2017届人教版高考精选预测(数学理)42

合集下载

2017年高考数学全国卷(理科新课标Ⅱ )(含答案解析)

2017年高考数学全国卷(理科新课标Ⅱ )(含答案解析)

2017年全国统一高考数学试卷(理科)(新课标Ⅱ)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)=()A.1+2i B.1﹣2i C.2+i D.2﹣i2.(5分)设集合A={1,2,4},B={x|x2﹣4x+m=0}.若A∩B={1},则B=()A.{1,﹣3}B.{1,0}C.{1,3}D.{1,5}3.(5分)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.1盏 B.3盏 C.5盏 D.9盏4.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()A.90πB.63πC.42πD.36π5.(5分)设x,y满足约束条件,则z=2x+y的最小值是()A.﹣15 B.﹣9 C.1 D.96.(5分)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()A.12种B.18种C.24种D.36种7.(5分)甲、乙、丙、丁四位同学一起去问老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则()A.乙可以知道四人的成绩B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩8.(5分)执行如图的程序框图,如果输入的a=﹣1,则输出的S=()A.2 B.3 C.4 D.59.(5分)若双曲线C:﹣=1(a>0,b>0)的一条渐近线被圆(x﹣2)2+y2=4所截得的弦长为2,则C的离心率为()A.2 B.C.D.10.(5分)已知直三棱柱ABC﹣A1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,则异面直线AB1与BC1所成角的余弦值为()A.B.C.D.11.(5分)若x=﹣2是函数f(x)=(x2+ax﹣1)e x﹣1的极值点,则f(x)的极小值为()A.﹣1 B.﹣2e﹣3C.5e﹣3 D.112.(5分)已知△ABC是边长为2的等边三角形,P为平面ABC内一点,则•(+)的最小值是()A.﹣2 B.﹣ C.﹣ D.﹣1三、填空题:本题共4小题,每小题5分,共20分.13.(5分)一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X表示抽到的二等品件数,则DX=.14.(5分)函数f(x)=sin2x+cosx﹣(x∈[0,])的最大值是.15.(5分)等差数列{a n}的前n项和为S n,a3=3,S4=10,则=.16.(5分)已知F是抛物线C:y2=8x的焦点,M是C上一点,FM的延长线交y 轴于点N.若M为FN的中点,则|FN|=.三、解答题:共70分.解答应写出文字说明、解答过程或演算步骤.第17~21题为必做题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2.(1)求cosB;(2)若a+c=6,△ABC面积为2,求b.18.(12分)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如图:(1)设两种养殖方法的箱产量相互独立,记A表示事件“旧养殖法的箱产量低于50kg,新养殖法的箱产量不低于50kg”,估计A的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:箱产量<50kg 箱产量≥50kg 旧养殖法新养殖法(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01).附:P(K2≥k)0.0500.010 0.001 K 3.841 6.635 10.828K2=.19.(12分)如图,四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°,E是PD的中点.(1)证明:直线CE∥平面PAB;(2)点M在棱PC 上,且直线BM与底面ABCD所成角为45°,求二面角M﹣AB﹣D的余弦值.20.(12分)设O为坐标原点,动点M在椭圆C:+y2=1上,过M做x轴的垂线,垂足为N,点P满足=.(1)求点P的轨迹方程;(2)设点Q在直线x=﹣3上,且•=1.证明:过点P且垂直于OQ的直线l 过C的左焦点F.21.(12分)已知函数f(x)=ax2﹣ax﹣xlnx,且f(x)≥0.(1)求a;(2)证明:f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,按所做的第一题计分.[选修4-4:坐标系与参数方程](22.(10分)在直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρcosθ=4.(1)M为曲线C1上的动点,点P在线段OM上,且满足|OM|•|OP|=16,求点P的轨迹C2的直角坐标方程;(2)设点A的极坐标为(2,),点B在曲线C2上,求△OAB面积的最大值.[选修4-5:不等式选讲]23.已知a>0,b>0,a3+b3=2,证明:(1)(a+b)(a5+b5)≥4;(2)a+b≤2.2017年全国统一高考数学试卷(理科)(新课标Ⅱ)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2017•新课标Ⅱ)=()A.1+2i B.1﹣2i C.2+i D.2﹣i【分析】分子和分母同时乘以分母的共轭复数,再利用虚数单位i的幂运算性质,求出结果.【解答】解:===2﹣i,故选D.【点评】本题考查两个复数代数形式的乘除法,虚数单位i的幂运算性质,两个复数相除,分子和分母同时乘以分母的共轭复数.2.(5分)(2017•新课标Ⅱ)设集合A={1,2,4},B={x|x2﹣4x+m=0}.若A∩B={1},则B=()A.{1,﹣3}B.{1,0}C.{1,3}D.{1,5}【分析】由交集的定义可得1∈A且1∈B,代入二次方程,求得m,再解二次方程可得集合B.【解答】解:集合A={1,2,4},B={x|x2﹣4x+m=0}.若A∩B={1},则1∈A且1∈B,可得1﹣4+m=0,解得m=3,即有B={x|x2﹣4x+3=0}={1,3}.故选:C.【点评】本题考查集合的运算,主要是交集的求法,同时考查二次方程的解法,运用定义法是解题的关键,属于基础题.3.(5分)(2017•新课标Ⅱ)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.1盏 B.3盏 C.5盏 D.9盏【分析】设这个塔顶层有a盏灯,由题意和等比数列的定义可得:从塔顶层依次向下每层灯数是等比数列,结合条件和等比数列的前n项公式列出方程,求出a 的值.【解答】解:设这个塔顶层有a盏灯,∵宝塔一共有七层,每层悬挂的红灯数是上一层的2倍,∴从塔顶层依次向下每层灯数是以2为公比、a为首项的等比数列,又总共有灯381盏,∴381==127a,解得a=3,则这个塔顶层有3盏灯,故选B.【点评】本题考查了等比数列的定义,以及等比数列的前n项和公式的实际应用,属于基础题.4.(5分)(2017•新课标Ⅱ)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()A.90πB.63πC.42πD.36π【分析】由三视图可得,直观图为一个完整的圆柱减去一个高为6的圆柱的一半,即可求出几何体的体积.【解答】解:由三视图可得,直观图为一个完整的圆柱减去一个高为6的圆柱的一半,V=π•32×10﹣•π•32×6=63π,故选:B.【点评】本题考查了体积计算公式,考查了推理能力与计算能力,属于中档题.5.(5分)(2017•新课标Ⅱ)设x,y满足约束条件,则z=2x+y的最小值是()A.﹣15 B.﹣9 C.1 D.9【分析】画出约束条件的可行域,利用目标函数的最优解求解目标函数的最小值即可.【解答】解:x、y满足约束条件的可行域如图:z=2x+y 经过可行域的A时,目标函数取得最小值,由解得A(﹣6,﹣3),则z=2x+y 的最小值是:﹣15.故选:A.【点评】本题考查线性规划的简单应用,考查数形结合以及计算能力.6.(5分)(2017•新课标Ⅱ)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()A.12种B.18种C.24种D.36种【分析】把工作分成3组,然后安排工作方式即可.【解答】解:4项工作分成3组,可得:=6,安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,可得:6×=36种.故选:D.【点评】本题考查排列组合的实际应用,注意分组方法以及排列方法的区别,考查计算能力.7.(5分)(2017•新课标Ⅱ)甲、乙、丙、丁四位同学一起去问老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则()A.乙可以知道四人的成绩B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩【分析】根据四人所知只有自己看到,老师所说及最后甲说话,继而可以推出正确答案【解答】解:四人所知只有自己看到,老师所说及最后甲说话,甲不知自己的成绩→乙丙必有一优一良,(若为两优,甲会知道自己的成绩;若是两良,甲也会知道自己的成绩)→乙看到了丙的成绩,知自己的成绩→丁看到甲、丁中也为一优一良,丁知自己的成绩,故选:D.【点评】本题考查了合情推理的问题,关键掌握四人所知只有自己看到,老师所说及最后甲说话,属于中档题.8.(5分)(2017•新课标Ⅱ)执行如图的程序框图,如果输入的a=﹣1,则输出的S=()A.2 B.3 C.4 D.5【分析】执行程序框图,依次写出每次循环得到的S,k值,当k=7时,程序终止即可得到结论.【解答】解:执行程序框图,有S=0,k=1,a=﹣1,代入循环,第一次满足循环,S=﹣1,a=1,k=2;满足条件,第二次满足循环,S=1,a=﹣1,k=3;满足条件,第三次满足循环,S=﹣2,a=1,k=4;满足条件,第四次满足循环,S=2,a=﹣1,k=5;满足条件,第五次满足循环,S=﹣3,a=1,k=6;满足条件,第六次满足循环,S=3,a=﹣1,k=7;7≤6不成立,退出循环输出,S=3;故选:B.【点评】本题主要考查了程序框图和算法,属于基本知识的考查,比较基础.9.(5分)(2017•新课标Ⅱ)若双曲线C:﹣=1(a>0,b>0)的一条渐近线被圆(x﹣2)2+y2=4所截得的弦长为2,则C的离心率为()A.2 B.C.D.【分析】通过圆的圆心与双曲线的渐近线的距离,列出关系式,然后求解双曲线的离心率即可.【解答】解:双曲线C:﹣=1(a>0,b>0)的一条渐近线不妨为:bx+ay=0,圆(x﹣2)2+y2=4的圆心(2,0),半径为:2,双曲线C:﹣=1(a>0,b>0)的一条渐近线被圆(x﹣2)2+y2=4所截得的弦长为2,可得圆心到直线的距离为:=,解得:,可得e2=4,即e=2.故选:A.【点评】本题考查双曲线的简单性质的应用,圆的方程的应用,考查计算能力.10.(5分)(2017•新课标Ⅱ)已知直三棱柱ABC﹣A1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,则异面直线AB1与BC1所成角的余弦值为()A.B.C.D.【分析】设M、N、P分别为AB,BB1和B1C1的中点,得出AB1、BC1夹角为MN 和NP夹角或其补角;根据中位线定理,结合余弦定理求出AC、MQ,MP和∠MNP的余弦值即可.【解答】解:如图所示,设M、N、P分别为AB,BB1和B1C1的中点,则AB1、BC1夹角为MN和NP夹角或其补角(因异面直线所成角为(0,]),可知MN=AB1=,NP=BC1=;作BC中点Q,则△PQM为直角三角形;∵PQ=1,MQ=AC,△ABC中,由余弦定理得AC2=AB2+BC2﹣2AB•BC•cos∠ABC=4+1﹣2×2×1×(﹣)=7,∴AC=,∴MQ=;在△MQP中,MP==;在△PMN中,由余弦定理得cos∠MNP===﹣;又异面直线所成角的范围是(0,],∴AB1与BC1所成角的余弦值为.【点评】本题考查了空间中的两条异面直线所成角的计算问题,也考查了空间中的平行关系应用问题,是中档题.11.(5分)(2017•新课标Ⅱ)若x=﹣2是函数f(x)=(x2+ax﹣1)e x﹣1的极值点,则f(x)的极小值为()A.﹣1 B.﹣2e﹣3C.5e﹣3 D.1【分析】求出函数的导数,利用极值点,求出a,然后判断函数的单调性,求解函数的极小值即可.【解答】解:函数f(x)=(x2+ax﹣1)e x﹣1,可得f′(x)=(2x+a)e x﹣1+(x2+ax﹣1)e x﹣1,x=﹣2是函数f(x)=(x2+ax﹣1)e x﹣1的极值点,可得:﹣4+a+(3﹣2a)=0.解得a=﹣1.可得f′(x)=(2x﹣1)e x﹣1+(x2﹣x﹣1)e x﹣1,=(x2+x﹣2)e x﹣1,函数的极值点为:x=﹣2,x=1,当x<﹣2或x>1时,f′(x)>0函数是增函数,x∈(﹣2,1)时,函数是减函数,x=1时,函数取得极小值:f(1)=(12﹣1﹣1)e1﹣1=﹣1.故选:A.【点评】本题考查函数的导数的应用,函数的单调性以及函数的极值的求法,考查计算能力.12.(5分)(2017•新课标Ⅱ)已知△ABC是边长为2的等边三角形,P为平面ABC内一点,则•(+)的最小值是()A.﹣2 B.﹣ C.﹣ D.﹣1【分析】根据条件建立坐标系,求出点的坐标,利用坐标法结合向量数量积的公式进行计算即可.【解答】解:建立如图所示的坐标系,以BC中点为坐标原点,则A(0,),B(﹣1,0),C(1,0),设P(x,y),则=(﹣x,﹣y),=(﹣1﹣x,﹣y),=(1﹣x,﹣y),则•(+)=2x2﹣2y+2y2=2[x2+(y﹣)2﹣]∴当x=0,y=时,取得最小值2×(﹣)=﹣,故选:B【点评】本题主要考查平面向量数量积的应用,根据条件建立坐标系,利用坐标法是解决本题的关键.三、填空题:本题共4小题,每小题5分,共20分.13.(5分)(2017•新课标Ⅱ)一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X表示抽到的二等品件数,则DX= 1.96.【分析】判断概率满足的类型,然后求解方差即可.【解答】解:由题意可知,该事件满足独立重复试验,是一个二项分布模型,其中,p=0.02,n=100,则DX=npq=np(1﹣p)=100×0.02×0.98=1.96.故答案为:1.96.【点评】本题考查离散性随机变量的期望与方差的求法,判断概率类型满足二项分布是解题的关键.14.(5分)(2017•新课标Ⅱ)函数f(x)=sin2x+cosx﹣(x∈[0,])的最大值是1.【分析】同角的三角函数的关系以及二次函数的性质即可求出.【解答】解:f(x)=sin2x+cosx﹣=1﹣cos2x+cosx﹣,令cosx=t且t∈[0,1],则f(t)=﹣t2+t+=﹣(t﹣)2+1,当t=时,f(t)max=1,即f(x)的最大值为1,故答案为:1【点评】本题考查了同角的三角函数的关系以及二次函数的性质,属于基础题15.(5分)(2017•新课标Ⅱ)等差数列{a n}的前n项和为S n,a3=3,S4=10,则=.【分析】利用已知条件求出等差数列的前n项和,然后化简所求的表达式,求解即可.【解答】解:等差数列{a n}的前n项和为S n,a3=3,S4=10,S4=2(a2+a3)=10,可得a2=2,数列的首项为1,公差为1,S n=,=,则=2[1﹣++…+]=2(1﹣)=.故答案为:.【点评】本题考查等差数列的求和,裂项消项法求和的应用,考查计算能力.16.(5分)(2017•新课标Ⅱ)已知F是抛物线C:y2=8x的焦点,M是C上一点,FM的延长线交y轴于点N.若M为FN的中点,则|FN|=6.【分析】求出抛物线的焦点坐标,推出M坐标,然后求解即可.【解答】解:抛物线C:y2=8x的焦点F(2,0),M是C上一点,FM的延长线交y轴于点N.若M为FN的中点,可知M的横坐标为:1,则M的纵坐标为:,|FN|=2|FM|=2=6.故答案为:6.【点评】本题考查抛物线的简单性质的应用,考查计算能力.三、解答题:共70分.解答应写出文字说明、解答过程或演算步骤.第17~21题为必做题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)(2017•新课标Ⅱ)△ABC的内角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2.(1)求cosB;(2)若a+c=6,△ABC面积为2,求b.【分析】(1)利用三角形的内角和定理可知A+C=π﹣B,再利用诱导公式化简sin (A+C),利用降幂公式化简8sin2,结合sin2B+cos2B=1,求出cosB,(2)由(1)可知sinB=,利用勾面积公式求出ac,再利用余弦定理即可求出b.【解答】解:(1)sin(A+C)=8sin2,∴sinB=4(1﹣cosB),∵sin2B+cos2B=1,∴16(1﹣cosB)2+cos2B=1,∴(17cosB﹣15)(cosB﹣1)=0,∴cosB=;(2)由(1)可知sinB=,=ac•sinB=2,∵S△ABC∴ac=,∴b2=a2+c2﹣2accosB=a2+c2﹣2××=a2+c2﹣15=(a+c)2﹣2ac﹣15=36﹣17﹣15=4,∴b=2.【点评】本题考查了三角形的内角和定理,三角形的面积公式,二倍角公式和同角的三角函数的关系,属于中档题18.(12分)(2017•新课标Ⅱ)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如图:(1)设两种养殖方法的箱产量相互独立,记A表示事件“旧养殖法的箱产量低于50kg,新养殖法的箱产量不低于50kg”,估计A的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:箱产量<50kg 箱产量≥50kg 旧养殖法新养殖法(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01).附:P(K2≥k)0.0500.010 0.001 K 3.841 6.635 10.828K2=.【分析】(1)由题意可知:P(A)=P(BC)=P(B)P(C),分布求得发生的频率,即可求得其概率;(2)完成2×2列联表:求得观测值,与参考值比较,即可求得有99%的把握认为箱产量与养殖方法有关:(3)根据频率分布直方图即可求得其平均数.【解答】解:(1)记B表示事件“旧养殖法的箱产量低于50kg”,C表示事件“新养殖法的箱产量不低于50kg”,由P(A)=P(BC)=P(B)P(C),则旧养殖法的箱产量低于50kg:(0.012+0.014+0.024+0.034+0.040)×5=0.62,故P(B)的估计值0.62,新养殖法的箱产量不低于50kg:(0.068+0.046+0.010+0.008)×5=0.66,故P(C)的估计值为,则事件A的概率估计值为P(A)=P(B)P(C)=0.62×0.66=0.4092;∴A发生的概率为0.4092;(2)2×2列联表:箱产量<50kg箱产量≥50kg 总计旧养殖法6238100新养殖法3466100总计96104200则K2=≈15.705,由15.705>6.635,∴有99%的把握认为箱产量与养殖方法有关;(3)由题意可知:方法一:=5×(37.5×0.004+42.5×0.020+47.5×0.044+52.5×0.068+57.5×0.046+62.5×0.010+67.5×0.008),=5×10.47,=52.35(kg).新养殖法箱产量的中位数的估计值52.35(kg)方法二:由新养殖法的箱产量频率分布直方图中,箱产量低于50kg的直方图的面积:(0.004+0.020+0.044)×5=0.034,箱产量低于55kg的直方图面积为:(0.004+0.020+0.044+0.068)×5=0.68>0.5,故新养殖法产量的中位数的估计值为:50+≈52.35(kg),新养殖法箱产量的中位数的估计值52.35(kg).【点评】本题考查频率分布直方图的应用,考查独立性检验,考查计算能力,属于中档题.19.(12分)(2017•新课标Ⅱ)如图,四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°,E是PD的中点.(1)证明:直线CE∥平面PAB;(2)点M在棱PC 上,且直线BM与底面ABCD所成角为45°,求二面角M﹣AB﹣D的余弦值.【分析】(1)取PA的中点F,连接EF,BF,通过证明CE∥BF,利用直线与平面平行的判定定理证明即可.(2)利用已知条件转化求解M到底面的距离,作出二面角的平面角,然后求解二面角M﹣AB﹣D的余弦值即可.【解答】(1)证明:取PA的中点F,连接EF,BF,因为E是PD的中点,所以EF AD,AB=BC=AD,∠BAD=∠ABC=90°,∴BC∥AD,∴BCEF是平行四边形,可得CE∥BF,BF⊂平面PAB,CF⊄平面PAB,∴直线CE∥平面PAB;(2)解:四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°,E是PD的中点.取AD的中点O,M在底面ABCD上的射影N在OC上,设AD=2,则AB=BC=1,OP=,∴∠PCO=60°,直线BM与底面ABCD所成角为45°,可得:BN=MN,CN=MN,BC=1,可得:1+BN2=BN2,BN=,MN=,作NQ⊥AB于Q,连接MQ,所以∠MQN就是二面角M﹣AB﹣D的平面角,MQ==,二面角M﹣AB﹣D的余弦值为:=.【点评】本题考查直线与平面平行的判定定理的应用,二面角的平面角的求法,考查空间想象能力以及计算能力.20.(12分)(2017•新课标Ⅱ)设O为坐标原点,动点M在椭圆C:+y2=1上,过M做x轴的垂线,垂足为N,点P满足=.(1)求点P的轨迹方程;(2)设点Q在直线x=﹣3上,且•=1.证明:过点P且垂直于OQ的直线l 过C的左焦点F.【分析】(1)设M(x0,y0),由题意可得N(x0,0),设P(x,y),运用向量的坐标运算,结合M满足椭圆方程,化简整理可得P的轨迹方程;(2)设Q(﹣3,m),P(cosα,sinα),(0≤α<2π),运用向量的数量积的坐标表示,可得m,即有Q的坐标,求得椭圆的左焦点坐标,求得OQ,PF 的斜率,由两直线垂直的条件:斜率之积为﹣1,即可得证.【解答】解:(1)设M(x0,y0),由题意可得N(x0,0),设P(x,y),由点P满足=.可得(x﹣x0,y)=(0,y0),可得x﹣x0=0,y=y0,即有x0=x,y0=,代入椭圆方程+y2=1,可得+=1,即有点P的轨迹方程为圆x2+y2=2;(2)证明:设Q(﹣3,m),P(cosα,sinα),(0≤α<2π),•=1,可得(cosα,sinα)•(﹣3﹣cosα,m﹣sinα)=1,即为﹣3cosα﹣2cos2α+msinα﹣2sin2α=1,解得m=,即有Q(﹣3,),椭圆+y2=1的左焦点F(﹣1,0),由k OQ=﹣,k PF=,由k OQ•k PF=﹣1,可得过点P且垂直于OQ的直线l过C的左焦点F.【点评】本题考查轨迹方程的求法,注意运用坐标转移法和向量的加减运算,考查圆的参数方程的运用和直线的斜率公式,以及向量的数量积的坐标表示和两直线垂直的条件:斜率之积为﹣1,考查化简整理的运算能力,属于中档题.21.(12分)(2017•新课标Ⅱ)已知函数f(x)=ax2﹣ax﹣xlnx,且f(x)≥0.(1)求a;(2)证明:f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2.【分析】(1)通过分析可知f(x)≥0等价于h(x)=ax﹣a﹣lnx≥0,进而利用h′(x)=a﹣可得h(x)min=h(),从而可得结论;(2)通过(1)可知f(x)=x2﹣x﹣xlnx,记t(x)=f′(x)=2x﹣2﹣lnx,解不等式可知t(x)min=t()=ln2﹣1<0,从而可知f′(x)=0存在两根x0,x2,利用f(x)必存在唯一极大值点x0及x0<可知f(x0)<,另一方面可知f(x0)>f()=.【解答】(1)解:因为f(x)=ax2﹣ax﹣xlnx=x(ax﹣a﹣lnx)(x>0),则f(x)≥0等价于h(x)=ax﹣a﹣lnx≥0,因为h′(x)=a﹣,且当0<x<时h′(x)<0、当x>时h′(x)>0,所以h(x)min=h(),又因为h(1)=a﹣a﹣ln1=0,所以=1,解得a=1;(2)证明:由(1)可知f(x)=x2﹣x﹣xlnx,f′(x)=2x﹣2﹣lnx,令f′(x)=0,可得2x﹣2﹣lnx=0,记t(x)=2x﹣2﹣lnx,则t′(x)=2﹣,令t′(x)=0,解得:x=,所以t(x)在区间(0,)上单调递减,在(,+∞)上单调递增,所以t(x)min=t()=ln2﹣1<0,从而t(x)=0有解,即f′(x)=0存在两根x0,x2,且不妨设f′(x)在(0,x0)上为正、在(x0,x2)上为负、在(x2,+∞)上为正,所以f(x)必存在唯一极大值点x0,且2x0﹣2﹣lnx0=0,所以f(x0)=﹣x0﹣x0lnx0=﹣x0+2x0﹣2=x0﹣,由x0<可知f(x0)<(x0﹣)max=﹣+=;由f′()<0可知x0<<,所以f(x)在(0,x0)上单调递增,在(x0,)上单调递减,所以f(x0)>f()=;综上所述,f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2.【点评】本题考查利用导数研究函数的极值,考查运算求解能力,考查转化思想,注意解题方法的积累,属于难题.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,按所做的第一题计分.[选修4-4:坐标系与参数方程](22.(10分)(2017•新课标Ⅱ)在直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρcosθ=4.(1)M为曲线C1上的动点,点P在线段OM上,且满足|OM|•|OP|=16,求点P的轨迹C2的直角坐标方程;(2)设点A的极坐标为(2,),点B在曲线C2上,求△OAB面积的最大值.【分析】(1)设P(x,y),利用相似得出M点坐标,根据|OM|•|OP|=16列方程化简即可;(2)求出曲线C2的圆心和半径,得出B到OA的最大距离,即可得出最大面积.【解答】解:(1)曲线C1的直角坐标方程为:x=4,设P(x,y),M(4,y0),则,∴y0=,∵|OM||OP|=16,∴=16,即(x2+y2)(1+)=16,∴x4+2x2y2+y4=16x2,即(x2+y2)2=16x2,两边开方得:x2+y2=4x,整理得:(x﹣2)2+y2=4(x≠0),∴点P的轨迹C2的直角坐标方程:(x﹣2)2+y2=4(x≠0).(2)点A的直角坐标为A(1,),显然点A在曲线C2上,|OA|=2,∴曲线C2的圆心(2,0)到弦OA的距离d==,∴△AOB的最大面积S=|OA|•(2+)=2+.【点评】本题考查了极坐标方程与直角坐标方程的转化,轨迹方程的求解,直线与圆的位置关系,属于中档题.[选修4-5:不等式选讲]23.(2017•新课标Ⅱ)已知a>0,b>0,a3+b3=2,证明:(1)(a+b)(a5+b5)≥4;(2)a+b≤2.【分析】(1)由柯西不等式即可证明,(2)由a3+b3=2转化为=ab,再由均值不等式可得:=ab≤()2,即可得到(a+b)3≤2,问题得以证明.【解答】证明:(1)由柯西不等式得:(a+b)(a5+b5)≥(+)2=(a3+b3)2≥4,当且仅当=,即a=b=1时取等号,(2)∵a3+b3=2,∴(a+b)(a2﹣ab+b2)=2,∴(a+b)[(a+b)2﹣3ab]=2,∴(a+b)3﹣3ab(a+b)=2,∴=ab,由均值不等式可得:=ab≤()2,∴(a+b)3﹣2≤,∴(a+b)3≤2,∴a+b≤2,当且仅当a=b=1时等号成立.【点评】本题考查了不等式的证明,掌握柯西不等式和均值不等式是关键,属于中档题。

2017年高考数学全国卷(理科新课标Ⅱ)(含答案解析)[1]

2017年高考数学全国卷(理科新课标Ⅱ)(含答案解析)[1]

2017年高考数学全国卷(理科新课标Ⅱ)(含答案解析)(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017年高考数学全国卷(理科新课标Ⅱ)(含答案解析)(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017年高考数学全国卷(理科新课标Ⅱ)(含答案解析)(word版可编辑修改)的全部内容。

2017年全国统一高考数学试卷(理科)(新课标Ⅱ)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)=()A.1+2i B.1﹣2i C.2+i D.2﹣i2.(5分)设集合A={1,2,4},B={x|x2﹣4x+m=0}.若A∩B={1},则B=() A.{1,﹣3}B.{1,0} C.{1,3} D.{1,5}3.(5分)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.1盏B.3盏C.5盏D.9盏4.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()A.90πB.63πC.42πD.36π5.(5分)设x,y满足约束条件,则z=2x+y的最小值是()A.﹣15 B.﹣9 C.1 D.96.(5分)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()A.12种B.18种C.24种D.36种7.(5分)甲、乙、丙、丁四位同学一起去问老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则( ) A.乙可以知道四人的成绩 B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩8.(5分)执行如图的程序框图,如果输入的a=﹣1,则输出的S=( )A.2 B.3 C.4 D.59.(5分)若双曲线C:﹣=1(a>0,b>0)的一条渐近线被圆(x﹣2)2+y2=4所截得的弦长为2,则C的离心率为()A.2 B. C. D.10.(5分)已知直三棱柱ABC﹣A1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,则异面直线AB1与BC1所成角的余弦值为()A.B.C.D.11.(5分)若x=﹣2是函数f(x)=(x2+ax﹣1)e x﹣1的极值点,则f(x)的极小值为()A.﹣1 B.﹣2e﹣3C.5e﹣3D.112.(5分)已知△ABC是边长为2的等边三角形,P为平面ABC内一点,则•(+)的最小值是()A.﹣2 B.﹣C.﹣D.﹣1三、填空题:本题共4小题,每小题5分,共20分。

2017年全国高考理科数学(全国一卷)试题及答案

2017年全国高考理科数学(全国一卷)试题及答案

2017年普通高等学校招生全国统一考试理科数学满分150分。

考试用时120分钟。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{}|1{|31}xA x xB x =<=<,,则 A . B .C .D .2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是 A .14B .8πC .12D .4π3.设有下面四个命题:若复数满足,则; :若复数满足,则;:若复数满足,则;:若复数,则.其中的真命题为 A .B .C .D .4.记为等差数列的前项和.若,,则的公差为A .1B .2C .4D .85.函数在单调递减,且为奇函数.若,则满足的的取值范围是 A .B .C .D .6.展开式中的系数为 A .15B .20C .30D .357.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A .10B .12C .14D .16{|0}AB x x =<A B =R {|1}A B x x =>A B =∅1p z 1z ∈R z ∈R 2p z 2z ∈R z ∈R 3p 12,z z 12z z ∈R 12z z =4p z ∈R z ∈R 13,p p 14,p p 23,p p 24,p p n S {}n a n 4524a a +=648S ={}n a ()f x (,)-∞+∞(11)f =-21()1x f --≤≤x [2,2]-[1,1]-[0,4][1,3]621(1)(1)x x++2x8.右面程序框图是为了求出满足321000n n->的最小偶数n ,那么在和两个空白框中,可以分别填入A .1000A >和1n n =+B .1000A >和2n n =+C .1000A ≤和1n n =+D .1000A ≤和2n n =+9.已知曲线122:cos ,:sin(2)3C y x C y x π==+,则下面结论正确的是 A .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线2C B .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线2CC .把1C 上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线2C D .把1C 上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线2C10.已知F 为抛物线2:4C y x =的焦点,过F 作两条互相垂直的直线12,l l ,直线1l 与C 交于A 、B 两点,直线2l 与C 交于D 、E 两点,则|AB |+|DE |的最小值为 A .16B .14C .12D .1011.设xyz 为正数,且235x y z==,则A .235x y z <<B .523z x y <<C .352y z x <<D .325y x z<<π6π1212π612π1212.几位大学生响应国家的创业号召,开发了一款应用软件。

《新步步高》2017版高考数学(理)人教A版(全国)一轮复习第4章三角函数、解三角形4.2文档

《新步步高》2017版高考数学(理)人教A版(全国)一轮复习第4章三角函数、解三角形4.2文档

1.同角三角函数的基本关系(1)平方关系:sin2α+cos2α=1.(2)商数关系:sinαcosα=tanα.2.下列各角的终边与角α的终边的关系【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)若α,β为锐角,则sin2α+cos2β=1.(×)(2)若α∈R,则tanα=sinαcosα恒成立.(×)(3)sin(π+α)=-sinα成立的条件是α为锐角.(×)(4)诱导公式的记忆口诀中“奇变偶不变,符号看象限”,其中的奇、偶是指π2的奇数倍和偶数倍,变与不变指函数名称的变化.(√)1.(教材改编)已知α是第二象限角,sin α=513,则cos α等于( )A .-513B .-1213C.513D.1213答案 B解析 ∵sin α=513,α是第二象限角,∴cos α=-1-sin 2α=-1213.2.已知1+sin x cos x =-12,那么cos xsin x -1的值是( )A.12 B .-12C .2D .-2 答案 A解析 由于1+sin x cos x ·sin x -1cos x =sin 2x -1cos 2x =-1,故cos x sin x -1=12.3.已知sin(π-α)=log 814,且α∈(-π2,0),则tan(2π-α)的值为( )A .-255B.255 C .±255D.52答案 B解析 sin(π-α)=sin α=log 814=-23,又α∈(-π2,0),得cos α=1-sin 2α=53,tan(2π-α)=tan(-α)=-tan α=-sin αcos α=255.4.已知cos ⎝⎛⎭⎫π6-α=23,则sin ⎝⎛⎭⎫α-2π3=________. 答案 -23解析 ∵⎝⎛⎭⎫π6-α+⎝⎛⎭⎫α-2π3=-π2,∴α-2π3=-π2-⎝⎛⎭⎫π6-α, ∴sin ⎝⎛⎭⎫α-2π3=sin ⎣⎡⎦⎤-π2-⎝⎛⎭⎫π6-α =-sin ⎣⎡⎦⎤π2+⎝⎛⎭⎫π6-α=-cos ⎝⎛⎭⎫π6-α=-23. 5.已知函数f (x )=⎩⎪⎨⎪⎧2cos π3x ,x ≤2000,x -16,x >2000,则f [f (2 016)]=________.答案 -1解析 ∵f [f (2 016)]=f (2016-16)=f (2000), ∴f (2000)=2cos 2000π3=2cos 23π=-1.题型一 同角三角函数关系式的应用例1 (1)已知tan θ=2,则sin 2θ+sin θcos θ-2cos 2θ等于( ) A .-43B.54 C .-34D.45(2)已知sin αcos α=18,且5π4<α<3π2,则cos α-sin α的值为( )A .-32B.32C .-34D.34答案 (1)D (2)B解析 (1)由于tan θ=2,则sin 2θ+sin θcos θ-2cos 2θ =sin 2θ+sin θcos θ-2cos 2θsin 2θ+cos 2θ=sin 2θcos 2θ+sin θcos θcos 2θ-2sin 2θcos 2θ+1=tan 2θ+tan θ-2tan 2θ+1=22+2-222+1=45.(2)∵5π4<α<3π2,∴cos α<0,sin α<0且cos α>sin α, ∴cos α-sin α>0.又(cos α-sin α)2=1-2sin αcos α=1-2×18=34,∴cos α-sin α=32. 思维升华 (1)利用sin 2α+cos 2α=1可以实现角α的正弦、余弦的互化,利用sin αcos α=tan α可以实现角α的弦切互化.(2)应用公式时注意方程思想的应用:对于sin α+cos α,sin αcos α,sin α-cos α这三个式子,利用(sin α±cos α)2=1±2sin αcos α,可以知一求二.(3)注意公式逆用及变形应用:1=sin 2α+cos 2α,sin 2α=1-cos 2α,cos 2α=1-sin 2α. 已知sin α-cos α=2,α∈(0,π),则tan α等于( ) A .-1 B .-22C.22D .1答案 A解析 由⎩⎨⎧sin α-cos α=2,sin 2α+cos 2α=1,消去sin α得:2cos 2α+22cos α+1=0, 即(2cos α+1)2=0, ∴cos α=-22. 又α∈(0,π), ∴α=3π4,∴tan α=tan 3π4=-1.题型二 诱导公式的应用例2 (1)已知sin ⎝⎛⎭⎫α+π12=13,则cos ⎝⎛⎭⎫α+7π12的值为________. (2)已知A =sin (k π+α)sin α+cos (k π+α)cos α(k ∈Z ),则A 的值构成的集合是( )A .{1,-1,2,-2}B .{-1,1}C .{2,-2}D .{1,-1,0,2,-2}答案 (1)-13(2)C解析 (1)cos ⎝⎛⎭⎫α+7π12=cos ⎣⎡⎦⎤⎝⎛⎭⎫α+π12+π2 =-sin ⎝⎛⎭⎫α+π12=-13. (2)当k 为偶数时,A =sin αsin α+cos αcos α=2;k 为奇数时,A =-sin αsin α-cos αcos α=-2.∴A 的值构成的集合是{2,-2}. 思维升华 (1)诱导公式用法的一般思路 ①化大角为小角.②角中含有加减π2的整数倍时,用公式去掉π2的整数倍.(2)常见的互余和互补的角①常见的互余的角:π3-α与π6+α;π3+α与π6-α;π4+α与π4-α等.②常见的互补的角:π3+θ与2π3-θ;π4+θ与3π4-θ等.(1)已知sin ⎝⎛⎭⎫π3-α=12, 则cos ⎝⎛⎭⎫π6+α=________.(2)sin(-1200°)cos1290°+cos(-1020°)sin(-1050°)=________. 答案 (1)12(2)1解析 (1)∵⎝⎛⎭⎫π3-α+⎝⎛⎭⎫π6+α=π2, ∴cos ⎝⎛⎭⎫π6+α=cos ⎣⎡⎦⎤π2-⎝⎛⎭⎫π3-α =sin ⎝⎛⎭⎫π3-α=12.(2)原式=-sin1200°cos1290°-cos1020°sin1050°=-sin(3×360°+120°)cos(3×360°+210°)-cos(2×360°+300°)sin(2×360°+330°) =-sin120°cos210°-cos300°sin330°=-sin(180°-60°)cos(180°+30°)-cos(360°-60°)·sin(360°-30°) =sin60°cos30°+cos60°sin30° =32×32+12×12=1. 题型三 同角三角函数关系式、诱导公式的综合应用例3 (1)已知α为锐角,且有2tan(π-α)-3cos(π2+β)+5=0,tan(π+α)+6sin(π+β)-1=0,则sin α的值是( ) A.355B.377C.31010D.13(2)已知sin α是方程5x 2-7x -6=0的根,α是第三象限角,则sin (-α-32π)cos (32π-α)cos (π2-α)sin (π2+α)·tan 2(π-α)=________________________________________________________________________. 答案 (1)C (2)-916解析 (1)2tan(π-α)-3cos(π2+β)+5=0化简为-2tan α+3sin β+5=0,①tan(π+α)+6sin(π+β)-1=0化简为 tan α-6sin β-1=0.②由①②消去sin β,解得tan α=3. 又α为锐角,根据sin 2α+cos 2α=1, 解得sin α=31010.(2)∵方程5x 2-7x -6=0的根为-35或2,又α是第三象限角,∴sin α=-35,∴cos α=-1-sin 2α=-45,∴tan α=sin αcos α=-35-45=34,∴原式=cos α(-sin α)sin α·cos α·tan 2α=-tan 2α=-916.思维升华 利用同角三角函数基本关系式和诱导公式化简三角函数的基本思路和化简要求:(1)基本思路:①分析结构特点,选择恰当公式;②利用公式化成单角三角函数;③整理得最简形式.(2)化简要求:①化简过程是恒等变形;②结果要求项数尽可能少,次数尽可能低,结构尽可能简单,能求值的要求出值.(1)已知sin ⎝⎛⎭⎫π2+α=35,α∈⎝⎛⎭⎫0,π2,则sin(π+α)等于( )A.35 B .-35C.45D .-45(2)已知sin(π-α)-cos(π+a )=23⎝⎛⎭⎫π2<α<π,则sin α-cos α等于( )A .0 B.12 C.32D.43答案 (1)D (2)D解析 (1)由已知sin ⎝⎛⎭⎫π2+α=35, 得cos α=35,∵α∈⎝⎛⎭⎫0,π2, ∴sin α=45,∴sin(π+α)=-sin α=-45.(2)由sin(π-α)-cos(π+α)=23, 得sin α+cos α=23①, 将①两边平方得1+2sin αcos α=29,故2sin αcos α=-79,所以(sin α-cos α)2=1-2sin αcos α=1-⎝⎛⎭⎫-79=169. 又π2<α<π, 所以sin α>0,cos α<0,sin α-cos α>0, 则sin α-cos α=43.7.分类讨论思想在三角函数中的应用典例 (1)已知sin α=255,则tan(α+π)+sin ⎝⎛⎭⎫5π2+αcos ⎝⎛⎭⎫5π2-α=________.(2)在△ABC 中,若sin(2π-A )=-2sin(π-B ),3cos A =-2cos(π-B ),则C =________. 思维点拨 利用同角三角函数基本关系式中的平方关系时,要根据角的范围对开方结果进行讨论.解析 (1)∵sin α=255>0,∴α为第一或第二象限角. tan(α+π)+sin ⎝⎛⎭⎫5π2+αcos ⎝⎛⎭⎫5π2-α=tan α+cos αsin α=sin αcos α+cos αsin α=1sin αcos α. ①当α是第一象限角时,cos α=1-sin 2α=55, 原式=1sin αcos α=52.②当α是第二象限角时,cos α=-1-sin 2α=-55, 原式=1sin αcos α=-52.综上①②,原式=52或-52.(2)由已知得⎩⎨⎧sin A =2sin B , ①3cos A =2cos B ,②①2+②2得2cos 2A =1,即cos A =±22,当cos A =22时,cos B =32, 又A 、B 是三角形的内角,∴A =π4,B =π6,∴C =π-(A +B )=712π.当cos A =-22时,cos B =-32. 又A 、B 是三角形的内角, ∴A =34π,B =56π,不合题意.综上,C =712π.答案 (1)52或-52 (2)712π温馨提醒 (1)本题在三角函数的求值化简过程中,体现了分类讨论思想,即使讨论的某种情况不合题意,也不能省略讨论的步骤;(2)三角形中的三角函数问题,要注意隐含条件的挖掘及三角形内角和定理的应用.[方法与技巧]同角三角函数基本关系是三角恒等变形的基础,主要是变名、变式.1.同角关系及诱导公式要注意象限角对三角函数符号的影响,尤其是利用平方关系在求三角函数值时,进行开方时要根据角的象限或范围,判断符号后,正确取舍.2.三角函数求值、化简是三角函数的基础,在求值与化简时,常用方法有:(1)弦切互化法:主要利用公式tan x =sin xcos x 化成正弦、余弦函数;(2)和积转换法:如利用(sin θ±cos θ)2=1±2sin θcos θ的关系进行变形、转化;(3)巧用“1”的变换:1=sin 2θ+cos 2θ=cos 2θ(1+tan 2θ)=sin 2θ⎝⎛⎭⎫1+1tan 2θ=tan π4=…;(4)运用相关角的互补、互余等特殊关系可简化解题步骤.[失误与防范]1.利用诱导公式进行化简求值时,先利用公式化任意角的三角函数为锐角三角函数,其步骤:去负—脱周—化锐.特别注意函数名称和符号的确定.2.在利用同角三角函数的平方关系时,若开方,要特别注意判断符号.A 组 专项基础训练 (时间:30分钟)1.若cos α=13,α∈⎝⎛⎭⎫-π2,0,则tan α等于( ) A .-24B.24C .-2 2D .2 2答案 C解析 ∵α∈⎝⎛⎭⎫-π2,0 ∴sin α=-1-cos 2α=-1-(13)2=-232,∴tan α=sin αcos α=-2 2.2.已知sin(π-α)=-2sin(π2+α),则sin α·cos α等于( )A.25 B .-25C.25或-25 D .-15答案 B解析 由sin(π-α)=-2sin(π2+α)得sin α=-2cos α,∴tan α=-2, ∴sin α·cos α=sin α·cos αsin 2α+cos 2α=tan α1+tan 2α=-25,故选B. 3.若角α的终边落在第三象限,则cos α1-sin 2α+2sin α1-cos 2α的值为( ) A .3 B .-3 C .1 D .-1答案 B解析 由角α的终边落在第三象限得sin α<0,cos α<0, 故原式=cos α|cos α|+2sin α|sin α|=cos α-cos α+2sin α-sin α=-1-2=-3.4.已知2tan α·sin α=3,-π2<α<0,则sin α等于( )A.32B .-32C.12 D .-12答案 B解析 由2tan α·sin α=3得,2sin 2αcos α=3,即2cos 2α+3cos α-2=0, 又-π2<α<0,解得cos α=12(cos α=-2舍去),故sin α=-32.5.已知函数f (x )=a sin(πx +α)+b cos(πx +β),且f (4)=3,则f (2017)的值为( ) A .-1 B .1 C .3D .-3答案 D解析 ∵f (4)=a sin(4π+α)+b cos(4π+β)=a sin α+b cos β=3,∴f (2017)=a sin(2017π+α)+b cos(2017π+β)=a sin(π+α)+b cos(π+β)=-a sin α-b cos β=-3.6.已知α为钝角,sin(π4+α)=34,则sin(π4-α)=_________________________________________. 答案 -74解析 因为α为钝角,所以cos(π4+α)=-74, 所以sin(π4-α)=cos[π2-(π4-α)]=cos(π4+α)=-74. 7.化简:sin 2(α+π)·cos (π+α)·cos (-α-2π)tan (π+α)·sin 3(π2+α)·sin (-α-2π)=_________________________________________.答案 1解析 原式=sin 2α·(-cos α)·cos αtan α·cos 3α·(-sin α)=sin 2αcos 2αsin 2αcos 2α=1. 8.已知cos ⎝⎛⎭⎫π6-θ=a ,则cos ⎝⎛⎭⎫5π6+θ+sin ⎝⎛⎭⎫2π3-θ的值是________. 答案 0解析 ∵cos ⎝⎛⎭⎫5π6+θ=cos ⎣⎡⎦⎤π-⎝⎛⎭⎫π6-θ =-cos ⎝⎛⎭⎫π6-θ=-a .sin ⎝⎛⎭⎫2π3-θ=sin ⎣⎡⎦⎤π2+⎝⎛⎭⎫π6-θ=cos ⎝⎛⎭⎫π6-θ=a , ∴cos ⎝⎛⎭⎫5π6+θ+sin ⎝⎛⎭⎫2π3-θ=0. 9.已知α为第二象限角,则cos α1+tan 2α+sin α·1+1tan 2α=________. 答案 0解析 原式=cos α1+sin 2αcos 2α+sin α1+cos 2αsin 2α=cos α1cos 2α+sin α1sin 2α=cos α1-cos α+sin α1sin α=0.10.已知sin(3π+α)=2sin ⎝⎛⎭⎫3π2+α,求下列各式的值:(1)sin α-4cos α5sin α+2cos α;(2)sin 2α+sin2α.解 由已知得sin α=2cos α.(1)原式=2cos α-4cos α5×2cos α+2cos α=-16.(2)原式=sin 2α+2sin αcos αsin 2α+cos 2α=sin 2α+sin 2αsin 2α+14sin 2α=85.B 组 专项能力提升(时间:15分钟)11.已知sin(π+θ)=-3cos(2π-θ),|θ|<π2,则θ等于( )A .-π6B .-π3C.π6D.π3答案 D解析 ∵sin(π+θ)=-3cos(2π-θ),∴-sin θ=-3cos θ,∴tan θ= 3.∵|θ|<π2,∴θ=π3.12.若A ,B 是锐角△ABC 的两个内角,则点P (cos B -sin A ,sin B -cos A )在() A .第一象限 B .第二象限C .第三象限D .第四象限答案 B解析 ∵△ABC 是锐角三角形,则A +B >π2,∴A >π2-B >0,B >π2-A >0,∴sin A >sin ⎝⎛⎭⎫π2-B =cos B , sin B >sin ⎝⎛⎭⎫π2-A =cos A , ∴cos B -sin A <0,sin B -cos A >0,∴点P 在第二象限,选B.13.设函数f (x )(x ∈R )满足f (x +π)=f (x )+sin x .当0≤x <π时,f (x )=0,则f ⎝⎛⎭⎫23π6等于( ) A.12B.32 C .0D .-12答案 A解析 由已知,得f ⎝⎛⎭⎫23π6=f ⎝⎛⎭⎫176π+sin 176π =f ⎝⎛⎭⎫116π+sin 116π+sin 176π =f ⎝⎛⎭⎫56π+sin 56π+sin 116π+sin 176π =0+12+⎝⎛⎭⎫-12+12=12. 14.已知角θ的顶点在坐标原点,始边与x 轴正半轴重合,终边在直线2x -y =0上,则sin (3π2+θ)+cos (π-θ)sin (π2-θ)-sin (π-θ)=________. 答案 2解析 由题意可得tan θ=2,原式=-cos θ-cos θcos θ-sin θ=-21-tan θ=2. 15.若tan α=1m,α∈(π,2π),则cos α=________. 答案 -m 1+m 21+m 2解析 由tan α=sin αcos α=1m和sin 2α+cos 2α=1, 得cos 2α=m 21+m 2, 当m >0时,α为第三象限角,cos α<0, 所以cos α=-m 21+m 2=-m 1+m 21+m 2;当m <0时,α为第四象限角,cos α>0, 所以cos α=m 21+m 2=-m 1+m 21+m 2. 故cos α=-m 1+m 21+m 2.。

2017年高考理科数学全国II卷(含详解)

2017年高考理科数学全国II卷(含详解)

2017年全国统一高考数学试卷(理科)(新课标Ⅱ)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2017•新课标Ⅱ)=()A.1+2i B.1﹣2i C.2+i D.2﹣i【解答】解:===2﹣i,故选D.2.(5分)(2017•新课标Ⅱ)设集合A={1,2,4},B={x|x2﹣4x+m=0}.若A∩B={1},则B=()A.{1,﹣3}B.{1,0}C.{1,3}D.{1,5}【解答】解:集合A={1,2,4},B={x|x2﹣4x+m=0}.若A∩B={1},则1∈A且1∈B,可得1﹣4+m=0,解得m=3,即有B={x|x2﹣4x+3=0}={1,3}.故选:C.3.(5分)(2017•新课标Ⅱ)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.1盏 B.3盏 C.5盏 D.9盏【解答】解:设这个塔顶层有a盏灯,∵宝塔一共有七层,每层悬挂的红灯数是上一层的2倍,∴从塔顶层依次向下每层灯数是以2为公比、a为首项的等比数列,又总共有灯381盏,∴381==127a,解得a=3,则这个塔顶层有3盏灯,故选B.4.(5分)(2017•新课标Ⅱ)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()A.90πB.63πC.42πD.36π【解答】解:由三视图可得,直观图为一个完整的圆柱减去一个高为6的圆柱的一半,V=π•32×10﹣•π•32×6=63π,故选:B.5.(5分)(2017•新课标Ⅱ)设x,y满足约束条件,则z=2x+y的最小值是()A.﹣15 B.﹣9 C.1 D.9【解答】解:x、y满足约束条件的可行域如图:z=2x+y 经过可行域的A时,目标函数取得最小值,由解得A(﹣6,﹣3),则z=2x+y 的最小值是:﹣15.故选:A.6.(5分)(2017•新课标Ⅱ)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()A.12种B.18种C.24种D.36种【解答】解:4项工作分成3组,可得:=6,安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,可得:6×=36种.故选:D.7.(5分)(2017•新课标Ⅱ)甲、乙、丙、丁四位同学一起去问老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则()A.乙可以知道四人的成绩B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩【解答】解:四人所知只有自己看到,老师所说及最后甲说话,甲不知自己的成绩→乙丙必有一优一良,(若为两优,甲会知道自己的成绩;若是两良,甲也会知道自己的成绩)→乙看到了丙的成绩,知自己的成绩→丁看到甲、丁中也为一优一良,丁知自己的成绩,故选:D.8.(5分)(2017•新课标Ⅱ)执行如图的程序框图,如果输入的a=﹣1,则输出的S=()A.2 B.3 C.4 D.5【解答】解:执行程序框图,有S=0,k=1,a=﹣1,代入循环,第一次满足循环,S=﹣1,a=1,k=2;满足条件,第二次满足循环,S=1,a=﹣1,k=3;满足条件,第三次满足循环,S=﹣2,a=1,k=4;满足条件,第四次满足循环,S=2,a=﹣1,k=5;满足条件,第五次满足循环,S=﹣3,a=1,k=6;满足条件,第六次满足循环,S=3,a=﹣1,k=7;7≤6不成立,退出循环输出,S=3;故选:B.9.(5分)(2017•新课标Ⅱ)若双曲线C:﹣=1(a>0,b>0)的一条渐近线被圆(x﹣2)2+y2=4所截得的弦长为2,则C的离心率为()A.2 B.C.D.【解答】解:双曲线C:﹣=1(a>0,b>0)的一条渐近线不妨为:bx+ay=0,圆(x﹣2)2+y2=4的圆心(2,0),半径为:2,双曲线C:﹣=1(a>0,b>0)的一条渐近线被圆(x﹣2)2+y2=4所截得的弦长为2,可得圆心到直线的距离为:=,解得:,可得e2=4,即e=2.故选:A.10.(5分)(2017•新课标Ⅱ)已知直三棱柱ABC﹣A1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,则异面直线AB1与BC1所成角的余弦值为()A.B.C.D.【解答】解:如图所示,设M、N、P分别为AB,BB1和B1C1的中点,则AB1、BC1夹角为MN和NP夹角或其补角(因异面直线所成角为(0,]),可知MN=AB1=,NP=BC1=;作BC中点Q,则△PQM为直角三角形;∵PQ=1,MQ=AC,△ABC中,由余弦定理得AC2=AB2+BC2﹣2AB•BC•cos∠ABC=4+1﹣2×2×1×(﹣)=7,∴AC=,∴MQ=;在△MQP中,MP==;在△PMN中,由余弦定理得cos∠MNP===﹣;又异面直线所成角的范围是(0,],∴AB1与BC1所成角的余弦值为.11.(5分)(2017•新课标Ⅱ)若x=﹣2是函数f(x)=(x2+ax﹣1)e x﹣1的极值点,则f(x)的极小值为()A.﹣1 B.﹣2e﹣3C.5e﹣3 D.1【解答】解:函数f(x)=(x2+ax﹣1)e x﹣1,可得f′(x)=(2x+a)e x﹣1+(x2+ax﹣1)e x﹣1,x=﹣2是函数f(x)=(x2+ax﹣1)e x﹣1的极值点,可得:﹣4+a+(3﹣2a)=0.解得a=﹣1.可得f′(x)=(2x﹣1)e x﹣1+(x2﹣x﹣1)e x﹣1,=(x2+x﹣2)e x﹣1,函数的极值点为:x=﹣2,x=1,当x<﹣2或x>1时,f′(x)>0函数是增函数,x∈(﹣2,1)时,函数是减函数,x=1时,函数取得极小值:f(1)=(12﹣1﹣1)e1﹣1=﹣1.故选:A.12.(5分)(2017•新课标Ⅱ)已知△ABC是边长为2的等边三角形,P为平面ABC内一点,则•(+)的最小值是()A.﹣2 B.﹣ C.﹣ D.﹣1【解答】解:建立如图所示的坐标系,以BC中点为坐标原点,则A(0,),B(﹣1,0),C(1,0),设P(x,y),则=(﹣x,﹣y),=(﹣1﹣x,﹣y),=(1﹣x,﹣y),则•(+)=2x2﹣2y+2y2=2[x2+(y﹣)2﹣]∴当x=0,y=时,取得最小值2×(﹣)=﹣,故选:B三、填空题:本题共4小题,每小题5分,共20分.13.(5分)(2017•新课标Ⅱ)一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X表示抽到的二等品件数,则DX= 1.96.【解答】解:由题意可知,该事件满足独立重复试验,是一个二项分布模型,其中,p=0.02,n=100,则DX=npq=np(1﹣p)=100×0.02×0.98=1.96.故答案为:1.96.14.(5分)(2017•新课标Ⅱ)函数f(x)=sin2x+cosx﹣(x∈[0,])的最大值是1.【解答】解:f(x)=sin2x+cosx﹣=1﹣cos2x+cosx﹣,令cosx=t且t∈[0,1],则f(t)=﹣t2+t+=﹣(t﹣)2+1,当t=时,f(t)max=1,即f(x)的最大值为1,故答案为:115.(5分)(2017•新课标Ⅱ)等差数列{a n}的前n项和为S n,a3=3,S4=10,则=.【解答】解:等差数列{a n}的前n项和为S n,a3=3,S4=10,S4=2(a2+a3)=10,可得a2=2,数列的首项为1,公差为1,S n=,=,则=2[1﹣++…+]=2(1﹣)=.故答案为:.16.(5分)(2017•新课标Ⅱ)已知F是抛物线C:y2=8x的焦点,M是C上一点,FM的延长线交y轴于点N.若M为FN的中点,则|FN|=6.【解答】解:抛物线C:y2=8x的焦点F(2,0),M是C上一点,FM的延长线交y轴于点N.若M为FN的中点,可知M的横坐标为:1,则M的纵坐标为:,|FN|=2|FM|=2=6.故答案为:6.三、解答题:共70分.解答应写出文字说明、解答过程或演算步骤.第17~21题为必做题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)(2017•新课标Ⅱ)△ABC的内角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2.(1)求cosB;(2)若a+c=6,△ABC面积为2,求b.【解答】解:(1)sin(A+C)=8sin2,∴sinB=4(1﹣cosB),∵sin2B+cos2B=1,∴16(1﹣cosB)2+cos2B=1,∴(17cosB﹣15)(cosB﹣1)=0,∴cosB=;(2)由(1)可知sinB=,∵S=ac•sinB=2,△ABC∴ac=,∴b2=a2+c2﹣2accosB=a2+c2﹣2××=a2+c2﹣15=(a+c)2﹣2ac﹣15=36﹣17﹣15=4,∴b=2.18.(12分)(2017•新课标Ⅱ)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如图:(1)设两种养殖方法的箱产量相互独立,记A表示事件“旧养殖法的箱产量低于50kg,新养殖法的箱产量不低于50kg”,估计A的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:箱产量<50kg 箱产量≥50kg旧养殖法新养殖法(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01).附:P(K2≥k)0.0500.010 0.001 K 3.841 6.635 10.828K2=.【解答】解:(1)记B表示事件“旧养殖法的箱产量低于50kg”,C表示事件“新养殖法的箱产量不低于50kg”,由P(A)=P(BC)=P(B)P(C),则旧养殖法的箱产量低于50kg:(0.012+0.014+0.024+0.034+0.040)×5=0.62,故P(B)的估计值0.62,新养殖法的箱产量不低于50kg:(0.068+0.046+0.010+0.008)×5=0.66,故P(C)的估计值为,则事件A的概率估计值为P(A)=P(B)P(C)=0.62×0.66=0.4092;∴A发生的概率为0.4092;(2)2×2列联表:箱产量<50kg箱产量≥50kg 总计旧养殖法6238100新养殖法3466100总计96104200则K2=≈15.705,由15.705>6.635,∴有99%的把握认为箱产量与养殖方法有关;(3)由题意可知:方法一:=5×(37.5×0.004+42.5×0.020+47.5×0.044+52.5×0.068+57.5×0.046+62.5×0.010+67.5×0.008),=5×10.47,=52.35(kg).新养殖法箱产量的中位数的估计值52.35(kg)方法二:由新养殖法的箱产量频率分布直方图中,箱产量低于50kg的直方图的面积:(0.004+0.020+0.044)×5=0.034,箱产量低于55kg的直方图面积为:(0.004+0.020+0.044+0.068)×5=0.68>0.5,故新养殖法产量的中位数的估计值为:50+≈52.35(kg),新养殖法箱产量的中位数的估计值52.35(kg).19.(12分)(2017•新课标Ⅱ)如图,四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°,E是PD的中点.(1)证明:直线CE∥平面PAB;(2)点M在棱PC 上,且直线BM与底面ABCD所成角为45°,求二面角M﹣AB﹣D的余弦值.【解答】(1)证明:取PA的中点F,连接EF,BF,因为E是PD的中点,所以EF AD,AB=BC=AD,∠BAD=∠ABC=90°,∴BC∥AD,∴BCEF是平行四边形,可得CE∥BF,BF⊂平面PAB,CF⊄平面PAB,∴直线CE∥平面PAB;(2)解:四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°,E是PD的中点.取AD的中点O,M在底面ABCD上的射影N在OC上,设AD=2,则AB=BC=1,OP=,∴∠PCO=60°,直线BM与底面ABCD所成角为45°,可得:BN=MN,CN=MN,BC=1,可得:1+BN2=BN2,BN=,MN=,作NQ⊥AB于Q,连接MQ,所以∠MQN就是二面角M﹣AB﹣D的平面角,MQ==,二面角M﹣AB﹣D的余弦值为:=.20.(12分)(2017•新课标Ⅱ)设O为坐标原点,动点M在椭圆C:+y2=1上,过M做x轴的垂线,垂足为N,点P满足=.(1)求点P的轨迹方程;(2)设点Q在直线x=﹣3上,且•=1.证明:过点P且垂直于OQ的直线l 过C的左焦点F.【解答】解:(1)设M(x0,y0),由题意可得N(x0,0),设P(x,y),由点P满足=.可得(x﹣x0,y)=(0,y0),可得x﹣x0=0,y=y0,即有x0=x,y0=,代入椭圆方程+y2=1,可得+=1,即有点P的轨迹方程为圆x2+y2=2;(2)证明:设Q(﹣3,m),P(cosα,sinα),(0≤α<2π),•=1,可得(cosα,sinα)•(﹣3﹣cosα,m﹣sinα)=1,即为﹣3cosα﹣2cos2α+msinα﹣2sin2α=1,解得m=,即有Q(﹣3,),椭圆+y2=1的左焦点F(﹣1,0),由k OQ=﹣,k PF=,由k OQ•k PF=﹣1,可得过点P且垂直于OQ的直线l过C的左焦点F.21.(12分)(2017•新课标Ⅱ)已知函数f(x)=ax2﹣ax﹣xlnx,且f(x)≥0.(1)求a;(2)证明:f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2.【解答】(1)解:因为f(x)=ax2﹣ax﹣xlnx=x(ax﹣a﹣lnx)(x>0),则f(x)≥0等价于h(x)=ax﹣a﹣lnx≥0,因为h′(x)=a﹣,且当0<x<时h′(x)<0、当x>时h′(x)>0,所以h(x)min=h(),又因为h(1)=a﹣a﹣ln1=0,所以=1,解得a=1;(2)证明:由(1)可知f(x)=x2﹣x﹣xlnx,f′(x)=2x﹣2﹣lnx,令f′(x)=0,可得2x﹣2﹣lnx=0,记t(x)=2x﹣2﹣lnx,则t′(x)=2﹣,令t′(x)=0,解得:x=,所以t(x)在区间(0,)上单调递减,在(,+∞)上单调递增,所以t(x)min=t()=ln2﹣1<0,从而t(x)=0有解,即f′(x)=0存在两根x0,x2,且不妨设f′(x)在(0,x0)上为正、在(x0,x2)上为负、在(x2,+∞)上为正,所以f(x)必存在唯一极大值点x0,且2x0﹣2﹣lnx0=0,所以f(x0)=﹣x0﹣x0lnx0=﹣x0+2x0﹣2=x0﹣,由x0<可知f(x0)<(x0﹣)max=﹣+=;由f′()<0可知x0<<,所以f(x)在(0,x0)上单调递增,在(x0,)上单调递减,所以f(x0)>f()=;综上所述,f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,按所做的第一题计分.[选修4-4:坐标系与参数方程](22.(10分)(2017•新课标Ⅱ)在直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρcosθ=4.(1)M为曲线C1上的动点,点P在线段OM上,且满足|OM|•|OP|=16,求点P的轨迹C2的直角坐标方程;(2)设点A的极坐标为(2,),点B在曲线C2上,求△OAB面积的最大值.【解答】解:(1)曲线C1的直角坐标方程为:x=4,设P(x,y),M(4,y0),则,∴y0=,∵|OM||OP|=16,∴=16,即(x2+y2)(1+)=16,∴x4+2x2y2+y4=16x2,即(x2+y2)2=16x2,两边开方得:x2+y2=4x,整理得:(x﹣2)2+y2=4(x≠0),∴点P的轨迹C2的直角坐标方程:(x﹣2)2+y2=4(x≠0).(2)点A的直角坐标为A(1,),显然点A在曲线C2上,|OA|=2,∴曲线C2的圆心(2,0)到弦OA的距离d==,∴△AOB的最大面积S=|OA|•(2+)=2+.[选修4-5:不等式选讲]23.(2017•新课标Ⅱ)已知a>0,b>0,a3+b3=2,证明:(1)(a+b)(a5+b5)≥4;(2)a+b≤2.【解答】证明:(1)由柯西不等式得:(a+b)(a5+b5)≥(+)2=(a3+b3)2≥4,当且仅当=,即a=b=1时取等号,(2)∵a3+b3=2,∴(a+b)(a2﹣ab+b2)=2,∴(a+b)[(a+b)2﹣3ab]=2,∴(a+b)3﹣3ab(a+b)=2,∴=ab,由均值不等式可得:=ab≤()2,∴(a+b)3﹣2≤,∴(a+b)3≤2,∴a+b≤2,当且仅当a=b=1时等号成立.参与本试卷答题和审题的老师有:caoqz;双曲线;海燕;whgcn;qiss;742048;maths;sxs123;cst;zhczcb(排名不分先后)菁优网2017年6月12日。

2017年高考全国二卷理科数学试题解析

2017年高考全国二卷理科数学试题解析
2017 年全国二卷高考理科数学试题解析
1. 3 i 1i
A.1 2i
B.1 2i
C. 2 i
D. 2 i
【答案】D
2.设集合 A 1, 2, 4 , B x x2 4x m 0 .若 A B 1 ,则 B
A.1, 3
B.1, 0
Байду номын сангаас
请问尖头几盏灯?”意思是:一座 7 层塔共挂了 381 盏灯,且相邻两层中的下一层灯数是上一层灯数
的 2 倍,则塔的顶层共有灯
A.1 盏
B.3 盏
C.5 盏
D.9 盏
【答案】B
【解析】设塔的顶层共有灯 x 盏,则各层的灯数构成一个首项为 x ,公比为 2 的等比数列,结合等比
数列的求和公式有: x(1 27 ) 381,解得 x 3 ,即塔的顶层共有灯 3 盏,故选 B. 1 2
PA (PB PC) 2x2 2 y( 3 y) 2x2 2( y
3 )2 3 3 ,当 P(0,
3) 时,
2 22
2
所求的最小值为 3 ,故选 B. 2





BC1D, BC1 2, BD 22 1 2 21 cos 60 3,C1D AB1 5 ,
易得 C1D2

BD 2

BC12
,因此 cos BC1D

BC1 C1D

2 5
10
,故选 C.
5
11.若 x 2 是函数 f (x) (x2 ax 1)e x1 的极值点,则 f ( x) 的极小值为
A.乙可以知道四人的成绩

2017年高考全国Ⅱ卷理科数学试题(含答案解析)

2017年高考全国Ⅱ卷理科数学试题(含答案解析)

绝密★启用前2017年普通高等学校招生全国统一考试理科数学适用地区:甘肃、青海、内蒙古、黑龙江、吉林、辽宁、宁夏、新疆、陕西、重庆、海南 注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号,回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3. 考试结束后,将本试卷和答案卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一 项是符合题目要求的。

1.3+i 1+i =A .1+2iB .1–2iC .2+iD .2–i2.设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1A B =,则B =A .{}1,3-B .{}1,0C .{}1,3D .{}1,53.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层 中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯 A .1盏B .3盏C .5盏D .9盏4.如图,网格纸上小正方形的边长为1,学 科&网粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分所得,则该几何体的体积为 A .90π B .63π C .42π D .36π5.设x,y满足约束条件2330233030x yx yy+-≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y=+的最小值是A.15-B.9-C.1D.96.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有A.12种B.18种C.24种D.36种7.甲、乙、丙、丁四位同学一起去问老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则A.乙可以知道四人的成绩B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩8.执行右面的程序框图,如果输入的1a=-,则输出的S=A.2B.3C.4D.59.若双曲线C:22221x ya b-=(0a>,0b>)的一条渐近线被圆()2224x y-+=所截得的弦长为2,则C的离心率为()A.2B.3C.2D.23 310.已知直三棱柱111C C AB -A B 中,C 120∠AB =,2AB =,1C CC 1B ==,则异面直线1AB与1C B 所成角的余弦值为 ABCD11.若2x =-是函数21`()(1)x f x x ax e -=+-的极值点,则()f x 的极小值为A .1-B .32e --C .35e -D .112.已知ABC ∆是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+的最小值是A .2-B .32-C .43-D .1-二、填空题:本题共4小题,每小题5分,共20分。

2017年高考新课标全国I卷数学(理)试题及答案

2017年高考新课标全国I卷数学(理)试题及答案

5.D 【解析】
试题分析:因为 f (x) 为奇函数且在 (, ) 单调递减,要使 1 f (x) 1 成立,则 x 满足 1 x 1,从而由
1 x 2 1得1 x 3 ,即满足 1 f (x 2) 1成立的 x 的取值范围为[1, 3] ,选 D.
【考点】函数的奇偶性、单调性
过程可能出现了异常情况,需对当天的生产过程进行检查.
(ⅰ)试说明上述监控生产过程方法的合理性;
(ⅱ)下面是检验员在一天内抽取的 16 个零件的尺寸:
9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.04
10.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95
13.已知向量 a,b 的夹角为 60°,|a|=2,|b|=1,则| a +2b |=
.
x 2y 1,
14.设 x,y 满足约束条件 2x y 1,则 z 3x 2 y 的最小值为
.
x y 0,
15.已知双曲线
C:
x2 a2
y2 b2
1 (a>0,b>0)的右顶点为
A,以
A
为圆心,b
【名师点睛】奇偶性与单调性的综合问题,要充分利用奇、偶函数的性质与单调性解决不等式和比较大小问题,
若 f (x) 在 R 上为单调递增的奇函数,且 f (x1) f (x2 ) 0 ,则 x1 x2 0 ,反之亦成立.
6.C
【解析】
试题分析:因为
(1
1 x2
)(1
x)6
1 (1
x)6
1 x2
)
A.2x<3y<5z
B.5z<2x<3y
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017届人教版高考精选预测(理42)一、填空题: 1. 若1a ii+-(i 是虚数单位)是实数,则实数a 的值是_________ 2. 已知集合2{|1},{|20}A x x B x x x =>=-<,则A B =_________3. 为了了解某校教师使用多媒体进行教学的情况,从该校200名授课教师中随机抽取20名教师,调查他们上学期使用多媒体进行教学的次数,结果用茎叶图表示如下:据此可估计该校上学期200名教师中使用多媒体进行教学次数在【15,30】内的人数是_________4. 在如图所示的流程图中,输出的结果是_________5. 若以连续两次骰子得到的点数m ,n 分别作为点P 的横坐标和纵坐标,则点P 在圆2216x y +=内的概率是6. 在约束条件010221x y y x ≤≤⎧⎪≤≤⎨⎪-≥⎩_________7. 一个匀速旋转的摩天轮每12分钟转一周,最低点距地面2米,最高点距地面18米,P是摩天轮轮周上一定点,从P在最低点时开始计时,则16分钟后P点距地面的高度是_________ 8. 已知集合222{(,)|||||1},{(,)|,0}A x y x y B x y x y r r =+≤=+≤>若点(x,y)A是点(x,y)B的必要条件,则r 的最大值是_________9. 已知点A(0,2)抛物线22(0)y px p =>的焦点为F ,准线为l ,线段FA 交抛物线与点B ,过B 做l 的垂线,垂足为M ,若AM ⊥MF ,则p=_________ 10. 若函数2,0()2,0xx x f x x -⎧<⎪=⎨->⎪⎩,则函数(())y f f x =的值域是_________11.如图所示,在直三棱柱中,AC ⊥BC ,AC =4,BC =CC 1=2,若用平行于三棱柱A 1B 1C 1-ABC 的某一侧面的平面去截此三棱柱,使得到的两个几何体能够拼接成长方体,则长方体表面积的最小 值为 。

12.已知椭圆22142x y +=,A 、B 是其左右顶点,动点M 满足MB ⊥AB ,连接AM 交椭圆与点P ,在x 轴上有异于点A 、B 的定点Q ,以MP 为直径的圆经过直线BP 、MQ的交点,则点Q 的坐标为_________ 13. 在三角形ABC 中,过中中线AD 中点E 任作一直线分别交边AB ,AC 与M 、N 两点,设,,(0)AM xAB AN xAC xy ==≠则4x+y 的最小值是_________14. 如图是一个数表,第一行依次写着从小到大的正整数,然后把每行相邻的两个数的和写在这两个数的下方,得到下一行,数表从上到下与从左到右均为无限项,则这个数表中的第13行,第10个数为_________ 二、解答题 15.如图,在平面直角坐标系中,点A 在x 轴正半轴上,直线AB 的倾斜角为34π,OB=2,设3,(,)24AOB πθθπ∠=∈ (1) 用表示OA(2) 求OA OB ⋅的最小值.16.如图,已知四面体ABCD 的四个面均为锐角三角形,EFGH 分别是边AB ,BC ,CD ,DA 上的点,BD||平面EFGH ,且EH=FG 。

(1) 求证:HG||平面ABC(2) 请在平面ABD 内过点E 做一条线段垂直于AC ,并给出证明。

17.如图,已知位于y 轴左侧的圆C 与y 轴相切于点(0,1)且被x 轴分成的两段圆弧长之比为1:2,过点H (0,t )的直线l 于圆C 相切于MN 两点,且以MN 为直径的圆恰好经过坐标原点O 。

(1) 求圆C 的方程;(2) 当t=1时,求出直线l 的方程; (3) 求直线OM 的斜率k 的取值范围。

18.心理学家研究某位学生的学习情况发现:若这位学生刚学完的知识存留量为1,则x 天后的存留量144y x =+;若在t (t>0)天时进行第一次复习,则此时这似乎存留量比未复习情况下增加一倍(复习的时间忽略不计),其后存留量y 2随时间变化的曲线恰好为直线的一部分,其斜率为2(0)(4)aa t <+,存留量随时间变化的曲线如图所示。

当进行第一次复习后的存留量与不复习的存留量相差最大时,则称此时刻为“二次复习最佳时机点” (1)若a=-1,t=5,求“二次复习最佳时机点”; (2)若出现了“二次复习最佳时机点”,求a 的取值范围。

19.已知各项均为正数的等差数列{}n a 的公差d 不等于0,设13,,k a a a 是公比为q 的等比数列{}n b 的前三项, (1)若k=7,12a =(i )求数列{}n n a b 的前n 项和T n ;(ii )将数列{}n a 和{}n b 的相同的项去掉,剩下的项依次构成新的数列{}n c ,设其前n 项和为S n ,求211*21232(2,)n n n n S n n N -----+⋅≥∈的值(2)若存在m>k,*m N ∈使得13,,,k m a a a a 成等比数列,求证k 为奇数。

20.已知函数222121451()ln ,()ln ,()2,6392f x ax x f x x x x f x x ax a R =+=++=+∈ (1)求证:函数()f x 在点(,())e f e 处的切线横过定点,并求出定点的坐标; (2)若2()()f x f x <在区间(1,)+∞上恒成立,求a 的取值范围; (3)当23a =时,求证:在区间(1,)+∞上,满足12()()()f x g x f x <<恒成立的函数()g x 有无穷多个。

参考答案 填空题:1.1-; 2.}{x x >;3.100; 4. 60; 5.92; 67.14; 8910.11(1,)(,1)22-- ; 11.24; 12.(0,0); 13.94; 14.162(或者65536). 二、解答题:15. (1)在△ABC 中,因为2OB =,4BAOp?,344ABO p p p q q ?--=-, 由正弦定理,得sin sin4OB OA ABOp=Ð,……………………………………3分3sin()42OAp q =-,所以3)4OA p q =-. ……………6分 注:仅写出正弦定理,得3分. 若用直线AB 方程求得2(sin cos )OA q q =+或)4OA πθ=+也得分.(2)由(1)得3||||cos )cos 4OA OB OA OB pq q q ?鬃-?uu r uu u r uu r uu u r ,…………………8分2(sin 2cos2)2θθ=++)24θπ=++, …………………10分因为3(,),24p p q Î所以572(,)444p p pq +?, 所以当3242p p q +=,即58pq =时,OA OB ×u u r u u u r的最小值为2-14分16. (1)因为BD //平面EFGH ,BDC EFGH FG = 平面平面,所以BD //FG . 同理BD //EH ,又因为EH FG =,所以四边形EFGH 为平行四边形, 所以HG //EF ,又HG ABC ⊄平面,所以HG ABC 平面 . ……………………………………………………6分 (2)在ABC 平面内过点E 作EP AC ⊥,且交AC 于P 点,在ACD 平面内过点P 作PQ AC ⊥,且交AD 于Q 点,连结EQ ,则EQ 即为所求线段.………………………………………………10分 证明如下:EP AC AC EPQ PQ AC EQ AC EQ EPQ EP PQ P ⊥⎫⇒⊥⎫⎪⊥⇒⊥⎬⎬⊂⎭⎪=⎭平面平面…………………………………14分17解:(1)因为位于y 轴左侧的圆C 与y 轴相切于点(0,1),所以圆心C 在直线1y =上, 设圆C 与轴的交点分别为A 、B ,由圆C 被轴分成的两段弧长之比为21:,得23ACB π∠=, 所以2CA CB ==,圆心C 的坐标为(2,1)-,所以圆C 的方程为:22(2)(1)4x y ++-=. ………………………………4分 (2)当1t =时,由题意知直线的斜率存在,设直线方程为1y mx =+,由221(2)(1)4y mx x y =+⎧⎨++-=⎩得01x y =⎧⎨=⎩或22241411x m m m y m -⎧=⎪⎪+⎨-+⎪=⎪+⎩, 不妨令222441(,),(0,1)11m m M N m m --+++, 因为以MN 为直径的圆恰好经过(0,0)O ,所以2222244141(,)(0,1)0111m m m m OM ON m m m m --+-+⋅=⋅==+++ ,解得2m =,所以所求直线方程为(21y x =+或(21y x =+.………………………………10分(3)设直线MO 的方程为y kx =,2,解之得34k ≤,同理得,134k-≤,解之得43k ≤-或>0k . 由(2)知,=0k 也满足题意.所以的取值范围是43(,][0,]34-∞- . ………………………………………14分18. 设第一次复习后的存留量与不复习的存留量之差为, 由题意知,228()(4)(4)4a y x t t t t =-+>++ ………………………………2分所以21284()(4)(4)44a y y y x t t t t x =-=-+->+++ ……………………4分(1) 当1,5a t =-=时,2184(5)(54)544y x x -=-+-+++(4)41814x x -+=-++≤1-59=, 当且仅当 14x = 时取等号,所以“二次复习最佳时机点”为第14天. ………………10分 (2) 284()(4)44a y x t t t x =-+-+++22(4)48(4)(4)44(4)a x a t t x t t -++=--+-++++≤84at --+, …………………………………………14分 当且仅当4)4(244)4()4(2-+-=+=++-t ax x t x a 即 时取等号,由题意t t a>-+-4)4(2,所以 40a -<<. ………………16分注:使用求导方法可以得到相应得分.19.⑴ 因为7k =,所以137,,a a a 成等比数列,又{}n a 是公差0d ≠的等差数列,所以()()211126a d a a d +=+,整理得12a d =, 又12a =,所以1d =, 112b a ==,32111122a b a d q b a a +====,所以()11111,2n n n n a a n d n b b q -=+-=+=⨯=, ……………………………4分 ①用错位相减法或其它方法可求得{}n n a b 的前项和为12n n T n +=⨯; ………6分 ② 因为新的数列{}n c 的前21n n --项和为数列{}n a 的前21n -项的和减去数列{}n b 前项的和,所以121(21)(22)2(21)(21)(21)221n n n n n n n S ----+-=-=---. 所以211212321n n n n S -----+⋅=-. ………………………10分 ⑵ 由d k a a d a ))1(()2(1121-+=+,整理得)5(412-=k d a d , 因为0≠d ,所以4)5(1-=k a d ,所以3111232a a d k q a a +-===.因为存在m >k,m ∈N *使得13,,,k m a a a a 成等比数列,所以313123⎪⎭⎫⎝⎛-==k a q a a m , ………………………………………………12分又在正项等差数列{a n }中,4)5)(1()1(111--+=-+=k m a a d m a a m , ……13分所以3111234)5)(1(⎪⎭⎫⎝⎛-=--+k a k m a a ,又因为01>a ,所以有[]324(1)(5)(3)m k k +--=-, …………………………………14分 因为[]24(1)(5)m k +--是偶数,所以3(3)k -也是偶数,即3-k 为偶数,所以k 为奇数. ……………………………………16分20. (1)因为1()2f x ax x '=+ ,所以()f x 在点(e,(e))f 处的切线的斜率为12k ae e=+, 所以()f x 在点(,())e f e 处的切线方程为21(2)()1y ae x e ae e=+-++ ,……2分整理得11(2)()22e y ae x e -=+-,所以切线恒过定点1(,)22e . ………4分(2) 令x ax x a x f x f x p ln 2)21()()()(22+--=-=<0,对(1,)x ∈+∞恒成立,因为21(21)21(1)[(21)1]()(21)2a x ax x a x p x a x a x x x--+---'=--+== (*)………………………………………………………………6分令()0p x '=,得极值点1x 1=,2121x a =-, ①当112a <<时,有1x x 12=>,即1a 21<<时,在(2x ,+∞)上有()0p x '>,此时)(x p 在区间2(,)x +∞上是增函数,并且在该区间上有)(x p ∈2((),)p x +∞,不合题意;②当1a ≥时,有211x x <=,同理可知,)(x p 在区间(1,)+∞上,有)(x p ∈((1),)p +∞,也不合题意; …………………………………………… 8分 ③当12a ≤时,有210a -≤,此时在区间(1,)+∞上恒有()0p x '<, 从而)(x p 在区间(1,)+∞上是减函数;要使0)(<x p 在此区间上恒成立,只须满足021)1(≤--=a p 12a ⇒≥-, 所以1122a -≤≤.综上可知的范围是11,22⎡⎤-⎢⎥⎣⎦. ……………………………………………12分 (3)当23a =时,221214514()ln ,()63923f x x x x f x x x =++=+记22115()()ln ,(1,)39y f x f x x x x =-=-∈+∞.因为225650399x x y x x-'=-=>,所以21()()y f x f x =-在(1,)+∞上为增函数, 所以21211()()(1)(1)3f x f x f f ->-=, ………………………………14分设11()(),(01)3R x f x λλ=+<<, 则12()()()f x R x f x <<, 所以在区间()1,+∞上,满足12()()()f x g x f x <<恒成立的函数()g x 有无穷多个. ………………………………………………………………16分。

相关文档
最新文档