2018最新五年级奥数.计算综合.公式应用(B级).学生版

合集下载

五年级奥数计数综合容斥原理(ABC级)学生版

五年级奥数计数综合容斥原理(ABC级)学生版

一、两量重叠问题在一些计数问题中,经常遇到有关集合元素个数的计算.求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数,用式子可表示成:A B A B A B =+-(其中符号“”读作“并”,相当于中文“和”或者“或”的意思;符号“”读作“交”,相当于中文“且”的意思.)则称这一公式为包含与排除原理,简称容斥原理.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B ,即阴影面积.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B ,即阴影面积. 包含与排除原理告诉我们,要计算两个集合A B 、的并集A B 的元素的个数,可分以下两步进行: 第一步:分别计算集合A B 、的元素个数,然后加起来,即先求A B +(意思是把A B 、的一切元素都“包含”进来,加在一起);第二步:从上面的和中减去交集的元素个数,即减去C A B =(意思是“排除”了重复计算的元素个数).二、三量重叠问题A 类、B 类与C 类元素个数的总和A =类元素的个数B +类元素个数C +类元素个数-既是A 类又是B 类的元素个数-既是B 类又是C 类的元素个数-既是A 类又是C 类的元素个数+同时是A 类、B 类、C 类的元素个数.用符号表示为:A B C A B C A B B C A C A B C =++---+.图示如下:知识结构容斥原理1.先包含——A B +重叠部分AB 计算了2次,多加了1次; 2.再排除——A B A B +- 把多加了1次的重叠部分AB 减去.在解答有关包含排除问题时,我们常常利用圆圈图(韦恩图)来帮助分析思考.【例 1】 实验小学四年级二班,参加语文兴趣小组的有28人,参加数学兴趣小组的有29人,有12人两个小组都参加.这个班有多少人参加了语文或数学兴趣小组?【巩固】 芳草地小学四年级有58人学钢琴,43人学画画,37人既学钢琴又学画画,问只学钢琴和只学画画的分别有多少人?【例 2】 某班共有46人,参加美术小组的有12人,参加音乐小组的有23人,有5人两个小组都参加了.这个班既没参加美术小组也没参加音乐小组的有多少人?【巩固】 四年级一班有45人,其中26人参加了数学竞赛,22人参加了作文比赛,12人两项比赛都参加了.一班有多少人两项比赛都没有参加?【例 3】 对全班同学调查发现,会游泳的有20人,会打篮球的有25人.两项都会的有10人,两项都不会的有9人.这个班一共有多少人?【巩固】 某班组织象棋和军棋比赛,参加象棋比赛的有32人,参加军棋比赛的有28人,有18人两项比赛都参加了,这个班参加棋类比赛的共有多少人?【例 4】 47名学生参加数学和语文考试,其中语文得分95分以上的14人,数学得分95分以上的21人,两门都不在95分以上的有22人.问:两门都在95分以上的有多少人?【巩固】 有100位旅客,其中有10人既不懂英语又不懂俄语,有75人懂英语,83人懂俄语.问既懂英语又懂俄语的有多少人?【例 5】 一个班48人,完成作业的情况有三种:一种是完成语文作业没完成数学作业;一种是完成数学作业没完成语文作业;一种是语文、数学作业都完成了.已知做完语文作业的有37人;做完数学作业的有42人.这些人中语文、数学作业都完成的有多少人?【巩固】 四年级科技活动组共有63人.在一次剪贴汽车模型和装配飞机模型的定时科技活动比赛中,老师到时清点发现:剪贴好一辆汽车模型的同学有42人,装配好一架飞机模型的同学有34人.每个同学都至少完成了一项活动.问:同时完成这两项活动的同学有多少人?【例 6】 某班学生手中分别拿红、黄、蓝三种颜色的小旗,已知手中有红旗的共有34人,手中有黄旗的例题精讲图中小圆表示A 的元素的个数,中圆表示B 的元素的个数,大圆表示C 的元素的个数.1.先包含:A B C ++重叠部分A B 、B C 、C A 重叠了2次,多加了1次. 2.再排除:A B C A B B C A C ++---重叠部分A B C 重叠了3次,但是在进行A B C ++-A B B C A C --计算时都被减掉了.共有26人,手中有蓝旗的共有18人.其中手中有红、黄、蓝三种小旗的有6人.而手中只有红、黄两种小旗的有9人,手中只有黄、蓝两种小旗的有4人,手中只有红、蓝两种小旗的有3人,那么这个班共有多少人?【巩固】某班有42人,其中26人爱打篮球,17人爱打排球,19人爱踢足球,9人既爱打篮球又爱踢足球,4人既爱打排球又爱踢足球,没有一个人三种球都爱好,也没有一个人三种球都不爱好.问:既爱打篮球又爱打排球的有几人?【例 7】四年级一班有46名学生参加3项课外活动.其中有24人参加了数学小组,20人参加了语文小组,参加文艺小组的人数是既参加数学小组也参加文艺小组人数的3.5倍,又是3项活动都参加人数的7倍,既参加文艺小组也参加语文小组的人数相当于3项都参加的人数的2倍,既参加数学小组又参加语文小组的有10人.求参加文艺小组的人数.【巩固】五年级三班学生参加课外兴趣小组,每人至少参加一项.其中有25人参加自然兴趣小组,35人参加美术兴趣小组,27人参加语文兴趣小组,参加语文同时又参加美术兴趣小组的有12人,参加自然同时又参加美术兴趣小组的有8人,参加自然同时又参加语文兴趣小组的有9人,语文、美术、自然3科兴趣小组都参加的有4人.求这个班的学生人数.【例 8】在某个风和日丽的日子,10个同学相约去野餐,每个人都带了吃的,其中6个人带了汉堡,6个人带了鸡腿,4个人带了芝士蛋糕,有3个人既带了汉堡又带了鸡腿,1个人既带了鸡腿又带了芝士蛋糕.2个人既带了汉堡又带了芝土蛋糕.问:⑴ 三种都带了的有几人?⑴ 只带了一种的有几个?【巩固】盛夏的一天,有10个同学去冷饮店,向服务员交了一份需要冷饮的统计表:要可乐、雪碧、橙汁的各有5人;可乐、雪碧都要的有3人;可乐、橙汁都要的有2人;雪碧、橙汁都要的有2人;三样都要的只有1人,证明其中一定有1人这三种饮料都没有要.【例 9】三个面积均为50平方厘米的圆纸片放在桌面上(如图),三个纸片共同重叠的面积是10平方厘米.三个纸片盖住桌面的总面积是100厘米.问:图中阴影部分面积之和是多少?【巩固】如图,已知甲、乙、丙3个圆的面积均为30,甲与乙、乙与丙、甲与丙重合部分的面积分别为6,8,5,而3个圆覆盖的总面积为73.求阴影部分的面积.【例 10】如图,三角形纸板、正方形纸板、圆形纸板的面积相等,都等于60平方厘米.阴影部分的面积总和是40平方厘米,3张板盖住的总面积是100平方厘米,3张纸板重叠部分的面积是多少平方厘米?【巩固】如图所示,A、B、C分别是面积为12、28、16的三张不同形状的纸片,它们重叠在一起,露在外面的总面积为38.若A与B、B与C的公共部分的面积分别为8、7,A、B、C这三张纸片的公共部分为3.求A与C公共部分的面积是多少?【例 11】在从1至1000的自然数中,既不能被5除尽,又不能被7除尽的数有多少个?【巩固】求在1至100的自然数中能被3或7整除的数的个数.【例 12】某班共有学生48人,其中27人会游泳,33人会骑自行车,40人会打乒乓球.那么,这个班至少有多少学生这三项运动都会?【巩固】某班有50名学生,参加语文竞赛的有28人,参加数学竞赛的有23人,参加英语竞赛的有20人,每人最多参加两科,那么参加两科的最多有人.课堂检测【随练1】四(二)班有48名学生,在一节自习课上,写完语文作业的有30人,写完数学作业的有20人,语文数学都没写完的有6人.⑴问语文数学都写完的有多少人?⑴只写完语文作业的有多少人?【随练2】光明小学组织棋类比赛,分成围棋、中国象棋和国际象棋三个组进行,参加围棋比赛的有42人,参加中国象棋比赛的有55人,参加国际象棋比赛的有33人,同时参加了围棋和中国象棋比赛的有18人,同时参加了围棋和国际象棋比赛的有10人,同时参加了中国象棋和国际象棋比赛的有9人,其中三种棋赛都参加的有5人,问参加棋类比赛的共有多少人?【随练3】一个长方形长12厘米,宽8厘米,另一个长方形长10厘米,宽6厘米,它们中间重叠的部分是一个边长4厘米的正方形,求这个组合图形的面积.家庭作业【作业1】四(1)班有46人,其中会弹钢琴的有30人,会拉小提琴的有28人,则这个班既会弹钢琴又会拉小提琴的至少有人。

五年级奥数.应用题.牛吃草问题(B级).学生版

五年级奥数.应用题.牛吃草问题(B级).学生版

(1) 英国科学家牛顿在他的《普通算术》一书中,有一道关于牛在牧场上吃草的问题,即牛在牧场上吃草,牧场上的草在不断的、均匀的生长.后人把这类问题称为牛吃草问题或叫做“牛顿问题”.(2) “牛吃草”问题主要涉及三个量:草的数量、牛的头数、时间.难点在于随着时间的增长,草也在按不变的速度均匀生长,所以草的总量不定.“牛吃草”问题是小学应用题中的难点.(3) 解“牛吃草”问题的主要依据:草的每天生长量不变; 每头牛每天的食草量不变;草的总量=草场原有的草量+新生的草量,其中草场原有的草量是一个固定值 新生的草量=每天生长量⨯天数.(4) 同一片牧场中的“牛吃草”问题,一般的解法可总结为:⑴设定1头牛1天吃草量为“1”;⑵草的生长速度=(对应牛的头数⨯较多天数-对应牛的头数⨯较少天数)÷(较多天数-较少天数); ⑶原来的草量=对应牛的头数⨯吃的天数-草的生长速度⨯吃的天数; ⑷吃的天数=原来的草量÷(牛的头数-草的生长速度); ⑸牛的头数=原来的草量÷吃的天数+草的生长速度.(5) “牛吃草”问题有很多的变例,像抽水问题、检票口检票问题等等,只有理解了“牛吃草”问题的本质和解题思路,才能以不变应万变,轻松解决此类问题.(1) 理解牛吃草这类题目的解题步骤,掌握牛吃草问题的对比的解题思路.重难点知识框架牛吃草问题一、一块草地的牛吃草【例1】牧场上有一片匀速生长的草地,可供27头牛吃6周,或供23头牛吃9周,那么它可供多少头牛吃18周?【巩固】有一块匀速生长的草场,可供12头牛吃25天,或可供24头牛吃10天.那么它可供几头牛吃20天?【例2】一牧场长满青草,27头牛6个星期可以吃完,或者23头牛9个星期可以吃完。

若是21头牛,要几个星期才可以吃完?(注:牧场的草每天都在生长)【巩固】牧场上长满牧草,每天牧草都匀速生长.这片牧场可供10头牛吃20天,可供15头牛吃10天.供25头牛可吃几天?【例 3】由于天气逐渐变冷,牧场上的草每天以均匀的速度减少.经计算,牧场上的草可供20头牛吃5天,或可供16头牛吃6天.那么,可供11头牛吃几天?例题精讲【巩固】由于天气逐渐冷起来,牧场上的草不仅不长,反而以固定的速度在减少。

五年级奥数.应用题.分数、百分数应用题(B级).学生版

五年级奥数.应用题.分数、百分数应用题(B级).学生版

一、 知识点概述:分数应用题是研究数量之间份数关系的典型应用题,一方面它是在整数应用题上的延续和深化,另一方面,它有其自身的特点和解题规律.在解这类问题时,分析中数量之间的关系,准确找出“量”与“率”之间的对应是解题的关键.关键:分数应用题经常要涉及到两个或两个以上的量,我们往往把其中的一个量看作是标准量.也称为:单位“1”,进行对比分析。

在几个量中,关键也是要找准单位“1”和对应的百分率,以及对应量三者的关系例如:(1)a 是b 的几分之几,就把数b 看作单位“1”.(2)甲比乙多18,乙比甲少几分之几?方法一:可设乙为单位“1”,则甲为19188+=,因此乙比甲少191889÷=.方法二:可设乙为8份,则甲为9份,因此乙比甲少1199÷=. 二、 怎样找准分数应用题中单位“1” (一)、部分数和总数在同一整体中,部分数和总数作比较关系时,部分数通常作为比较量,而总数则作为标准量,那么总数就是单位“1”。

例如:我国人口约占世界人口的几分之几?——世界人口是总数,我国人口是部分数,世界人口就是单位“1”。

解答题关键:只要找准总数和部分数,确定单位“1”就很容易了。

(二)、两种数量比较分数应用题中,两种数量相比的关键句非常多。

有的是“比”字句,有的则没有“比”字,而是带有指向性特征的“占”、“是”、“相当于”。

在含有“比”字的关键句中,比后面的那个数量通常就作为标准量,也就是单位“1”。

例如:六(2)班男生比女生多——就是以女生人数为标准(单位“1”),知识框架分数、百分数应用题解题关键:在另外一种没有比字的两种量相比的时候,我们通常找到分率,看“占”谁的,“相当于”谁的,“是”谁的几分之几。

这个“占”,“相当于”,“是”后面的数量——谁就是单位“!”。

(三)、原数量与现数量有的关键句中不是很明显地带有一些指向性特征的词语,也不是部分数和总数的关系。

这类分数应用题的单位“1”比较难找。

五年级奥数. 数论.奇偶分析(B级).学生版

五年级奥数. 数论.奇偶分析(B级).学生版

奇偶分析知识框架一、奇数和偶数的定义整数可以分成奇数和偶数两大类.能被2整除的数叫做偶数,不能被2整除的数叫做奇数。

通常偶数可以用2k(k为整数)表示,奇数则可以用2k+1(k为整数)表示。

特别注意,因为0能被2整除,所以0是偶数。

二、奇数与偶数的运算性质性质1:偶数±偶数=偶数,奇数±奇数=偶数性质2:偶数±奇数=奇数性质3:偶数个奇数的和或差是偶数性质4:奇数个奇数的和或差是奇数性质5:偶数×奇数=偶数,奇数×奇数=奇数,偶数×偶数=偶数三、两个实用的推论推论1:在加减法中偶数不改变运算结果奇偶性,奇数改变运算结果的奇偶性。

推论2:对于任意2个整数a,b ,有a+b与a-b同奇或同偶重难点本讲知识点属于数论大板块内的“定性分析”部分,小学生的数学思维模式大多为“纯粹的定量计算,拿到一个题就先去试数,或者是找规律,在性质分析层面几乎为0,本讲力求实现的一个主要目标是提高孩子对数学的严密分析能力,培养孩子明白做题前有时要“先看能不能这么做,再去动手做”的思维模式。

无论是小升初还是杯赛会经常遇到,但不会单独出题,而是结合其他知识点来考察学生综合能力。

例题精讲【例 1】 1231993++++……的和是奇数还是偶数?【巩固】 从5开始的连续的2005个整数的和是______数(填:“奇”或“偶”)。

【例 2】 12345679899+⨯+⨯+⨯++⨯的计算结果是奇数还是偶数,为什么?【巩固】1357911131517194345515557596971+⨯+⨯⨯+⨯⨯⨯++⨯⨯⨯⨯+⨯⨯⨯⨯的计算结果是奇数还是偶数,为什么?【例 3】 一个自然数分别与另外两个相邻奇数相乘,所得的两个积相差150,那么这个数是多少?【巩固】 一个偶数分别与其相邻的两个偶数相乘,所得的两个乘积相差80,那么这三个偶数的和是多少?【例 4】 能否从四个3,三个5,两个7中选出5个数,使这5个数的和等于22.【巩固】 能否从、四个6,三个10,两个14中选出5个数,使这5个数的和等于44.。

五年级奥数.计数综合.排列组合(ABC级).学生版

五年级奥数.计数综合.排列组合(ABC级).学生版

分列组合常识构造一、分列问题在现实生涯中经常会碰到如许的问题,就是要把一些事物排在一路,构成一列,盘算有若干种排法,就是分列问题.在排的进程中,不但与介入分列的事物有关,并且与各事物地点的先后次序有关.一般地,从个不合的元素中掏出()个元素,按照必定的次序排成一列,叫做从个不合元素中掏出个元素的一个分列.依据分列的界说,两个分列雷同,指的是两个分列的元素完整雷同,并且元素的分列次序也雷同.假如两个分列中,元素不完整雷同,它们是不合的分列;假如两个分列中,固然元素完整雷同,但元素的分列次序不合,它们也是不合的分列.分列的根本问题是盘算分列的总个数.从个不合的元素中掏出()个元素的所有分列的个数,叫做从个不合的元素的分列中掏出个元素的分列数,我们把它记做.依据分列的界说,做一个元素的分列由个步调完成:步调:从个不合的元素中任取一个元素排在第一位,有种办法;步调:从剩下的()个元素中任取一个元素排在第二位,有()种办法;……步调:从剩下的个元素中任取一个元素排在第个地位,有(种)办法;由乘法道理,从个不合元素中掏出个元素的分列数是,即,这里,,且等号右边从开端,后面每个因数比前一个因数小,共有个因数相乘.二、分列数一般地,对于的情形,分列数公式变成.暗示从个不合元素中取个元素排成一列所构成分列的分列数.这种个分列全体掏出的分列,叫做个不合元素的全分列.式子右边是从开端,后面每一个因数比前一个因数小,一向乘到的乘积,记为,读做的阶乘,则还可以写为:,个中.在分列问题中,有时刻会请求某些物体或元素必须相邻;求某些物体必须相邻的办法数量,可以将这些物体当作一个整体绑缚在一路进行盘算.三、组合问题日常生涯中有许多“分组”问题.如在体育比赛中,把参赛队分为几个组,从全班同窗中选出几人介入某项运动等等.这种“分组”问题,就是我们将要评论辩论的组合问题,这里,我们将侧重研讨有若干种分组办法的问题.一般地,从个不合元素中掏出个()元素构成一组不计较组内各元素的次序,叫做从个不合元素中掏出个元素的一个组合.从分列和组合的界说可以知道,分列与元素的次序有关,而组合与次序无关.假如两个组合中的元素完整雷同,那么不管元素的次序若何,都是雷同的组合,只有当两个组合中的元素不完整雷同时,才是不合的组合.从个不合元素中掏出个元素()的所有组合的个数,叫做从个不合元素中掏出个不合元素的组合数.记作.一般地,求从个不合元素中掏出的个元素的分列数可分成以下两步:第一步:从个不合元素中掏出个元素构成一组,共有种办法;第二步:将每一个组合中的个元素进行全分列,共有种排法.依据乘法道理,得到.是以,组合数.这个公式就是组合数公式.四、组合数的主要性质一般地,组合数有下面的主要性质:()这个公式的直不雅意义是:暗示从个元素中掏出个元素构成一组的所有分组办法.暗示从个元素中掏出()个元素构成一组的所有分组办法.显然,从个元素中选出个元素的分组办法恰是从个元素中选个元素剩下的()个元素的分组办法.例如,从人中选人开会的办法和从人中选出人不去开会的办法是一样多的,即.划定,.五、插板法一般用来解决求分化必定命量的无不同物体的办法的总数,应用插板法一般有三个请求:①所要分化的物体一般是雷同的:②所要分化的物体必须全体分完:③介入分物体的组至少都分到1个物体,不克不及有没分到物体的组消失.在有些标题中,已知前提与上面的三个请求其实不必定完整相符,对此应该对已知前提进行恰当的变形,使得它与一般的请求相符,再实用插板法.六、应用插板法一般有如下三种类型:⑴小我分个器械,请求每小我至少有一个.这个时刻我们只须要把所有的器械排成一排,在个中的个闲暇中放上个插板,所以分法的数量为.⑵小我分个器械,请求每小我至少有个.这个时刻,我们先发给每小我个,还剩下个器械,这个时刻,我们把剩下的器械按照类型⑴来处理就可以了.所以分法的数量为.⑶小我分个器械,许可有人没有分到.这个时刻,我们无妨先借来个器械,每小我多发1个,如许就和类型⑴一样了,不过这时刻物品总数变成了个,是以分法的数量为.例题精讲【例 1】4个男生2个女生6人站成一排合影留念,有若干种排法?假如请求2个女生紧挨着排在正中央有若干种不合的排法?【巩固】4男2女6小我站成一排合影留念,请求2个女的紧挨着有若干种不合的排法?【例 2】将A.B.C.D.E.F.G七位同窗在操场排成一列,个中学生B与C必须相邻.请问共有若干种不合的分列办法?【巩固】6名小同伙站成一排,若两人必须相邻,一共有若干种不合的站法?若两人不克不及相邻,一共有若干种不合的站法?【例 3】书架上有4本不合的漫画书,5本不合的童话书,3本不合的故事书,全体竖起排成一排,假如同类型的书不要离开,一共有若干种排法?假如只请求童话书和漫画书不要离开有若干种排法?【巩固】四年级三班举办六一儿童节联欢运动.全部运动由2个跳舞.2个演唱和3个小品构成.请问:假如请求同类型的节目持续表演,那么共有若干种不合的出场次序?【例 4】8人围圆桌会餐,甲.乙两人必须相邻,而乙.丙两人不得相邻,有几种坐法?【巩固】a,b,c,d,e五小我排成一排,a与b不相邻,共有若干种不合的排法?【例 5】一台晚会上有个演唱节目和个跳舞节目.求:⑴当个跳舞节目要排在一路时,有若干不合的安插节目标次序?⑵当请求每个跳舞节目之间至少安插个演唱节目时,一共有若干不合的安插节目标次序?【巩固】由个不合的独唱节目和个不合的合唱节目构成一台晚会,请求随意率性两个合唱节目不相邻,开端和最后一个节目必须是合唱,则这台晚会节目标编排办法共有若干种?【例 6】有10粒糖,分三天吃完,天天至少吃一粒,共有若干种不合的吃法?【巩固】小红有10块糖,天天至少吃1块,7天吃完,她共有若干种不合的吃法?【巩固】有12块糖,小光要6天吃完,天天至少要吃一块,问共有种吃法.【例 7】10只无差此外橘子放到3个不合的盘子里,许可有的盘子空着.请问一共有若干种不合的放法?【巩固】将个雷同的苹果放到个不合的盘子里,许可有盘子空着.一共有种不合的放法.【例 8】把20个苹果分给3个小同伙,每人起码分3个,可以有若干种不合的分法?【巩固】三所黉舍组织一次联欢晚会,共表演14个节目,假如每校至少表演3个节目,那么这三所黉舍表演节目数的不合情形共有若干种?【例 9】(1)小明有10块糖,天天至少吃1块,8天吃完,共有若干种不合吃法?(2)小明有10块糖,天天至少吃1块,8天或8天之内吃完,共有若干种吃法?【巩固】有10粒糖,天天至少吃一粒,吃完为止,共有若干种不合的吃法?【例 10】马路上有编号为,,,…,的十只路灯,为勤俭用电又能看清路面,可以把个中的三只灯关失落,但又不克不及同时关失落相邻的两只,在两头的灯也不克不及关失落的情形下,求知足前提的关灯办法有若干种?【巩固】黉舍新建筑的一条道路上有盏路灯,为了节俭用电而又不影响正常的照明,可以熄灭个中盏灯,但两头的灯不克不及熄灭,也不克不及熄灭相邻的盏灯,那么熄灯的办法共有若干种?【例 11】在四位数中,列位数字之和是4的四位数有若干?【巩固】大于2000小于3000的四位数中数字和等于9的数共有若干个?【例 12】所有三位数中,与456相加产生进位的数有若干个?【巩固】从1到2004这2004个正整数中,共有几个数与四位数8866相加时,至少产生一次进位?教室检测【随练1】某小组有12个同窗,个中男少先队员有3人,女少先队员有人,全组同窗站成一排,请求女少先队员都排一路,而男少先队员不排在一路,如许的排法有若干种?【随练2】把7支完整雷同的铅笔分给甲.乙.丙3小我,每人至少1支,问有若干种办法?【随练3】在三位数中,至少消失一个6的偶数有若干个?家庭功课【作业1】将三盆同样的红花和四盆同样的黄花摆放成一排,请求三盆红花互不相邻,共有种不合的放法.【作业2】黉舍合唱团要从个班中填补名同窗,每个班至少名,共有若干种抽调办法?【作业3】能被3整除且至少有一个数字是6的四位数有个.【作业4】黉舍乒乓球队一共有4名男生和3名女生.某次比赛后他们站成一排拍照,请问:(1)假如请求男生不克不及相邻,一共有若干不合的站法?(2)假如请求女生都站在一路,一共有若干种不合的站法?【作业5】由0,1,2,3,4,5构成的没有反复数字的六位数中,百位不是2的奇数有个.【作业6】泊车站划出一排个泊车地位,今有辆不合的车须要停放,若请求残剩的个空车位连在一路,一共有若干种不合的泊车计划?教授教养反馈学生对本次课的评价○特殊知足○知足○一般家长看法及建议家长签字:。

五年级奥数计算综合重要结论的应用与换元法(B级)学生版

五年级奥数计算综合重要结论的应用与换元法(B级)学生版

1. 掌握计算中常用的计算结论;2. 能快速准确的观察出计算中的数字规律并运用换元法计算。

特殊多位数的实用结论1. 131171001⨯⨯⨯=⨯=abc abc abcabc2. 10101ababab ab =⨯3. 111337aaa a a =⨯=⨯⨯其他常用结论1.11111124822n n +++=- 2.1111111111123321n n n ⋯⨯⋯=个个 (n≤9)3. 缺8数乘以9的倍数可以得到“清一色”:1) 12345679×9=111111111 2) 12345679×18=222222222 3) 12345679×27=333333333 4) 12345679×36=444444444 5) 12345679×45=555555555 6) 12345679×54=666666666 7) 12345679×63=777777777 8) 12345679×72=888888888 9) 12345679×81=999999999 4. 特殊平方数:1) 2222)121(121⨯=++⨯2) ()3333331232112321⨯=++++⨯3) 44444444)1234321(1234321⨯=++++++⨯4) 5555555555)123454321(123454321⨯=++++++++⨯5) 666666666666)12345654321(11234565432⨯=++++++++++⨯ 知识结构考试要求重要结论应用与换元法…… ……6) ()1234567898765432176543211234567898++++++++++++++++⨯=999999999999999999⨯5.742851.071 =20.2857147=换元思想换元法——解数学题时,把某个式子看成一个整体,用另一个量去代替它,从而使问题得到简化,这叫换元法.换元的实质是转化,将复杂的式子化繁为简.1. 培养学生运用转化思想利用特殊规律解题简化解题过程;2. 培养学生观察数字规律及特点,运用换元法简化解题过程。

五年级奥数公式应用(B级)

五年级奥数公式应用(B级)

(1) 灵活运用平方和、立方和公式进行计算; (2) 了解等比数列;(3) 灵活运用等比数列求和公式进行计算。

【基本概念】等比数列——如果一个数列从第2项起,每一项与它的前一项的比等于同一个非零常数,这个数列就叫做等比数列(geometric progression)。

这个常数叫做等比数列的公比(common ratio),公比通常用字母q 表示(q≠0)。

注:q =1时,an 为常数列。

【常用公式】 1、 2222(1)(21)1236n n n n ⨯+⨯+++++=;2、 ()2223333(1)1231234n n n n ⨯+++++=++++=; 3、 ()()()213572112311321n n n n n +++++-=++++-++-++++=;4、 等比数列求和公式:(1)0111111(1)1n n n a q S a q a q a qq --=++⋅⋅⋅+=-()1〉q ;(2)qq a qa q a q a S n n n --=+++=-1)1(1111101 ()1〈q 。

5、 平方差公式:()()22a b a b a b -=+-;6、 完全平方公式:()2222a b a ab b +=++,()2222a b a ab b -=-+;用文字表述为:两数和(或差)的平方,等于这两个数的平方和,加上(或者减去)这两个数的积的2倍,两条公式也可以合写在一起:()2222a b a ab b ±=±+.为便于记忆,可形象的叙述为:“首平方,尾平方,2倍乘积在中央”.知识框架考试要求公式应用(1) 平方和、立方和公式的灵活运用; (2) 等比数列公式的灵活运用。

【例 1】 ⑴()2314159263141592531415927-⨯=________; ⑵221234876624688766++⨯=________.【巩固】2009200920082008⨯-⨯=【例 2】 有一串数1,4,9,16,25,36……它们是按一定规律排列的,那么其中第1990个数与第1991个数相差多少?【巩固】a b 、代表任意数字,若()()a b a b a a b b +⨯-=⨯-⨯,这个公式在数学上称为平方差公式.根据公式,你来巧算下列各题吧.⑴98102⨯ ⑵6773⨯ ⑶6428 ⨯ ⑷229331⨯⨯⨯例题精讲重难点【例 3】 计算:()2314159263141592531415927-⨯=【巩固】221234876624688766++⨯=________.【例 4】 计算:2004200320032002200220012001200021⨯-⨯+⨯-⨯++⨯= 。

五年级奥数.计算综合.定义新运算(ABC级).学生版

五年级奥数.计算综合.定义新运算(ABC级).学生版

一、定义新运算(1) 基本概念:定义一种新的运算符号,这个新的运算符号包含有多种基本(混合)运算。

(2) 基本思路:严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后按照基本运算过程、规律进行运算。

(3) 关键问题:正确理解定义的运算符号的意义。

(4) 注意事项:①新的运算不一定符合运算规律,特别注意运算顺序。

②每个新定义的运算符号只能在本题中使用。

我们学过的常用运算有:+、-、×、÷等. 如:2+3=5 2×3=6都是2和3,为什么运算结果不同呢?主要是运算方式不同,实际是对应法则不同.可见一种运算实际就是两个数与一个数的一种对应方法,对应法则不同就是不同的运算.当然,这个对应法则应该是对任意两个数,通过这个法则都有一个唯一确定的数与它们对应.只要符合这个要求,不同的法则就是不同的运算.在这一讲中,我们定义了一些新的运算形式,它们与我们常用的“+”,“-”,“×”,“÷”运算不相同.二、定义新运算分类(1) 直接运算型 (2) 反解未知数型 (3) 观察规律型 (4) 其他类型综合(1) 正确理解新运算的规律。

(2) 把不熟悉的新运算变化成我们熟悉的运算。

(3) 新运算也要遵守运算规律。

重难点知识结构定义新运算【例 1】 对于任意两个数x 和y ,定义新运算◆和⊗,规则如下:x ◆y =22x y x y ++,3x yx y x y ⨯⊗=+÷.如:1◆2=212122⨯++⨯,1212123⨯⊗=+÷.由此计算:..0.36◆141__________.2⎛⎫⊗= ⎪⎝⎭【巩固】 对于任意两个数,x y ,定义新运算,运算,规则如下:x ◆y =2x y x ⨯-÷,2x y x y ⊕=+÷.按此规则计算:3.6◆2=__________,..0.12◆()7.5 4.8_______.⊕=【例 2】 如果a 、b 、c 是3个整数,则它们满足加法交换律和结合律,即⑴;⑵()()a b c a b c ++=++。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考试要求
(1)
灵活运用平方和、立方和公式进行计算;(2)
了解等比数列;(3)灵活运用等比数列求和公式进行计算。

知识结构
【基本概念】
等比数列——如果一个数列从第2项起,每一项与它的前一项的比等于同一个非零常数,这个数列就叫做等比数列(geometric progression)。

这个常数叫做等比数列的公比(common ratio),公比通常用字母q 表示(q≠0)。

注:q =1时,an 为常数列。

【常用公式】
1、2222(1)(21)1236n n n n ⨯+⨯+++++=
;2、()22
23333(1)1231234
n n n n ⨯+++++=++++= ;3、()()()213572112311321n n n n n +++++-=++++-++-++++= ;
4、等比数列求和公式:(1)0111111(1)1n n n a q S a q a q a q
q --=++⋅⋅⋅+=-()1〉q ;(2)q
q a q
a q a q a S n n n --=+++=-1)1(1111101 ()1〈q 。

5、平方差公式:()()22a
b a b a b -=+-;6、完全平方公式:()2222a b a ab b +=++,()2
222a b a ab b -=-+;用文字表述为:两数和(或差)的平方,等于这两个数的平方和,加上(或者减去)这两个数的积的2倍,两条公式也可以合写在一起:()2
222a b a ab b ±=±+.为便于记忆,可形象的叙述为:“首平方,尾平方,2倍乘积在中央”.公式应用
重难点
(1)
平方和、立方和公式的灵活运用;(2)等比数列公式的灵活运用。

例题精讲
【例1】⑴()2
314159263141592531415927-⨯=________;
⑵221234876624688766++⨯=________.【巩固】2009200920082008⨯-⨯=
【例2】有一串数1,4,9,16,25,36……它们是按一定规律排列的,那么其中第1990个数与第1991
个数相差多少?欢迎关注:“奥数轻松学”
【巩固】a b 、代表任意数字,若()()a b a b a a b b +⨯-=⨯-⨯,这个公式在数学上称为平方差公式.根据公式,你来巧算下列各题吧.
⑴98102⨯⑵6773⨯⑶6428 ⨯⑷229331
⨯⨯⨯
【例3】计算:()2
314159263141592531415927-⨯=【巩固】221234876624688766++⨯=________.
【例4】计算:2004200320032002200220012001200021⨯-⨯+⨯-⨯++⨯= 。

【巩固】计算:1
220082009200920102010201120112012⨯++⨯-⨯+⨯-⨯ 【例5】计算:76524334256722323232323233+⨯+⨯+⨯+⨯+⨯+⨯+的值。

(已知732187=,836561=,
9319683=,10359049=,72128=,82256=,92512=,1021024=)
【巩固】计算:7
6253443526743434343434343+⨯+⨯+⨯+⨯+⨯+⨯+【例6】对自然数a 和n ,规定1n n a n a a -∇=+,例如2323312∇=+=,那么:欢迎关注:“奥数轻松学”
⑴122232992∇+∇+∇++∇= ______________;⑵212223299∇+∇+∇++∇= ______________.
【巩固】看规律3211=,332123+=,33321236++=……,试求3 3.3
6714+++ 【例7】计算:132435911
⨯+⨯+⨯+⨯ 【巩固】计算:15
13131111997755331⨯+⨯+⨯+⨯+⨯+⨯+⨯
【例8】计算:112912281921⨯+⨯++⨯= .
【巩固】计算:1992983974951⨯+⨯+⨯++⨯= .
【例9】计算:199297395501
⨯+⨯+⨯++⨯ 【巩固】计算:149247345251⨯+⨯+⨯++⨯= .
【例10】计算:1232343458910
⨯⨯+⨯⨯+⨯⨯++⨯⨯ 【巩固】计算:25
2321975753531⨯⨯++⨯⨯+⨯⨯+⨯⨯
【例10】计算:1
122979798989999100100⨯-⨯++⨯-⨯+⨯-⨯ 【巩固】计算:1
1224747484849495050⨯-⨯++⨯-⨯+⨯-⨯ 课堂检测
1、计算:4
2
1162002501501200620105035032014⨯-⨯++⨯-⨯+⨯-⨯ 2、计算:3
33333333331110987654321+-+-+-+-+-3、计算:50504951485247534654_________⨯+⨯+⨯+⨯+⨯=
4、计算:54
52501086864642⨯⨯++⨯⨯+⨯⨯+⨯⨯ 5、计算:75757575757511
21039485766⨯+⨯+⨯+⨯+⨯+⨯家庭作业
1、3737263376363⨯+⨯⨯+⨯=余老师薇芯:69039270。

2、计算:26
24108866442⨯++⨯+⨯+⨯+⨯ 3、计算:20201919181817172211⨯-⨯+⨯-⨯++⨯-⨯ .
4、计算:1
35653672691⨯++⨯+⨯+⨯ 5、计算:14
1012910887663535353535⨯+⨯+⨯+⨯+⨯教学反馈学生对本次课的评价
○特别满意○满意○一般
家长意见及建议
家长签字:。

相关文档
最新文档