充分条件与必要条件优秀教学设计
教学设计5:1.3 充分条件、必要条件与命题的四种形式

1.3 充分条件、必要条件与命题的四种形式一、知识梳理:1、 四种命题(1)、命题是可以 可以判断真假的语句 ,具有 “若P,则q 的形式;(2)、一般地用P 或q 分别表示命题的条件或结论,用或 分别表示P 和q 的否定,于是四种命题的形式就是:原命题: 逆命题: 否命题: 逆否命题:(3)、四种命题的关系:两个互为逆否命题的真假是相同的,原命题的逆命题与原命题的否命题同真同假。
2、 充分条件、必要条件与充要条件(1)“若p ,则q”为真命题,记,则p 是q 的充分条件,q 是p 的必要条件。
(2)如果既有,又有,记作,则p 是q 的充要条件,q 也是p 的充要条件。
3、 判断充分性与必要性的方法:p q ⇒p q ⇒q p ⇒p q ⇔(一)、定义法(1)、且q ,则p是q的充分不必要条件;(2)、,则p是q的必要不充分条件;(3)、,则p是q的既不充分也不必要条件;(4)、且,则p是q的充要条件;(二)、集合法:利用集合间的包含关系判断命题之间的充要关系,设满足条件p的元素构成集合A,满足条件q的元素构成集合B;(1)、若A,则p是q的充分条件若,则p是q的必要条件;(2)、若A,则p是q的充要条件;(3)、若A,且A,则p是q的充分不必要条件;q是p的必要不充分条件;(4)、若A,且,则p是q的既不充分也不必要条件;二、题型探究【探究一】:四种命题的关系与命题真假的判断例1:[2014·陕西卷] 原命题为“若z1,z2互为共轭复数,则|z1|=|z2|”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是(B)A.真,假,真B.假,假,真C.真,真,假D.假,假,假例2:写出下列命题的逆命题、否命题、逆否命题并判断其真假。
(1)等底等高的两个三角形是全等三角形;(2)若ab=0,则a=0或b=0。
解析:(1)逆命题:若两个三角形全等,则这两个三角形等底等高。
真命题;否命题:若两个三角形不等底或不等高,则这两个三角形不全等。
充分条件与必要条件优秀教学设计

充分条件与必要条件优秀教学设计优秀的教学设计需要具备充分条件和必要条件。
充分条件是指设计师所提供的教学环境、教学资源和教学手段等具备的有利因素,必要条件则是指设计师所提供的教学要素中必须具备的因素。
首先,充分条件是设计师为学生提供一个良好的教学环境。
这包括教室的布置、教学工具和设备的准备以及课堂氛围的营造等。
例如,在数学教学中,一个充分条件是提供一个安静、整洁、舒适的教室环境,让学生能够集中注意力,提高学习效果。
其次,充分条件还包括充足的教学资源。
这些资源包括教材、教具、多媒体课件等。
设计师可以根据学生的学习需求,选择适合的教材和教具,以提供多样化的学习资源。
例如,在地理教学中,设计师可以准备一些实物地图、模拟器材等,以便学生更好地理解地理知识。
此外,充分条件还包括有效的教学手段和策略。
设计师需要根据学科特点和学生的特点,灵活运用不同的教学策略,以提高学生的学习兴趣和参与度。
例如,在语文教学中,设计师可以通过故事讲解、情景模拟等方式,帮助学生更好地理解和掌握语文知识。
相对应的,以上提到的充分条件也是优秀教学设计的必要条件。
没有这些条件,教学设计就难以成功实施。
例如,如果没有一个良好的教学环境,学生可能会分散注意力,无法集中精力学习;如果教学资源不足,学生可能无法深入了解和掌握所学知识;如果教学手段和策略不当,可能无法激发学生的兴趣,影响学习效果。
除了充分条件和必要条件外,优秀的教学设计还需要具备以下几个方面的特点。
首先,教学目标明确。
设计师需要清楚确定每一个教学活动的目标,使学生能够明确知道自己要达到什么样的学习效果。
其次,教学内容有序。
设计师需要将教学内容按照一定的顺序安排,由浅入深,循序渐进,使学生能够有系统地学习。
再次,教学方法灵活多样。
设计师需要选择合适的教学方法,以适应学生的不同学习风格和需求。
最后,教学评价全面客观。
设计师应该使用多种评价手段,如考试、作业、讨论等,全面了解学生的学习情况和能力水平。
充分条件与必要条件(教学设计)高一数学系列(人教A版2019)

从前有一个牧民,养了几十只羊,白天放牧,晚上赶进一个用柴草和木桩等物围起来的羊圈内。
一天早晨,这个牧民去放羊,发现羊少了一只。
原来羊圈破了个窟窿,夜间有狼从窟窿里钻了进来,把一只羊叼走了。
邻居劝告他说:“赶快把羊圈修一修,堵上那个窟窿吧。
”他说:“羊已经丢了,还去修羊圈干什么呢?”没有接受邻居的好心劝告。
第二天早上,他去放羊,发现又少了一只羊。
原来狼又从窟窿里钻进羊圈,又叼走了一只羊。
这位牧民很后悔没有认直接受邻居的劝告,去及时采取补救措施。
于是,他赶紧堵上那个窟窿,又从整体进行加固,把羊圈修得十分牢固的。
从此,这个牧民的羊就再也没有被野狼叼走过了。
【知识二:充分条件与必要条件】一般地,“若p ,则q ”为真命题,是指由p 通过推理可以得出q .这时,我们就说,由p 可以推出q ,记作p ⇒q ,并且说p 是q 的充分条件(sufficient condition),q 是p 的必要条件(necessary condition).如果“若p ,则q ”为假命题,那么由条件p 不能推出结论q ,记作p ⇏q .此时,我们就说p 不是q 的充分条件,q 不是p 的必要条件.例1 .下列“若p 则q ”形式的命题中,哪些命题中的p 是q 的充分条件?(1)若四边形的两组对角分别相等,则这个四边形是平行四边形。
(2)若两个三角形的三边成比例,则这两个三角形相似。
(3)若四边形为菱形,则这个四边形的对角线互相垂直。
(4)211x x ==若,则 (5)若a =b ,则ac =bc 。
(6)若x ,y 为无理数,则xy 为无理数。
通过问题探究,使学生深入充分条件、必要条件的概念,培养数学抽象的核心素养。
2.下列“ 若p ,则q ”形式的命题中,哪些命题中的q 是p 的必要条件?(1)若直线 l 与⊙O 有且仅有一个交点,则 l 为⊙O 的一条切线;(2)若x 是无理数,则x 2也是无理数.3.如图,直线 a 与 b 被直线 l 所截,分别得到了∠1,∠2,∠3和∠4.请根据这些信息,写出几个“a //b ”的充分条件和必要条件.。
教学设计3:1.4.1 充分条件与必要条件

1.4.1充分条件与必要条件教学目标1.理解充分条件、必要条件的意义.2.会求(判定)某些简单命题的条件关系.3.通过对充分条件、必要条件的概念的理解和运用,培养分析、判断和归纳的逻辑思维能力.教学知识梳理知识点充分条件与必要条件一般地,“若p,则q”为真命题,是指由p通过推理可以得出q.这时,我们就说,由p可推出q,记作p⇒q,并且说p是q的充分条件,q是p的必要条件.(1)p是q的充分条件与q是p的必要条件表述的是同一个逻辑关系,只是说法不同.p是q的充分条件只反映了p⇒q,与q能否推出p没有任何关系.(2)注意以下等价的表述形式:①p⇒q;②p是q的充分条件;③q的充分条件是p;④q是p 的必要条件;⑤p的必要条件是q.(3)“若p,则q”为假命题时,记作“p q”,则p不是q的充分条件,q不是p的必要条件. 教学案例题型一充分条件、必要条件【例1】给出下列四组命题:(1)p:两个三角形相似,q:两个三角形全等;(2)p:一个四边形是矩形,q:四边形的对角线相等;(3)p:A⊆B,q:A∩B=A;(4)p:a>b,q:ac>bc.试分别指出p是q的什么条件.解(1)∵两个三角形相似⇒/两个三角形全等,但两个三角形全等⇒两个三角形相似,∴p是q的必要不充分条件.(2)∵矩形的对角线相等,∴p⇒q,而对角线相等的四边形不一定是矩形,∴q⇒/p.∴p是q的充分不必要条件.(3)∵p⇒q,且q⇒p,∴p既是q的充分条件,又是q的必要条件.(4)p ⇒/ q ,且q ⇒/p , ∴p 是q 的既不充分也不必要条件.规律方法 本例分别体现了定义法、集合法、等价法.一般地,定义法主要用于较简单的命题判断,集合法一般需对命题进行化简,等价法主要用于否定性命题.要判断p 是不是q 的充分条件,就要看p 能否推出q ,要判断p 是不是q 的必要条件,就要看q 能否推出p .【训练1】指出下列哪些命题中p 是q 的充分条件?(1)在△ABC 中,p :∠A >∠B ,q :BC >AC .(2)对于实数x ,y ,p :x +y ≠8,q :x ≠2或y ≠6.(3)在△ABC 中,p :sin A >sin B ,q :tan A >tan B .(4)已知x ,y ∈R ,p :x =1,q :(x -1)·(x -2)=0.解 (1)在△ABC 中,由大角对大边知,∠A >∠B ⇒BC >AC ,所以p 是q 的充分条件.(2)对于实数x ,y ,因为x =2且y =6⇒x +y =8,所以由x +y ≠8⇒x ≠2或x ≠6,故p 是q 的充分条件.(3)在△ABC 中,取∠A =120°,∠B =30°,则sin A >sin B ,但tan A <tan B ,故p ⇒/q ,故p 不是q 的充分条件. (4)由x =1⇒(x -1)(x -2)=0,故p 是q 的充分条件.故(1)(2)(4)命题中p 是q 的充分条件.题型二 充分条件、必要条件与集合的关系【例2】是否存在实数p ,使4x +p <0是x 2-x -2>0的充分条件?如果存在,求出p 的取值范围;否则,说明理由.解 由x 2-x -2>0解得x >2或x <-1,令A ={x |x >2或x <-1}.由4x +p <0,得B =⎩⎨⎧⎭⎬⎫x |x <-p 4. 当B ⊆A 时,即-p 4≤-1,即p ≥4, 此时x <-p 4≤-1⇒x 2-x -2>0, ∴当p ≥4时,4x +p <0是x 2-x -2>0的充分条件.规律方法 (1)设集合A ={x |x 满足p },B ={x |x 满足q },则p ⇒q 可得A ⊆B ;q ⇒p 可得B ⊆A ;若p 是q 的充分不必要条件,则A B .(2)利用充分条件、必要条件求参数的取值范围的关键就是找出集合间的包含关系,要注意范围的临界值.【训练2】已知M ={x |(x -a )2<1},N ={x |x 2-5x -24<0},若M 是N 的充分条件,求a 的取值范围.解 由(x -a )2<1得x 2-2ax +(a -1)(a +1)<0,∴a -1<x <a +1.又由x 2-5x -24<0得-3<x <8.∵M 是N 的充分条件,∴M ⊆N ,∴⎩⎪⎨⎪⎧a -1≥-3,a +1≤8, 解得-2≤a ≤7.故a 的取值范围是-2≤a ≤7.课堂小结1.充分条件、必要条件的判断方法:(1)定义法:直接利用定义进行判断.(2)等价法:利用逆否命题的等价性判断,即要证p ⇒q ,只需证它的逆否命题綈q ⇒綈p 即可;同理要证q ⇒p ,只需证綈p ⇒綈q 即可.(3)利用集合间的包含关系进行判断.2.根据充分条件、必要条件求参数的取值范围时,主要根据充分条件、必要条件与集合间的关系,将问题转化为相应的两个集合之间的包含关系,然后建立关于参数的不等式(组)进行求解.课堂达标1.“-2<x <1”是“x >1或x <-1”的( )A.充分条件但不是必要条件B.必要条件但不是充分条件C.既不是充分条件,也不是必要条件D.既是充分条件,也是必要条件【解析】∵-2<x <1 x >1或x <-1,且x >1或x <-1-2<x <1,∴“-2<x <1”是“x >1或x <-1”的既不充分也不必要条件.【答案】C2.“a >b ”是“a >|b |”的( )A.充分不必要条件B.必要不充分条件C.既是充分条件,也是必要条件D.既不充分也不必要条件【解析】由a >|b |⇒a >b ,而a >b 推不出a >|b |.【答案】B3.若a ∈R ,则“a =1”是“|a |=1”的( )A.充分条件B.必要条件C.既不是充分条件也不是必要条件D.无法判断【解析】当a =1时,|a |=1成立,但|a |=1时,a =±1,所以a =1不一定成立.∴“a =1”是“|a |=1”的充分条件.【答案】A4.“a ≤0”是“函数f (x )=|(ax -1)x |在区间(0,+∞)内单调递增”的( )A.充分不必要条件B.必要不充分条件C.既充分也必要条件D.既不充分也不必要条件【解析】f (x )=|(ax -1)x |在区间(0,+∞)内单调递增等价于f (x )=0在区间(0,+∞)内无实根,即a =0或1a<0,也就是a ≤0,“a ≤0”是“函数f (x )=|(ax -1)x |在区间(0,+∞)内单调递增”的既充分也必要条件.故选C.【答案】C5.若“x <m ”是“(x -1)(x -2)>0”的充分不必要条件,求m 的取值范围.解由(x-1)(x-2)>0可得x>2或x<1,由已知条件,知{x|x<m}{x|x>2或x<1}.∴m≤1.。
充分条件与必要条件教案

充分条件与必要条件教案一、教学目标1. 让学生理解充分条件和必要条件的概念。
2. 让学生学会判断充分条件和必要条件。
3. 培养学生运用充分条件和必要条件解决实际问题的能力。
二、教学内容1. 充分条件和必要条件的定义。
2. 充分条件和必要条件的判断方法。
3. 充分条件和必要条件在实际问题中的应用。
三、教学重点与难点1. 教学重点:充分条件和必要条件的定义及判断方法。
2. 教学难点:充分条件和必要条件在实际问题中的应用。
四、教学方法1. 采用实例讲解法,让学生通过具体例子理解充分条件和必要条件的概念。
2. 采用小组讨论法,让学生学会判断充分条件和必要条件。
3. 采用练习法,让学生巩固所学知识,提高解决问题的能力。
五、教学过程1. 引入新课:通过一个故事引入充分条件和必要条件的概念。
2. 讲解充分条件和必要条件的定义:讲解什么是充分条件,什么是必要条件。
3. 讲解充分条件和必要条件的判断方法:如何判断一个条件是充分条件,如何判断一个条件是必要条件。
4. 实例分析:分析一些具体的例子,让学生理解充分条件和必要条件的应用。
5. 小组讨论:让学生分组讨论,判断一些例子中的条件是充分条件还是必要条件。
6. 练习巩固:布置一些练习题,让学生巩固所学知识。
7. 总结:对本节课的内容进行总结,强调充分条件和必要条件的重要性。
8. 作业布置:布置一些有关充分条件和必要条件的练习题,让学生课后巩固。
六、教学评估1. 课堂提问:通过提问了解学生对充分条件和必要条件的理解程度。
2. 练习题:布置课后练习题,评估学生对知识的掌握情况。
3. 小组讨论:观察学生在小组讨论中的表现,了解他们的合作能力和解决问题的能力。
七、教学反思1. 反思教学方法:根据学生的反馈,调整教学方法,提高教学效果。
2. 反思教学内容:根据学生的掌握情况,调整教学内容,确保学生能够理解和运用充分条件和必要条件。
3. 反思教学过程:总结本节课的优点和不足,为下一节课的教学做好准备。
(完整版)《充分条件与必要条件》教学设计

1.2 充分条件与必要条件教学目标1.知识与技能:正确理解充分条件、必要条件、充分不必要条件、必要不充分条件、充要条件的概念;会判断命题的充分条件、必要条件.进一步会判断充分不必要条件、必要不充分条件、充要条件。
2.过程与方法:充分感受和体会将实际问题抽象为数学概念的过程和思想,培养学生现问题的能力,通过对充分条件、必要条件的判定,提高分析问题、解决问题的能力;学会观察,敢于归纳,关于建构;充分培养学生的发散思维能力,挖掘学生的创新思维能力。
3.情感、态度与价值观通过“p⇒q”与“q⇒p”的判断,感受对立,统一的思想,培养辩证唯物主义观;通过学习本节课体验成功的愉悦,激发学习的兴趣;通过探究学习培养学生勇于探索、敢于创新的个性品质。
教学重点与难点1.重点:充分条件、必要条件、充分不必要条件、必要不充分条件、充要条件的概念.(解决办法:对这三个概念分别先从实际问题引起概念,再详细讲述概念,最后再应用概念进行论证.)2.难点:判断命题的充分不必要条件、必要不充分条件、充要条件。
3.关键:分清命题的条件和结论,看是条件能推出结论还是结论能推出条件。
教学方法及教学准备1. 学习充分条件、必要条件和充要条件知识,要注意与前面有关逻辑初步知识内容相联系,充要条件中的p、q与四种命题中的p、q要求是一样的,它们可以是简单命题,也可以是不能判断真假的语句,也可以是含有逻辑联结词或“若a则b”形式的复合命题。
2. 由于这节课概念性、理论性较强,一般的教学使学生感到枯燥乏味,为此,激发学生的学习兴趣是关键,教学中应始终注意以学生为主,让学生在自我思考,相互交流中去给概念、“下定义”,去体会概念的本质属性。
3. 教材中对“充分条件”、“必要条件”的定义没作过多的解释说明,为了能让学生能理解定义的合理性,在教学过程中教师可以具体的、简单的命题的条件与结论之间的关系来讲解“充分条件”的概念,从互为逆否命题的等价性来了解“必要条件”的概念。
充分条件和必要条件教案

充分条件和必要条件教案一、教学目标1. 让学生理解充分条件和必要条件的概念。
2. 让学生学会判断充分条件和必要条件。
3. 培养学生运用充分条件和必要条件解决实际问题的能力。
二、教学重点与难点1. 教学重点:充分条件和必要条件的概念及判断方法。
2. 教学难点:如何运用充分条件和必要条件解决实际问题。
三、教学方法1. 采用实例分析法,让学生通过具体例子理解充分条件和必要条件的概念。
2. 采用小组讨论法,让学生学会判断充分条件和必要条件。
3. 采用问题解决法,培养学生运用充分条件和必要条件解决实际问题的能力。
四、教学准备1. 准备相关实例,用于讲解充分条件和必要条件的概念。
2. 准备小组讨论题目,用于引导学生学会判断充分条件和必要条件。
3. 准备实际问题,用于培养学生运用充分条件和必要条件解决实际问题的能力。
五、教学过程1. 导入:通过一个实例,引导学生思考充分条件和必要条件的概念。
2. 新课:讲解充分条件和必要条件的定义及判断方法。
3. 实例分析:分析实例,让学生理解充分条件和必要条件的概念。
4. 小组讨论:布置讨论题目,让学生学会判断充分条件和必要条件。
5. 总结:总结本节课的内容,强调充分条件和必要条件的判断方法。
6. 练习:布置课后作业,让学生巩固所学内容。
7. 拓展:引导学生思考充分条件和必要条件在实际生活中的应用。
六、教学活动设计1. 活动一:理解充分条件和必要条件的概念教师通过生活实例介绍充分条件和必要条件的概念。
学生参与讨论,分享自己对充分条件和必要条件的理解。
2. 活动二:判断充分条件和必要条件教师给出几个判断题,学生集体判断并解释理由。
学生分组讨论,尝试自己设计判断题目,并互相评判。
七、教学评估设计1. 评估一:理解程度评估教师通过课堂提问,检查学生对充分条件和必要条件概念的理解程度。
学生通过小组讨论,评估彼此的判断能力。
2. 评估二:应用能力评估教师设计实际问题,学生独立解决,评估学生运用充分条件和必要条件的能力。
充分条件与必要条件教学设计

充分条件与必要条件教学设计(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、策划方案、规章制度、演讲致辞、合同协议、条据书信、应急预案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work summaries, planning plans, rules and regulations, speeches, contract agreements, policy letters, emergency plans, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!充分条件与必要条件教学设计充分条件与必要条件教学设计作为一名辛苦耕耘的教育工作者,就不得不需要编写教学设计,编写教学设计有利于我们科学、合理地支配课堂时间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
充分条件与必要条件【教学目标】一、知识目标1.使学生理解充分条件、必要条件的概念;2.能正确判断是否是充分条件或必要条件;二、能力目标1.通过对充分条件和必要条件的研究,使学生掌握有关的逻辑知识,以保证推理的合理性和论证的严密性;2.通过引导学生观察、归纳,培养学生的观察能力和归纳能力;三、情感目标1.通过以学生为主体的教学方法,让学生自己构造数学命题,发展体验获取知识的感受;2.通过对充分条件和必要条件与集合的关系的教学,建立概念间的多元联系,培养同学们多角度审视问题的习惯;3.通过“会观察”,“敢归纳”,“善建构”,培养学生自主学习,勇于创新,敢于把错误的思维过程及弱点暴露出来,并在问题面前表现出浓厚的兴趣和不畏困难、勇于进取的精神。
【教学重难点】重点:充分条件、必要条件的概念;难点:充分条件、必要条件的判断;【教学过程】一、复习引入:复习:命题的概念及命题的常见形式。
命题的概念:一般地,在数学中我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题。
其中判断为真的语句叫做真命题,判断为假的语句叫做假命题。
命题的常见形式:“若p,则q”,我们把这种形式中的p的叫做命题的条件,q叫做命题的结论。
设计意图:通过命题概念的复习,重点强调条件与结论,为新课学习做必要的准备和铺垫。
引入:“若p ,则q ”为真,可以将它表示为;q p ⇒“若p ,则q ”为假,可以将它表示为;q p ≠>如:“若教室里的学生是高二1班的学生,则教室里的学生是高二的学生”为真命题,即: 教室里的学生是高二1班的学生教室里的学生是高二的学生;⇒又如:“若教室里的学生是高二的学生,则教室里的学生是高二1班的学生”为假命题,即: 教室里的学生是高二的学生教室里的学生是高二1班的学生。
≠>设计意图:命题有真有假,通过对真假两种情况的新的表述方式的引入,意在顺利实现由“已有的知识结构”转入“新知构建”的过程。
二、新知建构1.定义:一般地,如果有,称p 是q 的充分条件,称q 是p 的必要条件。
q p ⇒例1:下列“若p ,则q ”形式的命题中,哪些命题中的p 是q 的充分条件?(1)若x>3 ,则x>2 ;(2)若x=1 ,则x2-4x+3=0;(3)若f(x)=x ,则f(x)在上为增函数;()∞+∞-,(教师引导学生体验:问题的实质是判断命题是否为真)解:命题(1)(2)(3)都是真命题。
所以,命题(1)(2)(3)中的p 是q 的充分条件。
问题:同学们,对于命题(1)(2)(3),我们可不可以回答q 是p 的必要条件呢?答:可以称对于命题(1)(2)(3),q 是p 的必要条件。
设计意图:通过实例分析,将新知(充分条件、必要条件的概念)的构建过程转化为已有知识(命题真假的判断)的应用过程。
强调说明:(1)“”,“p 是q 的充分条件”,“q 是p 的必要条件”是同一逻辑关系的三种不同q p ⇒描述形式,前者是符号表示,后两者是文字表示。
(2)充分条件的含义用通俗的语言来说是指“有它就行”, 即“有之必然”;必要条件的含义用通俗的语言来说是指“缺它不行” ,即“无之必不然”。
设计意图:提升学生的认识水平,试图从不同角度帮助同学们理解“充分”和“必要”。
三、巩固新知例2:判断下列问题中,p 是q 的充分条件吗?(1)p : a>b q : ac>bc ;(2)p : x 为无理数 q : x 2为无理数;(3)p : x>a2+b2 q : x>2ab ;(4)p :两条直线的斜率相等; q :两条直线平行; ;解:因为在问题(3)和问题(4)中都有。
所以,在问题(3)和问题(4)中,p q p ⇒是q 的充分条件。
问题:像在(1)(2)两个问题中p 与q 的关系应如何描述?可描述如下:若有,称p 不是q 的充分条件,称q 不是p 的必要条件。
q p ≠>设计意图:概念的否定是概念理解的重要方面,本例意在让学生在直观理解的基础上给出“充分条件”和“必要条件”的否定形式。
以帮助学生全面认识和理解概念。
例3:判断下列各组问题中,q 是p 的必要条件吗?(1)p :{x|x>3} q :{x|x>5} ;(2)p : {x|x>0} q :{x|x 0} ;≥(3)p :同位角相等 q :两直线平行 ;(4)p :四边形对角线相等 q :四边形是平行四边形 ;解:因为在问题(2)和问题(3)中都有。
所以,在问题(2)和问题(3)中,q q p ⇒是p 的必要条件。
在问题(1)和问题(4)中都有。
所以,在问题(1)和问题(4)q p ≠>中,q 不是p 的必要条件。
强调说明:充分条件与必要条件判断的关键:(1)认清条件与结论;(2)考察或的真假。
q p ⇒p q ⇒充分条件与必要条件和集合的关系:(1),相当于,即 或q p ⇒Q P ⊆即:要使成立,只要就足够了——有它就行。
Q x ∈P x ∈(2),相当于,即 或p q ⇒Q P ⊇即:为使成立,必须要使——缺它不行。
Q x ∈P x ∈练习:回答例3中q 是p 的充分条件吗?设计意图:本例的设计和应用主要目的有:(1)强调条件和结论之间的推出关系,即推出箭头的方向性;(2)从集合关系的角度帮助同学们理解“充分条件”和“必要条件”;(3)体会“充分条件”和“必要条件”的不同表述方式;(4)让学生初步体会充分条件与必要条件的四种不同类型,为下节课提前准备。
课堂活动:请同学们自己举例给出p 、q 并判断其二者之间存在的是否是充分条件或必要条件的关系。
四、能力提升例4.用“充分条件”或“必要条件”填空:(1)四边形的对角线相等是四边形为矩形的________;(2)是为正数的______________。
5a >a 答案:(1)必要条件;(2)充分条件。
例5.填空(写出一个满足题意的即可)(1)“ab=0”的一个充分条件是 。
(2)“x<3”的一个必要条件是 。
答案:(1)可填:a=0;b=0;a=0且b=0;这三种中的任何一种。
(2)可填:x<4(形如x<a ,其中的答案都是对的)。
3a ≥设计意图:(1)引导学生观察例5的问题的问法和前四个例题有无不同,培养学生的观察能力;(2)从条件判断填空到开放的填写条件有助于彰显学生对问题的理解程度,通过这组练习,可以了解学生“会了什么?”、“还存在什么问题?”,使后面的教学更有针对性!五、牛刀小试练习:判断下列各组问题中,p 是不是q 的充分条件以及p 是不是q 的必要条件?(1)p : q : x2 ;x x =0≥(2)p : tan =1 q :;α4πα=(3)p : 直线与平面内的两条相交线垂直 q : 直线与平面垂直;l αl α(4)p :函数f(x)满足f(0)=0 q : 函数f(x)是奇函数;答:(1)p 是q 的充分条件,p 不是q 的必要条件;(2)p 不是q 的充分条件,p 是q 的必要条件;(3)p 是q 的充分条件,p 是q 的必要条件;(4)p 不是q 的充分条件,p 不是的q 必要条件;结合练习,引导学生归纳如下:从练习中我们发现在p 与q 之间存在以下几种关系:(1)且;q p ⇒p q ≠>(2)且;p q ⇒q p ≠>(3)且;q p ⇒p q ⇒(4)且;q p ≠>p q ≠>对于这几种关系我们应如何描述呢?下节课,我们将解决这一问题。
设计意图:反馈练习的设计,既帮助学生全面掌握本节课的学习内容,再次巩固所学知识和方法,也在前面例3的基础上明确了充分条件与必要条件涉及的四种类型,为顺利进入下节课的学习打下坚实的基础。
【课堂小结】师生共同回顾本节课的教学过程,小结如下内容:1.充分条件与必要条件的概念;2.充分条件与必要条件判断的关键;设计意图:再现课堂,小结提升,有助于学生明确学习的重点。
【作业布置】判断下列命题的真假:1.“”是“”的充分条件;a b 0>>22a b >2.“”是“”的必要条件;a b >22ac bc >3.“”是“” 的必要条件;(其中A ,B 是集合)A B ⊆A B =4.“函数是奇函数”是“”的充分条件。
()f x ()00f =【教学反思】1.学生学习本节课内容时容易了解的地方及我的处理方法(1)通过对必修部分的学习,学生已经有了一定的知识储备,所以在本节课中出现的大量的数学问题,学生是易于理解和掌握的。
在教学中,我可以利用学生熟悉的知识来辅助“充分条件与必要条件”的概念的教学,如在教学过程中我通过复习命题的概念和命题的常见形式引入新课的概念,这样一种自然引入可以减少学生对新知的陌生感;又如学生对集合知识是比较熟悉的,在讲解完例3之后,我结合例3中的问题,引导学生从集合角度理○1○2解“充分条件与必要条件”,尤其是使用韦恩图直观表示,帮助学生更好地理解“充分条件与必要条件”概念的本质。
(2)例1从问题的形式到内容都是学生较易理解的。
例1的教学之后,我结合例1“回踩”定义,指出:“”,“p 是q 的充分条件”,“q 是p 的必要条件”是同一逻辑关系的q p ⇒三种不同描述形式,前者是符号表示,后两者是文字表示。
对于这种说法,学生也是易于理解的,但是这种理解仅停留在形式上。
然后,我再次使用例1中的具体数学问题指出“充○1分条件与必要条件”的本质,并用较易理解的通俗语言“有它就行”、“缺它不行”加以解释。
(3)例2和例3也都是学生较易理解的问题。
所以在例2之后,结合例2中的问题1和问题2,引出了“充分条件与必要条件”概念的否定形式。
在例3之后,通过回顾例2和例3的解答方法与解答过程,引导学生总结“充分条件与必要条件判断的关键”。
(4)“牛刀小试”环节中的课堂练习,学生通过前面的学习应当是可以独立完成的。
所以,在练习结束后,我引导学生归纳总结该练习四个小题中所蕴含的“充分条件与必要条件”的四种情况,预设伏笔,为下节课的教学做好铺垫。
2.学生学习本节课内容时不易理解的地方及我的处理方法(1)“充分条件与必要条件”的概念是学生不易理解的。
为了帮助学生更好地理解概念的实质,我通过复习旧知识(命题)引入新知识(充分条件和必要条件),并在前三个较为简单的例题的讲解过程中逐步渗透“充分条件与必要条件”的实质。
(2)利用“充分条件与必要条件”解决问题是学生难于掌握的,这也不是本节课可以彻底解决的问题。
所以,我引导学生通过解决简单问题(例1.例2.例3),提炼出解决问题的方法,再尝试运用方法解决新问题(例4.例5)。
首先让学生掌握解决问题的方法,再加以运用,这样我也可以搞清学生“会了什么”、“还有什么不会”,使后面的教学更有针对性。