵元素A(i,j)的序号为(j-1)*m+i。
matlab矩阵的表示和简单操作

matlab矩阵的表示和简单操作一、矩阵的表示在MATLAB中创建矩阵有以下规则:a、矩阵元素必须在”[ ]”内;b、矩阵的同行元素之间用空格(或”,”)隔开;c、矩阵的行与行之间用”;”(或回车符)隔开;d、矩阵的元素可以是数值、变量、表达式或函数;e、矩阵的尺寸不必预先定义。
二,矩阵的创建:1、直接输入法最简单的建立矩阵的方法是从键盘直接输入矩阵的元素,输入的方法按照上面的规则。
建立向量的时候可以利用冒号表达式,冒号表达式可以产生一个行向量,一般格式是:e1:e2:e3,其中e1为初始值,e2为步长,e3为终止值。
还可以用linspace函数产生行向量,其调用格式为:linspace(a,b,n) ,其中a和b是生成向量的第一个和最后一个元素,n是元素总数。
2、利用MATLAB函数创建矩阵基本矩阵函数如下:(1) ones()函数:产生全为1的矩阵,ones(n):产生n*n维的全1矩阵,ones(m,n):产生m*n维的全1矩阵;(2) zeros()函数:产生全为0的矩阵;(3) rand()函数:产生在(0,1)区间均匀分布的随机阵;(4) eye()函数:产生单位阵;(5) randn()函数:产生均值为0,方差为1的标准正态分布随机矩阵。
3、利用文件建立矩阵当矩阵尺寸较大或为经常使用的数据矩阵,则可以将此矩阵保存为文件,在需要时直接将文件利用load命令调入工作环境中使用即可。
同时可以利用命令reshape对调入的矩阵进行重排。
reshape(A,m,n),它在矩阵总元素保持不变的前提下,将矩阵A重新排成m*n 的二维矩阵。
二、矩阵的简单操作1.获取矩阵元素可以通过下标(行列索引)引用矩阵的元素,如Matrix(m,n)。
也可以采用矩阵元素的序号来引用矩阵元素。
矩阵元素的序号就是相应元素在内存中的排列顺序。
在MATLAB中,矩阵元素按列存储。
序号(Index)与下标(Subscript )是一一对应的,以m*n矩阵A为例,矩阵元素A(i,j)的序号为(j-1)*m+i。
如何使用Matlab进行矩阵运算

如何使用Matlab进行矩阵运算随着科学技术的不断发展,矩阵运算在各个领域的应用日益广泛。
Matlab作为一款功能强大的数学软件,其矩阵运算能力非常强大。
本文将介绍如何使用Matlab进行矩阵运算,希望能对读者在科学研究和工程实践中的矩阵计算有所帮助。
一、Matlab的基本矩阵运算1. 创建矩阵在Matlab中,可以使用一对方括号`[]`来创建矩阵。
例如,要创建一个3行3列的矩阵A,可以使用如下命令:A = [1 2 3; 4 5 6; 7 8 9]。
这样就创建了一个元素分别为1到9的3行3列矩阵。
2. 矩阵加法和减法Matlab中可以使用加号和减号来进行矩阵的加法和减法运算。
例如,要计算矩阵A和B的和,可以使用命令C = A + B;要计算矩阵A和B的差,可以使用命令D = A - B。
3. 矩阵乘法Matlab中使用乘号`*`来进行矩阵的乘法运算。
例如,要计算矩阵A和B的乘积,可以使用命令C = A * B。
需要注意的是,矩阵乘法是满足结合律的,即A *(B * C) = (A * B) * C。
4. 矩阵转置在Matlab中,可以使用单引号`'`来对矩阵进行转置操作。
例如,对矩阵A进行转置,可以使用命令B = A'。
需要注意的是,转置操作只能应用于二维矩阵。
5. 求逆矩阵在Matlab中,可以使用inv函数来求解矩阵的逆矩阵。
例如,要求矩阵A的逆矩阵,可以使用命令B = inv(A)。
需要注意的是,只有方阵才有逆矩阵。
6. 矩阵的特征值和特征向量Matlab中可以使用eig函数来求解矩阵的特征值和特征向量。
例如,要求矩阵A的特征值和特征向量,可以使用命令[V,D] = eig(A),其中V为特征向量矩阵,D 为特征值对角矩阵。
二、Matlab的高级矩阵运算1. 矩阵的点乘和叉乘Matlab中使用.*和.^来进行矩阵的点乘和叉乘运算。
例如,要计算矩阵A和B 的点乘,可以使用命令C = A .* B;要计算矩阵A和B的叉乘,可以使用命令D =A .^ B。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【例】简单矩阵⎥⎥⎥⎦
⎤⎢⎢
⎢⎣⎡=987654321
A 的输入步骤。
(1)在键盘上输入下列内容:( 以 ; 区隔各列的元素)
A = [1,2,3; 4,5,6; 7,8,9]
(2)按【Enter 】键,指令被执行。
(3)在指令执行后,MATLAB 指令窗中将显示以下结果:
A =
1 2 3
4 5 6
7 8 9
【例】矩阵的分行输入
A=[1,2,3
4,5,6
7,8,9]
(以下是显示结果)
A =
1 2 3
4 5 6
7 8 9
>>a=[1,4,6,8,10] %一维矩阵
>>a(3) % a 的第三个元素
ans =
6
»x =[1 2 3 4 5 6 7 8
4 5 6 7 8 9 10 11]; %二维2x8 矩阵
» x(3) % x 的第三个元素
ans =
2
» x([1 2 5]) % x 的第一、二、五个元素
ans =
1 4 3
>> x(2,3) % x的第二行第三列的元素
ans =
6
x(1:5) % x的第前五个元素
ans =
1 4
2 5 3
» x(10:end) % x的第十个元素后的元素
ans =
8 6 9 7 10 8 11
» x(10:-1:2) % x的第十个元素和第二个元素的倒排
ans =
8 5 7 4 6 3 5 2 4
» x(find(x>5)) % x中大于5的元素
ans =
6 7 8 6 9 7 10 8 11» x(4)=100 %给x的第四个元素重新给值
x =
1 2 3 4 5 6 7 8
4 100 6 7 8 9 10 11
» x(3)=[] %删除第三个元素(不是二维数组)
x =
Columns 1 through 12
1 4 100 3 6 4 7 5 8 6 9 7
Columns 13 through 15
10 8 11
» x(16)=1 %加入第十六个元素
x =
Columns 1 through 12
1 4 100 3 6 4 7 5 8 6 9 7
Columns 13 through 16
10 8 11 1
当元素很多的时候,则须采用以下的方式:
» x=(1:2.5:120); % 以:起始值=1,增量值=2,终止值=120的矩阵
» x=linspace(0,1,100);% 利用linspace,以区隔起始值=0,终止值=1之间,元素数目=100
»a=[]%空矩阵
a =
[]
» zeros(2,2) %全为0的矩阵
ans =
0 0
00
» ones(3,3) %全为1的矩阵
ans =
1 1 1
1 1 1
1 1 1
» rand(2,4);%随机矩阵
»a=1:7, b=1:0.2:5; %更直接的方式
»c=[b a];%可利用先前建立的阵列 a 及阵列 b ,组成新阵列
以下将阵列的运算符号及其意义列出,除了加减符号外其余的阵列运算符号均须多加. 符号。
阵列运算功能(注意:一定要多加. 符号)
+加-减.*乘./左除.\右除.^次方.'转置
>> a=1:5; a-2 % 从阵列a减2
ans =
-1 0 1 2 3
>> 2*a-1 % 以2乘阵列a再减1
ans =
1 3 5 7 9
>> b=1:2:9; a+b % 阵列a加阵列b
ans =
2 5 8 11 14
>> a.*b % 阵列a及b中的元素与元素相乘
ans =
1 6 15 28 45
>> a./b % 阵列a及b中的元素与元素相除
ans =
1.0000 0.66667 0.6000 0.5714 0.5556
>> a.^2 % 阵列中的各个元素作二次方
ans =
1 4 9 16 25
>> 2.^a % 以2为底,以阵列中的各个元素为次方
ans =
2 4 8 16 32
>> b.^a % 以阵列b中的各个元素为底,以阵列a中的各个元素为次方ans =
1 9 125 2401 59049
>> b=a' % 阵列b是阵列a的转置结果
b =
1
2
3
4
5
矩阵的几种基本变换操作
1. 通过在矩阵变量后加’的方法来表示转置运算
>>a=[10,2,12;34,2,4;98,34,6];
ans =
10 34 98
2 2 34
12 4 6
2. 矩阵求逆
>>inv(a)
ans =
-0.0116 0.0372 -0.0015 0.0176 -0.1047 0.0345 0.0901 -0.0135 -0.0045 3. 矩阵求伪逆
>>pinv(a)
ans =
-0.0116 0.0372 -0.0015 0.0176 -0.1047 0.0345 0.0901 -0.0135 -0.0045 4. 左右反转
>>fliplr(a)
ans =
12 2 10
4 2 34
6 34 98
5. 矩阵的特征值
>>[u,v]=eig(a)
-0.2960 0.3635 -0.3600
-0.2925 -0.4128 0.7886
-0.9093 -0.8352 0.4985
v =
48.8395 0 0
0 -19.8451 0
0 0 -10.9943
6. 上下反转
>>flipud(a)
ans =
98 34 6
34 2 4
10 2 12
7. 旋转90度
>>rot90(a)
ans =
12 4 6
2 2 34
10 34 98
8. 取出上三角和下三角
>>triu(a)
ans =
10 2 12
0 2 4
0 0 6
>>tril(a)
ans =
10 0 0
34 2 0
98 34 6
>>[l,u]=lu(a)
l = 0.1020 0.1500 1.0000
0.3469 1.0000 0
1.0000 0 0
u = 98.0000 34.0000 6.0000
0 -9.7959 1.9184
0 0 11.1000
9. 正交分解
>>[q,r]=qr(a)
q =
-0.0960 -0.1232 -0.9877
-0.3263 -0.9336 0.1482
-0.9404 0.3365 0.0494
r =
-104.2113 -32.8179 -8.0989
0 9.3265 -3.1941
0 0 -10.9638 10.奇异值分解
>>[u,s,v]=svd(a)
u =
0.1003 -0.8857 0.4532 0.3031 -0.4066 -0.8618 0.9477 0.2239 0.2277 s =
109.5895 0 0 0 12.0373 0 0 0 8.0778 v =
0.9506 -0.0619 -0.3041 0.3014 0.4176 0.8572 0.0739 -0.9065 0.4156
11.求矩阵的范数
>>norm(a)
ans =
109.5895
>>norm(a,1)
ans =
142
>>norm(a,inf)
ans =
138。