Low Power Design of Pipelined ADC for Power Line Baseband Communication

合集下载

用于低噪声CMOS图像传感器的流水线ADC设计及其成像验证

用于低噪声CMOS图像传感器的流水线ADC设计及其成像验证

用于低噪声CMOS图像传感器的流水线ADC设计及其成像验证邓若汉;徐星;王洪彬;余金金;陈世军;陈永平【摘要】In recent years, besides concerning about the noise analyzation, the signal digitization is also a very important research spot in the research field of low noise CMOS image sensor. A 12bit, 10Msps pipeline ADC is presented which can be used as a chip-level analog-to-digital converter in a low noise CMOS image sensor, and it was taped-out in the 0.5μm CMOS standard process. Finally, by using of this ADC, an analog-output low-noise CMOS image sensor achieves analog-to-digital convert in a PCB test board, and based on an independent development image-forming system, this test board achieved a very good imaging test. The imaging result shows that this ADC can be used as a chip-level ADC of a low-noise CMOS image sensor.%在对低噪声CMOS图像传感器的研究中,除需关注其噪声外,目前数字化也是它的一个重要的研究和设计方向,设计了一种可用于低噪声CMOS图像传感器的12bit,10Msps的流水线型ADC,并基于0.5μm标准CMOS工艺进行了流片。

控制系统模块 NX-AD DA 模块说明书

控制系统模块 NX-AD DA 模块说明书

Analog inputs and outputs to meetall machine control needs, fromgeneral purpose to high-speedsynchronous control•Connect to other NX I/O Units and EtherCAT® CouplerUnits using the high-speed NX-bus•Separate modules for voltage and currentFeatures•Up to eight analog inputs per unit (NX-AD)•Up to four analog outputs per unit (NX-DA)•Free-run refreshing or synchronous I/O refreshing with the NX1P2 CPU Unit or EtherCAT Coupler Unit •Sampling times down to 10 μs per channel and high resolution of 1/30,000•Single-ended input type with built-in power supply terminals for low power equipments or noize-resistant differential input type (NX-AD)•Selecting channel to use, moving average, input disconnection detection, over range/under range detection, and user calibration•Detachable front connector with screwless Push-In Plus terminals for easy installation and maintenance •Compact with a width of 12 mm per unit•Connect to the CJ PLC using the EtherNet/IP TM bus couplerSysmac is a trademark or registered trademark of OMRON Corporation in Japan and other countries for OMRON factory automation products. EtherCAT® is a registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany.EtherNet/IP TM is a trademark of ODVA.Other company names and product names in this document are the trademarks or registered trademarks of their respective companies.System ConfigurationsConnected to a CPU Unit or Communication Control UnitThe following figure shows a system configuration when NX Units are connected to an NX-series CPU Unit.Note:For whether an NX Unit can be connected to the CPU Unit, refer to the version information.Connected to an EtherCAT Coupler UnitThe following figure shows an example of the system configuration when an EtherCAT Coupler Unit is used as a Communications Coupler Unit.*1.The connection method for the Sysmac Studio depends on the model of the CPU Unit or Industrial PC.*2.An EtherCAT Slave Terminal cannot be connected to any of the OMRON CJ1W-NC @81/@82 Position Control Units even though they canoperate as EtherCAT masters.Note:For whether an NX Unit can be connected to the Communications Coupler Unit, refer to the version information.Support software● CPU RackEtherCAT master *2Support software (Sysmac Studio)System Configuration in the Case of a Communication Control UnitThe following figure shows a system configuration when a group of NX Units is connected to an NX-series Communication Control Unit. To configure a Safety Network Controller, mount the Safety CPU Unit, which is one of the NX Units, to the CPU Rack of the Communication Control Unit.EtherNet/IP UnitCIP Safety on EtherNet/IP deviceNote:For whether an NX Unit can be connected to the Communication Control Unit, refer to the version information.Model Number StructureNX-@@@@@@(1)(2)(3)(4)(1) Unit typeNo.Specification AD Analog input DAAnalog output(2) Number of pointsNo.Specification 2 2 points 3 4 points 48 points(3) I/O rangeNo.Specification1---2 4 to 20 mA 6-10 to +10 V(4) Other specifications Analog Input Units*1Free-Run refreshing*2Synchronous I/O refreshingAnalog Output Units*1Free-Run refreshing*2Synchronous I/O refreshingNo.ResolutionConversion timeInput methodI/O refreshing methodFree-Run refreshing *1 onlySwitching synchronousI/O refreshing *2 and Free-Run refreshing031/8000250 μs/point Single-ended Yes ---041/8000250 μs/point Differential Yes ---081/3000010 μs/pointDifferential---YesNo.ResolutionConversion timeI/O refreshing methodFree-Run refreshing *1 onlySwitching synchronousI/O refreshing *2 and Free-Run refreshing031/8000250 μs/point Yes ---051/3000010 μs/point---YesOrdering InformationApplicable standardsRefer to the OMRON website () or ask your OMRON representative for the most recent applicable standards for each model. Analog Input UnitsProduct nameSpecificationModelNumber of points InputrangeResolutionConversionvalue, decimalnumber(0 to 100%)Over allaccuracy(25°C)InputmethodConversiontimeInputimpedanceI/OrefreshingmethodVoltage Input type2 points-10 to+10 V 1/8000-4000 to 4000±0.2%(full scale)Single-endedinput250 μs/point1 MΩ min.Free-RunrefreshingNX-AD2603DifferentialinputNX-AD26041/30000-15000 to 15000±0.1%(full scale)Differentialinput10 μs/pointSelectableSynchronousI/O refreshingor Free-RunrefreshingNX-AD26084 points 1/8000-4000 to 4000±0.2%(full scale)Single-endedinput250 μs/pointFree-RunrefreshingNX-AD3603DifferentialinputNX-AD36041/30000-15000 to 15000±0.1%(full scale)Differentialinput10 μs/pointSelectableSynchronousI/O refreshingor Free-RunrefreshingNX-AD36088 points 1/8000-4000 to 4000±0.2%(full scale)Single-endedinput250 μs/pointFree-RunrefreshingNX-AD4603DifferentialinputNX-AD46041/30000-15000 to 15000±0.1%(full scale)Differentialinput10 μs/pointSelectableSynchronousI/O refreshingor Free-RunrefreshingNX-AD4608Current Input type2 points4 to20 mA 1/80000 to 8000±0.2%(full scale)Single-endedinput250 μs/point250 ΩFree-RunrefreshingNX-AD2203DifferentialinputNX-AD22041/300000 to 30000±0.1%(full scale)Differentialinput10 μs/pointSelectableSynchronousI/O refreshingor Free-RunrefreshingNX-AD22084 points 1/80000 to 8000±0.2%(full scale)Single-endedinput250 μs/pointFree-RunrefreshingNX-AD3203DifferentialinputNX-AD32041/300000 to 30000±0.1%(full scale)Differentialinput10 μs/pointSelectableSynchronousI/O refreshingor Free-RunrefreshingNX-AD32088 points 1/80000 to 8000±0.2%(full scale)Single-endedinput250 μs/point85 ΩFree-RunrefreshingNX-AD4203DifferentialinputNX-AD42041/300000 to 30000±0.1%(full scale)Differentialinput10 μs/pointSelectableSynchronousI/O refreshingor Free-RunrefreshingNX-AD4208Analog Output UnitsOptional ProductsAccessoriesNot included.Product nameSpecificationModelNumber of pointsOutput rangeResolution Output setting value, decimal number (0 to 100%)Over all accuracy(25°C)Conversiontime I/O refreshing method Voltage Output type2 points-10 to +10 V1/8000-4000 to 4000±0.3%(full scale)250 μs/point Free-Run refreshing NX-DA26031/30000-15000 to 15000±0.1%(full scale)10 μs/point Selectable Synchronous I/O refreshing or Free-Run refreshing NX-DA26054 points1/8000-4000 to 4000±0.3%(full scale)250 μs/point Free-Run refreshing NX-DA36031/30000-15000 to 15000±0.1%(full scale)10 μs/point Selectable Synchronous I/O refreshing or Free-Run refreshing NX-DA3605Current Output type2 points4 to 20 mA1/80000 to 8000±0.3%(full scale)250 μs/point Free-Run refreshing NX-DA22031/300000 to 30000±0.1%(full scale)10 μs/point Selectable Synchronous I/O refreshing or Free-Run refreshing NX-DA22054 points1/80000 to 8000±0.3%(full scale)250 μs/point Free-Run refreshing NX-DA32031/300000 to 30000±0.1%(full scale)10 μs/pointSelectable Synchronous I/O refreshing or Free-Run refreshingNX-DA3205Product nameSpecificationModel Unit/Terminal Block Coding PinsFor 10 Units(Terminal Block: 30 pins, Unit: 30 pins)NX-AUX02Product nameSpecificationModel No. of terminalsTerminal number indicationsGround terminal markTerminal currentcapacityTerminal Block8A/BNone10 ANX-TBA08212NX-TBA12216NX-TBA162General Specifications*Refer to the OMRON website () or ask your OMRON representative for the most recent applicable standards for each model.ItemSpecificationEnclosure Mounted in a panel Grounding methodGround to 100 Ω or less Operating environmentAmbient operating temperature 0 to 55°CAmbient operating humidity 10% to 95% (with no condensation or icing)AtmosphereMust be free from corrosive gases.Ambient storage temperature −25 to 70°C (with no condensation or icing)Altitude2,000 m max.Pollution degree2 or less: Meets IEC 61010-2-201.Noise immunity 2 kV on power supply line (Conforms to IEC61000-4-4.)Overvoltage categoryCategory II: Meets IEC 61010-2-201.EMC immunity level Zone BVibration resistance Conforms to IEC 60068-2-6.5 to 8.4 Hz with 3.5-mm amplitude, 8.4 to 150 Hz, acceleration of 9.8 m/s 2, 100 min each in X, Y, and Z directions(10 sweeps of 10 min each = 100 min total)Shock resistanceIConforms to IEC 60068-2-27. 147 m/s 2, 3 times each in X, Y, and Z directionsApplicable standards *cULus: Listed (UL508), ANSI/ISA 12.12.01, EU: EN 61131-2, C-Tick or RCM, KC Registration, NK, LRAnalog Input Unit SpecificationsAnalog Input Unit (voltage input type) 2 points NX-AD2603Analog Output Unit SpecificationsAnalog Output Unit (voltage output type) 2 points NX-DA2603Analog Output Unit (current output type) 2 points NX-DA2205Analog Output Unit (current output type) 4 points NX-DA3203Analog Output Unit (current output type) 4 points NX-DA3205Version InformationConnected to a CPU UnitRefer to the user's manual for the CPU Unit details on the CPU Units to which NX Units can be connected.Note:Some Units do not have all of the versions given in the above table. If a Unit does not have the specified version, support is provided by the oldestavailable version after the specified version. Refer to the user’s manuals for the specific Units for the relation between models and versions.Connected to an EtherCAT Coupler UnitNote:Some Units do not have all of the versions given in the above table. If a Unit does not have the specified version, support is provided by the oldestavailable version after the specified version. Refer to the user’s manuals for the specific Units for the relation between models and versions.Connected to an EtherNet/IP Coupler UnitNote:Some Units do not have all of the versions given in the above table. If a Unit does not have the specified version, support is provided by the oldestavailable version after the specified version. Refer to the user’s manuals for the specific Units for the relation between models and versions.*1Refer to the user’s manual for the EtherNet/IP Coupler Units for information on the unit versions of EtherNet/IP Units that are compatible withEtherNet/IP Coupler Units.*2Refer to the user’s manual for the EtherNet/IP Coupler Units for information on the unit versions of CPU Units and EtherNet/IP Units that arecompatible with EtherNet/IP Coupler Units.*3For connection to an EtherNet/IP Coupler Unit with unit version 1.0, connection is supported only for a connection to the peripheral USB porton the EtherNet/IP Coupler Unit. You cannot connect by any other path. If you need to connect by another path, use an EtherNet/IP Coupler Unit with unit version 1.2 or later.Connected to Communication Control UnitsNote:Some Units do not have all of the versions given in the above table. If a Unit does not have the specified version, support is provided by the oldestavailable version after the specified version. Refer to the user’s manuals for the specific Units for the relation between models and versions.NX UnitCorresponding unit versions/versions ModelUnit version CPU Unit Sysmac StudioNX-AD @@@@NX-DA @@@@Ver.1.0Ver.1.13Ver.1.17NX UnitCorresponding unit versions/versionsModelUnit version EtherCAT Coupler UnitCPU Unit or Industrial PC Sysmac StudioNX-AD @@@@NX-DA @@@@Ver.1.0Ver.1.0Ver.1.05Ver.1.06NX UnitCorresponding unit versions/versionsModelUnit versionApplication with an NJ/NX/NY-series Controller *1Application with a CS/CJ/CP-series PLC *2EtherNet/IP Coupler UnitCPU Unit or Industrial PCSysmac StudioEtherNet/IP Coupler UnitSysmac StudioNX-IO Configurator *3NX-AD @@@@NX-DA @@@@Ver. 1.0Ver. 1.2Ver. 1.14Ver. 1.19Ver. 1.0Ver. 1.10Ver. 1.00NX UnitCorresponding unit versions/versionsModelUnit versionCommunication Control UnitSysmac StudioNX-AD @@@@NX-DA @@@@Ver.1.0Ver.1.00Ver.1.24External InterfaceScrewless Clamping Terminal Block Type12 mm WidthLetter ItemSpecification(A)NX bus connector This connector is used to connect to another Unit.(B)Indicators The indicators show the current operating status of the Unit.(C)Terminal blockThe terminal block is used to connect to external devices.The number of terminals depends on the Unit.Terminal BlocksApplicable Terminal Blocks for Each Unit ModelLetter ItemSpecification(A)Terminal number indication The terminal number is identified by a column (A through D) and a row (1 through 8).Therefore, terminal numbers are written as a combination of columns and rows, A1 through A8 and B1 through B8.The terminal number indication is the same regardless of the number of terminals on the terminal block.(B)Release hole A flat-blade screwdriver is inserted here to attach and remove the wiring.(C)Terminal holeThe wires are inserted into these holes.Unit model Terminal BlocksModelNo. of terminalsTerminal number indications Ground terminalmark Terminal currentcapacity NX-AD2@@@NX-TBA0828A/B None 10 A NX-AD3@@@NX-TBA12212A/B None 10 A NX-AD4@@@NX-TBA16216A/B None 10 A NX-DA2@@@NX-TBA0828A/B None 10 A NX-DA3@@@NX-TBA12212A/BNone10 A12 mm w idth 8 terminals(B)12 mm w idth 12 terminals 12 mm w idth 16 terminals(C)(A)A1A2A3A4A5A6A7A8A1A2A3A4A5A6A7A8Applicable WiresUsing FerrulesIf you use ferrules, attach the twisted wires to them.Observe the application instructions for your ferrules for the wire stripping length when attaching ferrules.Always use plated one-pin ferrules. Do not use unplated ferrules or two-pin ferrules.The applicable ferrules, wires, and crimping tool are given in the following table.*Some AWG 14 wires exceed 2.0 mm 2 and cannot be used in the screwless clamping terminal block.When you use any ferrules other than those in the above table, crimp them to the twisted wires so that the following processed dimensions are achieved.Using Twisted Wires/Solid WiresIf you use the twisted wires or the solid wires, use the following table to determine the correct wire specifications.*1.Secure wires to the screwless clamping terminal block. Refer to the Securing Wires in the USER'S MANUAL for how to secure wires.*2.With the NX-TB @@@1 Terminal Block, use twisted wires to connect the ground terminal. Do not use a solid wire.<Additional Information> If more than 2 A will flow on the wires, use plated wires or use ferrules.Terminal typeManufacturerFerrule modelApplicable wire (mm 2 (AWG))Crimping toolTerminals other than ground terminalsPhoenix ContactAI0,34-80.34 (#22)Phoenix Contact (The figure in parentheses is the applicable wire size.)CRIMPFOX 6 (0.25 to 6 mm 2, AWG24 to 10)AI0,5-80.5 (#20)AI0,5-10AI0,75-80.75 (#18)AI0,75-10AI1,0-8 1.0 (#18)AI1,0-10AI1,5-8 1.5 (#16)AI1,5-10Ground terminals AI2,5-10 2.0 *Terminals other than ground terminalsWeidmullerH0.14/120.14 (#26)Weidmuller (The figure in parentheses is the applicable wire size.)PZ6 Roto (0.14 to 6 mm 2, AWG 26 to 10)H0.25/120.25 (#24)H0.34/120.34 (#22)H0.5/140.5 (#20)H0.5/16H0.75/140.75 (#18)H0.75/16H1.0/14 1.0 (#18)H1.0/16H1.5/14 1.5 (#16)H1.5/16TerminalsWire typeWire sizeConductor length (stripping length)Twisted wires Solid wire Classification Current capacity PlatedUnplated Plated Unplated All terminals except ground terminals 2 A or less Possible PossiblePossible Possible 0.08 to 1.5 mm 2AWG28 to 168 to 10 mmGreater than2 A and 4 A or less Not Possible Possible *1Not Possible Greater than 4 A Possible *1Not Possible Ground terminals---PossiblePossiblePossible *2Possible *22.0 mm 29 to 10 mmFinished Dimensions of Ferrules1.6 mm max. (except ground terminals)2.0 mm max. (ground terminals)Conductor length (stripping length)Dimensions(Unit/mm) Screwless Clamping Terminal Block Type12 mm Width*The dimension is 1.35 mm for Units with lot numbers through December 2014.Related ManualCat. No.Model number Manual name Application DescriptionW522NX-AD@@@@NX-DA@@@@NX-series Analog I/O UnitsUser’s Manual for AnalogInput Units and AnalogOutput UnitsLearning how to use NX-seriesAnalog Input Units and AnalogOutput UnitsThe hardware, setup methods, and functions ofthe NX-series Analog Input Units and AnalogOutput Units are described.2020.10In the interest of product improvement, specifications are subject to change without notice. OMRON CorporationIndustrial Automation Company/。

一种用于音频的2-2级联结构Sigma-Delta调制器设计

一种用于音频的2-2级联结构Sigma-Delta调制器设计

一种用于音频的2-2级联结构Sigma-Delta调制器设计张婷;钟传杰【摘要】基于csmc0.35μm CMOS工艺,设计了一种用于音频设备的低功耗Sigma-Delta调制器,该调制器采用四阶噪声整形2-2级联结构实现,在获得高动态范围和高精度的同时更能够保证系统的稳定性.运算放大器采用两级全差分电路结构,仿真结果表明,运放的直流开环增益为90.9 dB,在3.3 V电源电压下,信号带宽为20 kHz,过采样率为64时,信噪比为101.45 dB,有效位数达到了16 bit,调制器功耗约为7.8 mW.%In this paper, A low-power 2-2 multi stage noise shaping (MASH) Sigma-Delta analog to digital modulator for audio application is implemented. The design was fabricated in a 0.35 μm CMOS process. In order to reduce power consumption , fully differential two stage operational amplifiers are used. The simulation shows that the DC open loop gain is up to 90.9 dB.When the power is 3.3 V and OSR is 64, the simulation results show that SNDR of the modular can reach 101.45dB,while the power consumption is merely 7.8 mW.【期刊名称】《电子设计工程》【年(卷),期】2017(025)017【总页数】5页(P124-128)【关键词】音频;低功耗;Sigma-Delta调制器;运算放大器【作者】张婷;钟传杰【作者单位】江南大学物联网工程学院, 江苏无锡 214122;江南大学物联网工程学院, 江苏无锡 214122【正文语种】中文【中图分类】TN47数字电路广泛应用于通信、视频等领域,而声音等自然界的信号均为模拟信号。

lowPowerDesign

lowPowerDesign

46
LSI Confidential
END
47
LSI Confidential
23 LSI Confidential
Isolation control
• pmu control PD1 • Soft tie high cell control PD2 PD3. VDD off : output 1
24
LSI Confidential
DFT control insertion
19
LSI Confidential
Power domain (frontend) Create_power_domain …
• • • • PD1 PD2 PD3 default
20
LSI Confidential
Floorplan
DDR2/MDDR GPIO
default
PLL
CPU (PD1)
15
LSI Confidential
Power gating control
16
LSI Confidential
17
LSI Confidential
Physical design flow
18
LSI Confidential
Off chip power switch low power design (CPF flow)
• Retention register
14
LSI Confidential
Dynamic and adaptive Voltage Frequency Scaling (DVFS and AVFS)
• DVFS 即动态电压频率调整,动态技术则是根据芯片所运行的应用程序对计算 能力的不同需要,动态调节芯片的运行频率和电压(对于同一芯片,频率越高, 需要的电压也越高),从而达到节能的目的。 降低频率可以降低功率,但是单纯地降低频率并不能节省能量。因为对于一个 给定的任务,F*t是一个常量,只有在降低频率的同时降低电压,才能真正地降 低能量的消耗。

一种12位50msps低功耗流水线adc的分析与实现

一种12位50msps低功耗流水线adc的分析与实现

摘 要随着电路系统数字化程度的不断提高,尤其是片上系统(SOC)的快速发展,作为连接模拟信号与数字信号的桥梁的高性能模数转换器的需求日益增强。

与其它结构相比,流水线ADC因其在高精度、高速度与低功耗之间拥有良好的折中而备受青睐。

本文采用韩国东部半导体dongbu013工艺,设计研究了一个50MSample/s的12位的流水线ADC。

在查阅大量文献的前提下,本文根据模拟IC设计流程,以高速、低压、低功耗为目标,逐步完成了各个模块电路以及整体电路的设计。

主要工作包括:(1)完成两相不交叠时钟电路的设计;自举开关电路(为消除开关电荷注入误差)设计;为保证开关电容电路的速度和精度设计了增益增强型折叠共源共栅运算放大器;动态锁存比较器电路设计。

(2)由单元电路完成各个子模块电路的设计,并对各个模块和整体系统进行详细仿真。

(3)为降低功耗采用电容和运算放大器逐级递减技术,为克服比较器失调误差设计了数字校正电路。

本设计在Cadence工作平台下,使用Spectre仿真器进行模拟验证。

模拟仿真结果表明,在+1.2V电源电压下,ADC的模拟信号输入范围为0.4V~0.8V,分辨率为12位,采样速率达50MHz,功耗约为84mW。

该流水线ADC的性能指标达到了设计要求。

关键词:流水线ADC;自举开关;开关电容电路;数字校正AbstractAs a bridge connecting the analog signal and digital signal, the demand of the high-performance analog-to-digital converter has growing rapidly with the digitalization of the circuit system, especially the rapid development of the system on chip. Compared with other structures, the pipeline ADC has a good favor because of its good compromise between the high resolution, high speed and low power consumption. In this thesis, a 50MSPS, 12bit ADC was designed in dongbu 0.13um process.Access to a large number of documents, this paper completes the design of each module circuit and the overall circuit step by step with the goal of high speed, low voltage and low power consumption, according to the Analog IC design flow. The main work of this paper is as follows. Firstly, completing the circuit design of the two-phase non-overlapping clock generator; the bootstrapped switch, which can eliminate the switch charge injection error; the gain enhanced folded cascode operational amplifier, which can ensure the speed and accuracy of the switch capacitor circuits, and the dynamic latch comparator. Secondly, completing the circuit design of each sub-module by the unit circuit, and simulating each module and the overall system in detail. Thirdly, in order to reduce the power consumption of the system, scaling down technique of the capacitor and operation amplifier was used, and a digital calibration circuit was designed to overcome the comparator offset error.This design works in the Cadence platform, the simulating tool is Cadence Spectre. The simulating results show that, with a power supply of 1.2V, the input voltage range of the ADC is between 0.4V and 0.8V, its resolution is 12 bits and sample rate is 50MHz, the power consumption is about 84mW. The parameters of this pipeline ADC meet the design requirements.Keywords: pipeline ADC, bootstrapped switch, switch capacitor circuit, digital calibration目录摘要 (I)Abstract (II)第一章绪论 (1)1.1课题研究的背景及意义 (1)1.2国内外研究现状 (1)1.3本文主要研究内容和结构安排 (4)第二章流水线ADC的基本原理 (5)2.1模数转换器的基本概念 (5)2.2模数转换器的性能参数 (5)2.3流水线ADC的结构和工作原理 (7)2.4非线性因素及其影响 (8)2.4.1热噪声 (8)2.4.2电荷注入和时钟馈通 (10)2.4.3运放有限开环增益和带宽 (12)2.5数字校正技术 (13)2.6本章小结 (15)第三章流水线ADC单元电路的分析与设计 (16)3.1MOS开关电路 (16)3.2运算放大器 (19)3.2.1增益增强原理 (19)3.2.2主运放和共模反馈电路设计 (21)3.2.3辅助运放设计 (23)3.2.4最终放大器电路验证 (25)3.3比较器 (27)3.4本章小结 (30)第四章模块和系统电路设计与仿真 (31)4.1C LOCK G ENERATOR (31)4.2采样保持电路 (33)4.3 1.5BIT/STAGE ADC (37)4.3.1Sub-ADC (37)4.3.2Sub-DAC (39)4.3.3Gain-stage (41)4.4数字校正电路 (43)4.5本章小结 (45)总结 (46)参考文献 (47)哈尔滨工业大学硕士学位论文原创性声明 (51)哈尔滨工业大学硕士学位论文使用授权书 (51)致谢 (52)第一章 绪 论1.1课题研究的背景及意义现实世界中的物理量大部分是随时间连续变化的量,即大都是模拟量,如光、电、声音、速度等[1]。

IEEE754标准的32位低功耗浮点乘法器设计

IEEE754标准的32位低功耗浮点乘法器设计

西安邮电大学毕业设计(论文)题目:32位低功耗浮点乘法器设计学院:电子工程学院专业:集成电路设计与集成设计班级:电路1303学生姓名:白进宝学号:05136073导师姓名:邢立冬职称:高级工程师起止时间:2017年3月6日至2017年6月11日毕业设计(论文)声明书本人所提交的毕业论文《32位低功耗浮点乘法器设计》是本人在指导教师指导下独立研究、写作的成果,论文中所引用他人的文献、数据、图件、资料均已明确标注;对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式注明并表示感谢。

本人完全理解《西安邮电大学本科毕业设计(论文)管理办法》的各项规定并自愿遵守。

本人深知本声明书的法律责任,违规后果由本人承担。

论文作者签名:日期:年月日西安邮电大学本科毕业设计(论文)选题审批表西安邮电大学本科毕业设计(论文)开题报告西安邮电大学毕业设计 (论文)成绩评定表摘要乘法器是高性能数字信号处理芯片的关键部件,也是实时、高速数字信号处理器的核心。

乘法单元具有面积大、延时长、结构复杂的特点,如何设计出高速、低功耗、结构简单的乘法单元是近些年来的一大难题。

本文比较各种乘法器设计的算法与结构,分析它们的面积、速度与功耗。

最终找出最优的设计方案,完成32位浮点乘法器的电路设计。

本文首先介绍IEEE-754浮点数标准和浮点操作,对IEEE-754浮点运算标准的浮点表示格式、精度、范围、规格化进行分析,并对决定乘法器性能的实现算法与实现结构进行深入研究。

其中实现浮点乘法的重点是实现整数的乘法。

其主要实现途径有移位相加结构和华莱士树型结构。

移位相加乘法结构简单,但是延时较长;华莱士树型乘法延时较短,但是结构比较复杂。

为了进一步提高运算速度,将乘法器改为流水线结构,达到时间上的并行。

最后应用低功耗设计方法对电路进行优化设计以降低系统功耗。

关键词:IEEE-754;乘法器;移位相加;华莱士树;流水线;低功耗ABSTRACTMultiplier is the key component of high performance digital signal processing chip, and also the core of real-time and high-speed digital signal processor. The multiplication unit has the characteristics of large area, long delay and complex structure. How to design a multiplication unit with high speed, low power consumption and simple structure is a difficult problem in recent years.In this paper, the algorithms and structures of various multipliers are compared, and their area, speed and power consumption are analyzed. Finally, the optimal design scheme is found, and the circuit design of 32 bit floating point multiplier is completed.This paper first introduces the IEEE-754 floating point standard and floating point operations on floating-point IEEE-754 floating-point standard expression analysis format, accuracy, scope, standard, and implementation of the decision performance of multiplier algorithm in-depth research and implementation of structure. Among them, the key point of floating point multiplication is to achieve the multiplication of integers. The main implementation methods include shift adding structure and Wallace tree structure. The shift addition and multiplication structure is simple, but the time delay is long; the Wallace tree type multiplication delay is shorter, but the structure is complex. In order to further improve the speed of operation, the multiplier is changed into pipelined structure to achieve parallel time. Finally, the low power design method is applied to optimize the circuit to reduce system power consumption.Key words: IEEE-754;Multiplier;Shift addition;Wallace tree;Assembly line;low power consumption目录第一章绪论 (1)1.1 研究意义 (1)1.2 研究的主要内容 (1)1.3 论文结构安排 (1)第二章设计原理概述 (3)2.1 浮点数格式 (3)2.2 IEEE-754浮点数标准 (3)2.3 浮点乘法运算原理 (5)第三章浮点乘法器电路设计 (7)3.1 无符号数一位乘法 (7)3.2 超前进位加法器设计 (8)3.3 移位相加乘法结构 (9)3.4 华莱士树结构 (10)3.5 尾数的舍入与规格化 (17)3.6 阶码的处理 (19)3.7 符号位处理 (20)3.8 浮点乘法器总体结构 (20)3.9 流水线结构 (21)3.9.1 流水线技术简介 (21)3.9.2 流水线浮点乘法器设计 (21)3.10 低功耗设计 (22)3.10.1 低功耗设计背景 (22)3.10.2 低功耗设计方法 (22)3.10.3 浮点乘法器的低功耗设计 (24)3.11 本章小结 (25)第四章仿真验证与逻辑综合 (26)4.1 功能仿真 (26)4.1.1 尾数运算功能仿真 (26)4.1.2 浮点乘法器功能仿真 (27)4.1.3 流水线结构浮点乘法器功能仿真 (28)4.2 浮点乘法器逻辑综合 (29)4.3 浮点乘法器时序仿真 (30)4.4 功耗分析 (30)结束语 (32)致谢 (33)参考文献 (34)附录 (35)第一章绪论1.1 研究意义进入21世纪以,来大数据、互联网+、人工智能等新兴技术正在逐步进入到我们的生活当中。

比较器小信号延迟小信号仿真结果如...

比较器小信号延迟小信号仿真结果如...

东南大学模拟实训MPW流片报告课题名称:预放大再生比较器设计姓名:学号:指导老师:摘要比较器是电子系统中应用较为广泛的电路之一。

比较器的设计以开环高增益放大器的设计为基础。

虽然和运算放大器相比,比较器的应用范围相对狭窄,但比较器仍在很多应用中不可或缺,尤其在模数转换器(Analog-to-digital converters,简称ADC)中。

比较器作为流水线型ADC的关键模块,其速度、功耗等性能对整个模数转换器的速度和功耗都有着至关重要的影响。

在各种比较器结构中,预放大再生比较器速度快、功耗低、失调电压小,被广泛应用于高速比较器。

本文基于预放大再生理论,采用TSMC 3.3V 0.35μm CMOS 工艺,设计一种适用于流水线型ADC 的高速低功耗比较器电路。

该比较器由前置放大器,比较器和SR锁存电路构成。

经过Cadence软件下的Virtuoso 平台对电路进行前仿真,比较器工作电压为3.3V,共模输入电压1.6V,在500MHZ 的时钟频率下,能够实现精度为30uV的比较,功耗为5.6mW,传输时延为4ns,翻转电压0.4mV。

关键词:比较器,预放大锁存,高速低功耗AbstractComparator is one of the most important units widely used in electronic systems. The design of a comparator is based on loop gain amplifier. Compared with amplifiers, comparators are not that widely used, but it is really necessary especially in Analog-to-digital converters (ADC). The comparator is a crucial part of ADC. Its speed and power have great impact on the characteristic of the whole ADC.Being one of various architectures, preamplifier-latch is widely used as high-speed comparator due to its high-speed, low-power and small offset voltage. Based on preamplifier-latch comparator, adopted TSMC 0.13μm CMOS process, a high-speed, low-power comparator applied for pipelined-ADC is proposed in this paper. This comparator consists of three blocks:pre-amplifier, comparator and SR latch. The pre-simulations use Virtuoso simulation of Cadence, the comparator’s work voltage is 1.8V, and common input voltage is 1.6V, the simulation results indicate that the resolution of the comparator is 30uV, transmission delay is less than 4ns and power dissipation is about 5.6mW under the 500MHZ clock.Key W ords: Comparator, Preamplifier-latch, High-speed low-power目录摘要 (I)Abstract (II)第一章绪论 (1)1.1 背景 (1)1.2 本文的研究内容和结构安排 (1)第二章比较器电路的基本模型 (2)2.1 比较器电路的系统参数分析 (2)2.1.1 主要性能参数 (3)2.1.2 比较器静态分析 (5)2.1.3 比较器动态特性 (6)2.2 比较器的电路结构与分析模型 (7)2.2.1 开环比较器 (8)2.2.2 离散时间比较器 (9)2.2.3 高速比较器 (13)2.3 几种常见的比较器结构 (15)2.3.1 电阻分配式比较器 (15)2.3.2 差分对比较器 (16)2.3.3电荷分配型比较器 (16)2.4 小结 (17)第三章高速低功耗比较器设计 (18)3.1 前置放大器设计 (18)3.1.1 二极管负载差分放大器 (18)3.1.2 差分放大器的级联 (22)3.2 锁存比较器的结构 (24)3.2.1 两种锁存比较器的结构对比 (24)3.2.2 锁存器优化 (26)3.3 输出缓冲级设计 (28)3.4 比较器整体结构和参数 (30)3.5 小结 (31)第四章比较器电路功能仿真 (32)4.1 比较器的逻辑仿真 (32)4.2 比较器的速度与精度 (33)4.3 比较器的传输延迟 (35)4.4 比较器的翻转电压 (37)4.5 比较器的功耗 (38)4.6 小结 (38)第五章比较器的版图设计和后仿 (40)5.1 比较器的版图设计 (40)5.2 比较器的版图验证 (44)5.3 比较器的后仿真 (45)5.4 小结 (47)第六章总结和心得 (48)致谢 (50)参考文献 (51)第一章绪论1.1 背景从国际和国内发展情况来看,比较器的研究趋势就是高速度、低功耗和高温度等。

一种新型栅压自举开关的设计

一种新型栅压自举开关的设计

一种新型栅压自举开关的设计卞腾飞;莫冰;高城;高磊;傅文渊【摘要】设计一种新型自举开关(Boost Bootstrap)电路结构,应用于SAR ADC的采样保持电路中,从而实现over-rail input range.此结构改进了之前同种电路输入电压不能高于2*VDD的不足.采用SMIC 55nm低压工艺,电源电压0.6V,在Cadence Spectre环境下进行电路仿真.结果表明:该电路在采样期间基本保持输出电压比输入信号大1.15V,满足SAR ADC中采样保持电路的应用需求.【期刊名称】《现代计算机(专业版)》【年(卷),期】2018(000)001【总页数】4页(P69-72)【关键词】栅压自举开关;Cadence Spectre;SARADC;采样保持;低压工艺【作者】卞腾飞;莫冰;高城;高磊;傅文渊【作者单位】华侨大学信息科学与工程学院,厦门 361021;华侨大学信息科学与工程学院,厦门 361021;华侨大学信息科学与工程学院,厦门 361021;华侨大学信息科学与工程学院,厦门 361021;华侨大学信息科学与工程学院,厦门 361021【正文语种】中文0 引言随着CMOS工艺的不断迅速发展,工艺尺寸也在不断地降低,电源电压也按一定比例降低,因此对模数转换器(ADC)要求也越来越苛刻。

由于在现有的ADC架构中逐次逼近模数转换器(SAR ADC)中等精度、低功耗等特点,适应于低压小尺寸CMOS工艺,广泛应用于传感器网络、微处理器中。

SAR ADC的主要结构包括:采样保持电路、比较器、DAC、逻辑控制模块等。

高性能采样保持电路是ADC重要组成部分,其动态性能直接影响SAR ADC的性能。

为了提高ADC的线性度。

在栅压自举开关工作过程中部分节点电压会高于供电电压,以达到一个合理的等效电阻。

本文设计了一种新型栅压自举开关电路,并实现over-rail输入。

1 采样保持电路[1-2]一个MOS管在大信号工作的情况下,利用其导通和截止特性可以简单的构成一个开关。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Low Power Design of Pipelined ADC for Power Line BasebandCommunicationAbstract:This paper presents a 10bit 5MS/s pipelined analog-to-digital converter (ADC)for single carrier power line communication transceiver.It’s a low-power method by using switched op amp technique,and proposes the switch capacitor(SC)bias circuitry to solve the startup issue of the current bias.Two common-mode feedback networks are employed to solve the problem of common-mode stability.Removes the sample and hold circuitry(SHA)to further reduce power consumption.Simulation result shows that the proposed ADC achieves 9.6 ENOB,75.8dB SFDR.The power consumption is 0.6 mA for 1.8V supply voltage.Index Terms:Pipelined ADC;switched op amp;switch capacitor bias;SHA-less1.IntroductionThe proposed pipelined ADC is used in single carrier power line communication system.The carrier frequency is 132 KHz and maximum sampling frequency should be supported to 5 MHz .Recently,low-power pipelined ADC design is mainly focused on the following aspects:sample and hold circuit removing technique[1],op amp sharing[2],digital background calibration[3].Sample and hold circuit removing configuration is suitable for low frequency application.Digital background calibration technique is useful for high-speed,high resolution and deep submicron process,such as 65 nm[3].For180nm process,as well as low-speed,medium-accuracy pipelined ADC,the power consumed by the digital calibration section is more than the power reduced by relaxing the requirements of analog parts.Op amplifier sharing technology can reduce power consumption and area,but the reduction is limited.Take 2.5bit pre stage for example,in order to achieve the best noise and the power consumption requirements,the sampling capacitance size of adjacent to op amp is reduced four times,so is the power consumption[4].On the other hand,the op amp should be designed in accordance with the requirements of the first stage.Reduced power consumption is?just 25% of the power consumed by the first stage.Single sub-stage achieving the greater the number of bits(resolution),the smaller power consumption can be reduced by operational amplifiers sharing technology.Switched op amp technique[5] can save more power about 50%,but it brings to two issues,fast start up and common mode stability.This paper adopts switched op amp ADC structure and proposes the SC bias circuit to solve the fast startup issue of the current bias.Two common-mode feedback networks are employed to solve the problem of common-mode stability,according to the characteristics of the low frequency input signal in the power line baseband applications,the sample and hold circuit is removed to further reduce power consumption.The ADC design is discussed in section 2,simulation results are shown in section 3,and conclusions are drawn in section 4.2.ADC Architecture and Implemen-tationThe overall architecture of the proposed ADC is shown in Fig.1.The core is composed of four 2.5-bitsub stages and a 2-bit flash ADC.SHA is removed.The absence of SHA would induce an offset error at the comparator input due to the aperture error.The issue is critical in high frequency input[6].For carrier frequency which is 132 KHz,SHA is not necessary.In addition,the sampling switch capacitor circuits are carefully designed to reduce the mismatch of the time constant between the signal paths in MDAC and comparators.The current bias circuit is included in each stage.DEC is the digital error correction module and ClkGen is the clock source of two non-overlapping complementary clocks for the core.2.1 Sub Stage ConfigurationTaken noise and power into account,the size of the sampling capacitance of adjacent to op amp is reduced four times[4],and power consumption is reduced four times too.The op amp of first stage is shown in Fig.2.Folded cascade and gain enhanced structure is used to meet the system requirements on the op amp DC gain.Switches S1,S2,S3,are controlled by clock PD,and S4,S5 are controlled by clock PD?_N,S6,S7 are complementary switches.When the op amp is in the sampling phase,PD is high,S1-S5 are off to disable any flow of current and S6-S7 are on to connected the ports VOP,VON to VCM.On the other phase,S1-S5 are on and S6-S7 are off to let the op amp amplifying.The difference between this configuration and normal one is that quiescent?current exists in normal configuration in sampling phase.The advantage of normal one is that it does no need to startup before the amplification,but it consumes a large amount of quiescent current.Quiescent?current is zero in the new configuration in sampling phase,but the new structure brings to two issues,fast start up and common mode stability.The switch-capacitor current bias and common mode feedback circuits are employed to solve the issues and they will be detailed in next section.2.2 Switch Capacitor Current BiasAs mentioned above,the operational amplifier should startup to establish the quiescent operating point.The process of establishment is the sooner the better,because the differential input signal should be settling at the same time.Startup time is heavily dependent on the biasing circuitry.In principle,the biasing circuit has a static function,but it also needs to startup in a short time to enable duty-cycling of this part of the design.Paper[6] gives a solution for fast startup.Circuitry is shown in Fig.3.There are two major advantages in SC current bias,first,Cf is charged when thesub stage is in the sampling phase.It has the half cycle to establish a stable state,and charge redistribution can complete immediately in the amplification phase.Second,this circuit does not require precise ratio between the proportion of Cf and Cg,with a charge redistribution process,Cf and Cg of any proportional relationship,can make the voltage Vx stable in VB.In fact,this circuit can be used not only in the ADC but also in any place with the clock.2.3 CMFBThe process of switch capacitor common-mode feedback has 2 steps,first sensing common-mode voltage at outputs of main op-amp,second comparing it with a reference voltage and returning the feedback signal to bias current source.The 2 steps can not be done with one CMFB network at the same time,but for common-mode stability feedback should be done in each amplification phase.So,two common-mode feedback networks are adopted.In the first cycle CMFB1 senses common-mode voltage,while CMFB2 compares it with a reference voltage and returns the feedback signal to bias current source.In the next cycle CMFB1 and CMFB2 swap their functions.CMFB networks are shown in Fig.6.CMFB1 is composed of C1-C4,and CMFB2 is composed of C3-C6.C3,C4 is shared.Similar to the SC current bias described above,the common-mode voltage is successive approximation VCM and eventually stabilized in VCM.3.Simulation ResultsThe proposed pipelined ADC is designed in standard 180nm CMOS process.The active area is 650 μm × 500 μm,which is shown in Figure 7.Figure 8 shows the spectrum of the output 10bit data with the 132K input signal,5M sampling rate.SNDR is 59.6dB SFDR is 75.8dB.4.SummaryThis paper presents 10bit 5MS/s pipelined ADC for single carrier power line communication.It’s a low-power method by using switched op amp technique to reduce the power consumption,and proposes the SC bias circuit to solve the startup issue of the current bias.Two common-mode feedback networks are employed to solve the problem of common-mode stability.The ADC occupies 650μm ×500 μm and consumes an average of 0.6 mA at 1.8V supply voltage.The ADC achieves the FoM 0.22 pJ/step in simulation.References[1]Mer L.Singer.A 55-mW 10-bit 40MSample/s Nyquist-rate CMOSADC[J].IEEE J.Solid-State Circuits,V ol.35, No.3,p.318~325.(2000).[2]Dong-Young Chang and Un-Ku Moon,“A 1.4V 10-bit 25-Ms/s pipelined ADC using op amp-reset switching technique”,IEEE J.Solid-State Circuits,vol.38,No.8, p.1401-1404.(2003).[3]Bei Peng.“A Virtual-ADC Digital Background Calibration Technique for Multistage A/D Conversion”,IEEE Trans.Circuit and System II,vol.57,No.11,p.853-857.(2010).[4]D.W.Cline,P.R.Gray.“A Power Optimized 13-b 5M Samples/s Pipelined Analog-to-Digital Converter in 1.2μm CMOS”,IEEE J.Solid-State Circuits.(1996).[5]J.Crols and M.Steyaert,“Switched op amp:An approach to realize full CMOS SC circuits at ver y low supply voltages,”IEEE J.Solid-State Circuits,vol.29,pp.936-942,Aug.(1994).[6]Pingli Huang.“SHA-Less Pipelined ADC with In situ Background Clock-Skew Calibration”,IEEE J.Solid-State Circuits,vol.46,No.8,p.1893-1903.(2011).[7]P.Harpe.“A 1.6mW 0.5GH z Open-Loop VGA with Fast Startup and Offset Calibration for UWB Radios”,IEEE ESSCIRC.p.103-106.(2011).。

相关文档
最新文档