FIR滤波器设计
fir滤波器的主要设计方法 -回复

fir滤波器的主要设计方法-回复fir滤波器是一种基本的数字滤波器,主要用于数字信号处理中的滤波操作。
它的设计方法有很多种,包括频率采样法、窗函数法、最优权系数法等。
本文将一步一步回答"[fir滤波器的主要设计方法]",让我们一起来了解一下吧。
一、频率采样法频率采样法是fir滤波器设计的最基本方法之一。
它的主要思想是在频域中对滤波器的频响特性进行采样,然后通过反变换得到滤波器的冲激响应。
这种方法的优点是设计简单,适用于各种滤波器的设计。
1. 确定滤波器的截止频率和通带、阻带的要求。
根据应用的具体需求,确定滤波器的频率范围和滤波特性。
2. 设计理想的滤波器频率响应。
根据频率范围和滤波特性的要求,设计所需的滤波器频率响应。
常见的有低通、高通、带通、带阻等类型。
3. 进行频率采样。
根据滤波器频率响应的要求,在频域中进行一系列均匀或者非均匀的采样点。
4. 反变换得到滤波器的冲激响应。
对采样得到的频率响应进行反傅里叶变换,得到滤波器的冲激响应。
5. 标准化处理。
对得到的冲激响应进行标准化处理,使得滤波器的增益等于1。
6. 实现滤波器。
根据得到的冲激响应,使用差分方程或者卷积的方法实现fir滤波器。
二、窗函数法窗函数法是一种常用的fir滤波器设计方法,它主要是通过在频域中将理想的滤波器乘以一个窗函数来实现滤波器的设计。
1. 确定滤波器的截止频率和通带、阻带的要求,根据具体应用的需求确定滤波器的频率范围和滤波特性。
2. 设计理想的滤波器频率响应。
根据频率范围和滤波特性要求,设计所需的滤波器频率响应。
3. 选择窗函数。
根据滤波器的频率响应和窗函数的性质,选择合适的窗函数。
4. 计算窗函数的系数。
根据选择的窗函数,计算窗函数的系数。
5. 实现滤波器。
将理想滤波器的频率响应与窗函数相乘,得到实际的滤波器频率响应。
然后使用反变换将频率响应转换为滤波器的冲激响应。
6. 标准化处理。
对得到的冲激响应进行标准化处理,使得滤波器的增益等于1。
FIR滤波器的设计及特点

FIR滤波器的设计及特点FIR滤波器(Finite Impulse Response Filter)是一种数字滤波器,它的特点是其冲激响应是有限长度的。
FIR滤波器通过对输入序列做线性加权的运算来实现滤波的效果。
FIR滤波器的设计需要确定滤波器的系数以及长度,其设计方法有很多种,其中比较常用的有窗函数法、频率采样法以及最小二乘法。
FIR滤波器的设计方法之一是窗函数法,它是根据所设定的频率响应曲线来进行设计的。
具体的步骤是:首先,在频率域上设定所需的频率响应曲线;然后,将该曲线转换到时域上,得到滤波器的单位冲激响应;最后,对单位冲激响应进行加窗处理,得到最终的滤波器系数。
在窗函数法中,常用的窗函数有矩形窗、汉宁窗、哈宁窗等,不同的窗函数会导致滤波器具有不同的性能,如频域主瓣宽度、滤波器的过渡带宽度等。
另一种常用的FIR滤波器设计方法是频率采样法,它是通过在频率域上进行采样来确定滤波器的系数。
在频域上,滤波器的频率响应可以表示为幅度特性和相位特性。
通过选取一组频率,在这些频率上等幅响应,并且在其余的频率上衰减至零,然后对这些采样点进行IFFT运算,即可得到滤波器的系数。
频率采样法的特点是可以直观地设计滤波器,但是在采样点之间的频率响应无法得到保证,会产生幅度插值误差。
最小二乘法是一种通过最小二乘准则来设计滤波器的方法。
它在时域上通过对输入序列和输出序列之间的误差进行最小化,得到最优的滤波器系数。
最小二乘法可以看作是一种优化问题的求解方法,需要解决一个线性规划问题,因此需要求解线性方程组来确定滤波器的系数。
1.稳定性:FIR滤波器是一种无反馈结构的滤波器,其零点可以完全控制在单位圆内,因此具有稳定性保证。
2.线性相位特性:FIR滤波器的冲激响应通常是对称的,因此它不会引入相位失真,可以保持输入信号的相位。
3.精确控制频率响应:FIR滤波器的频率响应可以通过设计滤波器系数来精确控制,具有很高的灵活性。
4.零相移滤波:由于线性相位特性,FIR滤波器可以实现零相移的滤波效果,适用于对输入信号相位要求较高的应用。
FIR滤波器设计

第7章FIR滤波器设计第六章我们介绍了无限冲激响应(IIR)滤波器得设计方法、其中最常用得由模拟滤波器转换为数字滤波器得方法为双线性变换法,因为这种方法无混叠效应,效果较好。
但通过前面得例子我们瞧到,IIR数字滤波器相位特性不好(非线性,如图6—11、图6-13、图6—15),也不易控制。
然而在现代信号处理中,例如图像处理、数据传输、雷达接收以及一些要求较高得系统中对相位特性要求较为严格,这种滤波器就无能为力了、改善相位特性得方法就是采用有限冲激响应滤波器。
本章首先对FIR滤波器原理及其使用函数作基本介绍,然后重点介绍窗函数法设计FIR滤波器,并对最优滤波器设计函数进行介绍。
7、1 FIR滤波器原理概述及滤波函数7、1、1 FIR滤波器原理及设计方法分类根据第6 章对数字滤波器得介绍,我们知道FIR滤波器得传递函数为:(7-1) 可得FIR滤波器得系统差分方程为:因此,FIR滤波器又称为卷积滤波器。
根据第4 章中所描述得系统频率响应,FIR滤波器得频率响应表达式为:(7—2)信号通过FIR滤波器不失真条件与(6-6)式所描述得相同,即滤波器在通带内具有恒定得幅频特性与线性相位特性。
理论上可以证明(这里从略):当FIR滤波器得系数满足下列中心对称条件:(7-3)时,滤波器设计在逼近平直幅频特性得同时,还能获得严格得线性相位特性。
线性相位FIR滤波器得相位滞后与群延迟在整个频带上就是相等且不变得。
对于一个N阶得线性相位FIR滤波器,群延迟为常数,即滤波后得信号简单地延迟常数个时间步长。
这一特性使通带频率内信号通过滤波器后仍保持原有波形形状而无相位失真、本章主要介绍得FIR数字滤波器设计方法及MATLAB 信号处理工具箱提供得FIR数字滤波器设计函数,见表7—1。
由于篇幅所限,本章我们主要介绍窗函数法与最优化设计方法。
表7—1FIR滤波器设计得主要方法相对于IIR 滤波器得滤波函数,FIR数字滤波器滤波函数除了dimpulse与dstep仅适用于IIR滤波器外,其她各种函数可直接应用于FIR滤波器,只就是输入得分母多项式向量a=1。
FIR滤波器的设计及特点

FIR滤波器的设计及特点FIR(Finite Impulse Response)滤波器是一种数字滤波器,其特点在于其频率响应仅由其滤波器系数决定,而与输入序列无关。
它是一种线性相位滤波器,常用于数字信号处理中的陷波、低通、高通、带通等滤波应用。
窗函数法是最简单也是最常用的设计方法之一、它通过在滤波器的理想频率响应上乘以一个窗函数来得到最终的滤波器系数。
常用的窗函数包括矩形窗、汉宁窗、汉明窗和布莱克曼窗等。
窗函数的选择决定了滤波器的主瓣宽度和副瓣衰减。
最小二乘法是一种优化方法,它通过最小化输出序列与理想响应序列之间的均方误差来得到滤波器系数。
最小二乘法可以得到线性相位的滤波器设计,但计算量较大。
频域采样法是通过在频域上对理想频率响应进行采样,然后进行插值来得到滤波器系数。
频域采样法可以得到具有任意响应的滤波器,但需要对理想频率响应进行采样和插值,计算量较大。
优化算法是通过优化问题的求解方法来得到滤波器系数。
常用的优化算法包括遗传算法、粒子群算法和蚁群算法等。
优化算法可以得到满足特定需求的非线性相位滤波器设计,但计算量较大。
1.线性相位特性:FIR滤波器的线性相位特性使其在处理信号时不引入相位延迟,因此适用于对信号相位有严格要求的应用,如音频信号处理和通信系统中的调制解调等。
2.稳定性:FIR滤波器是稳定的,不会引入非物理的增益和相位。
这使得其在实际应用中更加可靠和可控。
3.容易设计:FIR滤波器的设计相对较为简单,不需要考虑稳定性和因果性等问题,只需要选择合适的滤波器结构和设计方法即可。
4.灵活性:FIR滤波器的频率响应可以通过改变滤波器系数来实现。
这使得其适用于各种滤波需求,例如低通滤波器、高通滤波器、带通滤波器和带阻滤波器等。
5.高阻带衰减:由于FIR滤波器的频率响应只受滤波器系数控制,因此可以设计出具有较高阻带衰减和较窄主瓣带宽的滤波器。
总之,FIR滤波器的设计简单、稳定性高、频率响应灵活可调等特点,使得其在数字信号处理中得到广泛应用。
FIR滤波器设计要点

FIR滤波器设计要点FIR (Finite Impulse Response) 滤波器是一种数字滤波器,其设计要点包括滤波器类型选择、滤波器系数设计、频率响应规格、窗函数和滤波器长度选择等。
以下是对这些要点的详细介绍。
1.滤波器类型选择:在设计FIR滤波器之前,需要确定滤波器的类型。
常见的FIR滤波器类型包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器。
不同类型的滤波器适用于不同的应用场景,因此在选择滤波器类型时需要考虑系统的需求。
2.滤波器系数设计:FIR滤波器的核心是滤波器系数。
滤波器系数决定了滤波器的频率响应和滤波特性。
常用的设计方法包括窗函数法、最小均方误差法和频率抽样法等。
窗函数法是最常用的设计方法,其基本思想是通过选择合适的窗函数来得到滤波器系数。
3.频率响应规格:在设计FIR滤波器时,需要明确所需的频率响应规格,包括通带增益、阻带衰减、过渡带宽等。
这些规格直接影响了滤波器的性能,因此需要根据具体应用场景来确定。
4.窗函数选择:窗函数在FIR滤波器设计中起到了重要的作用。
常用的窗函数包括矩形窗、汉宁窗、汉明窗、布莱克曼窗等。
不同的窗函数具有不同的特性,选择合适的窗函数可以得到优良的滤波器性能。
5.滤波器长度选择:滤波器长度决定了滤波器的频率分辨率和时间分辨率。
滤波器长度越长,频率响应越尖锐,但计算复杂度也越高。
因此,在设计FIR滤波器时需要权衡计算复杂度和性能要求,选择合适的滤波器长度。
6.优化设计:7.实现方式:总之,设计FIR滤波器要点包括滤波器类型选择、滤波器系数设计、频率响应规格、窗函数和滤波器长度选择等。
设计者需要根据具体的应用场景和性能要求来进行合理的设计和优化,以满足系统的需求。
fir滤波器设计方法

fir滤波器设计方法
fir滤波器是数字信号处理中常用的一种滤波器,它可以对信号进行滤波处理,去除噪声和干扰,提高信号的质量。
fir滤波器的设计方法有很多种,下面我们来介绍一下其中的几种常用方法。
第一种方法是窗函数法。
这种方法是最简单的fir滤波器设计方法,它的原理是将理想滤波器的频率响应与一个窗函数相乘,得到fir滤波器的频率响应。
常用的窗函数有矩形窗、汉宁窗、汉明窗等。
这种方法的优点是简单易懂,计算量小,但是滤波器的性能不够理想。
第二种方法是频率抽样法。
这种方法的原理是将理想滤波器的频率响应进行抽样,得到fir滤波器的频率响应。
抽样的频率可以根据滤波器的要求进行选择。
这种方法的优点是可以得到比较理想的滤波器性能,但是计算量较大。
第三种方法是最小二乘法。
这种方法的原理是通过最小化滤波器的误差平方和来得到fir滤波器的系数。
这种方法可以得到比较理想的滤波器性能,但是计算量较大。
第四种方法是频率采样法。
这种方法的原理是通过对滤波器的频率响应进行采样,得到fir滤波器的系数。
这种方法可以得到比较理想的滤波器性能,但是需要进行频率响应的采样,计算量较大。
以上是fir滤波器的几种常用设计方法,不同的方法适用于不同的滤波器要求。
在实际应用中,需要根据具体的情况选择合适的设计
方法,以得到满足要求的fir滤波器。
FIR滤波器的设计

FIR滤波器一、实验仪器:PC机一台,JQ-NIOS-2C35实验箱一台及辅助软件(DSP Builder、Matlab/Simulink、Quartus II、Modelsim)。
二、实验目的:1.初步了解JQ-NIOS-2C35实验箱的基本结构;2.学习和熟悉基于DSP Builder开发数字信号处理实验的流程。
3.学习和熟悉DSP Builder层次化的设计方法。
三、实验原理:1.FIR滤波器基础FIR滤波器具有直接型、级联型和频率抽样型三种基本结构[14]。
由于在DSP Builder模型设计中采用了直接型结构,我们只对直接型结构进行讨论。
这种结构也被称为抽头延迟线结构,或横向滤波器结构[15][16]。
图1显示的是直接型结构的示意图,从图中可以看出,每个抽头上的加权值M2,1,0(=,分别),b,.......,rr等于滤波器的单位冲击响应M2,1,0(=。
输入与抽头加权值的乘积的和),h,......,rr就是输出)y。
(n图1 FIR滤波器直接型结构示意图转置定理定义为,如果将上图中的所有支路倒转,并将输入x(n)和输出y(n)的位置调换,则其冲击响应不变。
将转置定理应用于上图,则得到FIR滤波器的转置结构,如图2所示。
图2 转置型FIR滤波器结构示意图2.具有线性相位的FIR滤波器结构若一个FIR滤波器具有线性相位,且其单位冲击响应h(n)全为实数,则h(n)具有如下特性:当N为偶数时,h(n)=h(M-n);当N为奇数时,h(n)=-h(M-n)。
所谓线性相位特性是指滤波器对不同频率的正弦波产生的相移和正弦波的频率成直线关系。
在本次试验设计中采用的是N为偶数的结构,图3显示的是N为偶数时线性相位滤波器的结构。
图3 线性相位滤波器结构示意图(N为偶数)3.FIR滤波器的设计方法FIR滤波器的设计方法主要有窗函数法、频率抽样法和切比雪夫逼近法三种。
其中窗函数法是设计FIR滤波器最基本的方法。
FIR滤波器设计与实现

FIR滤波器设计与实现一、FIR滤波器的设计原理y(n)=b0*x(n)+b1*x(n-1)+b2*x(n-2)+...+bM*x(n-M)其中,b0、b1、..、bM是滤波器的系数,M是滤波器的阶数。
在设计FIR滤波器时,需要确定滤波器的截止频率、滤波器类型(低通、高通、带通、带阻)以及滤波器的阶数。
通常情况下,滤波器的阶数越高,滤波器的性能越好,但计算复杂度也越高。
1.确定滤波器的截止频率和滤波器类型。
根据信号的频谱特性和滤波器的要求,确定滤波器的截止频率和滤波器类型。
2.确定滤波器的阶数。
根据滤波器的设计要求和计算资源的限制,确定滤波器的阶数。
3.计算滤波器的系数。
通过设计方法(如窗函数法、频率采样法、最优化法等),计算滤波器的系数。
4.实现滤波器。
根据计算得到的滤波器系数,使用差分方程或直接形式等方法实现FIR滤波器。
二、FIR滤波器的实现方法1.差分方程形式差分方程形式是FIR滤波器的一种常见实现方法,它基于差分方程对输入信号进行逐点计算。
根据滤波器的差分方程,可以使用循环结构对输入信号进行滤波。
2.直接形式直接形式是另一种常见的FIR滤波器实现方法,它基于滤波器的系数和输入信号的历史值对输出信号进行逐点计算。
直接形式的计算过程可表示为:y(n)=b0*x(n)+b1*x(n-1)+b2*x(n-2)+...+bM*x(n-M)其中,b0、b1、..、bM是滤波器的系数,x(n)、x(n-1)、..、x(n-M)是输入信号的历史值。
直接形式的优点是计算过程简单,缺点是计算量比较大,特别是当滤波器的阶数较高时。
除了差分方程形式和直接形式外,还有其他一些高级实现方法如离散余弦变换(DCT)和快速卷积等,它们能够进一步提高FIR滤波器的计算效率和性能。
总结:本文介绍了FIR滤波器的设计原理和实现方法。
FIR滤波器采用离散时间信号的卷积运算,通过确定截止频率、滤波器类型和阶数,计算滤波器系数,并使用差分方程或直接形式等方法实现滤波器。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验报告
课程名称:数字信号处理
实验项目:FIR滤波器设计
专业班级:通信工程0801班
姓名:XX 学号:XX
实验室号:XX 实验组号:XX
实验时间:XX 批阅时间:
指导教师:XX 成绩:
沈阳工业大学实验报告专业班级:通信工程0801班学号:XX 姓名:XX
附件A 沈阳工业大学实验报告
(适用计算机程序设计类)
专业班级: 通信工程0801班 学号: XX 姓名: XX
实验步骤或程序:
实验原理:
如果所希望的滤波器理想频率响应函数为 ,则其对应的单位样值响应为 ωπ=ωππ
-⎰d e j ωn j d d e )(H 21(n)h 窗函数法设计法的基本原理是用有限长单位样值响应h(n)逼近(n)h d 。
由于(n)h d 往往是无限长序列,且是非因果的,所以用窗函数(n)w 将(n)h d 截断,并进行加权处理,得到:(n)(n)h h(n)d w ⋅=。
h(n)就作为实际设计的FIR 滤波器单位样值响应序列,其频率函数)H(e j ω为∑-=ω=
10n n j -j ωh(n)e )H(e N 。
式中N 为所选窗函数(n)w 的长度。
用窗函数法设计的FIR 滤波器性能取决于窗函数类型及窗口长度N 的取值。
设计过程中要根据阻带衰减和过渡带宽度的要求选择合适的窗函数类型和窗口长度N 。
各类窗函数所能达到的阻带最小衰减和过渡带宽度见表4-1。
表4-1 五中窗函数特性比较
d w ⋅=。
验算)()()]([)(ωϕωω==j g j
e H n h DTFT e H 是否满足要求,如不满足要求,则重新选
定窗函数类型和长度N,直至满足要求。
如要求线性相位特性,h(n)还必须满足n)
h(n)±
=。
根据上式中的正、
h(N
-1-
负号和长度N的奇偶性又将线性相位FIR滤波器分成4类(见P224表10-9及下表),根据要设计的滤波器特性正确选择其中一类。
例如要设计低通特性,可选择情况1、2,不能选择情况3、4。
一、线性相位FIR滤波器演示实验
该实验事先给定4个有限长序列分别是:
(1) h(n)=[1,2,3,4,5,4,3,2,1]即h(n)偶对称,N为奇数;
(2) h(n)=[1,2,3,4,4,3,2,1]即h(n)偶对称,N为偶数;
(3) h(n)=[1,2,3,4,0,-4,-3,-2,-1]即h(n)奇对称,N为奇数;
(4) h(n)=[1,2,3,4,-4,-3,-2,-1]即h(n)奇对称,N为偶数。
请观察它们的时域频域特征,以熟悉四种线性相位FIR滤波器特性。
实验结果:
N为奇数的偶对称序列序列h1(n)以及它的幅频特性和相频特性:
N为奇数的偶对称序列序列h2(n)以及它的幅频特性和相频特性:
N为奇数的偶对称序列序列h3(n)以及它的幅频特性和相频特性:
N为奇数的偶对称序列序列h4(n)以及它的幅频特性和相频特性:
二、窗函数法设计FIR低通滤波器
(1)给定技术指标(p234例10-15):通带允许起伏-1dB 0≤ω≤0.3π(ω
p=0.3*pi,Rp=-1),阻带衰减≤-50dB 0.5π≤ω≤π(ωs=0.5*pi,Rs=-50),要求设计满足要求的线性相位FIR低通数字滤波器。
完成此题目需事先确定好以下参数:理想低通滤波器截止频率ωc(ωc=ωp/2+ωs/2;窗函数形状(根据要求的阻带衰减确定);滤波器长度N(根据所选窗函数过渡带宽度和要求的过渡带宽度ωs-ωp确定)。
(2)研究给定理想低通滤波器截止频率ωc和滤波器长度N时,窗函数形状对FIR滤波器特性的影响。
实验中可以取ωc=0.4π(0.4*pi),N=33,观察五种窗函数对应的滤波特性。
(3)研究给定理想低通滤波器截止频率ωc和窗函数形状时,滤波器长度N 对滤波特性的影响。
实验中可以取ωc=π/4(pi/4),观察汉宁窗在N=15和N=33时对应的FIR滤波器特性。
实验结果:
ωc=0.4π(0.4*pi),N=33时,矩形:
ωc=0.4π(0.4*pi),N=33时,三角:
ωc=0.4π(0.4*pi),N=33时,汉宁:
ωc=0.4π(0.4*pi),N=33时,汉明:
ωc=0.4π(0.4*pi),N=33时,布莱克曼:
ωc=π/4(pi/4),N=15时,汉宁:
思考题:
1.给定通带截止频率和阻带截止频率以及阻带最小衰减,如何用窗函数法
设计线性相位低通滤波器?写出设计步骤。
(1)根据通带截止频率和阻带截止频率,求理想低通滤波器的截止频率;
(2)根据阻带最小衰减选择窗函数;
(3)根据要求的过渡带宽度确定滤波器的长度N,滤波器的相位常熟α;
(4)根据允许的过渡带宽度确定窗口长度N;
(5)根据理想低通滤波器的截止频率ωc、相位常数α求出理想低通滤波器单位样值响应h d(n);由确定的窗函数类型、长度求出对应的
窗函数ω(n);求出所设计的FIR滤波器单位样值响应
h(n)= h d(n) ω(n)
(6)借助计算机计算)
H(e jω=DTFT[h(n)],检验各项指标是否满足要求,如不满足另选窗函数、窗口长度。
2.简述窗函数形状和滤波器长度对滤波特性的影响。
(1)滤波器过渡带宽度与窗谱的主瓣宽度成正比;
(2)滤波器过渡带两旁有的肩峰和阻尼余振,其振荡幅度取决于窗谱旁瓣的相对幅度,余振多少取决于旁瓣多少;
(3)对于同一种窗函数,增加窗函数长度,能减少窗谱主瓣和旁瓣宽度。
但不能减少主瓣和旁瓣的相对值,该值取决于窗函数形状。
因此增加窗口长度只能相应减少过渡带宽度,不能增加阻带衰减;
(4)若窗函数时域波形两端平缓下降而非突出,如三角形,则其频域特性旁瓣电平小,阻带衰减增加,但代价是增加了主瓣和滤波器
过渡带宽度。