2018-2019版高中数学人教A版必修五课件:2-4(二)等比数列(二)

合集下载

高中数学 第二章 数列 2.4 等比数列(二)课件 新人教A版必修5

高中数学 第二章 数列 2.4 等比数列(二)课件 新人教A版必修5
根据等比数列的性质 a5a6=a1a10=a2a9=a3a8=a4a7=9, ∴a1a2…a9a10=(a5a6)5=95, ∴log3a1+log3a2+…+log10.
名师点评
抓住各项序号的数字特征,灵活运用等比数列的性质,可以顺利地 解决问题.
1234
4.an=2n+3n,判断数列{an}是不是等比数列? 不是等比数列. ∵a1=21+31=5,a2=22+32=13,a3=23+33=35, ∴a1a3≠a22, ∴数列{an}不是等比数列.
1234
课堂小结
1.解题时,应该首先考虑通式通法,而不是花费大量时间找简便方法. 2.所谓通式通法,指应用通项公式,前n项和公式,等差中项,等比中 项等列出方程(组),求出根本量. 3.巧用等比数列的性质,减少计算量,这一点在解题中也非常重要.
探究点2 等比数列的性质
命题角度1 序号的数字特征 例2 {an}为等比数列. (1)假设an>0,a2a4+2a3a5+a4a6=25,求a3+a5;
a2a4+2a3a5+a4a6=a23+2a3a5+a25 =(a3+a5)2=25, ∵an>0, ∴a3+a5>0, ∴a3+a5=5.
(2)假设an>0,a5a6=9,求log3a1+log3a2+…+log3a10的值.
方法二 设这四个数依次为2qa-a,aq,a,aq(q≠0),
2qa-a+aq=16, 由条件得aq+a=12,
解得aq==82,
a=3, 或q=13.
当a=8,q=2时,所求的四个数为0,4,8,16;
当 a=3,q=13时,所求的四个数为 15,9,3,1. 故所求的四个数为0,4,8,16或15,9,3,1.
2.等比数列项的运算性质 在等比数列{an}中,若 m+n=p+q(m,n,p,q∈N*),则 am·an= ap·aq . ①特别地,当 m+n=2k(m,n,k∈N*)时,am·an= a2k . ②对有穷等比数列,与首末两项“等距离”的两项之积等于首末两项的 积 ,

高中数学等比数列(二)名师课件人教版必修五

高中数学等比数列(二)名师课件人教版必修五

比数列,那么an bn也是等比数列.
证明:设数列an的公比为p,bn 的公比为
q,那么数列an bn 的第n项与第n+1项分
别与为a1ba11(ppnq1)n.b1qn1 与
a
pn
1

b1q
n
,即
a b1 1(pq)n1
因为
a b n1 n1 a b1 1(pq)n pq,
则a m a n a p aq
2、an
.an1
...a2
.a1仍为




其公比为1 q
3、a1.an a2 .an1 a3 .an2 ...
4、等比数列所有奇数项符号相同; 所有偶数项符号相同。
1.定义
2.公比(差)
等比数列
an1 q an
q不可以是0,
等差数列
例题讲解
分析:可由等比数列的知识求解
例2.一个等比数列的第3项和第4项
分别是12和18,求它的第1项和第 2项.
(分析:要求第1项和第2项,必 先求公比q. 可利用方程的思想进行求解。)
2n 3n 6n

( 1)n 2
( 1)n 3
(1)n 6

结论:如果
a

n
b n 是项数相同的等
3、等比数列的通项公式
等比数列的通项公式:
an a1qn1
(n∈N﹡,q≠0)
特别地,等比数列{an}中,a1≠0,q≠0
若数列{an}的首项是a1=1,公比q=2,则用通项公式表示是:
_a_n=_2 n-_1 __
上式还可以写成
an

1 2n 2

人教A版高中数学必修五课件2.4等比数列(二).pptx

人教A版高中数学必修五课件2.4等比数列(二).pptx
空白演示
在此输入您的封面副标题
§2.4等比数列 (二)
一、复习引入
等比数列通项公式 பைடு நூலகம் 重要结论 :
an a1qn1
(1)a, A,b成等差数列 2A a b;
(2)a,G,b成等比数列 G2 ab (aGb 0).
问题.若an,bn是项数相同的等比数列,求证 : an bn 也是等比数列.
二、新课讲解
等比数列的重要性质 :
等比数列an中,若m n p q(m, n, p, q N *),则
am an ap aq
例1.等比数列an中, an 0, a4a5 32,则log2 a1 log2
a2 log2 a8的值是 ____ .
思考.已知an为等比数列,下列结论是否成立 :
(1 )an 2
,已知b1
b2
b3
21 8
,
b1b2b3
1 8
.
(1)求证 : 数列bn是等比数列;
(2)求an 的通项公式.
二、新课讲解
练2.an是等比数列,下列四个命题 :
(1) an2 是等比数列; (2)a2n是等比数列;
(3)
1 an
是等比数列;
(4)ln an是等比数列.
其中真命题的个数是 ____ .
三、总结作业
(1)a52 a3 a7 , a52 a1 a9;
二、新课讲解
(2)an2 an1 an1(n 1), an2 ank ank (n k 0).
练1.已知an是等比数列,且an 0, 若a2a4 2a3a5 a4
a6 25,则a3 a5 ____ .
例2.设an 是等差数列, bn

高中数学新人教A版必修5第二章 2.4 第二课时 等比数列的性质

高中数学新人教A版必修5第二章   2.4  第二课时 等比数列的性质

第二课时 等比数列的性质预习课本P53练习第3、4题,思考并完成以下问题 等比数列项的运算性质是什么?[新知初探] 等比数列的性质(1)若数列{a n },{b n }是项数相同的等比数列,则{a n ·b n }也是等比数列.特别地,若{a n }是等比数列,c 是不等于0的常数,则{c ·a n }也是等比数列.(2)在等比数列{a n }中,若m +n =p +q ,则a m a n =a p a q .(3)数列{a n }是有穷数列,则与首末两项等距离的两项的积相等,且等于首末两项的积. (4)在等比数列{a n }中,每隔k 项取出一项,按原来的顺序排列,所得新数列仍为等比数列,公比为q k +1.(5)当m ,n ,p (m ,n ,p ∈N *)成等差数列时,a m ,a n ,a p 成等比数列.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)有穷等比数列中,与首末两项“等距离”的两项之积等于首末两项的积( ) (2)当q >1时,{a n }为递增数列.( ) (3)当q =1时,{a n }为常数列.( )解析:(1)正确,根据等比数列的定义可以判定该说法正确. (2)错误,当q >1,a 1>0时,{a n }才为递增数列.(3)正确,当q =1时,数列中的每一项都相等,所以为常数列. 答案:(1)√ (2)× (3)√2.由公比为q 的等比数列a 1,a 2,…依次相邻两项的乘积组成的数列a 1a 2,a 2a 3,a 3a 4,…是( )A .等差数列B .以q 为公比的等比数列C .以q 2为公比的等比数列D .以2q 为公比的等比数列解析:选C 因为a n +1a n +2a n a n +1=a n +2a n =q 2为常数,所以该数列为以q 2为公比的等比数列.3.已知等比数列{a n }中,a 4=7,a 6=21,则a 8的值为( )A .35B .63C .21 3D .±21 3解析:选B ∵{a n }成等比数列. ∴a 4,a 6,a 8成等比数列∴a 26=a 4·a 8,即a 8=2127=63.4.在等比数列{a n }中,各项都是正数,a 6a 10+a 3a 5=41,a 4a 8=4,则a 4+a 8=________.解析:∵a 6a 10=a 28,a 3a 5=a 24, ∴a 24+a 28=41,又a 4a 8=4,∴(a 4+a 8)2=a 24+a 28+2a 4a 8=41+8=49,∵数列各项都是正数, ∴a 4+a 8=7. 答案:7等比数列的性质[典例] (1)在1与100之间插入n 个正数,使这n +2个数成等比数列,则插入的n 个数的积为( )A .10nB .n 10C .100nD .n 100(2)在等比数列{a n }中,a 3=16,a 1a 2a 3…a 10=265,则a 7等于________. [解析] (1)设这n +2个数为a 1,a 2,…,a n +1,a n +2, 则a 2·a 3·…·a n +1=(a 1a n +2)n 2=(100)n 2=10n .(2)因为a 1a 2a 3…a 10=(a 3a 8)5=265,所以a 3a 8=213, 又因为a 3=16=24,所以a 8=29. 因为a 8=a 3·q 5,所以q =2. 所以a 7=a 8q =256.[答案] (1)A (2)256有关等比数列的计算问题,基本方法是运用方程思想列出基本量a 1和q 的方程组,先解出a 1和q ,然后利用通项公式求解.但有时运算稍繁,而利用等比数列的性质解题,却简便快捷,为了发现性质,要充分发挥项的“下标”的指导作用.[活学活用]1.已知{a n }为等比数列,a 4+a 7=2,a 5a 6=-8,则a 1+a 10=( ) A .7 B .5 C .-5D .-7解析:选D 因为数列{a n }为等比数列,所以a 5a 6=a 4a 7=-8,联立⎩⎪⎨⎪⎧a 4+a 7=2,a 4a 7=-8,解得⎩⎪⎨⎪⎧ a 4=4,a 7=-2或⎩⎪⎨⎪⎧a 4=-2,a 7=4,所以q 3=-12或q 3=-2,故a 1+a 10=a 4q3+a 7·q 3=-7.2.在等比数列{a n }中,已知a 4a 7=-512,a 3+a 8=124,且公比为整数,则a 10=________. 解析:由a 4·a 7=-512,得a 3·a 8=-512.由⎩⎪⎨⎪⎧a 3·a 8=-512,a 3+a 8=124, 解得⎩⎪⎨⎪⎧ a 3=-4,a 8=128或⎩⎪⎨⎪⎧a 3=128,a 8=-4.(舍去). 所以q =5a 8a 3=-2.所以a 10=a 3q 7=-4×(-2)7=512. 答案:512灵活设元求解等比数列问题[典例] (1)有四个数成等比数列,将这四个数分别减去1,1,4,13成等差数列,则这四个数的和是________.(2)有四个实数,前三个数成等比数列,且它们的乘积为216,后三个数成等差数列,且它们之和为12,求这四个数.[解析] (1)设这四个数分别为a ,aq ,aq 2,aq 3,则a -1,aq -1,aq 2-4,aq 3-13成等差数列.即⎩⎪⎨⎪⎧2(aq -1)=(a -1)+(aq 2-4),2(aq 2-4)=(aq -1)+(aq 3-13),整理得⎩⎪⎨⎪⎧a (q -1)2=3,aq (q -1)2=6,解得a =3,q =2.因此这四个数分别是3,6,12,24,其和为45. [答案] 45(2)解:法一:设前三个数为aq ,a ,aq ,则a q ·a ·aq =216, 所以a 3=216.所以a =6. 因此前三个数为6q ,6,6q . 由题意知第4个数为12q -6. 所以6+6q +12q -6=12,解得q =23.故所求的四个数为9,6,4,2.法二:设后三个数为4-d,4,4+d ,则第一个数为14(4-d )2,由题意知14(4-d )2×(4-d )×4=216,解得4-d =6.所以d =-2.故所求得的四个数为9,6,4,2.几个数成等比数列的设法(1)三个数成等比数列设为aq ,a ,aq . 推广到一般:奇数个数成等比数列设为: …a q 2,aq,a ,aq ,aq 2… (2)四个符号相同的数成等比数列设为: a q 3,aq,aq ,aq 3. 推广到一般:偶数个符号相同的数成等比数列设为: …a q 5,a q3,aq ,aq ,aq 3,aq 5… (3)四个数成等比数列,不能确定它们的符号相同时,可设为:a ,aq ,aq 2,aq 3. [活学活用]在2和20之间插入两个数,使前三个数成等比数列,后三个数成等差数列,则插入的两个数的和为( )A .-4或352B .4或352C .4D .1712解析:选B 设插入的第一个数为a ,则插入的另一个数为a 22.由a ,a 22,20成等差数列得2×a 22=a +20.∴a 2-a -20=0,解得a =-4或a =5. 当a =-4时,插入的两个数的和为a +a 22=4.当a =5时,插入的两个数的和为a +a 22=352.等比数列的实际应用问题[典例] 某工厂2018年1月的生产总值为a 万元,计划从2018年2月起,每月生产总值比上一个月增长m %,那么到2019年8月底该厂的生产总值为多少万元?[解] 设从2018年1月开始,第n 个月该厂的生产总值是a n 万元,则a n +1=a n +a n m %, ∴a n +1a n=1+m %.∴数列{a n }是首项a 1=a ,公比q =1+m %的等比数列.∴a n =a (1+m %)n -1.∴2019年8月底该厂的生产总值为a 20=a (1+m %)20-1=a (1+m %)19(万元).数列实际应用题常与现实生活和生产实际中的具体事件相联系,建立数学模型是解决这类问题的核心,常用的方法有:①构造等差、等比数列的模型,然后用数列的通项公式或求和公式解;②通过归纳得到结论,再用数列知识求解.[活学活用] 如图,在等腰直角三角形ABC 中,斜边BC =2 2.过点 A 作BC 的垂线,垂足为A 1 ;过点 A 1作 AC 的垂线,垂足为 A 2;过点A 2 作A 1C 的垂线,垂足为A 3 ;…,依此类推.设BA =a 1 ,AA 1=a 2 , A 1A 2=a 3 ,…, A 5A 6=a 7 ,则 a 7=________.解析:等腰直角三角形ABC 中,斜边BC =22,所以AB =AC =a 1=2,AA 1=a 2=2,…,A n -1A n =a n +1=sin π4·a n =22a n =2×⎝⎛⎭⎫22n ,故a 7=2×⎝⎛⎭⎫226=14. 答案:14层级一 学业水平达标1.等比数列x,3x +3,6x +6,…的第四项等于( ) A .-24 B .0 C .12D .24解析:选A 由题意知(3x +3)2=x (6x +6),即x 2+4x +3=0,解得x =-3或x =-1(舍去),所以等比数列的前3项是-3,-6,-12,则第四项为-24.2.对任意等比数列{a n },下列说法一定正确的是( ) A .a 1,a 3,a 9成等比数列 B .a 2,a 3,a 6成等比数列 C .a 2,a 4,a 8成等比数列D .a 3,a 6,a 9成等比数列解析:选D 设等比数列的公比为q ,因为a 6a 3=a 9a 6=q 3,即a 26=a 3a 9,所以a 3,a 6,a 9成等比数列.故选D.3.在正项等比数列{a n }中,a n +1<a n ,a 2·a 8=6,a 4+a 6=5,则a 5a 7等于( )A.56B.65C.23D.32解析:选D 设公比为q ,则由等比数列{a n }各项为正数且a n +1<a n 知0<q <1,由a 2·a 8=6,得a 25=6.∴a 5=6,a 4+a 6=6q+6q =5. 解得q =26,∴a 5a 7=1q 2=⎝⎛⎭⎫622=32.4.已知公差不为0的等差数列的第2,3,6项依次构成一个等比数列,则该等比数列的公比q 为( )A.13 B .3 C .±13D .±3解析:选B 设等差数列为{a n },公差为d ,d ≠0.则a 23=a 2·a 6,∴(a 1+2d )2=(a 1+d )·(a 1+5d ),化简得d 2=-2a 1d , ∵d ≠0,∴d =-2a 1,∴a 2=-a 1,a 3=-3a 1,∴q =a 3a 2=3.5.已知各项均为正数的等比数列{a n }中,lg(a 3a 8a 13)=6,则a 1·a 15的值为( ) A .100 B .-100 C .10 000D .-10 000解析:选C ∵a 3a 8a 13=a 38,∴lg(a 3a 8a 13)=lg a 38=3lg a 8=6.∴a 8=100.又a 1a 15=a 28=10000,故选C.6.在3和一个未知数间填上一个数,使三数成等差数列,若中间项减去6,成等比数列,则此未知数是________.解析:设此三数为3,a ,b ,则⎩⎪⎨⎪⎧2a =3+b ,(a -6)2=3b , 解得⎩⎪⎨⎪⎧ a =3,b =3或⎩⎪⎨⎪⎧a =15,b =27.所以这个未知数为3或27. 答案:3或277.设数列{a n }为公比q >1的等比数列,若a 4,a 5是方程4x 2-8x +3=0的两根,则a 6+a 7=________.解析:由题意得a 4=12,a 5=32,∴q =a 5a 4=3.∴a 6+a 7=(a 4+a 5)q 2=⎝⎛⎭⎫12+32×32=18. 答案:188.画一个边长为2厘米的正方形,再以这个正方形的对角线为边画第2个正方形,以第2个正方形的对角线为边画第3个正方形,这样一共画了10个正方形,则第10个正方形的面积等于________平方厘米.解析:这10个正方形的边长构成以2为首项,2为公比的等比数列{a n }(1≤n ≤10,n ∈N *),则第10个正方形的面积S =a 210=22·29=211=2 048. 答案:2 0489.在由实数组成的等比数列{a n }中,a 3+a 7+a 11=28,a 2·a 7·a 12=512,求q . 解:法一:由条件得⎩⎪⎨⎪⎧a 7q -4+a 7+a 7q 4=28, ①a 7q -5·a 7·a 7q 5=512, ② 由②得a 37=512,即a 7=8. 将其代入①得2q 8-5q 4+2=0.解得q 4=12或q 4=2,即q =±142或q =±42.法二:∵a 3a 11=a 2a 12=a 27, ∴a 37=512,即a 7=8.于是有⎩⎪⎨⎪⎧a 3+a 11=20,a 3a 11=64,即a 3和a 11是方程x 2-20x +64=0的两根,解此方程得x =4或x =16.因此⎩⎪⎨⎪⎧ a 3=4,a 11=16或⎩⎪⎨⎪⎧a 3=16,a 11=4.又∵a 11=a 3·q 8,∴q =±⎝⎛⎭⎫a 11a 318=±418=±42或q =±⎝⎛⎭⎫1418=±142. 10.在正项等比数列{a n }中,a 1a 5-2a 3a 5+a 3a 7=36,a 2a 4+2a 2a 6+a 4a 6=100,求数列{a n }的通项公式.解:∵a 1a 5=a 23,a 3a 7=a 25, ∴由题意,得a 23-2a 3a 5+a 25=36, 同理得a 23+2a 3a 5+a 25=100,∴⎩⎪⎨⎪⎧ (a 3-a 5)2=36,(a 3+a 5)2=100.即⎩⎪⎨⎪⎧a 3-a 5=±6,a 3+a 5=10.解得⎩⎪⎨⎪⎧ a 3=2,a 5=8或⎩⎪⎨⎪⎧a 3=8,a 5=2.分别解得⎩⎪⎨⎪⎧ a 1=12,q =2或⎩⎪⎨⎪⎧a 1=32,q =12.∴a n =2n-2或a n =26-n .层级二 应试能力达标1.在等比数列{a n }中,T n 表示前n 项的积,若T 5=1,则( ) A .a 1=1 B .a 3=1 C .a 4=1D .a 5=1解析:选B 由题意,可得a 1·a 2·a 3·a 4·a 5=1,即(a 1·a 5)·(a 2·a 4)·a 3=1,又a 1·a 5=a 2·a 4=a 23,所以a 53=1,得a 3=1.2.已知等比数列{a n }中,a 3a 11=4a 7,数列{b n }是等差数列,且b 7=a 7,则b 5+b 9等于( ) A .2 B .4 C .8D .16解析:选C 等比数列{a n }中,a 3a 11=a 27=4a 7,解得a 7=4,等差数列{b n }中,b 5+b 9=2b 7=2a 7=8.3.已知数列{a n }为等差数列,a 1,a 2,a 3成等比数列,a 1=1,则a 2 016=( ) A .5B .1C .0D .-1解析:选B 设等差数列{a n }的公差为d ,则由a 1,a 2,a 3成等比数列得(1+d )2=1+2d ,解得d =0,所以a 2 016=a 1=1.4.设各项为正数的等比数列{a n }中,公比q =2,且a 1·a 2·a 3·…·a 30=230,则a 3·a 6·a 9·…·a 30=( )A .230B .210C .220D .215解析:选C ∵a 1·a 2·a 3·…·a 30=230,∴a 301·q1+2+3+…+29=a 301·q29×302=230, ∴a 1=2-272,∴a 3·a 6·a 9·…·a 30=a 103·(q 3)9×102=(2-272×22)10×(23)45=220. 5.在等比数列{a n }中,若a 7=-2,则此数列的前13项之积等于________. 解析:由于{a n }是等比数列,∴a 1a 13=a 2a 12=a 3a 11=a 4a 10=a 5a 9=a 6a 8=a 27,∴a 1a 2a 3…a 13=(a 27)6·a 7=a 137, 而a 7=-2.∴a 1a 2a 3…a 13=(-2)13=-213. 答案:-2136.已知-7,a 1,a 2,-1四个实数成等差数列,-4,b 1,b 2,b 3,-1五个实数成等比数列,则a 2-a 1b 2=________.解析:由题意,知a 2-a 1=-1-(-7)3=2,b 22=(-4)×(-1)=4.又因为b 2是等比数列中的第三项,所以b 2与第一项同号,即b 2=-2,所以a 2-a 1b 2=2-2=-1. 答案:-17.已知数列{a n }为等差数列,公差d ≠0,由{a n }中的部分项组成的数列ab 1,ab 2,…,ab n ,…为等比数列,其中b 1=1,b 2=5,b 3=17.求数列{b n }的通项公式.解:依题意a 25=a 1a 17,即(a 1+4d )2=a 1(a 1+16d ),所以a 1d =2d 2,因为d ≠0,所以a 1=2d ,数列{ab n }的公比q =a 5a 1=a 1+4d a 1=3,所以ab n =a 13n -1,①又ab n =a 1+(b n -1)d =b n +12a 1,② 由①②得a 1·3n -1=b n +12·a 1. 因为a 1=2d ≠0,所以b n =2×3n -1-1.8.容器A 中盛有浓度为a %的农药m L ,容器B 中盛有浓度为b %的同种农药m L ,A ,B 两容器中农药的浓度差为20%(a >b ),先将A 中农药的14倒入B 中,混合均匀后,再由B倒入一部分到A 中,恰好使A 中保持m L ,问至少经过多少次这样的操作,两容器中农药的浓度差小于1%?解:设第n 次操作后,A 中农药的浓度为a n ,B 中农药的浓度为b n ,则a 0=a %,b 0=b %.b 1=15(a 0+4b 0),a 1=34a 0+14b 1=15(4a 0+b 0);b 2=15(a 1+4b 1),a 2=34a 1+14b 2=15(4a 1+b 1);…;b n =15(a n -1+4b n -1),a n =15(4a n -1+b n -1).∴a n -b n =35(a n -1-b n -1)=…=35(a 0-b 0)·⎝⎛⎭⎫35n -1. ∵a 0-b 0=15,∴a n -b n =15·⎝⎛⎭⎫35n .依题意知15·⎝⎛⎭⎫35n <1%,n ∈N *,解得n ≥6.故至少经过6次这样的操作,两容器中农药的浓度差小于1%.。

人教A版高中数学高二必修5课件2.4等比数列(二)

人教A版高中数学高二必修5课件2.4等比数列(二)
(5)如果{an},{bn}均为等比数列,且公比分别为q1,q2,那 么 别数为列q11,a1nq1,q2{,anqq·b21,n},|q1|.bann,{|an|}仍 是 等 比 数 列,且 公 比 分
2.4 等比数列(二)
6
(6)等比数列的项的对称性:在有穷等比数列中,与首末两项
“等距离”的两项之积等于首末两项的积,即a1·an=
2.4 等比数列(二)
29
规律方法 (1)在等差数列与等比数列的综合问题中, 特别要注意它们的区别,避免用错公式.(2)方程思想的 应用往往是破题的关键.
2.4 等比数列(二)
30
跟踪演练4 已知{an}是首项为19,公差为-2的等差数列, Sn为{an}的前n项和. (1)求通项公式an及Sn; 解 因为{an}是首项为19,公差为-2的等差数列,所以an =19-2(n-1)=-2n+21,
的m的个数;若不存在,请说明理由.
解 若存在m,使b1,b4,bt成等差数列, 则2b4=b1+bt,
∴ 7 ×2= 1 + 2t-1 ,
7+m
1+m 2t-1+m
2.4 等比数列(二)
28
7m+1 7m-5+36
∴t=

=7+
36

m-5
m-5
m-5
由于m、t∈N*且t≥5. 令m-5=36,18,9,6,4,3,2,1, 即m=41,23,14,11,9,8,7,6时,t均为大于5的整数. ∴存在符合题意的m值,且共有8个.
2.4 等比数列(二)
26
(1)由 bn=an+an m(m∈N*)知 b1=1+1 m,b2=3+3 m,b8=151+5 m,
∵b1,b2,b8成等比数列,

人教A版高中数学必修五2.4《等比数列(二)》

人教A版高中数学必修五2.4《等比数列(二)》
解析:∵数列{an}成等比数列, ∴a6·a15=a9·a12, ∴a6·a15=15, ∴a1·a2·a3·a4·…·a20=(a1·a20)10=(a6·a15)10 =1510.
答案:1510
要点阐释
1.等比数列的性质 (1)在等比数列中,我们随意取出连续的三项以上的数, 把它们重新依次看成一个数列,则仍是等比数列. (2)在等比数列中,我们任取“间隔相同”的三项以上的数, 把它们重新依次看成一个数列,则仍是等比数列,如:等比 数列a1,a2,a3,… ,an,….那么a2,a5,a8,a11,a14,…; a3,a5,a7,a9,a11…各自仍构成等比数列.
已知等比数列an
满足
an>0,n=1,2,…,
且 a5·a2n-5=22n(n≥3),则当 n≥1 时,log2a1+log2a3+…
+log2a2n-1=
()
A.(n-1)2
B.n2
C.(n+1)2
D.n(2n-1)
错解:易得 an=2n,且 log2a1+log2a3+…+log2a2n-1 =log2(a1a3…a2n-1)=log221+3+…+(2n-1) =1+3+ …+(2n-1)=1+22n-1(2n-1) =n(2n-1).从而错选 D 错因分析:对等差数列1,3,…,2n-1的项数没 数清.
即aa1122-+22aa11aa55++aa5522==330422,, 两式相减得 a1a5=64,即 a32=64, 又 a5>a1,故 a3=8. 答案:A
2.在等
比数列an
中,
a8

a4
与________的等比中项
A.a9
B.a10
C.a11
() D.a12

2.4等比数列 课件 (人教A版必修5)

2.4等比数列 课件 (人教A版必修5)
A.等差数列 B.等比数列 C.既是等差数列又是等比数列 D.不能确定是什么数列
解析:∵a1=1,a2=2,a3=4,仅给出了数列前3项, 后边各项不知有何规律,给出不同的值会得出不同结论.
答案:D
3.等比数列{an}中,a1=
1 8
,q=2,则a4与a8的等比中
项是( )
A.±4
B.4
C.±14
[例2]
已知a,-
3 2
,b,-
243 32
,c五பைடு நூலகம்数成等比数
列,试求a,b,c的值.
[解] ∵b2=(-32)×(-23423)=(32)6, ∴b=±287. 当b=287时,∵ab=(-32)2,∴a=23. 由bc=(-23423)2=(32)10及b=287,得c=2112887=(32)7.
2.4 等比数列
第1课时 等比数列
课前自主预习
课堂互动探究
随堂知能训练
课时作业
目标了然于胸,让讲台见证您的高瞻远瞩
1.掌握等比数列的通项公式,体会等比数列的通项公式
与指数函数的关系.
2.掌握等比中项的定义,能够应用等比中项的定义解 决问题.
课前 自 主 预 习
课 前 预 习 ········································· 明 确 目 标
D.①②③④
解析:根据等比数列的定义,从第2项起检查每一项与 其前一项的比是否为同一个常数.
①中数列是等比数列,公比q=-2;②中数列是等比 数列,公比q=- 2;③中数列当x=0时,不是等比数列; ④中数列是等比数列,公比q=1a.
答案:C
2.在数列{an}中,a1=1,a2=2,a3=4,…,那么数 列{an}是( )

高中数学人教A版必修五教学课件:第二章 《数列》 2.4 第2课时 等比数列的性质

高中数学人教A版必修五教学课件:第二章 《数列》 2.4 第2课时 等比数列的性质

-6 解析:a4a7=a1· a10= =-2. 3
答案:B
3. 等比数列{an}中, 若 a9=-2, 则此数列前 17 项之积为____________.
解析:由题意得 a1a2a3…a15a16a17 =(a1a17)· (a2a16)· (a3a15)· …· a9
17 17 =a17 9 =(-2) =-2 .
2 ∴a6 =a2· a10,
1 ∴a10=162 × =13 122. 2
2
法三:由公式 ap· aq=ap+k· aq-k 得
2 a2· a10=a2+4· a10-4=a6 .
1 ∴a10=1622× =13 122. 2
答案:13 122
探究二
an+1=can+d(c≠1,cd≠0)的递推关系
利用等比数列的性质解题 (1)基本思路:充分发挥项的 “下标”的指导作用,分析等比数列项 与项之间的关系,选择恰当的性质解题. (2)优缺点:简便快捷,但是适用面窄,有一定的思维含量.
1.在等比数列中,若 a2=2,a6=162,则 a10=________.
解析:法一:∵a6=a2q4,其中 a2=2,a6=162, ∴q4=81, ∴a10=a6q4=162×81=13 122. 法二:∵2,6,10 三数成等差数列, ∴a2,a6,a10 成等比数列.

1n-1 4n-1 n-1 第 n 个图形的周长 3 ×(3×4 )=3×3 .
[感悟提高]
(1)解决此类问题,需要抓住变中的不变量,即数据在改
变,但其变化规律不改变,事实上,给出的图形只是问题的载体,我 们只需从“形”中抽象出“数”,即可将问题归结为等比数列.
a1=1, 1 ∴ 或 1 q = . q=2,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【预习评价】 (正确的打“√”,错误的打“×”)
(1)知道等比数列的某一项和公比,可以计算等比数列的任意一项.(
(2)若{an}为等比数列,且m+n=p(m,n,p∈N*),则am·an=ap.( )
)
提示 (2)∵{an}为等比数列,m+n=p,∴am·an=a1qm-1
m+n-2 ·a1·qn-1=a2 . 1q
知识点二
等比数列的性质 am.·an=ak·al .
1.如果m+n=k+l,则有
2.如果m+n=2k,则有am· an=
3.若m,n,p成等差数列,则am,an,ap成等比数列. 4. 在等比数列{an}中,每隔k项(k∈N*)取出一项,按原来的顺序排列,所得的新数列 仍为 数列. 等比
a2 k
5.如果{an}, {bn}均为等比数列, 且公比分别为
=2(k+2)(k+3), 即 k2-5k-6=0,解得 k=6 或 k=-1(舍去),因此 k=6.
规律方法
解决等差、等比数列的综合问题应注意的四个方面
(1)等差数列、等比数列公式和性质的灵活应用.
(2)对于解答题注意基本量及方程思想. (3)注重问题的转化,利用非等差数列、非等比数列构造出新的等差数列或等比数列, 以便利用公式和性质解题. (4)当题中出现多个数列时,既要纵向考查单一数列的项与项之间的关系,又要横向 考查各数列之间的内在联系.
§2.4 等比数列(二)
学习目标
1. 灵活应用等比数列的定义及通项公式; 2. 熟悉等比数列的有关性质 (重、
难点);3.系统了解判断是否成等比数列的方法.
预习教材 P48-50 完成下列问题:
知识点一 等比数列的单调性
递增 递减
递减 递增
常数
【预习评价】 1.在等比数列{an}中,已知a1>0,8a2-a5=0,则数列{an}为递增数列吗?
规律方法 巧用等比数列的性质解题 (1)解答等比数列问题的基本方法——基本量法. ①基本步骤:运用方程思想列出基本量a1和q的方程组,解出a1和q,然后利用通项公 式求解;
②优缺点:适用面广,入手简单,思路清晰,但有时运算稍繁.
(2)利用等比数列的性质解题 ①基本思路:充分发挥项的“下标”的指导作用,分析等比数列项与项之间的关系,
2a1+2d=8, d ,由题意知 解得 2a1+4d=12,
a1=2, 所以 d=2,
an=a1+(n-1)d=2+2(n-1)=2n.
n(a1+an) n(2+2n) (2)由(1)可得 Sn= = =n(1+n). 2 2
2 因为 a1,ak,Sk+2 成等比数列,所以 a2 k =a1Sk+2,从而(2k)
1 q1, q2, 那么数列a , n
bn 1 q2 {an·bn}, a ,{|an|}仍是等比数列,且公比分别为 ,q1q2, , q1 q1 n
|q1|.
6.等比数列的项的对称性:在有穷等比数列中,与首末两项“等距离”的两项之积等 于首末两项的积,即a1· an= = ak·an-k+1 =…. a2·an-1
5 a8 因为 q 为整数,所以 q= a =-2, 3 所以 an=a3qn-3=-4×(-2)n-3=(-1)n-2×2n-1.
【迁移1】 将例1中条件“a4a7=-512,a3+a8=124,且公比为整数”改为“a7· a11=6, a4+a14=5”,则结果又如何?

因为数列{an}是等比数列,
选择恰当的性质解题;
②优缺点:简便快捷,但是适用面窄,有一定的思维含量.
题型二 等差数列与等比数列的综合问题
【例2】 已知{an}为等差数列,且a1+a3=8,a2+a4=12. (1)求{an}的通项公式; (2)记{an}的前n项和为Sn,若a1,ak,Sk+2成等比数列,求正整数k的值.

(1) 设数列 {an} 的公差为
提示
a5 是.由 8a2-a5=0, 可知a =q3=8, 解得 q=2, 又 a1>0, 2
所以数列{an}为递增数列.
2.等比数列的公比对等比数列项的符号有怎样的影响? 提示 由等比数列的定义可知: (1)当q=1时,等比数列是一个常数列,各项都等于首项a1; (2)当q=-1时,等比数列是一个摆动数列,奇数项为a1,偶数项为-a1. 一般地,q>0时,等比数列各项的符号相同;q<0时,等比数列各项的符号正负 交替.
a4a14=6, a4·a14=a7·a11=6.解方程组 a4+a14=5.
所以
a4=2, a4=3, 得 或 a14=3 a14=2.
10
所以 q=
a14 10 3 10 2 = 或 . a4 2 3
n-4
所以 an=a4q
3 =2×2 10
又知 ap=a1qp 1,∴am·an≠ap.

答案 (1)√
(2)×
【例1】
在等比数列{an}中,已知a4a7=-512,a3+a8=124,且公比为整数,求数
列{an}的通项公式.

由 a4a7=-512,知 a3a8=-512.
a3a8=-512, 解方程组 a3+a8=124. a3=-4, a3=128, 得 或 a8=128 a8=-4.
【训练1】
有四个数,其中前三个数成等差数列四个数的和是16,第二个数与第三个数的和是12,求这四个数.

(a+d)2 法一 设四个数依次为 a-d,a,a+d, ,由条件 a
n -4

2n-4 3×3 10 .
【迁移2】 将例1中等比数列满足的条件改为a4+a7=2,a5a6=-8,求a1+a10.
解 因为数列{an}为等比数列,所以 a5a6=a4a7=-8.
a4+a7=2, 联立 a4a7=-8. a4=4, a4=-2, 可解得 或 a7=-2 a7=4. a4=4, 1 a4 3 当 时,q =- ,故 a1+a10= 3+a7q3=-7; 2 q a7=-2 a4=-2, 当 时,q3=-2,同理,有 a1+a10=-7. a7=4
相关文档
最新文档