2012年广东省中考数学总复习(一)选择题100题(含答案)

合集下载

广东省初中中考数学试卷含答案

广东省初中中考数学试卷含答案

2017年广东省初中毕业生学业考试数学说明:1.全卷共6页,满分为120 分,考试用时为100分钟。

2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号。

用2B铅笔把对应该号码的标号涂黑。

3.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上。

4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再这写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

5.考生务必保持答题卡的整洁。

考试结束时,将试卷和答题卡一并交回。

一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1. 5的相反数是( )A. .5 C2.“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃.据商务部门发布的数据显示。

2016年广东省对沿线国家的实际投资额超过4 000 000 000美元.将4 000 000 000用科学记数法表示为( )A.0.4×××3.已知,则的补角为( )A. B. C. D.4.如果2是方程的一个根,则常数k的值为( ).2 C5.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组的数据的众数是( ).90 C6.下列所述图形中,既是轴对称图形又是中心对称图形的是( )A.等边三角形B.平行四边形C.正五边形D.圆7.如题7图,在同一平面直角坐标系中,直线与双曲线相交于A、B两点,已知点A的坐标为(1,2),则点B的坐标为( )A.(-1,-2)B.(-2,-1)C.(-1,-1)D.(-2,-2)题7图8.下列运算正确的是( )A. B.C. D.9.如题9图,四边形ABCD内接于⊙O,DA=DC,∠CBE=50°,则∠DAC的大小为( )°°°°10.如题10图,已知正方形ABCD,点E是BC边的中点,DE与AC相交于点F,连接BF,下列结论:①;②;③;④,其中正确的是( )A.①③B.②③C.①④D.②④二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.分解因式: .12.一个n边形的内角和是,那么n= .13.已知实数a,b在数轴上的对应点的位置如题13图所示,则 0(填“>”,“<”或“=”).14.在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5.随机摸出一个小球,摸出的小球标号为偶数的概率是 .15.已知,则整式的值为 .16.如题16图(1),矩形纸片ABCD中,AB=5,BC=3,先按题16图(2)操作,将矩形纸片ABCD沿过点A的直线折叠,使点D落在边AB上的点E处,折痕为AF;再按题16图(3)操作:沿过点F的直线折叠,使点C落在EF上的点H 处,折痕为FG,则A、H两点间的距离为 .三、解答题(一)(本大题共3题,每小题6分,共18分)17.计算:.18.先化简,再求值,其中.19.学校团委组织志愿者到图书馆整理一批新进的图书。

中考数学总复习练习题附答案 (13)

中考数学总复习练习题附答案 (13)

中考总复习数学练习题一、选择题1.计算:(-2)3的值是( )A.-6B.6C.-8D.-9 解析:C;2.在3×3方格上做填字游戏,要求每行每列及对角线上三个方格中的数字和都等于S ,又填在图中三格中的数字如图,若要能填成,则 ( ) A. S =24 B . S =30 C. S =31 D. S =39 解析:B;提示:把所给选择支检验即可得到答案; 3.若规定收入为“+”,那么支出-50元表示( ) A .收入了50元 B .支出了50元 C .没有收入也没有支出 D .收入了100元答案:B4.在图形的平移中,下列说法中错误的是( ).A .图形上任意点移动的方向相同;B .图形上任意点移动的距离相同C .图形上可能存在不动点;D .图形上任意对应点的连线长相等 答案:C解析:【答案】C.5.若自然数n 使得三个数的加法运算“n +(n +1)+(n +2)”产生进位现象,则称n 为“连加进位数”.例如:2不是“连加进位数”,因为2+3+4=9不产生进位现象;4是“连加进位数”,因为4+5+6=15产生进位现象;51是“连加进位数”,因为51+52+53=156产生进位现象.如果从0,1,2,…,99这100个自然数中任取一个数,那么取到“连加进位数”的概率是( ).A .0.88B .0.89C .0.90D .0.91 答案:A解析:【答案】A.【解析】∵若自然数n 使得三个数的竖式加法运算“n+(n+1)+(n+2)”产生进位现象,则称n 为“连加进位数”,当n=0时,0+1=1,0+2=2,n+(n+1)+(n+2)=0+1+2=3,不是连加进位数; 当n=1时,1+1=2,1+2=3,n+(n+1)+(n+2)=1+2+3=6,不是连加进位数; 当n=2时,2+1=3,2+2=4,n+(n+1)+(n+2)=2+3+4=9,不是连加进位数; 当n=3时,3+1=4,3+2=5,n+(n+1)+(n+2)=3+4+5=12,是连加进位数; 故从0,1,2,…,9这10个自然数共有连加进位数10-3=7个, 由于10+11+12=33没有不进位,所以不算. 又13+14+15=42,个位进了一,所以也是进位.按照规律,可知0,1,2,10,11,12,20,21,22,30,31,32不是连加进位数,其他都是.8 10 13所以一共有88个数是连加进位数.概率为0.88. 故答案为:0.88.6.对于实数a 、b ,给出以下三个判断: ①若b a =,则b a =.②若b a <,则 b a <. ③若b a -=,则22)(b a =-.其中正确的判断的个数是( )A .3B .2C .1D .0 答案:C解析:【答案】C ;【解析】通过举反例说明①②是不对的,只有③是正确的. 7.在△中,若,则△是( ).. 锐角三角形 . 钝角三角形. 等腰三角形. 直角三角形答案:D解析:【答案】D. 【解析】因为=4,所以,,由勾股定理的逆定理可知:△ABC 是直角三角形, 答案选D.8.边长为a 的等边三角形,记为第1个等边三角形,取其各边的三等分点,顺次连接得到一个正六边形,记为第1个正六边形,取这个正六边形不相邻的三边中点,顺次连接又得到一个等边三角形,记为第2个等边三角形,取其各边的三等分点,顺次连接又得到一个正六边形,记为第2个正六边形(如图),…,按此方式依次操作,则第6个正六边形的边长为( )A .B .C .D .答案:A解析:【答案】A ; 【解析】连接AD 、DF 、DB , ∵六边形ABCDEF 是正六边形,∴∠ABC=∠BAF=∠∠AFE,AB=AF ,∠E=∠C=120°,EF=DE=BC=CD , ∴∠EFD=∠EDF=∠CBD=∠BDC=30°, ∵∠AFE=∠ABC=120°,∴∠AFD=∠ABD=90°,在Rt△ABD和RtAFD中∴Rt△△ABD≌Rt△AFD,∴∠BAD=∠FAD=×120°=60°,∴∠FAD+∠AFE=60°+120°=180°,∴AD∥EF,∵G、I分别为AF、DE中点,∴GI∥EF∥AD,∴∠FGI=∠FAD=60°,∵六边形ABCDEF是正六边形,△QKM是等边三角形,∴∠EDM=60°=∠M,∴ED=EM,同理AF=QF,即AF=QF=EF=EM,∵等边三角形QKM的边长是a,∴第一个正六边形ABCDEF的边长是a,即等边三角形QKM的边长的,过F作FZ⊥GI于Z,过E作EN⊥GI于N,则FZ∥EN,∵EF∥GI,∴四边形FZNE是平行四边形,∴EF=ZN=a,∵GF=AF=×a=a,∠FGI=60°(已证),∴∠GFZ=30°,∴GZ=GF=a,同理IN=a,∴GI=a+a+a=a,即第一个等边三角形的边长是a,与上面求出的第一个正六边形的边长的方法类似,可求出第二个正六边形的边长是×a;同理第二个等边三角形的边长是×a,与上面求出的第一个正六边形的边长的方法类似,可求出第三个正六边形的边长是××a;同理第三个等边三角形的边长是××a,第四个正六边形的边长是×××a;第四个等边三角形的边长是×××a,第五个正六边形的边长是××××a;第五个等边三角形的边长是××××a,第六个正六边形的边长是×××××a,即第六个正六边形的边长是×512⎛⎫⎪⎝⎭a,故选A.二、填空题二、填空题9.(2006年湖南郴州市)我国2006年第一季度实现了GDP(国民生产总值)43390亿元,用科学记数法表示为亿元.解析:4.33910.如图,在边长为2的菱形ABCD中,∠B=45°,AE为BC边上的高,将△ABE沿AE所在直线翻折后得△AGE,那么△AGE与四边形AECD重叠部分的面积是.第7题第8题答案:【答案】2-2【解析】在边长为2的菱形ABCD中∠B=45°AE为BC边上的高故AE=由折叠易得△ABG为等腰直角三角形∴S△ABG=BA•AG=2S△ABE=1∴CG=2BE-BC=2-2∴CO=解析:【答案】22-2.【解析】在边长为2的菱形ABCD中,∠B=45°,AE为BC边上的高,故AE=2,由折叠易得△ABG为等腰直角三角形,∴S△ABG=12BA•AG=2,S△ABE=1,∴CG=2BE-BC=22-2,∴CO=OG=2-2,∴S△COG=3-22,∴重叠部分的面积为2-1-(3-22)=22-2.11.(1)把2225727-化简的结果是 .(2)估计的运算结果应在之间.(填整数)12.若不等式组112xx a-≤≤⎧⎨<⎩有解,那么a必须满足________.答案:【答案】a>-2;【解析】画出草图两个不等式有公共部分解析:【答案】a>-2;【解析】画出草图,两个不等式有公共部分.13.当a=________时,方程会产生增根.答案:【答案】3;【解析】先去分母再把x=3代入去分母后的式子得a=3解析:【答案】3;【解析】先去分母,再把x=3代入去分母后的式子得a=3.14.(2015•乐至县一模)如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,与y轴交于C点,且对称轴为直线x=1,点B坐标为(﹣1,0).则下面的四个结论:①2a+b=0;②8a+c<0;③abc>0;④当y<0时,x<﹣1或x>2,⑤对任意实数m,m(am+b)≤a+b.其中正确的结论是(填序号).答案:【答案】①②⑤;【解析】①对称轴﹣=1∴2a+b=0①正确;②x=﹣2时y<0∴4a﹣2b+c<0由b=﹣2a∴8a+c<0②正确;③开口向下a<0对称轴在y轴右侧b>0与y轴交于正半轴c>0∴ab解析:【答案】①②⑤;【解析】①对称轴﹣=1,∴2a+b=0,①正确;②x=﹣2时,y<0,∴4a﹣2b+c<0,由b=﹣2a,∴8a+c<0,②正确;③开口向下,a<0,对称轴在y轴右侧,b>0,与y轴交于正半轴,c>0,∴abc<0,③错误;④当x<﹣1或x>3时,y<0,④错误;⑤当x=1时,函数有最大值,∴am2+bm+c≤a+b+c,∴m(am+b)≤a+b,⑤正确.15.在一次捐款活动中,某班50名同学人人拿出自己的零花钱,有捐5元、10元、20元的,还有捐50元和100元的.统计图反映了不同捐款数的人数比例,那么该班同学平均每人捐款________元.答案:【答案】312;【解析】捐5元的人数=50×8=4人;捐20元的人数=50×44=22人;捐50元的人数=50×16=8人;捐100元的人数=50×12=6人;捐10元的人数=50-4-22-8-6 解析:【答案】31.2;【解析】捐5元的人数=50×8%=4人;捐20元的人数=50×44%=22人;捐50元的人数=50×16%=8人;捐100元的人数=50×12%=6人;捐10元的人数=50-4-22-8-6=10人;平均每人捐款数=(5×4+20×22+50×8+100×6+10×10)÷50=31.2元.三、解答题16.某冷冻厂的一个冷库的室温为-2℃,现有一批食品需要在-26℃冷藏,如果每小时降温4℃,问几个小时能降到所要求的温度?解析:[-2-(-26)]÷4=6(小时).17.七名学生的体重,以48.0 kg为标准,把超过标准体重的千克数记为正数,不足的千克数记为负数,将其体重记录如下表:学生1234567与标准体-3.O+1.5+O.8-0.5+0.2+1.2+O.5重之差/kg(2)最高体重与最低体重相差多少?(3)按体重的轻重排列时,恰好居中的是哪个学生?解析:(1)48.2kg,第5个同学;(2)+1.5-(-3.0)=4.5kg;(3)第7个学生.18.小明从家出来向东走3米,他在数轴上+3的位置上记A,他又向东走5米记作B,B点表示什么数?如果他再向西走10米到C点,C点表示什么数?你能在数轴上记出小明到达的位置吗?解析:如果规定向东为正,则B点表示的是8,C点表示的数是-2,图略;19.已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2.求四边形ABCD的面积.解析:【解析】延长AD、BC交于E.∵∠ A=60°,∠B=90°,∴∠E=30°,∴ AE=2AB=8,CE=2CD=4,∴ BE2=AE2-AB2=82-42=48,BE==, ∵ DE2= CE2-CD2=42-22=12,∴DE==,∴ S四边形ABCD=S△ABE-S△CDE=AB·BE-CD·DE=.20.(2014•东海县一模)现在各地房产开发商,为了获取更大利益,缩短楼间距,以增加住宅楼栋数.合肥市某小区正在兴建的若干幢20层住宅楼,国家规定普通住宅层高宜为2.80米.如果楼间距过小,将影响其他住户的采光(如图所示,窗户高1.3米).(1)合肥的太阳高度角(即正午太阳光线与水平面的夹角):夏至日为81.4度,冬至日为34.88度.为了不影响各住户的采光,两栋住宅楼的楼间距至少为多少米?(2)有关规定:平行布置住宅楼,其建筑间距应不小于南侧建筑高度的1.2倍;按照此规定,是否影响北侧住宅楼住户的全年的采光?若有影响,试求哪些楼层的住户受到影响?(本题参考值:sin81.4°=0.99,cos81.4°=0.15,tan81.4°=6.61; sin34.88°=0.57,cos34.88°=0.82,tan34.88°=0.70)解析:【答案与解析】解:(1)如图所示:AC为太阳光线,太阳高度角选择冬至日的34.88度,即∠ACE=34.88°,楼高AB为2.80×20=56米,窗台CD高为1米;过点C作CE垂直AB于点E,所以AE=AB﹣BE=AB﹣CD=55米;在直角三角形ACE中,由tan∠ACE=,得:BD=CE=即两栋住宅楼的楼间距至少为78.6米.(2)利用(1)题中的图:此时∠ACE=34.88°,楼高AB为2.80×20=56米,楼间距BD=CE=AB×1.2=67.2米;在直角三角形ACE中,由tan∠ACE=,得:AE=CE×tan∠ACE=67.2×0.70=47.04m则CD=BE=AB﹣AE=8.96m而 8.96=2.8×3+0.56,故北侧住宅楼1至3楼的住户的采光受影响,4楼及4楼以上住户不受影响.21.某中学为了培养学生的社会实践能力,今年“五一”长假期间要求学生参加一项社会调查活动.为此,小明在他所居住小区的600个家庭中,随机调查了50个家庭在新工资制度实施后的收入情况,并绘制了如下的频数分布表和频数分布直方图(收入取整数,单位:元).分组频数频率1000~1200 3 0.0601200~1400 12 0.2401400~1600 18 0.3601600~1800 0.2001800~2000 52000~2200 2 0.040合计50 1.000请你根据以上提供的信息,解答下列问题:(1)补全频数分布表和频数分布直方图;(2)这50个家庭收入的中位数落在__________小组;(3)请你估算该小区600个家庭中收入较低(不足1400元)的家庭个数大约有多少?解析:【解析】(1)10 , 0.100 ;(2)第三小组 1400~1600(3)(0.060+0.240)×600=180 .22.(2014•营口模拟)小彬在做数学题时,发现下面有趣的结果:3﹣2=18+7﹣6﹣5=415+14+13﹣12﹣11﹣10=924+23+22+21﹣20﹣19﹣18﹣17=16…根据以上规律可知第99行左起第一个数是.解析:【答案与解析】解:∵3=22﹣1,8=32﹣1,15=42﹣1,24=52﹣1,…∴第99行左起第一个数是:(99+1)2﹣1=9999.故答案为:9999.23.(2015•宁夏)某校在开展“校园献爱心”活动中,准备向南部山区学校捐赠男、女两种款式的书包.已知男款书包的单价50元/个,女款书包的单价70元/个.(1)原计划募捐3400元,购买两种款式的书包共60个,那么这两种款式的书包各买多少个?(2)在捐款活动中,由于学生捐款的积极性高涨,实际共捐款4800元,如果购买两种款式的书包共80个,那么女款书包最多能买多少个?解析:【答案与解析】解:(1)设原计划买男款书包x个,则女款书包(60﹣x)个,根据题意得:50x+70(60﹣x)=3400,解得:x=40,60﹣x=60﹣40=20,答:原计划买男款书包40个,则女款书包20个.(2)设女款书包最多能买y个,则男款书包(80﹣y)个,根据题意得:70y+50(80﹣y)≤4800,解得:y≤40,∴女款书包最多能买40个.24.(2011•泸州)如图,已知D是△ABC的边AB上一点,CE∥AB,DE交AC于点O,且OA=OC,猜想线段CD与线段AE的大小关系和位置关系,并加以证明.16(2011•贵阳)[阅读]在平面直角坐标系中,以任意两点P ( x 1,y 1)、Q (x 2,y 2)为端点的线段中点坐标为(122x x +,122y y +). [运用](1)如图,矩形ONEF 的对角线相交于点M ,ON 、OF 分别在x 轴和y 轴上,O 为坐标原点,点E 的坐标为(4,3),则点M 的坐标为_______.(2)在直角坐标系中,有A (-1,2),B (3,1),C (1,4)三点,另有一点D 与点A 、B 、C 构成平行四边形的顶点,求点D 的坐标.【答案与解析】一.选择题解析:【解析】解:猜想线段CD与线段AE的大小关系和位置关系是:平行且相等.证明:∵CE∥AB,∴∠DAO=∠ECO,∵OA=OC,∴△ADO≌△ECO,∴AD=CE,∴四边形ADCE是平行四边形,∴CD平行且等于AE.【解析】(2)根据平行四边形的对角线互相平分可得:设D点的坐标为(x,y),∵ABCD是平行四边形,①当AB为对角线时,∵A(-1,2),B(3,1),C(1,4),∵-1+3-1=1,2+1-4=-1,∴D点坐标为(1,-1),②当BC为对角线时,∵A(-1,2),B(3,1),C(1,4),D点坐标为(5,3).③当AC为对角线时,∵A(-1,2),B(3,1),C(1,4),D点坐标为:(-3,5),综上所述,符合要求的点有:(1,-1),(-3,5),(5,3).25.如图,正方形表示一张纸片,根据要求需多次分割,把它分割成若干个直角三角形.操作过程如下:第一次分割,将正方形纸片分成4个全等的直角三角形,第二次分割将上次得到的直角三角形中一个再分成4个全等的直角三角形;以后按第二次分割的作法进行下去.⑴请你设计出两种符合题意的分割方案图;⑵设正方形的边长为a ,请你就其中一种方案通过操作和观察将第二、第三次分割后所得的最小的直角三角形的面积S 填入下表: 分割次数n1 2 3 … 最小直角三角形的面积S 41a 2 … 用数学表达式表示出来.解析:【答案与解析】解:⑴现提供如下三种分割方案:⑵每次分割后得到的最小直角三角形的面积都是上一次最小直角三角形面积的41,所以当n =2时,S 2=41×41a 2=161a 2;当n =3时,S 3=41S 2=641a 2; ⑶当分割次数为n 时,S n =n 41a 2(n ≥1,且n 为正整数).。

中考数学总复习 第二章 方程与不等式综合测试题(含答案)

中考数学总复习 第二章 方程与不等式综合测试题(含答案)

方程与不等式一、选择题(每小题3分,共30分)1.下列方程中,解为x =2的方程是(B )A. 3x -2=3B. -x +6=2xC. 4-2(x -1)=1D. 3x +1=02.下列各项中,是二元一次方程的是(B )A. y +12x B. x +y 3-2y =0 C. x =2y +1 D. x 2+y =03.已知方程组⎩⎪⎨⎪⎧2x +y =5,x +3y =5,则x +y 的值为(D ) A. -1B. 0C. 2D. 3 4.分式方程 x x -2-1x=0的根是(D ) A. x =1 B. x =-1C. x =2D. x =-2 5.分式方程x 2x -1+x1-x =0的解为(C ) A. x =1 B. x =-1C. x =0D. x =0或x =16.李明同学早上骑自行车上学,中途因道路施工步行一段路,到学校共用时15 min.他骑自行车的平均速度是250 m/min ,步行的平均速度是80 m/min.他家离学校的距离是2900 m .如果他骑车和步行的时间分别为x (min),y (min),列出的方程是(D )A. ⎩⎪⎨⎪⎧x +y =14,250x +80y =2900B. ⎩⎪⎨⎪⎧x +y =15,80x +250y =2900C. ⎩⎪⎨⎪⎧x +y =14,80x +250y =2900D. ⎩⎪⎨⎪⎧x +y =15,250x +80y =2900 7.若不等式组 ⎩⎪⎨⎪⎧2x +a -1>0,2x -a -1<0的解集为0<x <1,则a 的值为(A ) A. 1B. 2C. 3D. 4 8.以方程组⎩⎪⎨⎪⎧y =-x +2,y =x -1的解为坐标的点(x ,y )在平面直角坐标系中的位置是(A ) A. 第一象限 B. 第二象限C. 第三角限D. 第四象限解:解方程组,得⎩⎪⎨⎪⎧x =1.5,y =0.5.∴点(1.5,0.5)在第一象限. 9.关于x 的分式方程a x +3=1,下列说法正确的是(B )A. 方程的解是x =a -3B. 当a >3时,方程的解是正数C. 当a <3时,方程的解为负数D. 以上答案都正确 10.小华在一次数学活动中,利用“在面积一定的矩形中,正方形的周长最短”的结论,推导出“式子x +1x(x >0)的最小值是2”.其推导方法如下:在面积是1的矩形中设矩形的一边长为x ,则另一边长是1x ,矩形的周长是2⎝ ⎛⎭⎪⎫x +1x ;当矩形成为正方形时,就有x =1x(0>0),解得x =1,这时矩形的周长2⎝ ⎛⎭⎪⎫x +1x =4最小,因此x +1x(x >0)的最小值是2.模仿小华的推导,你求得式子x 2+9x(x >0)的最小值是(C )(第10题图)A. 2B. 1C. 6D. 10解:∵x >0,∴x 2+9x =x +9x ≥2x ·9x =6, 则原式的最小值为6.二、填空题(每小题4分,共24分)11.已知关于x 的一元二次方程x 2-23x +k =0有两个相等的实数根,则k 的值为__3__.12.我国古代数学名著《孙子算经》中有这样一题,今有鸡兔同笼,上有35头,下有94足,问鸡兔各几何?此题的答案是:鸡有23只,兔有12只,现在小敏将此题改编为:今有鸡兔同笼,上有33头,下有88足,问鸡兔各几何?则此时的答案是:鸡有__22__只,兔有__11__只.13.如图,将一条长为60 cm 的卷尺铺平后折叠,使得卷尺自身的一部分重合,然后在重合部分(阴影处)沿与卷尺边垂直的方向剪一刀,此时卷尺分为了三段,若这三段长度由短到长的比为1∶2∶3,则折痕对应的刻度有__4__种可能.(第13题图)14.已知a =6,且(5tan 45°-b )2+2b -5-c =0,以a ,b ,c 为边组成的三角形面积等于__12__.15.若分式3x +5x -1无意义,当53m -2x -12m -x =0时,m =__37__. 16.某服装厂专门安排210名工人进行手工衬衣的缝制,每件衬衣由2个衣袖、1个衣身、1个衣领组成,如果每人每天能够缝制衣袖10个,或衣身15个,或衣领12个,那么应该安排120名工人缝制衣袖,才能使每天缝制出的衣袖、衣身、衣领正好配套.三、解答题(本题有8小题,共66分)17.(本题8分)解下列方程(组).(1)解方程:x x +1-4x 2-1=1. 解:去分母,得x (x -1)-4=x 2-1.去括号,得x 2-x -4=x 2-1.解得x =-3.经检验,x =-3是分式方程的解.(2)解方程组:⎩⎪⎨⎪⎧3x -5y =3,x 2-y 3=1.解:方程组整理,得⎩⎪⎨⎪⎧3x -5y =3,①3x -2y =6.② ②-①,得3y =3,∴y =1.将y =1代入①,得x =83. ∴原方程组的解为⎩⎪⎨⎪⎧x =83,y =1.18.(本题6分)解方程:16x -2=12-21-3x . 设13x -1=y ,则原方程化为12y =12+2y ,解方程求得y 的值,再代入13x -1=y 求值即可.结果需检验.请按此思路完成解答. 解:设13x -1=y ,则原方程化为12y =12+2y , 解得y =-13.当y =-13时,有13x -1=-13,解得x =-23. 经检验,x =-23是原方程的根. ∴原方程的根是x =-23. 19.(本题8分)设m 是满足1≤m ≤50的正整数,关于x 的二次方程(x -2)2+(a -m )2=2mx+a 2-2am 的两根都是正整数,求m 的值.解:将方程整理,得x 2-(2m +4)x +m 2+4=0,∴x =2(m +2)±4m 2=2+m ±2m . ∵x ,m 均是正整数且1≤m ≤50,2+m ±2m =(m ±1)2+1>0,∴m 为完全平方数即可,∴m =1,4,9,16,25,36,49.20.(本题8分)已知⎩⎪⎨⎪⎧x =2,y =3和⎩⎪⎨⎪⎧x =-2,y =-5都是关于x ,y 的方程y =kx +b 的解. (1)求k ,b 的值.(2)若不等式3+2x >m +3x 的最大整数解是k ,求m 的取值范围.解:(1)将⎩⎪⎨⎪⎧x =2,y =3和⎩⎪⎨⎪⎧x =-2,y =-5代入y =kx +b ,得∴⎩⎪⎨⎪⎧2k +b =3,-2k +b =-5 解得⎩⎪⎨⎪⎧k =2,b =-1.∴k 的值是2,b 的值是-1.(2)∵3+2x >m +3x ,∴x <3-m .∵不等式3+2x >m +3x 的最大整数解是k =2,∴2<3-m ≤3,∴0≤m <1,即m 的取值范围是0≤m <1.21.(本题8分)解方程:|x -1|+|x +2|=5.由绝对值的几何意义知,该方程表示求在数轴上与1和-2的距离之和为5的点对应的x 的值.在数轴上,1和-2的距离为3,满足方程的x 对应点在1的右边或-2的左边,若x 对应点在1的右边,由图可以看出x =2;同理,若x 对应点在-2的左边,可得x =-3,故原方程的解是x =2或x =-3.(第21题图)参考阅读材料,解答下列问题:(1)方程|x +3|=4的解为x =1或x =-7.(2)解不等式|x -3|+|x +4|≥9.(3)若|x -3|-|x +4|≤a 对任意的x 都成立,求a 的取值范围.解:(1)x =1或x =-7.(2)∵3和-4的距离为7,因此,满足不等式的解对应的点在3与-4的两侧.当x 在3的右边时,如解图,易知x ≥4.当x 在-4的左边时,如解图,易知x ≤-5.∴原不等式的解为x ≥4或x ≤-5.(第21题图解)(3)原问题转化为: a 大于或等于|x -3|-|x +4|的最大值.当x ≥3时,|x -3|-|x +4|=-7≤0;当-4<x <3时,|x -3|-|x +4|=-2x -1随x 的增大而减小;当x ≤-4时,|x -3|-|x +4|=7,即|x -3|-|x +4|的最大值为7.故a ≥7.22.(本题8分)如图,长青化工厂与A ,B 两地有公路、铁路相连.这家工厂从A 地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B 地.已知公路运价为1.5元/(t·km),铁路运价为1.2元/(t·km),且这两次运输共支出公路运输费15000元,铁路运输费97200元.求:(第22题图)(1)该工厂从A 地购买了多少吨原料?制成运往B 地的产品多少吨?(2)这批产品的销售额比原料费与运输费的和多多少元?解:(1)设工厂从A 地购买了x (t)原料,制成运往B 地的产品y (t).由题意,得⎩⎪⎨⎪⎧1.5(10x +20y )=15000,1.2(120x +110y )=97200.解得⎩⎪⎨⎪⎧x =400,y =300. 答:工厂从A 地购买了400 t 原料,制成运往B 地的产品为300 t.(2)300×8000-400×1000-15000-97200=1887800(元).答:这批产品的销售额比原料费与运输费的和多1887800元.23.(本题10分)兴发服装店老板用4500元购进一批某款T 恤衫,由于深受顾客喜爱,很快售完,老板又用4950元购进第二批该款式T 恤衫,所购数量与第一批相同,但每件进价比第一批多了9元.(1)第一批该款式T 恤衫每件进价是多少元?(2)老板以每件120元的价格销售该款式T 恤衫,当第二批T 恤衫售出 45时,出现了滞销,于是决定降价促销,若要使第二批的销售利润不低于650元,剩余的T 恤衫每件售价至少要多少元(利润=售价-进价)?解:(1)设第一批T 恤衫每件进价是x 元,由题意,得4500x =4950x +9, 解得x =90.经检验,x =90是分式方程的解且符合题意.答:第一批T 恤衫每件的进价是90元.(2)设剩余的T 恤衫每件售价y 元.由(1)知,第二批购进495099=50(件). 由题意,得120×50×45+y ×50×15-4950≥650, 解得y ≥80.答:剩余的T 恤衫每件售价至少要80元.24.(本题10分)2015年5月,某县突降暴雨,造成山体滑坡,桥梁垮塌,房屋大面积受损,该省民政厅急需将一批帐篷送往灾区.现有甲、乙两种货车,己知甲种货车比乙种货车每辆车多装20件帐篷,且甲种货车装运1000件帐篷所用车辆与乙种货车装运800件帐蓬所用车辆相等.(1)求甲、乙两种货车每辆车各可装多少件帐蓬.(2)如果这批帐篷有1490件,用甲、乙两种货车共16辆来装运,甲种车辆刚好装满,乙种车辆最后一辆只装了50件,其他装满,求甲、乙两种货车各有多少辆.解:(1)设甲种货车每辆车可装x 件帐蓬,则乙种货车每辆车可装(x -20)件帐蓬.由题意,得1000x =800x -20,解得x =100. 经检验,x =100是原方程组的解且符合题意.∴x -20=100-20=80.答:甲种货车每辆车可装100件帐蓬,乙种货车每辆车可装80件帐蓬.(2)设甲种货车有z 辆,乙种货车有(16-z )辆.由题意,得100z +80(16-z -1)+50=1490,解得z =12,∴16-z =16-12=4.答:甲种货车有12辆,乙种货车有4辆.。

最新中考数学总复习:多边形与平行四边形-- 巩固练习(提高)(含答案解析)

最新中考数学总复习:多边形与平行四边形-- 巩固练习(提高)(含答案解析)

中考总复习:多边形与平行四边形-巩固练习(提高)【巩固练习】一、选择题1.如图,四边形ABED和四边形AFCD都是平行四边形,AF和DE相交成直角,AG=3cm,DG=4cm,□ABED 的面积是,则四边形ABCD的周长为()A.49cm B.43cm C.41cm D.46cm2.如图,在△ABC中,已知AB=AC=5,BC=4,点E、F是中线AD上的两点,则图中阴影部分的面积是:( ) A. ; B.2; C.3; D.4.3. 已知点A(2,0)、点B(,0)、点C(0,1),以A、B、C三点为顶点画平行四边形,则第四个顶点不可能在( )A.第一象限B.第二象限 C.第三象限 D.第四象限4.(2011·安徽)如图,在四边形ABCD中,∠BAD=∠ADC=90°,AB=AD=22,CD=2,点P在四边形ABCD的边上,若P到BD的距离为32,则点P的个数为( )A.1 B.2 C.3 D.45.如图,分别以Rt△ABC的斜边AB、直角边AC为边向外作等边△ABD和△ACE,F为AB的中点,DE,AB 相交于点G,若∠BAC=30°,下列结论:①EF⊥AC;②四边形ADFE为平行四边形;③AD=4AG;④△DBF≌△EFA.其中正确结论的是().A.①②③④B.①③④C.②③④ D.①②④6.(2014•杭州模拟)如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD,若AC=2,∠ADC=30°,①四边形ACED是平行四边形;②△BCE是等腰三角形;③四边形ACEB的周长是10+2;④四边形ACEB的面积是16.则以上结论正确的是()A.①②③B.①②④C.①③④D.②④二、填空题7. 如图,口ABCD中,点E在边AD上,以BE为折痕,将△ABE向上翻折,点A正好落在CD上的点F,若△FDE的周长为8,△FCB的周长为22,则FC的长为________.8.(2015春•淅川县期末)若工人师傅用正三角形、正十边形与正n边形这三种正多边形能够铺成平整的地面,则n的值为.9. 如图,平行四边形ABCD中,∠ABC=60°,AB=4,AD=8,点E、F分别是边BC、AD边的中点,点M是AE与BF的交点,点N是CF与DE的交点,则四边形ENFM的周长是__________.10.(2011•梅州)凸n边形的对角线的条数记作a n(n≥4),例如:a4=2,那么:①a5=_____;②a6-a5=____ ;③a n+1-a n=____.(n≥4,用n含的代数式表示)11.①如图(1),四边形ABCD中,AB∥E1F1∥CD,AD∥BC,则图中共有________个平行四边形;②如图(2),四边形ABCD中,AB∥E1F1∥E2F2∥CD,AD∥BC,则图中共有________个平行四边形;③如图(3),四边形ABCD中,AB∥E1F1∥E2F2∥E3F3∥CD,AD∥BC,则图中共有________个平行四边形;一般地,若四边形ABCD中,E1,E2,E3,…,都是AD上的点,F1,F2,F3,…,都是BC上的点,且AB∥E1F1∥E2F2∥E3F3∥…∥∥CD,AD∥BC,则图中共有________平行四边形.12.如图所示,①中多边形(边数为12)是由正三角形“扩展”而来的,②中多边形是由正方形“扩展”而来的,…,依此类推,则由正n边形“扩展”而来的多边形的边数为___________.三、解答题13.问题再现:现实生活中,镶嵌图案在地面、墙面乃至于服装面料设计中随处可见.在八年级课题学习“平面图形的镶嵌”中,对于单种多边形的镶嵌,主要研究了三角形、四边形、正六边形的镶嵌问题、今天我们把正多边形的镶嵌作为研究问题的切入点,提出其中几个问题,共同来探究.我们知道,可以单独用正三角形、正方形或正六边形镶嵌平面.如图中,用正方形镶嵌平面,可以发现在一个顶点O周围围绕着4个正方形的内角.试想:如果用正六边形来镶嵌平面,在一个顶点周围应该围绕着3个正六边形的内角.问题提出:如果我们要同时用两种不同的正多边形镶嵌平面,可能设计出几种不同的组合方案?问题解决:猜想1:是否可以同时用正方形、正八边形两种正多边形组合进行平面镶嵌?分析:我们可以将此问题转化为数学问题来解决、从平面图形的镶嵌中可以发现,解决问题的关键在于分析能同时用于完整镶嵌平面的两种正多边形的内角特点.具体地说,就是在镶嵌平面时,一个顶点周围围绕的各个正多边形的内角恰好拼成一个周角.验证1:在镶嵌平面时,设围绕某一点有x个正方形和y个正八边形的内角可以拼成一个周角.根据题意,可得方程:90x+(82)1808-⨯•y=360,整理得:2x+3y=8,我们可以找到惟一一组适合方程的正整数解为12 xy=⎧⎨=⎩.结论1:镶嵌平面时,在一个顶点周围围绕着1个正方形和2个正八边形的内角可以拼成一个周角,所以同时用正方形和正八边形两种正多边形组合可以进行平面镶嵌.猜想2:是否可以同时用正三角形和正六边形两种正多边形组合进行平面镶嵌?若能,请按照上述方法进行验证,并写出所有可能的方案;若不能,请说明理由.验证2:_______;结论2:_______.上面,我们探究了同时用两种不同的正多边形组合镶嵌平面的部分情况,仅仅得到了一部分组合方案,相信同学们用同样的方法,一定会找到其它可能的组合方案.问题拓广:请你仿照上面的研究方式,探索出一个同时用三种不同的正多边形组合进行平面镶嵌的方案,并写出验证过程.猜想3:_______;验证3:_______;结论3:_______.14. 如图,在四边形ABCD中,∠A=90°,∠ABC与∠ADC互补.(1)求∠C的度数;(2)若BC>CD且AB=AD,请在图上画出一条线段,把四边形ABCD分成两部分,使得这两部分能够重新拼成一个正方形,并说明理由;(3)若CD=6,BC=8,S四边形ABCD=49,求AB的值.15. (2015春•苏州校级期末)如图,正方形ABCD中,点P是直线BC上一点,连接PA,将线段PA绕点P逆时针旋转90°得到线段PE,在直线BA上取点F,使BF=BP,且点F与点E在BC同侧,连接EF、CF.(1)如图①,当点P在CB延长线上时,求证:四边形PCFE是平行四边形.(2)如图②,当点P在线段BC上时,四边形PCFE是否还是平行四边形,说明理由.16.(2012•广州)如图,在平行四边形ABCD中,AB=5,BC=10,F为AD的中点,CE⊥AB于E,设∠ABC=α(60°≤α<90°).(1)当α=60°时,求CE的长;(2)当60°<α<90°时,①是否存在正整数k ,使得∠EFD=k ∠AEF ?若存在,求出k 的值;若不存在,请说明理由. ②连接CF ,当CE 2-CF 2取最大值时,求tan ∠DCF 的值.【答案与解析】 一.选择题 1.【答案】D. 2.【答案】A.3.【答案】C . 4.【答案】B.【解析】如图所示,作AE ⊥BD 于E ,CF ⊥BD 于F ,由题意得AE =12BD =22AB =2>32,∴在边AB 和AD上各存在一个点P 到BD 的距离为32.∵AB =AD ,∠BAD =90°,∴∠ADB =45°.又∠ADC =90°,∴∠CDF =45°.∴CF =22CD =22×2=1<32,∴在边BC 和CD 上不存在符合题意的点P .综上所述.5.【答案】A.【解析】先证 ΔADF≌ΔABC,可得DF=AC=AE.∵DF ∥AE 且DF=AE ∴四边形ADFE 为平行四边形,即①②③④是正确的. 6.【答案】D .【解析】①∵∠ACB=90°,DE ⊥BC , ∴∠ACD=∠CDE=90°, ∴AC ∥DE , ∵CE ∥AD ,∴四边形ACED是平行四边形,故①正确;②∵D是BC的中点,DE⊥BC,∴EC=EB,∴△BCE是等腰三角形,故②正确;③∵AC=2,∠ADC=30°,∴AD=4,CD=2,∵四边形ACED是平行四边形,∴CE=AD=4,∵CE=EB,∴EB=4,DB=2,∴CB=4,∴AB==2,∴四边形ACEB的周长是10+2故③正确;④四边形ACEB的面积:×2×4+×4×2=8,故④错误,故选:A.二.填空题7.【答案】7.【解析】由题意知x+y+z=8,a+(y+a)+(z+x)=22,所以a=7.8.【答案】十五.【解析】正三边形和正十边形内角分别为60°、144°,正n边形的内角应为360°﹣60°﹣144°=156°,所以正n边形为正十五边形.故答案为:十五.9.【答案】4+4.10.【答案】5;4;n-1.【解析】①五边形有5条对角线;②六边形有9条对角线,9-5=4;③n边形有(3)2n n-条对角线,n+1边形有(1)(2)2n n+-条对角线,a n+1-a n=(1)(2)2n n+--(3)2n n-=n-1.11.【答案】①3 ;②6 ;③10,.12.【答案】n(n+1).【解析】∵①正三边形“扩展”而来的多边形的边数是12=3×4,②正四边形“扩展”而来的多边形的边数是20=4×5,③正五边形“扩展”而来的多边形的边数为30=5×6,④正六边形“扩展”而来的多边形的边数为42=6×7,∴正n边形“扩展”而来的多边形的边数为n(n+1).三.综合题13.【解析】用正六边形来镶嵌平面,在一个顶点周围应该围绕着3个正六边形的内角.验证2:在镶嵌平面时,设围绕某一点有a个正三角形和b个正六边形的内角可以拼成一个周角,根据题意,可得方程:60a+120b=360.整理得:a+2b=6,可以找到两组适合方程的正整数解为22ab=⎧⎨=⎩和41ab=⎧⎨=⎩结论2:镶嵌平面时,在一个顶点周围围绕着2个正三角形和2个正六边形的内角或者围绕着4个正三角形和1个正六边形的内角可以拼成一个周角,所以同时用正三角形和正六边形两种正多边形组合可以进行平面镶嵌.猜想3:是否可以同时用正三角形、正方形和正六边形三种正多边形组合进行平面镶嵌?验证3:在镶嵌平面时,设围绕某一点有m个正三角形、n个正方形和c个正六边形的内角可以拼成一个周角.根据题意,可得方程:60m+90n+120c=360,整理得:2m+3n+4c=12,可以找到惟一一组适合方程的正整数解为121 mnc=⎧⎪=⎨⎪=⎩结论3:镶嵌平面时,在一个顶点周围围绕着1个正三角形、2个正方形和1个正六边形的内角可以拼成一个周角,所以同时用正三角形、正方形和正六边形三种正多边形组合可以进行平面镶嵌.(说明:本题答案不惟一,符合要求即可.)14.【解析】(1)∵∠ABC与∠ADC互补,∴∠ABC+∠ADC=180°.∵∠A=90°,∴∠C=360°-90°-180°=90°;(2)过点A作AE⊥BC,垂足为E.则线段AE把四边形ABCD分成△ABE和四边形AECD两部分,把△ABE以A点为旋转中心,逆时针旋转90°,则被分成的两部分重新拼成一个正方形.过点A作AF∥BC交CD的延长线于F,∵∠ABC+∠ADC=180°,又∠ADF+∠ADC=180°, ∴∠ABC=∠ADF .∵AD=AB ,∠AEC=∠AFD=90°,∴△ABE ≌△ADF . ∴AE=AF .∴四边形AECF 是正方形; (3)解法1:连接BD ,∵∠C=90°,CD=6,BC=8,Rt △BCD 中,BD=2286+=10 又∵S 四边形ABCD =49,∴S △ABD =49-24=25. 过点A 作AM ⊥BD 垂足为M , ∴S △ABD =12×BD ×AM=25.∴AM=5. 又∵∠BAD=90°,∴△ABM ∽△DAM .∴AM BM =MDAM.设BM=x ,则MD=10-x , ∴5x=105x -.解得x=5.∴AB=52.解法2:连接BD ,∠A=90°.设AB=x ,AD=y ,则x 2+y 2=102,① ∵12xy=25,∴xy=50.② 由①,②得:(x-y )2=0. ∴x=y .2x 2=100.∴x=52.15.【解析】(1)证明:∵四边形ABCD 是正方形, ∴AB=BC ,∠ABC=∠PBA=90° 在△PBA 和△FBC 中,,∴△PBA ≌△FBC (SAS ),∴PA=FC ,∠PAB=∠FCB .∵PA=PE,∴PE=FC.∵∠PAB+∠APB=90°,∴∠FCB+∠APB=90°.∵∠EPA=90°,∴∠APB+∠EPA+∠FCP=180°,即∠EPC+∠PCF=180°,∴EP∥FC,∴四边形EPCF是平行四边形;(2)解:结论:四边形EPCF是平行四边形,理由是:∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠CBF=90°在△PBA和△FBC中,,∴△PBA≌△FBC(SAS),∴PA=FC,∠PAB=∠FCB.∵PA=PE,∴PE=FC.∵∠FCB+∠BFC=90°,∠EPB+∠APB=90°,∴∠BPE=∠FCB,∴EP∥FC,∴四边形EPCF是平行四边形.16. 【解析】(1)∵α=60°,BC=10,∴sinα=CEBC,即sin60°=10CE=32,解得CE=53;(2)①存在k=3,使得∠EFD=k∠AEF.理由如下:连接CF并延长交BA的延长线于点G,∵F为AD的中点,∴AF=FD,在平行四边形ABCD中,AB∥CD,∴∠G=∠DCF ,在△AFG 和△CFD 中,G DCF AFG DFC AF FD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AFG ≌△DFC (AAS ), ∴CF=GF ,AG=CD , ∵CE ⊥AB ,∴EF=GF (直角三角形斜边上的中线等于斜边的一半), ∴∠AEF=∠G ,∵AB=5,BC=10,点F 是AD 的中点, ∴AG=5,AF=12AD=12BC=5, ∴AG=AF ,∴∠AFG=∠G ,在△EFG 中,∠EFC=∠AEF+∠G=2∠AEF , 又∵∠CFD=∠AFG (对顶角相等), ∴∠CFD=∠AEF ,∴∠EFD=∠EFC+∠CFD=2∠AEF+∠AEF=3∠AEF , 因此,存在正整数k=3,使得∠EFD=3∠AEF ; ②设BE=x ,∵AG=CD=AB=5, ∴EG=AE+AG=5-x+5=10-x ,在Rt △BCE 中,CE 2=BC 2-BE 2=100-x 2,在Rt △CEG 中,CG 2=EG 2+CE 2=(10-x )2+100-x 2=200-20x , ∵CF=GF (①中已证),∴CF 2=(12CG )2=14CG 2=14(200-20x )=50-5x ,∴CE 2-CF 2=100-x 2-50+5x=-x 2+5x+50=-(x-52)2+50+254,∴当x=52,即点E 是AB 的中点时,CE 2-CF 2取最大值,此时,EG=10-x=10-52=152,CE=2100x -=251004-=5152, 所以,tan ∠DCF=tan ∠G=CEEG =5152152=153.。

中考数学总复习试题(含答案和解析)

中考数学总复习试题(含答案和解析)

中考数学总复习试题(含答案和解析)一、选择题(共10小题.每小题4分.满分40分)1.(4分)计算:(﹣3)+4的结果是()A.﹣7B.﹣1C.1D.72.(4分)如图是某班45名同学爱心捐款额的频数分布直方图(每组含前一个边界值.不含后一个边界值).则捐款人数最多的一组是()A.5~10元B.10~15元C.15~20元D.20~25元3.(4分)如图所示的支架是由两个长方体构成的组合体.则它的主视图是()A.B.C.D.4.(4分)要使分式有意义.则x的取值应满足()A.x≠2B.x≠﹣1C.x=2D.x=﹣1 5.(4分)计算:m6•m3的结果()A.m18B.m9C.m3D.m26.(4分)小明记录了一星期天的最高气温如下表.则这个星期每天的最高气温的中位数是()星期一二三四五六日22242325242221最高气温(℃)A.22℃B.23℃C.24℃D.25℃7.(4分)一次函数y=2x+4的图象与y轴交点的坐标是()A.(0.﹣4)B.(0.4)C.(2.0)D.(﹣2.0)8.(4分)如图.已知A.B.C在⊙O上.为优弧.下列选项中与∠AOB 相等的是()A.2∠C B.4∠B C.4∠A D.∠B+∠C 9.(4分)20位同学在植树节这天共种了52棵树苗.其中男生每人种3棵.女生每人种2棵.设男生有x人.女生有y人.根据题意.列方程组正确的是()A .B .C .D .10.(4分)如图.矩形ABCD的顶点A在第一象限.AB∥x轴.AD∥y 轴.且对角线的交点与原点O重合.在边AB从小于AD到大于AD的变化过程中.若矩形ABCD的周长始终保持不变.则经过动点A的反比例函数y=(k≠0)中k的值的变化情况是()A.一直增大B.一直减小C.先增大后减小D.先减小后增大二、填空题(共6小题.每小题5分.满分30分)11.(5分)因式分解:a2+3a=.12.(5分)如图.直线AB.CD被BC所截.若AB∥CD.∠1=45°.∠2=35°.则∠3=度.13.(5分)不等式3x﹣2>4的解是.14.(5分)如图.在△ABC中.∠C=90°.AC=2.BC=1.则tan A的值是.15.(5分)请举反例说明命题“对于任意实数x.x2+5x+5的值总是正数”是假命题.你举的反例是x=(写出一个x的值即可).16.(5分)如图.在矩形ABCD中.AD=8.E是边AB上一点.且AE=AB.⊙O经过点E.与边CD所在直线相切于点G(∠GEB为锐角).与边AB所在直线交于另一点F.且EG:EF=:2.当边AD 或BC所在的直线与⊙O相切时.AB的长是.三、解答题(共8小题.满分80分)17.(10分)(1)计算:+2×(﹣5)+(﹣3)2+20140;(2)化简:(a+1)2+2(1﹣a).18.(8分)如图.在所给方格纸中.每个小正方形边长都是1.标号为①.②.③的三个三角形均为格点三角形(顶点在方格顶点处).请按要求将图甲、图乙中的指定图形分割成三个三角形.使它们与标号为①.②.③的三个三角形分别对应全等.(1)图甲中的格点正方形ABCD;(2)图乙中的格点平行四边形ABCD.注:分割线画成实线.19.(8分)一个不透明的袋中装有20个只有颜色不同的球.其中5个黄球.8个黑球.7个红球.(1)求从袋中摸出一个球是黄球的概率;(2)现从袋中取出若干个黑球.搅匀后.使从袋中摸出一个球是黑球的概率是.求从袋中取出黑球的个数.20.(10分)如图.在等边△ABC中.点D.E分別在边BC.AC上.DE∥AB.过点E作EF⊥DE.交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2.求DF、EF的长.21.(10分)如图.抛物线y=﹣x2+2x+c与x轴交于A.B两点.它的对称轴与x轴交于点N.过顶点M作ME⊥y轴于点E.连结BE交MN 于点F.已知点A的坐标为(﹣1.0).(1)求该抛物线的解析式及顶点M的坐标.(2)求△EMF与△BNF的面积之比.22.(8分)勾股定理神秘而美妙.它的证法多样.其巧妙各有不同.其中的“面积法”给了小聪以灵感.他惊喜地发现.当两个全等的直角三角形如图1或图2摆放时.都可以用“面积法”来证明.下面是小聪利用图1证明勾股定理的过程:将两个全等的直角三角形按图1所示摆放.其中∠DAB=90°.求证:a2+b2=c2.证明:连结DB.过点D作BC边上的高DF.则DF=EC=b﹣a.∵S四边形ADCB=S△ACD+S△ABC=b2+ab.又∵S四边形ADCB=S△ADB+S△DCB=c2+a(b﹣a)∴b2+ab=c2+a(b﹣a)∴a2+b2=c2请参照上述证法.利用图2完成下面的证明.将两个全等的直角三角形按图2所示摆放.其中∠DAB=90°.求证:a2+b2=c2证明:连结∵S五边形ACBED=又∵S五边形ACBED=∴∴a2+b2=c2.23.(12分)八(1)班五位同学参加学校举办的数学素养竞赛.试卷中共有20道题.规定每题答对得5分.答错扣2分.未答得0分.赛后A.B.C.D.E五位同学对照评分标准回忆并记录了自己的答题情况(E同学只记得有7道题未答).具体如下表参赛同学答对题数答错题数未答题数A1901B1721C1523D1712E//7(1)根据以上信息.求A.B.C.D四位同学成绩的平均分;(2)最后获知A.B.C.D.E五位同学成绩分别是95分.81分.64分.83分.58分.①求E同学的答对题数和答错题数;②经计算.A.B.C.D四位同学实际成绩的平均分是80.75分.与(1)中算得的平均分不相符.发现是其中一位同学记错了自己的答题情况.请指出哪位同学记错了.并写出他的实际答题情况(直接写出答案即可).24.(14分)如图.在平面直角坐标系中.点A.B的坐标分别为(﹣3.0).(0.6).动点P从点O出发.沿x轴正方向以每秒1个单位的速度运动.同时动点C从点B出发.沿射线BO方向以每秒2个单位的速度运动.以CP.CO为邻边构造▱PCOD.在线段OP延长线上取点E.使PE=AO.设点P运动的时间为t秒.(1)当点C运动到线段OB的中点时.求t的值及点E的坐标;(2)当点C在线段OB上时.求证:四边形ADEC为平行四边形;(3)在线段PE上取点F.使PF=1.过点F作MN⊥PE.截取FM=2.FN=1.且点M.N分别在一.四象限.在运动过程中.设▱PCOD的面积为S.①当点M.N中有一点落在四边形ADEC的边上时.求出所有满足条件的t的值;②若点M.N中恰好只有一个点落在四边形ADEC的内部(不包括边界)时.直接写出S的取值范围.参考答案与试题解析一、选择题(共10小题.每小题4分.满分40分)1.【分析】根据异号两数相加.取绝对值较大的数的符号.再用较大的绝对值减去较小的绝对值.可得答案.【解答】解:原式=+(4﹣3)=1.故选:C.【点评】本题考查了有理数的加法.先确定和的符号.再进行绝对值的运算.2.【分析】根据图形所给出的数据直接找出捐款人数最多的一组即可.【解答】解:根据图形所给出的数据可得:捐款额为15~20元的有20人.人数最多.则捐款人数最多的一组是15﹣20元.故选:C.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时.必须认真观察、分析、研究统计图.才能作出正确的判断和解决问题.3.【分析】找到从正面看所得到的图形即可.注意所有的看到的棱都应表现在主视图中.【解答】解:从几何体的正面看可得此几何体的主视图是.故选:D.【点评】本题考查了三视图的知识.主视图是从物体的正面看得到的视图.4.【分析】根据分式有意义.分母不等于0列式计算即可得解.【解答】解:由题意得.x﹣2≠0.解得x≠2.故选:A.【点评】本题考查了分式有意义的条件.从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.5.【分析】根据同底数幂的乘法法则:同底数幂相乘.底数不变.指数相加.进行计算即可.【解答】解:m6•m3=m9.故选:B.【点评】本题考查了同底数幂的乘法.解答本题的关键是掌握同底数幂的乘法法则.6.【分析】将数据从小到大排列.根据中位数的定义求解即可.【解答】解:将数据从小到大排列为:21.22.22.23.24.24.25.中位数是23.故选:B.【点评】本题考查了中位数的知识.中位数是将一组数据从小到大(或从大到小)重新排列后.最中间的那个数(最中间两个数的平均数).叫做这组数据的中位数.7.【分析】在解析式中令x=0.即可求得与y轴的交点的纵坐标.【解答】解:令x=0.得y=2×0+4=4.则函数与y轴的交点坐标是(0.4).故选:B.【点评】本题考查了一次函数图象上点的坐标特征.是一个基础题.8.【分析】根据圆周角定理.可得∠AOB=2∠C.【解答】解:如图.由圆周角定理可得:∠AOB=2∠C.故选:A.【点评】此题考查了圆周角定理.此题比较简单.注意掌握数形结合思想的应用.9.【分析】设男生有x人.女生有y人.根据男女生人数为20.共种了52棵树苗.列出方程组成方程组即可.【解答】解:设男生有x人.女生有y人.根据题意得..故选:D.【点评】此题考查二元一次方程组的实际运用.找出题目蕴含的数量关系是解决问题的关键.10.【分析】设矩形ABCD中.AB=2a.AD=2b.由于矩形ABCD的周长始终保持不变.则a+b为定值.根据矩形对角线的交点与原点O重合及反比例函数比例系数k的几何意义可知k=AB•AD=ab.再根据a+b一定时.当a=b时.ab最大可知在边AB从小于AD到大于AD的变化过程中.k的值先增大后减小.【解答】解:设矩形ABCD中.AB=2a.AD=2b.∵矩形ABCD的周长始终保持不变.∴2(2a+2b)=4(a+b)为定值.∴a+b为定值.∵矩形对角线的交点与原点O重合∴k=AB•AD=ab.又∵a+b为定值时.当a=b时.ab最大.∴在边AB从小于AD到大于AD的变化过程中.k的值先增大后减小.故选:C.【点评】本题考查了矩形的性质.反比例函数比例系数k的几何意义及不等式的性质.有一定难度.根据题意得出k=AB•AD=ab 是解题的关键.二、填空题(共6小题.每小题5分.满分30分)11.【分析】直接提取公因式a.进而得出答案.【解答】解:a2+3a=a(a+3).故答案为:a(a+3).【点评】此题主要考查了提取公因式法分解因式.正确提取公因式是解题关键.12.【分析】根据平行线的性质求出∠C.根据三角形外角性质求出即可.【解答】解:∵AB∥CD.∠1=45°.∴∠C=∠1=45°.∵∠2=35°.∴∠3=∠2+∠C=35°+45°=80°.故答案为:80.【点评】本题考查了平行线的性质.三角形的外角性质的应用.解此题的关键是求出∠C的度数和得出∠3=∠2+∠C.13.【分析】先移项.再合并同类项.把x的系数化为1即可.【解答】解:移项得.3x>4+2.合并同类项得.3x>6.把x的系数化为1得.x>2.故答案为:x>2.【点评】本题考查的是解一元一次不等式.熟知解一元一次不等式的基本步骤是解答此题的关键.14.【分析】根据锐角三角函数的定义(tan A=)求出即可.【解答】解:tan A==.故答案为:.【点评】本题考查了锐角三角函数定义的应用.注意:在Rt△ACB 中.∠C=90°.sin A=.cos A=.tan A=.15.【分析】先进行配方得到x2+5x+5=x2+5x+﹣=(x+)2﹣.当x=﹣时.则有x2+5x+5=﹣<0.【解答】解:x2+5x+5=x2+5x+﹣=(x+)2﹣.当x=﹣时.x2+5x+5=﹣<0.∴是假命题.故答案为:﹣.【点评】本题考查了命题与定理的知识.在判断一个命题为假命题时.可以举出反例.16.【分析】过点G作GN⊥AB.垂足为N.可得EN=NF.由EG:EF=:2.得:EG:EN=:1.依据勾股定理即可求得AB的长度.【解答】解:边BC所在的直线与⊙O相切时.如图.过点G作GN⊥AB.垂足为N.∴EN=NF.又∵EG:EF=:2.∴EG:EN=:1.又∵GN=AD=8.∴设EN=x.则.根据勾股定理得:.解得:x=4.GE=.设⊙O的半径为r.由OE2=EN2+ON2得:r2=16+(8﹣r)2∴r=5.∴OK=NB=5.∴EB=9.又AE=AB.∴AB=12.同理.当边AD所在的直线与⊙O相切时.连接OH.∴OH=AN=5.∴AE=1.又AE=AB.∴AB=4.故答案为:12或4.【点评】本题考查了切线的性质以及勾股定理和垂径定理的综合应用.解答本题的关键在于做好辅助线.利用勾股定理求出对应圆的半径.三、解答题(共8小题.满分80分)17.【分析】(1)分别根据有理数乘方的法则、数的开放法则及0指数幂的运算法则计算出各数.再根据实数混合运算的法则进行计算即可;(2)根据整式混合运算的法则进行计算即可.【解答】解:(1)原式=2﹣10+9+1=2;(2)原式=a2+2a+1+2﹣2a=a2+3.【点评】本题考查的是实数的运算.熟知有理数乘方的法则、数的开方法则及0指数幂的运算法则是解答此题的关键.18.【分析】(1)利用三角形的形状以及各边长进而拼出正方形即可;(2)利用三角形的形状以及各边长进而拼出平行四边形即可.【解答】解:(1)如图甲所示:(2)如图乙所示:【点评】此题主要考查了应用设计与作图.利用网格结合三角形各边长得出符合题意的图形是解题关键.19.【分析】(1)由一个不透明的袋中装有20个只有颜色不同的球.其中5个黄球.8个黑球.7个红球.直接利用概率公式求解即可求得答案;(2)首先设从袋中取出x个黑球.根据题意得:=.继而求得答案.【解答】解:(1)∵一个不透明的袋中装有20个只有颜色不同的球.其中5个黄球.8个黑球.7个红球.∴从袋中摸出一个球是黄球的概率为:=;(2)设从袋中取出x个黑球.根据题意得:=.解得:x=2.经检验.x=2是原分式方程的解.所以从袋中取出黑球的个数为2个.【点评】此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.20.【分析】(1)根据平行线的性质可得∠EDC=∠B=60°.根据三角形内角和定理即可求解;(2)易证△EDC是等边三角形.再根据直角三角形的性质即可求解.【解答】解:(1)∵△ABC是等边三角形.∴∠B=60°.∵DE∥AB.∴∠EDC=∠B=60°.∵EF⊥DE.∴∠DEF=90°.∴∠F=90°﹣∠EDC=30°;(2)∵∠ACB=60°.∠EDC=60°.∴△EDC是等边三角形.∴ED=DC=2.∵∠DEF=90°.∠F=30°.∴DF=2DE=4.∴EF=DE=2.【点评】本题考查了等边三角形的判定与性质.以及直角三角形的性质.熟记30度的锐角所对的直角边等于斜边的一半是解题的关键.21.【分析】(1)直接将(﹣1.0)代入求出即可.再利用配方法求出顶点坐标;(2)利用EM∥BN.则△EMF∽△BNF.进而求出△EMF与△BNE 的面积之比.【解答】解:(1)由题意可得:﹣(﹣1)2+2×(﹣1)+c=0.解得:c=3.∴y=﹣x2+2x+3.∵y=﹣x2+2x+3=﹣(x﹣1)2+4.∴顶点M(1.4);(2)∵A(﹣1.0).抛物线的对称轴为直线x=1.∴点B(3.0).∴EM=1.BN=2.∵EM∥BN.∴△EMF∽△BNF.∴=()2=()2=.【点评】此题主要考查了待定系数法求二次函数解析式以及相似三角形的判定与性质.得出△EMF∽△BNF是解题关键.22.【分析】首先连结BD.过点B作DE边上的高BF.则BF=b﹣a.表示出S五边形ACBED.进而得出答案.【解答】证明:连结BD.过点B作DE边上的高BF.则BF=b﹣a.∵S五边形ACBED=S△ACB+S△ABE+S△ADE=ab+b2+ab.又∵S五边形ACBED=S△ACB+S△ABD+S△BDE=ab+c2+a(b﹣a).∴ab+b2+ab=ab+c2+a(b﹣a).∴a2+b2=c2.【点评】此题主要考查了勾股定理得证明.表示出五边形面积是解题关键.23.【分析】(1)直接算出A.B.C.D四位同学成绩的总成绩.再进一步求得平均数即可;(2)①设E同学答对x题.答错y题.根据对错共20﹣7=13和总共得分58列出方程组成方程组即可;②根据表格分别算出每一个人的总成绩.与实际成绩对比:A为19×5=95分正确.B为17×5+2×(﹣2)=81分正确.C为15×5+2×(﹣2)=71错误.D为17×5+1×(﹣2)=83正确.E正确;所以错误的是C.多算7分.也就是答对的少一题.答错的多一题.由此得出答案即可.【解答】解:(1)==82.5(分).答:A.B.C.D四位同学成绩的平均分是82.5分.(2)①设E同学答对x题.答错y题.由题意得.解得.答:E同学答对12题.答错1题.②C同学.他实际答对14题.答错3题.未答3题.【点评】此题考查加权平均数的求法.二元一次方程组的实际运用.以及有理数的混合运算等知识.注意理解题意.正确列式解答.24.【分析】(1)由C是OB的中点求出时间.再求出点E的坐标.(2)连接CD交OP于点G.由▱PCOD的对角线相等.求四边形ADEC是平行四边形.(3)当点C在BO上时.第一种情况.当点M在CE边上时.由△EMF ∽△ECO求解.第二种情况.当点N在DE边上时.由△EFN∽△EPD 求解;当点C在BO的延长线上时.第一种情况.当点M在DE边上时.由EMF∽△EDP求解.第二种情况.当点N在CE边上时.由△EFN∽△EOC求解;②当1≤t<时和当<t≤5时.分别求出S的取值范围.【解答】解:(1)∵OB=6.C是OB的中点.∴BC=OB=3.∴2t=3即t=.∴OE=+3=.E(.0);(2)如图.连接CD交OP于点G.在▱PCOD中.CG=DG.OG=PG.∵AO=PE.∴AG=EG.∴四边形ADEC是平行四边形.(3)①(Ⅰ)当点C在BO上时.第一种情况:如图.当点M在CE边上时.∵MF∥OC.∴△EMF∽△ECO.∴=.即=.∴t=1.第二种情况:当点N在DE边时.∵NF∥PD.∴△EFN∽△EPD.∴=.即=.∴t=.(Ⅱ)当点C在BO的延长线上时.第一种情况:当点M在DE边上时.∵MF∥PD.∴△EMF∽△EDP.∴=即=.∴t=.第二种情况:当点N在CE边上时.∵NF∥OC.∴△EFN∽△EOC.∴=即=.∴t=5.②<S≤或<S≤20.当1≤t<时.S=t(6﹣2t)=﹣2(t﹣)2+.∵t=在1≤t<范围内.∴<S≤.当<t≤5时.S=t(2t﹣6)=2(t﹣)2﹣.∴<S≤20.【点评】本题主要是考查了四边形的综合题.解题的关键是正确分几种不同种情况求解.。

中考数学《一次方程(组)》总复习训练含答案解析

中考数学《一次方程(组)》总复习训练含答案解析

一次方程(组)一、选择题1.电视台2套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡,则与2个球体相等质量的正方体的个数为()A.5 B.4 C.3 D.22.若a=b﹣3,则b﹣a的值是()A.3 B.﹣3 C.0 D.63.为紧急安置100名地震灾民,需要同时搭建可容纳6人和4人的两种帐篷,则恰好能安置的搭建方案共有()A.8种 B.9种 C.16种D.17种4.方程2x+1=0的解是()A.B.C.2 D.﹣2二、填空题5.如图所示的两架天平保持平衡,且每块巧克力的质量相等,每个果冻的质量也相等,则一块巧克力的质量是g.6.某商店销售一批服装,每件售价150元,打8折出售后,仍可获利20元,设这种服装的成本价为每件x元,则x满足的方程是.7.某商店一套秋装的进价为200元,按标价的80%销售可获利72元,则该服装的标价为元.8.如图,某商场正在热销北京奥运会的纪念品,小华买了一盒福娃和一枚奥运徽章,已知一盒福娃的价格比一枚奥运徽章的价格贵120元,则一盒福娃价格是元.9.某种服装按进价提高50%后标价,又以8折优惠卖出,结果仍获利15元,这种服装的进价为元.三、解答题10.解方程组:.11.解方程:.12.某石油进口国这个月的石油进口量比上个月减少了5%,由于国际油价上涨,这个月进口石油的费用反而比上个月增加了14%.求这个月的石油价格相对上个月的增长率.13.预计高速列车在北京、天津间单程直达运行时间为半小时.某次试车时,试验列车由北京到天津的行驶时间比预计时间多用了6分钟,由天津返回北京的行驶时间与预计时间相同.如果这次试车时,由天津返回北京比去天津时平均每小时多行驶40千米,那么这次试车时由北京到天津的平均速度是每小时多少千米?14.某足球比赛的计分规则为胜一场得3分,平一场得1分,负一场得0分.一个队踢14场球负5场共得19分,问这个队胜了几场?15.根据北京奥运票务网站公布的女子双人3米跳板跳水决赛的门票价格(如表),小明预定了B等级、C等级门票共7张,他发现这7张门票的费用恰好可以预订3张A等级门票.问小明预定了B等级、C等级门票各多少张?等级票价(元/张)A500B300C15016.四川汶川的特大地震灾害,牵动着全中国人民的心.某校发出为灾区捐款的倡议后,全校师生奉献爱心,踊跃捐款,已知全校师生共捐款4万5千元,其中学生捐款数比老师捐款数的2倍少9千元,该校老师和学生各捐款多少元?一次方程(组)参考答案与试题解析一、选择题1.电视台2套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡,则与2个球体相等质量的正方体的个数为()A.5 B.4 C.3 D.2【考点】三元一次方程组的应用.【专题】压轴题.【分析】根据图中物体的质量和天平的平衡情况,设出未知数,列出方程组解答.【解答】解:设球体、圆柱体与正方体的质量分别为x、y、z,根据已知条件,得:,(1)×2﹣(2)×5,得:2x=5z,即2个球体相等质量的正方体的个数为5.故选:A.【点评】本题通过建立二元一次方程组,求得球体与正方体的关系,等量关系是天平两边的质量相等.2.若a=b﹣3,则b﹣a的值是()A.3 B.﹣3 C.0 D.6【考点】代数式求值.【分析】此题可用将a=b﹣3代入b﹣a,去括号合并同类项即可求得.【解答】解:∵a=b﹣3∴b﹣a=b﹣(b﹣3)=b﹣b+3=3.故选A.【点评】主要考查了整体思想.解题的关键是将a用b﹣3代替代入代数式求解.3.为紧急安置100名地震灾民,需要同时搭建可容纳6人和4人的两种帐篷,则恰好能安置的搭建方案共有()A.8种 B.9种 C.16种D.17种【考点】推理与论证.【专题】方案型.【分析】可设6人的帐篷有x顶,4人的帐篷有y顶.根据两种帐篷容纳的总人数为100人,可列出关于x、y的二元一次方程,根据x、y均为非负整数,求出x、y的取值.根据未知数的取值即可判断出有几种搭建方案.【解答】解:设6人的帐篷有x顶,4人的帐篷有y顶,依题意,有:6x+4y=100,整理得y=25﹣1.5x,因为x、y均为非负整数,所以25﹣1.5x≥0,解得0≤x≤16,从0到16的偶数共有9个,所以x的取值共有9种可能,由于需同时搭建两种帐篷,x不能为0(舍去)即共有8种搭建方案.故选A.【点评】解决本题的关键是找到人数的等量关系,及帐篷数的不等关系.4.方程2x+1=0的解是()A.B.C.2 D.﹣2【考点】解一元一次方程.【专题】计算题;压轴题.【分析】先移项,再系数化1,可求出x的值.【解答】解:移项得:2x=﹣1,系数化1得:x=﹣.故选B.【点评】解一元一次方程的一般步骤是去分母,去括号,移项,合并同类项,移项时要变号,最后系数化1.二、填空题5.如图所示的两架天平保持平衡,且每块巧克力的质量相等,每个果冻的质量也相等,则一块巧克力的质量是20g.【考点】二元一次方程组的应用.【分析】通过理解题意可知本题存在两个等量关系,即三块巧克力的质量=两个果冻的质量,一块巧克力的质量+一个果冻的质量=50克.根据这两个等量关系式可列一个方程组.【解答】解:设每块巧克力的重量为x克,每块果冻的重量为y克.由题意列方程组得:,解方程组得:.答:每块巧克力的质量是20克.故答案为:20.【点评】本题考查二元一次方程组的应用,根据图表信息列出方程组解决问题.6.某商店销售一批服装,每件售价150元,打8折出售后,仍可获利20元,设这种服装的成本价为每件x元,则x满足的方程是150×80%﹣x=20.【考点】由实际问题抽象出一元一次方程.【专题】应用题.【分析】首先理解题意找出题中存在的等量关系:售价﹣成本=利润,根据等量关系列方程即可.【解答】解:设这种服装的成本价为每件x元,则实际售价为150×80%元,根据实际售价﹣成本=利润,那么可得到方程:150×80%﹣x=20.故答案为:150×80%﹣x=20.【点评】本题以经济中的打折问题为背景,主要考查根据已知条件构建方程的能力,其中把握等量关系“售价﹣成本=利润”是关键.7.某商店一套秋装的进价为200元,按标价的80%销售可获利72元,则该服装的标价为340元.【考点】有理数的混合运算.【专题】应用题.【分析】认真审题找出等量关系:服装的标价的80%正好等于服装的进价加上获利,然后根据等量关系列方程解答.【解答】解:设先设服装的标价为x元.80%•x=200+72,解得x=340.【点评】此题为实际应用题,与生活比较接近,此类题目更能激发学生的学习兴趣.也是中考中的热点题型.8.如图,某商场正在热销北京奥运会的纪念品,小华买了一盒福娃和一枚奥运徽章,已知一盒福娃的价格比一枚奥运徽章的价格贵120元,则一盒福娃价格是145元.【考点】一元一次方程的应用.【专题】经济问题;压轴题.【分析】此题等量关系为:一盒福娃的价格+奥运徽章的价格=170元,设一盒福娃价格是x元,可用代数式表示一枚奥运徽章的价格,即可根据等量关系列方程求解.【解答】解:设一盒福娃价格是x元,则x+(x﹣120)=170,解得:x=145.则一盒福娃价格是145元.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.9.某种服装按进价提高50%后标价,又以8折优惠卖出,结果仍获利15元,这种服装的进价为75元.【考点】一元一次方程的应用.【专题】销售问题;压轴题.【分析】要求进价,可用未知数设出进价,然后根据按进价提高50%后标价,又以8折优惠卖出,结果仍获利15元这个等量关系列出方程求解.【解答】解:设进价是x元.根据题意得:80%(1+50%)x﹣x=15,解得:1.2x﹣x=15,x=75故填75.【点评】注意:利润=售价﹣进价.8折即标价的80%.三、解答题10.解方程组:.【考点】解二元一次方程组.【分析】由于两个方程中y的系数相同,可以选择用加减消元法来解.【解答】解:,(2)﹣(1),得x=5,把x=5代入(1),得y=2.∴原方程组的解为:.【点评】解二元一次方程组体现了数学的转化思想,即二元方程一元化,本题也可以利用代入消元法求解,但是不如加减消元法简单,同学们不妨一试.11.解方程:.【考点】高次方程.【分析】先把方程组中的方程化简后再解.【解答】解:(2)可化为(x﹣y)(x+y)=5,原方程组可化为:把(1)代入(2)得:2x=﹣6x=﹣3把x=﹣3代入(1)得y=﹣2∴原方程组的解为【点评】解二元一次方程组时,方程组中的方程若能进行因式分解应先因式分解后再求值.12.某石油进口国这个月的石油进口量比上个月减少了5%,由于国际油价上涨,这个月进口石油的费用反而比上个月增加了14%.求这个月的石油价格相对上个月的增长率.【考点】一元一次方程的应用.【专题】增长率问题.【分析】设这个月的石油价格相对上个月的增长率为x.根据这个月进口石油的费用反而比上个月增加了14%列方程求解.【解答】解:设这个月的石油价格相对上个月的增长率为x.根据题意得:(1+x)(1﹣5%)=1+14%.解得:x==20%.答:这个月的石油价格相对上个月的增长率为20%.【点评】这里要分别把上个月的石油进口量和上个月的石油价格看作单位1.13.预计高速列车在北京、天津间单程直达运行时间为半小时.某次试车时,试验列车由北京到天津的行驶时间比预计时间多用了6分钟,由天津返回北京的行驶时间与预计时间相同.如果这次试车时,由天津返回北京比去天津时平均每小时多行驶40千米,那么这次试车时由北京到天津的平均速度是每小时多少千米?【考点】一元一次方程的应用.【专题】行程问题.【分析】由题意可得:试验列车由北京到天津的行驶时间为36分钟,由天津返回北京的行驶时间为30分钟;但这36分钟与返回时30分钟所行驶路程是相等的.根据行驶路程相等这一等量关系列出方程求解即可.【解答】解:设这次试车时,由北京到天津的平均速度是每小时x千米,则由天津返回北京的平均速度是每小时(x+40)千米依题意得:(x+40)解得:x=200.答:这次试车时,由北京到天津的平均速度是每小时200千米.【点评】本题也是一道与时事紧密相关的数学题,在考核学生数学知识的同时让学生了解时事,本题着重考核了学生应用适当的数学模型解决实际问题的能力.易忽视点:预计时间为30分钟,学生易忽视.14.某足球比赛的计分规则为胜一场得3分,平一场得1分,负一场得0分.一个队踢14场球负5场共得19分,问这个队胜了几场?【考点】一元一次方程的应用.【专题】应用题;比赛问题.【分析】设这个队胜了x场,根据共得分是19分,即:胜场得分+平场得分=19分,列方程求解.【解答】解:设这个队胜了x场,依题意得:3x+(14﹣5﹣x)=19,解得:x=5.答:这个队胜了5场.【点评】理解此题中的等量关系:胜的场数得分+平的场数得分=19分,是解决本题的关键.15.根据北京奥运票务网站公布的女子双人3米跳板跳水决赛的门票价格(如表),小明预定了B等级、C等级门票共7张,他发现这7张门票的费用恰好可以预订3张A等级门票.问小明预定了B等级、C等级门票各多少张?等级票价(元/张)A500B300C150【考点】二元一次方程组的应用.【专题】图表型.【分析】本题的等量关系可表示为:B门票+C门票=7张,购买的B门票的价格+C门票的价格=3张A门票的价格.据此可列出方程组求解.【解答】解:设小明预订了B等级,C等级门票分别为x张和y张.依题意,得解方程组,得答:小明预订了B等级门票3张,C等级门票4张.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.16.四川汶川的特大地震灾害,牵动着全中国人民的心.某校发出为灾区捐款的倡议后,全校师生奉献爱心,踊跃捐款,已知全校师生共捐款4万5千元,其中学生捐款数比老师捐款数的2倍少9千元,该校老师和学生各捐款多少元?【考点】二元一次方程组的应用.【分析】本题中有两个等量关系:老师捐款数+学生捐款数=4万5千,学生捐款数=2×老师捐款数﹣9千.设两个未知数,根据以上等量关系列出二元一次方程组.【解答】解:设老师捐款x元,学生捐款y元.则有(1分)(4分)解得:(7分)答:该校老师捐款18 000元,学生捐款27 000元.(8分)【点评】关键是弄清题意,找出等量关系.11 / 11。

中考数学压轴题100题精选(附答案解析)

中考数学压轴题100题精选(附答案解析)

精品基础教育教学资料,仅供参考,需要可下载使用!中考数学压轴题100题精选含答案【001】如图,已知抛物线2(1)y a x =-+a ≠0)经过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC .(1)求该抛物线的解析式;(2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形? (3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长.【002】如图16,在Rt △ABC 中,∠C =90°,AC = 3,AB = 5.点P 从点C 出发沿CA 以每秒1个单位长的速度向点A 匀速运动,到达点A 后立刻以原来的速度沿AC 返回;点Q 从点A 出发沿AB 以每秒1个单位长的速度向点B 匀速运动.伴随着P 、Q 的运动,DE 保持垂直平分PQ ,且交PQ 于点D ,交折线QB -BC -CP 于点E .点P 、Q 同时出发,当点Q 到达点B 时停止运动,点P 也随之停止.设点P 、Q 运动的时间是t 秒(t >0).(1)当t = 2时,AP = ,点Q 到AC 的距离是 ; (2)在点P 从C 向A 运动的过程中,求△APQ 的面积S 与t 的函数关系式;(不必写出t 的取值范围)(3)在点E 从B 向C 运动的过程中,四边形QBED为直角梯形?若能,求t (4)当DE 经过点C 时,请直接..写出t 的值.图16【003】如图,在平面直角坐标系中,已知矩形ABCD 的三个顶点B (4,0)、C (8,0)、D(8,8).抛物线y=ax 2+bx 过A 、C 两点.(1)直接写出点A 的坐标,并求出抛物线的解析式;(2)动点P 从点A 出发.沿线段AB 向终点B 运动,同时点Q 从点C 出发,沿线段CD 向终点D 运动.速度均为每秒1个单位长度,运动时间为t 秒.过点P 作PE ⊥AB 交AC 于点E ,①过点E 作EF ⊥AD 于点F ,交抛物线于点G.当t 为何值时,线段EG 最长?②连接EQ .在点P 、Q 运动的过程中,判断有几个时刻使得△CEQ 是等腰三角形? 请直接写出相应的t 值。

中考数学总复习《第1课时 选择题解题方法》

中考数学总复习《第1课时 选择题解题方法》

第1课时选择题解题方法第一部分讲解部分一.专题诠释选择题是各地中考必考题型之一,各地命题设置上,选择题的数目稳定在8~12题,这说明选择题有它不可替代的重要性.选择题具有题目小巧,答案简明;适应性强,解法灵活;概念性强、知识覆盖面宽等特征,它有利于考核学生的基础知识,有利于强化分析判断能力和解决实际问题的能力的培养.二.解题策略与解法精讲选择题解题的基本原则是:充分利用选择题的特点,小题小做,小题巧做,切忌小题大做.解选择题的基本思想是既要看到各类常规题的解题思想,但更应看到选择题的特殊性,数学选择题的四个选择支中有且仅有一个是正确的,又不要求写出解题过程. 因而,在解答时应该突出一个“选”字,尽量减少书写解题过程,要充分利用题干和选择支两方面提供的信息,依据题目的具体特点,灵活、巧妙、快速地选择解法,以便快速智取,这是解选择题的基本策略. 具体求解时,一是从题干出发考虑,探求结果;二是题干和选择支联合考虑或从选择支出发探求是否满足题干条件. 事实上,后者在解答选择题时更常用、更有效.三.考点精讲考点一:直接法从题设条件出发,通过正确的运算、推理或判断,直接得出结论再与选择支对照,从而作出选择的一种方法。

运用此种方法解题需要扎实的数学基础.例1.(2011•广西省柳州市)九(3)班的50名同学进行物理、化学两种实验测试,经最后统计知:物理实验做对的有40人,化学实验做对的有31人,两种实验都做错的有4人,则这两种实验都做对的有()A.17人 B.21人 C.25人 D.37人分析:设这两种实验都做对的有x人,根据九(3)班的50名同学进行物理、化学两种实验测试,经最后统计知:物理实验做对的有40人,化学实验做对的有31人,两种实验都做错的有4人可列方程求解.解:设这两种实验都做对的有x人,(40﹣x)+(31﹣x)+x+4=50,x=25.故都做对的有25人.故选C.评注:本题考查理解题意的能力,关键是以人数做为等量关系构造方程直接求解.考点二:特例法运用满足题设条件的某些特殊数值、特殊位置、特殊关系、特殊图形、特殊数列、特殊函数等对各选择支进行检验或推理,利用问题在某一特殊情况下不真,则它在一般情况下也不真的原理,由此判明选项真伪的方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A OBCD 2012年广东省中考数学总复习(一)选择题班级: 考号: 姓名:1.-2的倒数是( ) A .2 B .-2C .21D .212.据中新社北京2010年12月8日电,2010年中国粮食总产量达到546 400 000吨,用科34567665 107 89若AD =1,BC =3,则OAOC的值为( ) A . 1 2 B . 1 3 C . 1 4 D . 1910则这10个区县该日最高气温的人数和中位数分别是( )A .32,32B .32,30C .30,32D .32,31A B C ED 11.一个不透明的盒子中装有2个白球,5个红球和8个黄球,这些球除颜色外,没有任何其他区别,现从这个盒子中随机摸出一个球,摸到红球的概率为( ) A .5 18 B . 1 3 C . 2 15 D . 11512.抛物线y =x 2-6x +5的顶点坐标为( )A .(3,-4)B .(3,4)C .(-3,-4)D .(-3,4)13.如图,在△ABC 中,∠ACB =90°,∠BAC =30°,AB =2,D 是AB 边上的一个动点(不与点A 、B 重合),过点D 作CD 的垂线交射线CA 于点E .设AD =x ,CE =y ,则下列图象中,能表示y 与x 的函数关系图象大致是( )141516171819.下列说法中,正确的是A.为检测我市正在销售的酸奶质量,应该采用抽样调查的方式B.在连续5次的数学测试中,两名同学的平均分相同,方差较大的同学数学成绩更稳定C.某同学连续10次抛掷质量均匀的硬币,3次正面向上,因此正面向上的概率是30% D .“2012年将在我市举办全运会,这期间的每一天都是晴天”是必然事件.第18题图20.如图矩形ABCD中,AB<BC,对角线AC、BD相交于点O,则图中的等腰三角形有A.2个B.4个C.6个D.8个21.小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达.若设走路线一时的平均速度为x千米/小时,根据题意,得222324AB 2526.如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于D,且CO=CD,则∠PCA=A.30°B.45°C.60°D.67.5°27.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0),将△ABC沿x轴向右平移,当点C落在直线y=2x-6上时,线段BC扫过的面积为A.4 B.8 C.16 D.28.已知函数()()()()22113513x xyx x⎧--⎪=⎨--⎪⎩≤>,则使y=k成立的x值恰好有三个,则k的值为A.0 B.1 C.2 D.329306 m 31323334A. 3B. 2C. 1D. -135.小明中午放学回家自己煮面条吃,有下面几道工序:(1)洗锅盛水2分钟;(2)洗菜3 分钟;(3)准备面条及佐料2分钟;(4)用锅把水烧开7分钟;(5)用烧开的水煮面条和菜要3分钟。

以上各工序除(4)外,一次只能进行一道工序,小明要将面条煮好,最少用(▲)A. 14分钟B. 13分钟 C . 12分钟 D . 11分钟2236.由左图所示的地板砖各两块所铺成的下列图案中,既是轴对称图形,又是中心对称图形的是(▲)3738394041 42.计算(-a 3)2的结果是(▲)A .-a 5B .a 5C .a 6D .-a 6 43.方程11112+=-+x x x 的解是(▲) A .-1 B .2 C .1 D .044.如图,将一个可以自由旋转的转盘等分成甲、乙、丙、丁四个扇形区域,若指针固定不变,转动这个转盘一次(如果指针指在等分线上,那么重新转动,直至指针指在某个扇形区域内为止),则指针指在甲区域内的概率是(▲)A .B .C .D .2008年北京 2004年雅典 1988年汉城 1980A .1B .21 C .31 D .41 45.如图,已知∠1=∠2,则不一定...能使△ABD ≌△ACD 的条件是(▲)464748 49B. 2个C. 3个D. 45051.下列图案中是轴对称图形的是( )A .B .C .D .52则关于这10户家庭的月用水量,下列说法错误..的是( ) (第53题)A .中位数是5吨B .众数是5吨C .极差是3吨D .平均数是5.3吨53.如图,顺次连结圆内接矩形各边的中点,得到菱形ABCD ,若BD =6,DF =4,则菱形ABCD 的边长为( )C.5D.754.Rt △ABC 中,∠C =90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,那么c 等于( ) A.cos sin a A b B + B.sin sin a A b B +a b a b 55 5657585960(A (C 61(第55对这两名运动员的成绩进行比较,下列四个结论中,不正确...的是 (A )甲运动员得分的极差大于乙运动员得分的极差 (B )甲运动员得分的的中位数大于乙运动员得分的的中位数 (C )甲运动员的得分平均数大于乙运动员的得分平均数 (D )甲运动员的成绩比乙运动员的成绩稳定62.已知函数))((b x a x y --=(其中a b >)的图象如下面右图所示,则函数b ax y +=的图象可能正确的是(A )2n(B )4n(C )12n + (D )22n +65 )A. 点AB. 点BC. 点CD. 点D图1图2图3第62题图66、下列运算中,正确的是( )A. 236a a a ⋅= B. 4222a a a =+C.2=± D. 228=-67、如图(1)所示的物体是一个几何体,其主视图是( )6869707172和0.01元/2cm ,那么制作一块图甲这样的瓷砖所用黑白材料最低成本是( )元A. 48π-B. 48π+C. 64π-D. 64π+73.-2,0,2,-3这四个数中最大的是……………………………【 】 A.-1 B.0 C.1 D.2 74. 安徽省2010年末森林面积为3804.2千公顷,用科学记数法表示3804.2千正确的是……………………………………………………【 】 A.3804.2×103 B.380.42×104 C.3.842×106 D.3.842×10575. 下图是五个相同的小正方体搭成的几体体,其左视图是…………………【 】第16题图图乙图甲76.设1a ,a 在两个相邻整数之间,则这两个整数是………………【 】 A.1和2 B.2和3 C.3和4 D.4 和577.从下五边形的五个顶点中,任取四个顶点连成四边形,对于事件M ,“这个四边形是等腰梯形”.下列推断正确的是……………………………【 】C.78.是 79. 80.81.82.83.2的相反数是( )A .2B .-2C . 2D .1284.a 2²a 3等于( )A .a 5B .a 6C .a 8D .a 9第75题图第82题图85.计算 (x +2) 2的结果为x 2+□x +4,则“□”中的数为( ) A .-2 B .2 C .-4 D .486.关于反比例函数y =4x图象,下列说法正确的是( )A .必经过点(1,1)B .两个分支分布在第二、四象限C .两个分支关于x 轴成轴对称D .两个分支关于原点成中心对称 87.小华在电话中问小明:“已知一个三角形三边长分别是4,9,12,如何求这个三角形的面积?”小明提示说:“可通过作最长边上的高来求解.”小华根据小明的提示作出的图93.如果函数3y x m =+的图像一定经过第二象限,那么m 的取值范围是(A )m > 0;(B )m ≥0;(C )m < 0;(D )m ≤0.94.如图,反映的是某中学九(1)班学生外出乘车、步行、骑车人数的扇形分布图,其中乘车的学生有20人,骑车的学生有12人,那么下列说法正确的是 (A )九(1)班外出的学生共有42人; (B )九(1)班外出步行的学生有8人;(C )在扇形图中,步行学生人数所占的圆心角的度数为82°; (D )如果该中学九年级外出的学生共有500人,那么估计全年级乘车50%步行 x %骑车 y %外出骑车的学生约有140人.95.一个正多边形绕它的中心旋转45°后,就与原正多边形第一次重合,那么这个正多边形(A)是轴对称图形,但不是中心对称图形;(B)是中心对称图形,但不是轴对称图形;(C)既是轴对称图形,又是中心对称图形;(D)既不是轴对称图形,也不是中心对称图形.96.下列命题中正确的是(A)对角线相等的梯形是等腰梯形;(B)有两个角相等的梯形是等腰梯形;99如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个锐角为的菱形,剪口与折痕所成的角α的度数应为(▲)A.15︒或30︒ B.30︒或45︒ C.45︒或60︒ D.30︒或60︒正方形ABCD、正方形BEFG和正方形RKPF的位置如图所示,点G在线段DK上,正方形BEFG的边长为4,则DEK△的面积为(▲)10 B、12 C、14 D、16DA B PCK 图E。

相关文档
最新文档