全国2011年4月高等教育自学考试 线性代数(经管类)试题 课程代码04184
2011年1月-2012年4月自考04184线性代数(经管类)历年真题试题及答案

全国2012年4月高等教育自学考试线性代数(经管类)试题 课程代码:04184说明:在本卷中,A T表示矩阵A 的转置矩阵,A *表示矩阵A 的伴随矩阵,E 是单位矩阵,|A |表示方阵A 的行列式,r (A)表示矩阵A 的秩. 一、 单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设行列式111213212223313233a a a a a a a a a =2,则111213212223313233232323a a a a a a a a a ------=( )A.-12B.-6C.6D.122.设矩阵A =120120003⎛⎫ ⎪⎪ ⎪⎝⎭,则A *中位于第1行第2列的元素是()A.-6B.-3C.3D.63.设A 为3阶矩阵,且|A |=3,则1()A --=( )A.-3B.13-C.13D.34.已知4⨯3矩阵A 的列向量组线性无关,则A T 的秩等于( ) A.1B.2C.3D.45.设A 为3阶矩阵,P =100210001⎛⎫ ⎪⎪ ⎪⎝⎭,则用P 左乘A ,相当于将A ( )A.第1行的2倍加到第2行B.第1列的2倍加到第2列C.第2行的2倍加到第1行D.第2列的2倍加到第1列 6.齐次线性方程组123234230+= 0x x x x x x ++=⎧⎨--⎩的基础解系所含解向量的个数为( )A.1B.2C.3D.47.设4阶矩阵A 的秩为3,12ηη,为非齐次线性方程组Ax =b 的两个不同的解,c 为任意常数,则该方程组的通解为( ) A.1212cηηη-+ B.1212c ηηη-+ C.1212cηηη++ D.1212c ηηη++8.设A 是n 阶方阵,且|5A +3E |=0,则A 必有一个特征值为( ) A.53-B.35-C.35D.539.若矩阵A 与对角矩阵D =100010001-⎛⎫ ⎪- ⎪ ⎪⎝⎭相似,则A 3=( )A.EB.DC.AD.-E10.二次型f 123(,,)x x x =22212332x x x +-是( ) A.正定的B.负定的C.半正定的D.不定的二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
自考04184线性代数(经管类)讲义

高数线性代数第一章行列式线性代数学的核心内容是:研究线性方程组的解的存在条件、解的结构以及解的求法。
所用的基本工具是矩阵,而行列式是研究矩阵的很有效的工具之一。
行列式作为一种数学工具不但在本课程中极其重要,而且在其他数学学科、乃至在其他许多学科(例如计算机科学、经济学、管理学等)都是必不可少的。
1.1行列式的定义(一)一阶、二阶、三阶行列式的定义)定义:符号叫一阶行列式,它是一个数,其大小规定为:。
注意:在线性代数中,符号不是绝对值。
例如,且;)定义:符号叫二阶行列所以二阶行列式的值等于两个例如)符号叫三阶行列式,它也例如=0三阶行列式的计算比较复杂,为了帮助大家掌握三阶行列式的计算公式,我们可以采用下面的对角线法记忆方法是:在已给行列式右边添加已给行列式的第一列、第二列。
我们把行列式左上角到右下角的对角线叫主对角线,把右上角到左下角的对角线叫次对角线,这时,三阶行列式的值等于主对角线的三个数的积与和主对角线平行的线上的三个数的积之和减去次对角线三个数的积与次对角线的平行线上数的积之和。
例如:(1)=1×5×9+2×6×7+3×4×8-3×5×7-1×6×8-2×4×9 =0(2)(3)(2)和(3)叫三角形行列式,其中(2)叫上三角形行列式,(3)叫下三角形行列式,由(2)(3)可见,在三阶行列式中,三角形行列式的值为主对角线的三个数之积,其余五项都是0,例如例1a为何值时,解因为所以8-3a=0,时例2当x取何值时,解:解得0<x<9所以当0<x<9时,所给行列式大于0。
(二)n阶行列式符号:它由n行、n列元素(共个元素)组成,称之为n阶行列式。
其中,每一个数称为行列式的一个元素,它的前一个下标i称为行标,它表示这个数在第i行上;后一个下标j 称为列标,它表示这个数在第j列上。
最新全国自考04184线性代数(经管类)答案

2015年4月高等教育自学考试全国统一命题考试线性代数(经管类)试题答案及评分参考(课程代码 04184)一、单项选择题(本大题共5小题,每小题2分类,共10分)1.C2.A3.D4.C5.B二、填空题(本大题共10小题,每小题2分,共20分)6. 97.⎪⎪⎭⎫ ⎝⎛--2315 8.⎪⎪⎭⎫⎝⎛--031111 9. 3 10. -2 11. 0 12. 2 13.()()T T 1,1,1311,1,131---或14. -1 15.a >1三、计算题(本大题共7小题,每小题9分,共63分)16.解 D=40200320115011315111141111121131------=- (5分) =74402032115=-- (9分) 17.解 由于21=A ,所以A 可逆,于是1*-=A A A (3分) 故11*12212)2(---+=+A A A A A (6分) =2923232112111=⎪⎭⎫ ⎝⎛==+----A A A A (9分) 18.解 由B AX X +=,化为()B X A E =-, (4分)而⎪⎪⎪⎭⎫ ⎝⎛--=-201101011A E 可逆,且()⎪⎪⎪⎭⎫ ⎝⎛--=--110123120311A E (7分) 故⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛--=11021335021111012312031X (9分) 19.解 由于()⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛----→00007510171101751075103121,,,4321αααα (5分) 所以向量组的秩为2,21,αα是一个极大线性无关组,并且有214213717,511αααααα-=+-= (9分)注:极大线性无关组不唯一。
20. 解 方程组的系数行列式 D=()()()b c a c a b c c b b a a ---=222111因为a,b,c 两两互不相同,所以0≠D ,故方程有唯一解。
全国2011年10月高等教育自学考试线性代数(经管类)试题

全国2011年10月高等教育自学考试线性代数(经管类)试题课程代码:04184一、单项选择题(本大题共10小题,每小题2分,共20分)1.设3阶方阵A 的行列式为2,则12A -=( ) A.-1 B.14- C.14D.1 2.设212()222122,323235x x x f x x x x x x x ---=------则方程()0f x =的根的个数为( ) A.0B.1C.2D.3 3.设A 为n 阶方阵,将A 的第1列与第2列交换得到方阵B ,若,≠A B 则必有( ) A.0=A B. 0+≠A B C. 0A ≠ D. 0-≠A B4.设A ,B 是任意的n 阶方阵,下列命题中正确的是( )A.222()2+=++A B A AB BB.22()()+-=-A B A B A BC.()()()()-+=+-A E A E A E A ED.222()=AB A B5.设111213212223313233,a b a b a b a b a b a b a b a b a b ⎛⎫⎪= ⎪ ⎪⎝⎭A 其中0,0,1,2,3,i i a b i ≠≠=则矩阵A的秩为( ) A.0 B.1 C.2D.3 6.设6阶方阵A 的秩为4,则A 的伴随矩阵A *的秩为( )A.0 B.2 C.3 D.47.设向量α=(1,-2,3)与β=(2,k ,6)正交,则数k 为( )A.-10 B.-4 C.3 D.108.已知线性方程组1231231243224x x x x ax x x ax ++=⎧⎪++=⎨⎪+=⎩无解,则数a =( ) A.12- B.0 C.12 D.19.设3阶方阵A 的特征多项式为2(2)(3),λλλ-=++E A 则=A ( ) A.-18 B.-6 C.6 D.1810.若3阶实对称矩阵()ij a =A 是正定矩阵,则A 的3个特征值可能为( )A.-1,-2,-3B.-1,-2,3C.-1,2,3D.1,2,3二、填空题(本大题共10小题,每小题2分,共20分)11.设行列式304222,532D =-其第3行各元素的代数余子式之和为__________.12.设,,a a b b a a b b -⎛⎫⎛⎫== ⎪ ⎪---⎝⎭⎝⎭A B 则=AB __________.13.设A 是4×3矩阵且103()2,020,103r ⎛⎫⎪== ⎪ ⎪-⎝⎭A B 则()r =AB __________.14.向量组(1,2),(2,3)(3,4)的秩为__________.15.设线性无关的向量组α1,α2,…,αr 可由向量组β1,β2,…,βs 线性表示,则r 与s 的关系为__________.16.设方程组123123123000x x x x x x x x x λλλ++=⎧⎪++=⎨⎪++=⎩有非零解,且数0,λ<则λ=__________.17.设4元线性方程组x =A b 的三个解α1,α2,α3,已知T 1(1,2,3,4),=αT 23(3,5,7,9),r() 3.+==A αα则方程组的通解是__________.18.设3阶方阵A 的秩为2,且250,+=A A 则A 的全部特征值为__________. 19.设矩阵21100413a -⎛⎫ ⎪= ⎪ ⎪-⎝⎭A 有一个特征值2,λ=对应的特征向量为12,2x ⎛⎫ ⎪= ⎪ ⎪⎝⎭则数a =__________. 20.设实二次型T 123(,,),f x x x x x =A 已知A 的特征值为-1,1,2,则该二次型的规范形为__________.三、计算题(本大题共6小题,每小题9分,共54分)21.设矩阵2323(,2,3),(,,),αγγβγγ==A B 其中23,,,αβγγ均为3维列向量,且18, 2.==A B 求.-A B22.解矩阵方程11101110221011.1104321--⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪+= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭X23.设向量组α1=(1,1,1,3)T ,α2=(-1,-3,5,1)T ,α3=(3,2,-1,p+2)T ,α4=(3,2,-1,p+2)T 问p 为何值时,该向量组线性相关?并在此时求出它的秩和一个极大无关组.24.设3元线性方程组1231231232124551x x x x x x x x x λλ+-=⎧⎪-+=⎨⎪+-=-⎩,(1)确定当λ取何值时,方程组有惟一解、无解、有无穷多解?(2)当方程组有无穷多解时,求出该方程组的通解(要求用其一个特解和导出组的基础解系表示).25.已知2阶方阵A 的特征值为11λ=及21,3λ=-方阵2.=B A (1)求B 的特征值; (2)求B 的行列式.26.用配方法化二次型2221231231223(,,)22412f x x x x x x x x x x =---+为标准形,并写出所作的可逆线性变换.四、证明题(本题6分)27.设A 是3阶反对称矩阵,证明0.=A。
自考04184线性代数(经管类)讲义

自考高数线性代数课堂笔记第一章行列式线性代数学的核心容是:研究线性方程组的解的存在条件、解的结构以及解的求法。
所用的基本工具是矩阵,而行列式是研究矩阵的很有效的工具之一。
行列式作为一种数学工具不但在本课程中极其重要,而且在其他数学学科、乃至在其他许多学科(例如计算机科学、经济学、管理学等)都是必不可少的。
1.1行列式的定义(一)一阶、二阶、三阶行列式的定义(1)定义:符号叫一阶行列式,它是一个数,其大小规定为:。
注意:在线性代数中,符号不是绝对值。
例如,且;(2)定义:符号叫二阶行列式,它也是一个数,其大小规定为:所以二阶行列式的值等于两个对角线上的数的积之差。
(主对角线减次对角线的乘积)例如(3)符号叫三阶行列式,它也是一个数,其大小规定为例如=0三阶行列式的计算比较复杂,为了帮助大家掌握三阶行列式的计算公式,我们可以采用下面的对角线法记忆方法是:在已给行列式右边添加已给行列式的第一列、第二列。
我们把行列式左上角到右下角的对角线叫主对角线,把右上角到左下角的对角线叫次对角线,这时,三阶行列式的值等于主对角线的三个数的积与和主对角线平行的线上的三个数的积之和减去次对角线三个数的积与次对角线的平行线上数的积之和。
例如:(1)=1×5×9+2×6×7+3×4×8-3×5×7-1×6×8-2×4×9=0(2)(3)(2)和(3)叫三角形行列式,其中(2)叫上三角形行列式,(3)叫下三角形行列式,由(2)(3)可见,在三阶行列式中,三角形行列式的值为主对角线的三个数之积,其余五项都是0,例如例1a为何值时,[答疑编号10010101:针对该题提问]解因为所以8-3a=0,时例2当x取何值时,[答疑编号10010102:针对该题提问]解:解得0<x<9所以当0<x<9时,所给行列式大于0。
《线性代数(经管类)》(课程代码04184)校考试题答案

=0 为矩阵 A=
的2重特征值,则A的另一特征值为____4____ 17、已知二次型
正定,则数 k 的取值范围为___k>2____ 18、设A为三阶方阵且|A|=3 则 |2A| = ___24__ 19、已知 =(1,2,3),则 | T | = ___0___ 20、设A为4×5的矩阵,且秩(A)=2,则齐次方程 =0的基础解系所含向量的个数是__3__ 21、设有向量 =(1,0,—2), =(3,0,7), =(2,0,6),则 , , 的秩是 __2____ 22、设三阶方阵A的三个特征值为1,2,3. 则 |A+E| = __24__ 23、设 与 的内积( , )=2 ,‖ ‖=2 ,则内积(2 + ,— )= ___-8___ 24、已知3阶行列式
4、设A为2阶可逆矩阵,且已知 =
,则A=( D ) A.
B.
C.
D.
5、设A为m×n矩阵,则齐次线性方程组 =0仅有零解的充分必要条件是( A )
A.A的列向量组线性无关 B.A的列向量组线性相关 C.A的行向量组线性无关 D.A的行向量组线性相关 6、已知 , 是非齐次线性方程组 =b的两个不同的解, , 是其导出组 =0的一个基础解系, , 为任意常数,则方程组 =b的通解可以表为( A ) A.
,
,
,
的秩为( C ) A.1 B.2 C.3 D.4
45、设向量组
线性相关,则向量组中( A ) A.必有一个向量可以表为其余向量的线性组合 B.必有两个向量可以表为其余向量的线性组合 C.必有三个向量可以表为其余向量的线性组合 D.每一个向量都可以表为其余向量的线性组合
46、设
是齐次线性方程组
=0的一个基础解系,则下列解向量组中,可以作为该方程组基础解系的 是( B )
自考04184线性代数(经管类)讲义

自考高数线性代数课堂笔记第一章行列式线性代数学的核心内容是:研究线性方程组的解的存在条件、解的结构以及解的求法。
所用的基本工具是矩阵,而行列式是研究矩阵的很有效的工具之一。
行列式作为一种数学工具不但在本课程中极其重要,而且在其他数学学科、乃至在其他许多学科(例如计算机科学、经济学、管理学等)都是必不可少的。
1.1行列式的定义(一)一阶、二阶、三阶行列式的定义(1)定义:符号叫一阶行列式,它是一个数,其大小规定为:。
注意:在线性代数中,符号不是绝对值。
例如,且;(2)定义:符号叫二阶行列式,它也是一个数,其大小规定为:所以二阶行列式的值等于两个对角线上的数的积之差。
(主对角线减次对角线的乘积)例如(3)符号叫三阶行列式,它也是一个数,其大小规定为例如=0三阶行列式的计算比较复杂,为了帮助大家掌握三阶行列式的计算公式,我们可以采用下面的对角线法记忆方法是:在已给行列式右边添加已给行列式的第一列、第二列。
我们把行列式左上角到右下角的对角线叫主对角线,把右上角到左下角的对角线叫次对角线,这时,三阶行列式的值等于主对角线的三个数的积与和主对角线平行的线上的三个数的积之和减去次对角线三个数的积与次对角线的平行线上数的积之和。
例如:(1)=1×5×9+2×6×7+3×4×8-3×5×7-1×6×8-2×4×9=0(2)(3)(2)和(3)叫三角形行列式,其中(2)叫上三角形行列式,(3)叫下三角形行列式,由(2)(3)可见,在三阶行列式中,三角形行列式的值为主对角线的三个数之积,其余五项都是0,例如例1a为何值时,[答疑编号10010101:针对该题提问]解因为所以8-3a=0,时例2当x取何值时,[答疑编号10010102:针对该题提问]解:解得0<x<9所以当0<x<9时,所给行列式大于0。
自考04184线性代数(经管类)讲义

自考高数线性代数课堂笔记第一章行列式线性代数学的核心内容是:研究线性方程组的解的存在条件、解的结构以及解的求法。
所用的基本工具是矩阵,而行列式是研究矩阵的很有效的工具之一。
行列式作为一种数学工具不但在本课程中极其重要,而且在其他数学学科、乃至在其他许多学科(例如计算机科学、经济学、管理学等)都是必不可少的。
1.1行列式的定义(一)一阶、二阶、三阶行列式的定义)定义:符号叫一阶行列式,它是一个数,其大小规定为:。
注意:在线性代数中,符号不是绝对值。
例如,且;)定义:符号叫二阶行列所以二阶行列式的值等于两个例如)符号叫三阶行列式,它也例如=0三阶行列式的计算比较复杂,为了帮助大家掌握三阶行列式的计算公式,我们可以采用下面的对角线法记忆方法是:在已给行列式右边添加已给行列式的第一列、第二列。
我们把行列式左上角到右下角的对角线叫主对角线,把右上角到左下角的对角线叫次对角线,这时,三阶行列式的值等于主对角线的三个数的积与和主对角线平行的线上的三个数的积之和减去次对角线三个数的积与次对角线的平行线上数的积之和。
例如:(1)=1×5×9+2×6×7+3×4×8-3×5×7-1×6×8-2×4×9 =0(2)(3)(2)和(3)叫三角形行列式,其中(2)叫上三角形行列式,(3)叫下三角形行列式,由(2)(3)可见,在三阶行列式中,三角形行列式的值为主对角线的三个数之积,其余五项都是0,例如例1a为何值时,[答疑编号10010101:针对该题提问]解因为所以8-3a=0,时例2当x取何值时,[答疑编号10010102:针对该题提问]解:解得0<x<9所以当0<x<9时,所给行列式大于0。
(二)n阶行列式符号:它由n行、n列元素(共个元素)组成,称之为n阶行列式。
其中,每一个数称为行列式的一个元素,它的前一个下标i称为行标,它表示这个数在第i行上;后一个下标j 称为列标,它表示这个数在第j列上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全国2011年4月高等教育自学考试
线性代数(经管类)试题
课程代码:04184
说明:A T表示矩阵A的转置矩阵,A*表示矩阵A的伴随矩阵,E是单位矩阵,|A|表示方阵A的行列式.
一、单项选择题(本大题共10小题,每小题2分,共20分)
在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.下列等式中,正确的是()
A
.
B.
3
=
C.
5
D.
浙04184#线性代数(经管类)试卷第1页(共6页)
2.下列矩阵中,是初等矩阵的为()
A
.B
.
C .
D .
3.设A、B均为n阶可逆矩阵,且C =,则C-1是()
A
.B
.
C .
D .
4.设A为3阶矩阵,A的秩r (A)=3,则矩阵A*的秩r (A*)=()A.0 B.1
C.2 D.3
5.设向量,若有常数a,b 使,则()A.a=-1, b=-2 B.a=-1, b=2
浙04184#线性代数(经管类)试卷第2页(共6页)
C.a=1, b=-2 D.a=1, b=2
6.向量组的极大线性无关组为
()
A
.B
.
C .
D .
7.设矩阵A =,那么矩阵A的列向量组的秩为()A.3 B.2
C.1 D.0
8.设是可逆矩阵A 的一个特征值,则矩阵有一个特征值等于()A.B.
C .
D .
9.设矩阵A =,则A 的对应于特征值的特征向量为()
浙04184#线性代数(经管类)试卷第3页(共6页)
浙04184# 线性代数(经管类)试卷 第4页(共6页)
A .(0,0,0)T
B .(0,2,-1)T
C .(1,0,-1)T
D .(0,1,1)T
10.二次型2221213212),,(x x x x x x x f +-=的矩阵为( )
A
. B
.
C
.
D .
二、填空题(本大题共10小题,每小题2分,共20分)
请在每小题的空格中填上正确答案。
错填、不填均无分。
11
.行列式
__________.
12.行列式
2
2
3
5
001011110403
--中第4行各元素的代数余子式之和为__________.
13.设矩阵A =
,B =(1,2,3),则BA =__________. 14.设3阶方阵A 的行列式|A |=
2
1,则|A 3|=__________.
浙04184# 线性代数(经管类)试卷 第5页(共6页)
15.设A ,B 为n 阶方阵,且AB =E ,A -1B =B -1A =E ,则A 2+B 2
=__________. 16.已知3维向量=(1,-3,3),
(1,0,-1)则
+3
=__________.
17.设向量
=(1,2,3,4),则的单位化向量为__________.
18.设n 阶矩阵A 的各行元素之和均为0,且A 的秩为n -1,则齐次线性方程组Ax =0的通
解为__________.
19.设3阶矩阵A 与B 相似,若A 的特征值为4
1,
31,21,则行列式|B -1|=__________.
20.设A =是正定矩阵,则a 的取值范围为__________.
三、计算题(本大题共6小题,每小题9分,共54分)
21.已知矩阵A =
,B =,
求:(1)A T
B ; (2)|A T B |.
22.设A =
,B =,C =,
且满足AXB =C ,求矩阵X . 23.求向量组
=(1, 2, 1, 0)T
,
=(1, 1, 1, 2)T
,
=(3, 4, 3, 4)T
,
=(4, 5, 6, 4)
T
的秩与一个极大线性无关组.
24.判断线性方程组⎪⎩⎪
⎨⎧-=+-=+--=-+-1
5424213431
43214321x x x x x x x x x x x 是否有解,有解时求出它的解.
25.已知2阶矩阵A 的特征值为
=1,
=9,对应的特征向量依次为
=(-1,1)T ,
=(7,1)T,求矩阵A.
26.已知矩阵A相似于对角矩阵Λ=,求行列式|A-E|的值.
四、证明题(本大题共6分)
27.设A为n阶对称矩阵,B为n阶反对称矩阵.证明:
(1)AB-BA为对称矩阵;
(2)AB+BA为反对称矩阵.
浙04184#线性代数(经管类)试卷第6页(共6页)。