2018年高考数学二轮复习每日一题第六周规范练文

合集下载

2018届高三数学文二轮复习全国通用 题型增分天天练 答案 含答案

2018届高三数学文二轮复习全国通用 题型增分天天练 答案 含答案

参考答案客观题提速练一1.B2.B3.C4.D 由余弦定理得5=b2+4-2×b×2×错误!未找到引用源。

,解得b=3(b=-错误!未找到引用源。

舍去),选D.5.B 因为6-2m>0,所以m<3,c2=m2-2m+14=(m-1)2+13,所以当m=1时,焦距最小,此时,a=3,b=2,所以错误!未找到引用源。

=错误!未找到引用源。

.选B.6.B 由题可得4×错误!未找到引用源。

+ϕ=错误!未找到引用源。

+kπ,k∈Z,所以ϕ=错误!未找到引用源。

+kπ,k∈Z.因为ϕ<0,所以ϕmax=-错误!未找到引用源。

.选B.7.C 在如图的正方体中,该几何体为四面体ABCD,AC=2,其表面积为错误!未找到引用源。

×2×2×2+错误!未找到引用源。

×2×2错误!未找到引用源。

×2=4错误!未找到引用源。

+4.选C.8.B 因为a2+a<0,所以a(a+1)<0,所以-1<a<0.取a=-错误!未找到引用源。

,可知-a>a2>-a2>a.故选B.9.C 易判断函数为偶函数,由y=0,得x=±1.当x=0时,y=-1,且当0<x<1时,y<0;当x>1时,y>0.故选C.10.B 因为p=错误!未找到引用源。

或p=错误!未找到引用源。

,所以8.5=错误!未找到引用源。

或8.5=错误!未找到引用源。

,解得x3=8.故选B.11.C取CS的中点O,连接OA,OB.则由题意可得OA=OB=OS=2.CS为直径,所以CA⊥AS,CB⊥SB.在Rt△CSA中,∠CSA=45°,故AS=CScos 45°=4×错误!未找到引用源。

=2错误!未找到引用源。

, 在△OSA中,OA2+OS2=AS2,所以OA⊥OS.同理,OS⊥OB.所以OS⊥平面OAB.△OAB中,OA=OB=AB=2,故△OAB的面积S=错误!未找到引用源。

2018年高考数学(文)二轮复习练习:大题规范练5 Word版含答案

2018年高考数学(文)二轮复习练习:大题规范练5 Word版含答案

大题规范练(五)“17题~19题”+“二选一”46分练(时间:45分钟 分值:46分)解答题(本大题共4小题,共46分,第22~23题为选考题.解答应写出文字说明、证明过程或演算步骤)17.已知等差数列{a n }中,a 2=5,前4项的和为S 4=28.(1)求数列{a n }的通项公式;(2)设b n =2n,T n =a n b 1+a n -1b 2+a n -2b 3+…+a 2b n -1+a 1b n ,求T n .【导学号:04024232】解:(1)∵S 4=a 1+a 42=2(a 1+a 4)=2(a 2+a 3)=28,∴a 2+a 3=14.∵a 2=5,∴a 3=9,∴公差d =4. 故a n =4n -3.(2)∵b n =2n ,∴T n =(4n -3)·21+(4n -7)·22+…+5·2n -1+1·2n,①∴2T n =(4n -3)·22+(4n -7)·23+…+5·2n +1·2n +1,②②-①得,T n =-(4n -3)·2+4×(22+23+…+2n )+2n +1=6-8n +4×-2n -11-2+2n+1=6-8n +(2n +3-16)+2n +1=5·2n +1-8n -10.18.如图1所示,在三棱锥A ­BCD 中,AB =AC =AD =BC =CD =4,BD =42,E ,F 分别为AC ,CD 的中点,G 为线段BD 上一点,且BE ∥平面AGF . (1)求BG 的长;(2)求四棱锥A ­BCFG 的体积.【导学号:04024233】图1解:(1)连接DE 交AF 于M ,连接GM ,则M 为△ACD 的重心, 且DM ME =21. 因为BE ∥平面AGF ,所以BE ∥GM ,所以DG BG =21,所以BG =423.(2)设BD 的中点为O ,连接AO ,CO ,则AO =CO =22, 所以AO ⊥OC ,AO ⊥BD ,从而AO ⊥平面BCD , 所以V A ­BCD =13×12×4×4×22=1623.又易知V A ­FDG =13V A ­BCD ,所以V A ­BCFG =23V A ­BCD =3229.19.某地区为了落实国务院《关于加快高速宽带网络建设,推进网络提速降费的指导意见》,对宽带网络进行了全面的光纤改造.为了调试改造后的网速,对新改造的1 000户用户进行了测试,随机抽取了若干户的网速,网速全部介于13 M 与18 M 之间,将网速按如下方式分成五组:第一组[13,14);第二组[14,15);…;第五组[17,18].按上述分组方法得到的频率分布直方图如图2所示,已知图中从左到右的前三个组的频率之比为3∶8∶19,且第二组的频数为8.图2(1)试估计这批新改造的1 000户用户中网速在[16,17)内的户数; (2)求测试中随机抽取的用户数;(3)若从第一、五组中随机抽取2户的网速,求这2户的网速的差的绝对值大于1 M 的概率.【导学号:04024234】解:(1)网速在[16,17)内的频率为0.32×1=0.32, 又0.32×1 000=320,∴估计这批新改造的1 000户用户中网速在[16,17)内的户数为320. (2)设图中从左到右前三个组的频率分别为3x,8x,19x , 依题意,得3x +8x +19x +0.32×1+0.08×1=1,∴x =0.02, 设测试中随机抽取了n 户用户,则8×0.02=8n,∴n =50,∴测试中随机抽取了50户用户.(3)网速在第一组的用户数为3×0.02×1×50=3,记为a ,b ,c . 网速在第五组的用户数为0.08×1×50=4,记为m ,n ,p ,q . 从第一、五组中随机抽取2户的基本事件有{a ,b },{a ,c ),{a ,m },{a ,n },{a ,p },{a ,q },{b ,c },{b ,m },{b ,n },{b ,p },{b ,q },{c ,m },{c ,n },{c ,p },{c ,q },{m ,n },{m ,p },{m ,q },{n ,p },{n ,q },{p ,q },共21个.其中,抽取的2户的网速的差的绝对值大于1 M 所包含的基本事件有{a ,m },{a ,n },{a ,p },{a ,q },{b ,m },{b ,n },{b ,p },{b ,q },{c ,m },{c ,n },{c ,p },{c ,q },共12个,∴所求概率P =1221=47.(请在第22、23题中选一题作答,如果多做,则按所做第一题计分)22.【选修4-4:坐标系与参数方程】已知曲线E 的极坐标方程为ρ=4tan θcos θ,倾斜角为α的直线l 过点P (2,2).(1)求曲线E 的直角坐标方程和直线l 的参数方程;(2)设l 1,l 2是过点P 且关于直线x =2对称的两条直线,l l 与E 交于A ,B 两点,l 2与E 交于C ,D 两点,求证:|PA |∶|PD |=|PC |∶|PB |.【导学号:04024235】解:(1)由题意易得E 的直角坐标方程为x 2=4y (x ≠0),l 的参数方程为⎩⎪⎨⎪⎧x =2+t cos αy =2+t sin α(t 为参数).(2)证明:∵l 1,l 2关于直线x =2对称,∴l 1,l 2的倾斜角互补.设l 1的倾斜角为α1,则l 2的倾斜角为π-α1,把直线l 1的参数方程⎩⎪⎨⎪⎧x =2+t cos α1,y =2+t sin α1(t 为参数)代入x 2=4y (x ≠0),并整理得t 2cos 2α1+4(cos α1-sin α1)t -4=0,由根与系数的关系,得t 1t 2=-4cos 2α1,即|PA |·|PB |=4cos 2α1.同理,得|PC |·|PD |=4cos 2π-α1=4cos 2α1, ∴|PA |·|PB |=|PC |·|PD |, 即|PA |∶|PD |=|PC |∶|PB |.23.【选修4-5:不等式选讲】已知函数f (x )=|x +3|-m ,m >0,f (x -3)≥0的解集为(-∞,-2]∪[2,+∞). (1)求m 的值;(2)若存在x ∈R ,使得f (x )≥|2x -1|-t 2+32t +1成立,求实数t 的取值范围.【导学号:04024236】解:(1)因为f (x )=|x +3|-m ,所以f (x -3)=|x |-m ≥0, 因为m >0,所以x ≥m 或x ≤-m .又因为f (x -3)≥0的解集为(-∞,-2]∪[2,+∞), 所以m =2.(2)因为f (x )≥|2x -1|-t 2+32t +1,所以|x +3|-|2x -1|≥-t 2+32t +3.令g (x )=|x +3|-|2x -1|,则g (x )=|x +3|-|2x -1|=⎩⎪⎨⎪⎧x -4,x ≤-3,3x +2,-3<x <12,-x +4,x ≥12,故g (x )max =g ⎝ ⎛⎭⎪⎫12=72,则有72≥-t 2+32t +3,即2t 2-3t +1≥0,解得t ≤12或t ≥1,即实数t 的取值范围为⎝ ⎛⎦⎥⎤-∞,12∪[1,+∞).。

2018届高考数学(理)二轮专题复习:规范练5-2-6(含答案)

2018届高考数学(理)二轮专题复习:规范练5-2-6(含答案)

大题规范练(六)(满分70分,押题冲刺,70分钟拿到主观题高分)解答题:解答应写出文字说明、证明过程或演算步骤.1.(本小题满分12分)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且(a -c )2=b 2-34ac .(1)求cos B 的值;(2)若b =13,且sin A ,sin B ,sin C 成等差数列,求△ABC 的面积. 解:(1)由(a -c )2=b 2-34ac ,可得a 2+c 2-b 2=54ac .∴a 2+c 2-b 22ac =58,即cos B =58.(2)∵b =13,cos B =58,∴b 2=13=a 2+c 2-54ac =(a +c )2-134ac ,又sin A ,sin B ,sin C 成等差数列,由正弦定理,得a +c =2b =213,∴13=52-134ac ,∴ac =12.由cos B =58,得sin B =398,∴△ABC 的面积S △ABC =12ac sin B =12×12×398=3394.2.(本小题满分12分)如图(1),平面四边形ABCD 关于直线AC 对称,∠BAD =60°,∠BCD =90°,CD =4.把△ABD 沿BD 折起,使A ,C 两点间的距离为2 2.记BD 的中点为E ,如图(2).(1)求证:平面ACE ⊥平面BCD ;(2)求直线AD 与平面ABC 所成角的正弦值.解:(1)证明:由已知可得CB =CD =4,AB =AD =42,AE ⊥BD ,CE ⊥BD .又AE ∩CE =E ,因此BD ⊥平面ACE .又BD ⊂平面BCD ,因此平面ACE ⊥平面BCD .(2)如图,以CB ,CD 所在直线分别为x 轴、y 轴,过点C 垂直于平面CBD 的直线为z 轴建立空间直角坐标系C ­xyz ,则C (0,0,0),B (4,0,0),D (0,4,0),设A (x 1,y 1,z 1)(z 1>0),则由⎩⎪⎨⎪⎧AC 2=8AB 2=32AD 2=32,可得⎩⎪⎨⎪⎧x 21+y 21+z 21=8x 1-2+y 21+z 21=32x 21+y 1-2+z 21=32z 1>0,由此解得x 1=y 1=-1,z 1=6,故A (-1,-1,6),CA →=(-1,-1,6),AD →=(1,5,-6).CB →=(4,0,0)设a =(x 2,y 2,z 2)是平面ABC 的法向量,则有 ⎩⎨⎧a ·CB →=0a ·CA →=0,即⎩⎨⎧4x 2=0-x 2-y 2+6z 2=0,故x 2=0,y 2=6z 2.取z 2=1得a =(0,6,1). 设直线AD 与平面ABC 所成的角为β, 则sin β=|cos 〈a ,AD →〉|=|a ·AD →||a ||AD →|=217,即直线AD 与平面ABC 所成角的正弦值为217. 3.(本小题满分12分)当今时代,智能手机在人们日常生活中的应用越来越频繁,其中的一款软件——微信更是逐渐成为人们交流的一种方式.某机构对人们使用微信交流的态度进行调查,随机抽取了50人,他们年龄的频数分布及对使用微信交流持赞成态度的人数如下表:的把握认为对“使用微信交流”的态度与人的年龄有关?4人中赞成使用微信交流与不赞成使用微信交流的人数之差的绝对值为ξ,求随机变量ξ的分布列及数学期望.参考数据如下:参考公式:K 2=a +bc +d a +cb +d,其中n =a +b +c +d .解:(1)2×2列联表如下:K 2=10×40×35×15≈9.524>6.635,所以有99%的把握认为对“使用微信交流”的态度与人的年龄有关. (2)依题意得ξ的所有可能取值分别为0,2,4, 且P (ξ=0)=C 22C 25·C 24C 25+C 12·C 13C 25·C 14·C 11C 25=30100=0.3,P (ξ=4)=C 23C 25·C 24C 25=0.18,P (ξ=2)=1-P (ξ=0)-P (ξ=4)=0.52.因此,ξ的分布列是所以ξ的期望E (ξ)4.(本小题满分12分)在平面直角坐标系中,已知点F (1,0),直线l :x =-1,动直线l ′垂直l 于点H ,线段HF 的垂直平分线交l ′于点P ,设点P 的轨迹为C .(1)求曲线C 的方程;(2)以曲线C 上的点Q (x 0,y 0)(y 0>0)为切点作曲线C 的切线l 1,设l 1分别与x ,y 轴交于A ,B 两点,且l 1恰与以定点M (a,0)(a >2)为圆心的圆相切,当圆M 的面积最小时,求△ABF 与△QAM面积的比.解:(1)由题意得|PH |=|PF |,∴点P 到直线l :x =-1的距离等于它到定点F (1,0)的距离, ∴点P 的轨迹是以l 为准线,F 为焦点的抛物线, ∴点P 的轨迹C 的方程为y 2=4x .(2)解法一:由y 2=4x ,当y >0时,y =2x ,∴y ′=1x,∴以Q 为切点的切线l 1的斜率为k =1x 0,∴以Q (x 0,y 0)(y 0>0)为切点的切线方程为l 1:y -y 0=1x 0(x -x 0),即y -y 0=2y 0⎝ ⎛⎭⎪⎫x -y 204,整理得l 1:4x -2y 0y +y 20=0.令x =0,则y =y 02,∴B ⎝ ⎛⎭⎪⎫0,y 02, 令y =0,则x =-y 204=-x 0,∴A (-x 0,0), 点M (a,0)到切线l 1的距离d =y 20+4a 2y 20+4=y 20+42+2a -2y 20+4≥2a -1(当且仅当y 0=2a -2时,取等号).∴当点Q 的坐标为(a -2,2a -2)时,满足题意的圆M 的面积最小. 此时A (2-a,0),B (0,a -2).S △ABF =12|1-(2-a )||a -2|=12(a -1)a -2, S △AQM =12|a -(2-a )||2a -2|=2(a -1)a -2.∴S △ABF S △AQM =14,∴△ABF 与△QAM 的面积之比为1∶4.解法二:由题意知切线l 1的斜率必然存在,设为k ,则l 1:y -y 0=k (x -x 0).由⎩⎪⎨⎪⎧y -y 0=k x -x 0y 2=4x,得y -y 0=k ⎝ ⎛⎭⎪⎫14y 2-x 0,即y 2-4k y +4ky 0-y 20=0,由Δ=⎝ ⎛⎭⎪⎫-4k 2-4⎝ ⎛⎭⎪⎫4k y 0-y 20=0得(2-ky 0)2=0,即k =2y 0.∴l 1:4x -2y 0y +y 20=0.(下同解法一)5.(本小题满分12分)设函数f (x )=x 3+ax +2,g (x )=-2cos x -x +(x +1)ln(x +1). (1)若直线y =-4x 是曲线y =f (x )的切线,求实数a 的值;(2)若对任意x 1∈[1,2],都存在x 2∈(-1,1],使得f (x 1)-g (x 2)>3a +4成立,求实数a 的取值范围.解:(1)f ′(x )=3x 2+a .设直线y =-4x 与曲线y =f (x )相切于点(x 0,-4x 0),则有⎩⎪⎨⎪⎧-4x 0=x 30+ax 0+23x 20+a =-4,解得x 0=1,a =-7.(2)g ′(x )=2sin x -1+ln(x +1)+1=2sin x +ln(x +1),∵当x ∈(-1,1]时,y =2sin x 及y =ln(x +1)均为增函数,∴g ′(x )在(-1,1]上为增函数,又g ′(0)=0,∴当x ∈(-1,0)时,g ′(x )<0;当x ∈(0,1]时,g ′(x )>0, 从而g (x )在(-1,0)上单调递减,在(0,1]上单调递增, ∴g (x )在(-1,1]上的最小值为g (0)=-2.依题意得,当x ∈[1,2]时,f (x )min >3a +4+g (0)=3a +2. 当x ∈[1,2]时,f ′(x )=3x 2+a ∈[a +3,a +12]. 当a +3≥0,即a ≥-3,x ∈[1,2]时,f (x )单调递增,f (x )min =f (1)=a +3,于是有a +3-3a >2(a ≥-3),解得-3≤a <12.当a +12≤0,即a ≤-12,x ∈[1,2]时,f (x )单调递减,f (x )min =f (2)=2a +10,于是有2a +10-3a >2(a ≤-12),解得a ≤-12.当-12<a <-3,x ∈[1,2]时,f (x )在区间⎣⎢⎡⎦⎥⎤1, -a 3上单调递减,在区间⎣⎢⎡⎦⎥⎤-a3,2上单调递增,f (x )min =f ⎝⎛⎭⎪⎫-a 3=2a 3-a 3+2,于是有2a 3-a3+2-3a >2(-12<a <-3),解得-12<a <-3.综上所述,a 的取值范围是⎝⎛⎭⎪⎫-∞,12. 请考生在第6、7题中任选一题作答,如果多做,则按所做的第一题计分. 6.(本小题满分10分)选修4-4:坐标系与参数方程已知曲线C 的极坐标方程是ρ=4cos θ.以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,直线l 的参数方程是⎩⎪⎨⎪⎧x =1+t cos αy =t sin α(t 为参数).(1)将曲线C 的极坐标方程化为直角坐标方程;(2)若直线l 与曲线C 相交于A ,B 两点,且|AB |=14,求直线l 的倾斜角α的值. 解:(1)由ρ=4cos θ得ρ2=4ρcos θ. ∵x 2+y 2=ρ2,x =ρcos θ,y =ρsin θ,∴曲线C 的直角坐标方程为x 2+y 2-4x =0,即(x -2)2+y 2=4. (2)将⎩⎪⎨⎪⎧x =1+t cos αy =t sin α代入曲线C 的方程得(t cos α-1)2+(t sin α)2=4,化简得t 2-2t cos α-3=0.设A ,B 两点对应的参数分别为t 1,t 2,则⎩⎪⎨⎪⎧t 1+t 2=2cos α,t 1t 2=-3.∴|AB |=|t 1-t 2|=t 1+t 22-4t 1t 2=4cos 2α+12=14,∴4cos 2α=2,cos α=±22,α=π4或3π4. 7.(本小题满分10分)选修4-5:不等式选讲 已知函数f (x )=|x -2|+|2x +a |,a ∈R . (1)当a =1时,解不等式f (x )≥4;(2)若存在x 0,使f (x 0)+|x 0-2|<3成立,求a 的取值范围.解:(1)当a =1时,f (x )=|x -2|+|2x +1|.由f (x )≥4,得|x -2|+|2x +1|≥4. 当x ≥2时,不等式等价于x -2+2x +1≥4,解得x ≥53,所以x ≥2;当-12<x <2时,不等式等价于2-x +2x +1≥4,即x ≥1,所以1≤x <2;当x ≤-12时,不等式等价于2-x -2x -1≥4,解得x ≤-1,所以x ≤-1.所以原不等式的解集为{x |x ≤-1或x ≥1}.(2)应用绝对值不等式可得f(x)+|x-2|=2|x-2|+|2x+a|=|2x-4|+|2x+a|≥|2x+a -(2x-4)|=|a+4|.因为存在x0,使f(x0)+|x0-2|<3成立,所以(f(x)+|x-2|)min<3,所以|a+4|<3,解得-7<a<-1,故实数a的取值范围为(-7,-1).。

2018年高考数学(文)二轮复习练习:大题规范练1 Word版含答案

2018年高考数学(文)二轮复习练习:大题规范练1 Word版含答案

大题规范练(一)“17题~19题”+“二选一”46分练(时间:45分钟 分值:46分)解答题(本大题共4小题,共46分,第22~23题为选考题.解答应写出文字说明、证明过程或演算步骤)17.已知m =⎝ ⎛⎭⎪⎫sin ⎝⎛⎭⎪⎫x -π6,1,n =(cos x,1).(1)若m∥n ,求tan x 的值;(2)若函数f (x )=m·n ,x ∈[0,π],求f (x )的单调递增区间.【导学号:04024212】解:(1)由m∥n 得sin ⎝⎛⎭⎪⎫x -π6-cos x =0,展开变形可得sin x =3cos x ,即tan x = 3. (2)易得f (x )=m·n =12sin ⎝ ⎛⎭⎪⎫2x -π6+34,由-π2+2k π≤2x -π6≤π2+2k π(k ∈Z ),得-π6+k π≤x ≤π3+k π(k ∈Z ),又因为x ∈[0,π],所以f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤0,π3和⎣⎢⎡⎦⎥⎤5π6,π.18.从2016年1月1日起,广东、湖北等18个保监局所辖地区将纳入商业车险改革试点范围,其中最大的变化是上一年的出险次数决定了下一年的保费倍率,具体关系如下表:据(x ,y )(其中x (万元)表示购车价格,y (元)表示商业车险保费):(8,2 150),(11,2 400),(18,3 140),(25,3 750),(25,4 000),(31,4 560),(37,5 500),(45,6 500).设由这8组数据得到的回归直线方程为y ^=b ^x +1 055. (1)求b ^的值.(2)广东李先生2016年1月购买一辆价值20万元的新车. (i)估计李先生购车时的商业车险保费.(ⅱ)若该车今年2月已出过一次险,现在又被刮花了,李先生到4S 店询价,预计修车费用为800元,保险专员建议李先生自费(即不出险),你认为李先生是否应该接受建议?并说明理由.(假设该车辆下一年与上一年购买相同的商业车险产品进行续保)【导学号:04024213】解:(1)x =18×(8+11+18+25+25+31+37+45)=2008=25(万元),y =18×(2 150+2 400+3 140+3 750+4 000+4 560+5 500+6 500)=32 0008=4 000(元),回归直线y ^=b ^x +1 055经过样本点的中心(x ,y ), 即(25,4 000),所以b ^=y -1 055x=4 000-1 05525=117.8.(2)(ⅰ)价值为20万元的新车的商业车险保费预报值为117.8×20+1 055=3 411(元). (ⅱ)由于该车已出过一次险,若再出一次险, 则保费增加25%,即增加3 411×25%=852.75(元). 因为852.75>800,所以应该接受建议.19.如图1所示,在四棱锥P ­ABCD 中,侧面PAD 是边长为2的正三角形,且与底面ABCD 垂直,底面ABCD 是菱形,且∠ABC =60°,M 为AD 的中点.图1(1)求证:平面PCM ⊥平面PAD ; (2)求三棱锥D ­PAC 的高.【导学号:04024214】解:(1)证明:依题意可知△PAD ,△ACD 均为正三角形, 所以MC ⊥AD ,MP ⊥AD . 又因为MC ∩MP =M , 所以AD ⊥平面PMC .又因为AD ⊂平面PAD , 所以平面PCM ⊥平面PAD . (2)在正三角形PAD 中,PM =32PD =3, 又S △ACD =12×2×2×sin 60°=3,所以V 三棱锥P ­ACD =13S △ACD ·PM =1.在正三角形ACD 中,CM =32AD =3, 在Rt △PCM 中,PC =PM 2+CM 2=6,在等腰三角形PAC 中,PA =AC =2,PC =6,可得S △PAC =152. 设三棱锥D ­PAC 的高为h ,由V 三棱锥D ­PAC =V 三棱锥P ­ACD ,得13S △PAC ·h =1,解得h =2155.(请在第22、23题中选一题作答,如果多做,则按所做第一题计分)22.【选修4-4:坐标系与参数方程】在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线C :ρsin 2θ-4cos θ=0,直线l 过点M (0,4),且斜率为-2.(1)将曲线C 的极坐标方程化为直角坐标方程,并写出直线l 的标准参数方程; (2)若直线l 与曲线C 交于A ,B 两点,求|AB |的值.【导学号:04024215】解:(1)由ρsin 2θ-4cos θ=0,得(ρsin θ)2=4ρcos θ,由互化公式x =ρcos θ,y =ρsin θ,可得曲线C 的直角坐标方程为y 2=4x . 设直线l 的倾斜角为α,则tan α=-2, 所以α为钝角,于是cos α=-55,sin α=255, 所以直线l 的标准参数方程为⎩⎪⎨⎪⎧x =-55t ,y =4+255t (t 为参数).(2)将(1)中直线l 的参数方程代入y 2=4x 中,整理得t 2+55t +20=0. 设A ,B 两点对应的参数分别为t 1,t 2,则t 1+t 2=-55,t 1t 2=20, 所以|AB |=|t 1-t 2|=t 1+t 22-4t 1t 2=-552-4×20=3 5.23.【选修4-5:不等式选讲】已知函数f (x )=|2x -a |+a .(1)若不等式f (x )≤6的解集为{x |-2≤x ≤3},求实数a 的值;(2)在(1)的条件下,若存在实数n ,使f (n )≤m -f (-n )成立,求实数m 的取值范围.【导学号:04024216】解:(1)由|2x -a |+a ≤6得|2x -a |≤6-a ,所以a -6≤2x -a ≤6-a ,即a -3≤x ≤3, 所以a -3=-2,得a =1.(2)由(1)知f (x )=|2x -1|+1,令φ(n )=f (n )+f (-n ),则φ(n )=|2n -1|+|2n +1|+2=⎩⎪⎨⎪⎧2-4n ,n ≤-12,4,-12<n ≤12,2+4n ,n >12,所以φ(n )的最小值为4, 故实数m 的取值范围是[4,+∞).。

2018年高考数学(文)二轮复习练习:大题规范练2 Word版含答案

2018年高考数学(文)二轮复习练习:大题规范练2 Word版含答案

大题规范练(二)“17题~19题”+“二选一”46分练(时间:45分钟 分值:46分)解答题(本大题共4小题,共46分,第22~23题为选考题.解答应写出文字说明、证明过程或演算步骤)17.已知A ,B ,C ,D 为同一平面上的四个点,且满足AB =2,BC =CD =DA =1,设∠BAD =θ,△ABD 的面积为S ,△BCD 的面积为T .(1)当θ=60°时,求T 的值; (2)当S =T 时,求cos θ的值.【导学号:04024217】解:(1)在△ABD 中,由余弦定理得BD 2=AB 2+AD 2-2AB ·AD cos θ=22+12-2×2×1×12=3.在△BCD 中,由余弦定理得 cos ∠BCD =BC 2+CD 2-BD 22BC ·CD =12+12-32×1×1=-12.因为∠BCD ∈(0°,180°),所以∠BCD =120°, 所以T =12BC ·CD sin ∠BCD =12×1×1×32=34.(2)因为BD 2=AB 2+AD 2-2AB ·AD cos θ=5-4cos θ,所以cos ∠BCD =BC 2+CD 2-BD 22BC ·CD =4cos θ-32.易得S =12AD ·AB sin ∠BAD =sin θ,T =12BC ·CD sin ∠BCD =12sin ∠BCD .因为S =T ,所以sin θ=12sin ∠BCD .所以4sin 2θ=sin 2∠BCD =1-cos 2∠BCD =1-⎝ ⎛⎭⎪⎫4cos θ-322,所以cos θ=78.18.某商场举行购物抽奖活动,抽奖箱中放有编号分别为1,2,3,4,5的五个小球,小球除编号不同外,其余均相同.活动规则如下:从抽奖箱中随机抽取一球,若抽取小球的编号为3,则获得奖金100元;若抽取小球的编号为偶数,则获得奖金50元;若抽取的小球是其余编号,则不中奖.现某顾客有放回地抽奖两次.(1)求该顾客两次抽奖后都没有中奖的概率;(2)求该顾客两次抽奖后获得奖金之和为100元的概率.【导学号:04024218】解:(1)该顾客有放回地抽奖两次,其结果的所有情况如下表:概率为425.(2)两次抽奖获得奖金之和为100元的情况有:①第一次获奖100元,第二次没有中奖,其结果有(3,1),(3,5),故其概率P 1=225;②两次均获奖50元,其结果有(2,2),(2,4),(4,2),(4,4),故其概率P 2=425;③第一次没有中奖,第二次获奖100元,其结果有(1,3),(5,3),故其概率P 3=225.所以所求概率P =P 1+P 2+P 3=825.19.如图1所示,在四棱锥P ­ABCD 中,底面ABCD 是正方形,PD ⊥平面ABCD ,点E 是线段BD 的中点,点F 是线段PD 上的动点.图1(1)求证:CE ⊥BF ;(2)若AB =2,PD =3,当三棱锥P ­BCF 的体积等于43时,试判断点F 在线段PD 上的位置,并说明理由.【导学号:04024219】解:(1)证明:因为PD ⊥平面ABCD ,且CE ⊂平面ABCD ,所以PD ⊥CE .又因为底面ABCD 是正方形,且点E 是线段BD 的中点, 所以CE ⊥BD .因为BD ∩PD =D ,所以CE ⊥平面PBD , 而BF ⊂平面PBD ,所以CE ⊥BF .(2)点F 为线段PD 上靠近D 点的三等分点. 理由如下:由(1)可知,CE ⊥平面PBF .又因为PD ⊥平面ABCD ,BD ⊂平面ABCD ,所以PD ⊥BD . 设PF =x .由AB =2得BD =22,CE =2,所以V 三棱锥P ­BCF =V 三棱锥C ­BPF =13×12×PF ×BD ×CE =16×22×2x =2x3.由已知得2x 3=43,所以x =2.因为PD =3,所以点F 为线段PD 上靠近D 点的三等分点.(请在第22、23题中选一题作答,如果多做,则按所做第一题计分)22.【选修4-4:坐标系与参数方程】极坐标系与直角坐标系xOy 有相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴.已知曲线C 1的极坐标方程为ρ=22sin ⎝⎛⎭⎪⎫θ+π4,曲线C 2的极坐标方程为ρsin θ=a (a >0),射线θ=φ,θ=φ+π4,θ=φ-π4,θ=π2+φ分别与曲线C 1交于点A ,B ,C ,D (均异于极点O ).(1)若曲线C 1关于曲线C 2对称,求a 的值,并求曲线C 1和C 2的直角坐标方程; (2)求|OA |·|OC |+|OB |·|OD |的值.【导学号:04024220】解:(1)由ρ=22sin ⎝ ⎛⎭⎪⎫θ+π4得ρ2=22ρsin ⎝ ⎛⎭⎪⎫θ+π4,由互化公式得x 2+y 2=2x +2y ,即曲线C 1的直角坐标方程为(x -1)2+(y -1)2=2. 由互化公式得曲线C 2的直角坐标方程为y =a . 因为曲线C 1关于曲线C 2对称, 所以a =1,所以曲线C 2的直角坐标方程为y =1. (2)易知|OA |=22sin ⎝ ⎛⎭⎪⎫φ+π4, |OB |=22sin ⎝ ⎛⎭⎪⎫φ+π2=22cos φ,|OC |=22sin φ,|OD |=22sin ⎝ ⎛⎭⎪⎫φ+3π4=22cos ⎝⎛⎭⎪⎫φ+π4,于是可得|OA |·|OC |+|OB |·|OD |=4 2.23.【选修4-5:不等式选讲】设函数f (x )=|x -a |+3x ,其中a >0.(1)当a =1时,求不等式f (x )≥3x +2的解集; (2)若不等式f (x )≤0的解集为{x |x ≤-1},求a 的值.【导学号:04024221】解:(1)当a =1时,f (x )≥3x +2可化为|x -1|≥2, 由此可得x ≥3或x ≤-1,故不等式f (x )≥3x +2的解集为{x |x ≥3或x ≤-1}. (2)由f (x )≤0得,|x -a |+3x ≤0,此不等式可化为⎩⎪⎨⎪⎧x ≥a ,x -a +3x ≤0或⎩⎪⎨⎪⎧x <a ,a -x +3x ≤0,即⎩⎪⎨⎪⎧x ≥a ,x ≤a 4或⎩⎪⎨⎪⎧x <a ,x ≤-a 2.因为a >0,所以原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≤-a2, 由题意可得-a2=-1,所以a =2.。

2018届高考数学(理)二轮专题复习限时规范训练:第一部分 专题六 解析几何 1-6-2

2018届高考数学(理)二轮专题复习限时规范训练:第一部分 专题六 解析几何 1-6-2

限时规范训练十六 圆锥曲线的定义、性质,直线与圆锥曲线限时40分钟,实际用时分值80分,实际得分一、选择题(本题共12小题,每小题5分,共60分)1.若实数k 满足0<k <9,则曲线x 225-y 29-k =1与曲线x 225-k -y 29=1的( )A .焦距相等B .实半轴长相等C .虚半轴长相等D .离心率相等解析:选A.由25+(9-k )=(25-k )+9,知两曲线的焦距相等.2.(2017·宁夏银川质检)抛物线y 2=8x 的焦点到双曲线x 2-y 23=1的渐近线的距离是( )A.12B.32C .1D. 3解析:选D.由抛物线y 2=8x ,有2p =8⇒p =4,焦点坐标为(2,0),双曲线的渐近线方程为y =±3x ,不妨取其中一条3x -y =0,由点到直线的距离公式,有d =|3×2-0|3+1=3,故选D.3.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为y =52x ,且与椭圆x 212+y 23=1有公共焦点.则C 的方程为( )A.x 28-y 210=1B.x 24-y 25=1C.x 25-y 24=1 D.x 24-y 23=1 解析:选B.∵双曲线的一条渐近线方程为y =52x ,则b a =52,①又∵椭圆x 212+y 23=1与双曲线有公共焦点,易知c =3,则a 2+b 2=c 2=9, ②由①②解得a =2,b =5,则双曲线C 的方程为x 24-y 25=1,故选B.4.已知抛物线y 2=2px 的焦点F 与双曲线x 27-y 29=1的右焦点重合,抛物线的准线与x 轴的交点为K ,点A 在抛物线上且|AK |=2|AF |,则△AFK 的面积为( )A .4B .8C .16D .32解析:选D.因为抛物线y 2=2px 的焦点F 与双曲线x 27-y 29=1的右焦点(4,0)重合,所以p =8.设A (m ,n ),又|AK |=2|AF |,所以m +4=|n |, 又n 2=16m ,解得m =4,|n |=8, 所以△AFK 的面积为S =12×8×8=32.5.(2017·安徽合肥模拟)已知双曲线x 2-y 23=1的左顶点为A 1,右焦点为F 2,P 为双曲线右支上一点,则PA 1→·PF 2→的最小值为( )A .-2B .-8116C .1D .0解析:选A.设点P (x ,y ),其中x ≥1.依题意得A 1(-1,0),F 2(2,0),则有y 23=x 2-1,y 2=3(x2-1),PA 1→·PF 2→=(-1-x ,-y )·(2-x ,-y )=(x +1)(x -2)+y 2=x 2+3(x 2-1)-x -2=4x 2-x -5=4⎝ ⎛⎭⎪⎫x -182-8116,其中x ≥1.因此,当x =1时,PA 1→·PF 2→取得最小值-2,选A.6.(2017·浙江宁波模拟)点A 是抛物线C 1:y 2=2px (p >0)与双曲线C 2:x 2a 2-y 2b2=1(a >0,b>0)的一条渐近线的交点,若点A 到抛物线C 1的准线的距离为p ,则双曲线C 2的离心率等于( )A. 2B. 3C. 5D. 6解析:选C.取双曲线的一条渐近线为y =bax ,联立⎩⎪⎨⎪⎧y 2=2px ,y =bax ⇒⎩⎪⎨⎪⎧x =2pa 2b2,y =2pab ,故A ⎝ ⎛⎭⎪⎫2pa 2b2,2pa b .因为点A 到抛物线C 1的准线的距离为p .所以p 2+2pa 2b 2=p ,所以a 2b 2=14.所以双曲线C 2的离心率e =ca=a 2+b 2a 2= 5. 7.(2017·山东德州一模)已知抛物线y 2=8x 与双曲线x 2a2-y 2=1(a >0)的一个交点为M ,F为抛物线的焦点,若|MF |=5,则该双曲线的渐近线方程为( )A .5x ±3y =0B .3x ±5y =0C .4x ±5y =0D .5x ±4y =0解析:选A.抛物线y 2=8x 的焦点为F (2,0),准线方程为x =-2,设M (m ,n ),则由抛物线的定义可得|MF |=m +2=5,解得m =3,由n 2=24,可得n =±2 6.将M (3,±26)代入双曲线x 2a2-y 2=1(a >0),可得9a 2-24=1(a >0),解得a =35,故双曲线的渐近线方程为y =±53x ,即5x ±3y=0.故选A.8.(2016·高考全国卷Ⅲ)已知O 为坐标原点,F 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )A.13B.12C.23D.34解析:选A.由题意可知直线AE 的斜率存在,设为k ,直线AE 的方程为y =k (x +a ),令x =0可得点E 坐标为(0,ka ),所以OE 的中点H 坐标为⎝⎛⎭⎪⎫0,ka 2,又右顶点B (a,0),所以可得直线BM 的斜率为-k 2,可设其方程为y =-k 2x +k2a ,联立⎩⎪⎨⎪⎧y =k x +a ,y =-k 2x +k 2a ,可得点M 横坐标为-a3,又点M 的横坐标和左焦点相同,所以-a 3=-c ,所以e =13.9.已知双曲线的标准方程为x 29-y 216=1,F 为其右焦点,A 1,A 2分别是实轴的左、右端点,设P 为双曲线上不同于A 1,A 2的任意一点,直线A 1P ,A 2P 与直线x =a 分别交于M ,N 两点,若FM →·FN→=0,则a 的值为( )A.169B.95C.259D.165解析:选B.∵双曲线x 29-y 216=1,右焦点F (5,0),A 1(-3,0),A 2(3,0),设P (x ,y ),M (a ,m ),N (a ,n ),∵P ,A 1,M 三点共线,∴m a +3=y x +3,m =y a +x +3, ∵P ,A 2,N 三点共线,∴na -3=yx -3,∴n =y a -x -3.∵x 29-y 216=1,∴x 2-99=y 216,∴y 2x 2-9=169.又FM →=⎝⎛⎭⎪⎫a -5,y a +x +3,FN →=⎝⎛⎭⎪⎫a -5,y a -x -3,∴FM →·FN →=(a -5)2+y 2a 2-x 2-9=(a -5)2+a 2-9,∵FM →·FN →=0,∴(a -5)2+a 2-9=0,∴25a 2-90a +81=0,∴a =95.故选B.10.(2017·山东东营模拟)设F 1,F 2是双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,若双曲线右支上存在一点P ,使PF 1→·PF 2→=0,且|PF 1|=3|PF 2|,则该双曲线的离心率为( )A.2+12 B.2+1C.3+12D.3+1解析:选C.因为双曲线右支上存在一点P ,使PF 1→·PF 2→=0,所以PF 1→⊥PF 2→, 因为|PF 1|=3|PF 2|,所以|F 1F 2|=2|PF 2|=4c ,即|PF 2|=2c , 所以|PF 1|-|PF 2|=3|PF 2|-|PF 2| =(3-1)|PF 2|=2a ,因为|PF 2|=2c ,所以2c (3-1)=2a ,e =c a =13-1=3+12. 11.以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.已知|AB |=42,|DE |=25,则C 的焦点到准线的距离为( )A .2B .4C .6D .8解析:选B.设抛物线方程为y 2=2px (p >0),圆的方程为x 2+y 2=r 2. ∵|AB |=42,|DE |=25, 抛物线的准线方程为x =-p2,∴不妨设A ⎝ ⎛⎭⎪⎫4p ,22,D ⎝ ⎛⎭⎪⎫-p 2,5. ∵点A ⎝ ⎛⎭⎪⎫4p ,22,D ⎝ ⎛⎭⎪⎫-p 2,5在圆x 2+y 2=r 2上,∴⎩⎪⎨⎪⎧16p 2+8=r 2,p 24+5=r 2,∴16p 2+8=p24+5,∴p =4(负值舍去). ∴C 的焦点到准线的距离为4.12.(2017·高考全国卷Ⅰ)已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A ,B 两点,直线l 2与C 交于D ,E 两点,|AB |+|DE |的最小值为( )A .16B .14C .12D .10解析:选A.设AB 倾斜角为θ,则|AB |=2psin 2θ,又DE 与AB 垂直,即DE 的倾斜角为π2+θ,|DE |=2p sin 2⎝ ⎛⎭⎪⎫π2+θ=2p cos 2θ而y 2=4x ,即p =2. ∴|AB |+|DE |=2p ⎝⎛⎭⎪⎫1sin 2θ+1cos 2θ=4sin 2θcos 2θ=16sin 22θ≥16,当θ=π4时取等号, 即|AB |+|DE |最小值为16,故选A.二、填空题(本题共4小题,每小题5分,共20分)13.已知离心率e =52的双曲线C :x 2a 2-y2b2=1(a >0,b >0)的右焦点为F ,O 为坐标原点,以OF 为直径的圆与双曲线C 的一条渐近线相交于O ,A 两点,若△AOF 的面积为4,则a 的值为________.解析:因为e =1+⎝ ⎛⎭⎪⎫b a2=52,所以b a =12,|AF ||OA |=b a =12,设|AF |=m ,|OA |=2m ,由面积关系得12×m ×2m =4,所以m =2,由勾股定理,得c =m 2+m2=25,又c a =52,所以a = 4.答案:414.设F 1,F 2分别是椭圆E :x 2+y 2b2=1(0<b <1)的左、右焦点,过点F 1的直线交椭圆E 于A ,B 两点.若|AF 1|=3|F 1B |,AF 2⊥x 轴,则椭圆E 的方程为________.解析:设F 1(-c,0),F 2(c,0),其中c =1-b 2, 则可设A (c ,b 2),B (x 0,y 0),由|AF 1|=3|F 1B |,可得(-2c ,-b 2)=3(x 0+c ,y 0),故⎩⎪⎨⎪⎧-2c =3x 0+3c ,-b 2=3y 0,即⎩⎪⎨⎪⎧x 0=-53c ,y 0=-13b 2,代入椭圆方程可得-b29+19b 2=1, 解得b 2=23,故椭圆方程为x 2+3y 22=1.答案:x 2+3y22=115.(2016·高考江苏卷)如图,在平面直角坐标系xOy 中,F 是椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点,直线y =b2与椭圆交于B ,C 两点,且∠BFC =90°,则该椭圆的离心率是________.解析:由已知条件易得B ⎝ ⎛⎭⎪⎫-32a ,b 2,C ⎝ ⎛⎭⎪⎫32a ,b 2,F (c,0), ∴BF →=⎝ ⎛⎭⎪⎫c +32a ,-b 2,CF →=⎝ ⎛⎭⎪⎫c -32a ,-b 2,由∠BFC =90°,可得BF →·CF →=0, 所以⎝ ⎛⎭⎪⎫c -32a ⎝ ⎛⎭⎪⎫c +32a +⎝ ⎛⎭⎪⎫-b 22=0, 即c 2-34a 2+14b 2=0,即4c 2-3a 2+(a 2-c 2)=0,亦即3c 2=2a 2,所以c 2a 2=23,则e =c a =63.答案:6316.(2017·山东潍坊模拟)抛物线y 2=2px (p >0)的焦点为F ,已知点A ,B 为抛物线上的两个动点,且满足∠AFB =120°.过弦AB 的中点M 作抛物线准线的垂线MN ,垂足为N ,则|AB ||MN |的最小值为________.解析:设AF =a ,BF =b ,由余弦定理得|AB |2=a 2+b 2-2ab cos 120°=a 2+b 2+ab =(a +b )2-ab ≥(a +b )2-⎝ ⎛⎭⎪⎫a +b 22=34(a +b )2,因为a +b 2=AF +BF2=MN ,所以|AB |2≥34|2MN |2,所以|AB ||MN |≥3,所以最小值为 3.答案: 3。

河北省衡水中学2018届高三下学期第6周周考数学(理)试题(精校Word版含答案)

河北省衡水中学2018届高三下学期第6周周考数学(理)试题(精校Word版含答案)

理数周日测试6 一、选择题1.已知集合{}{}2,,1,0,2,3,4,8A x x n n Z B ==∈=-,则()R A B ⋂=ð( ) A. {}1,2,6 B. {}0,1,2 C. {}1,3- D.{}1,6- 2.已知i 是虚数单位,则2331i i i -⎛⎫-= ⎪+⎝⎭( )A. 32i --B. 33i --C. 24i -+D. 22i -- 3.已知2sin 3α=,则()3tan sin 2ππαα⎛⎫++= ⎪⎝⎭( ) A. 23-B. 23C.4.已知椭圆()222210x y a b a b+=>>的离心率为12,且椭圆的长轴与焦距之差为4,则该椭圆为方程为( )A. 22142x y +=B. 22184x y +=C. 221164x y +=D.2211612x y += 5.公元五世纪,数学家祖冲之估计圆周率π的值的范围是:3.1415926 3.1415927π<<,为纪念祖冲之在圆周率的成就,把3.1415926称为“祖率”,这是中国数学的伟大成就.某小学教师为帮助同学们了解“祖率”,让同学们从小数点后的7位数字1,4,1,5,9,2,6随机选取两位数字,整数部分3不变,那么得到的数字大于3.14的概率为( ) A.2831 B. 1921 C. 2231 D.1721 6.运行如图所示的程序,输出的结果为( )A. 8B. 6C. 5D.47.已知某几何体的三视图如图所示,则该几何体的表面积为( )A. 6πB. 8πC. 6π+6D.8π+48.已知直线1:1l y x =+与2:l y x m =+之间的距离为2,则直线2l 被圆()22:18C x y ++=截得的弦长为( )A. 4B.3C.2D.19.已知实数,x y 满足不等式组10201x y x y x -+≥⎧⎪+≥⎨⎪≤⎩,则目标函数3z x y =-的最大值为( )A.1B.2C.53 D. 7310.在边长为1的正ABC ∆中,点D 在边BC 上,点E 是AC 中点,若316AD BE =-,则BDBC=( ) A.14 B. 12 C. 34 D. 7811.已知定义在R 上的函数()f x ,满足()()()f m x f m x x R +=-∈,且1x ≥时,()22x n f x -+=,图象如图所示,则满足()2n mf x -≥的实数x 的取值范围是( ) A. []-1,3 B. 1322⎡⎤⎢⎥⎣⎦, C. []0,2 D. 15,22⎡⎤-⎢⎥⎣⎦12.已知函数()()23sin cos 4cos 0f x x x x ωωωω=->的最小正周期为π,且()12f θ=,则2f πθ⎛⎫+= ⎪⎝⎭( ) A. 52-B. 92-C. 112-D. 132- 二、填空题13.在正方体1111ABCD A BC D -中,点M 是11C D 的中点,则1A M 与AB 所成角的正切值为. 14.已知双曲线()222210,0x y a b a b-=>>的离心率为2,过双曲线的右焦点垂直于x 轴的直线被双曲线截得的弦长为m ,则ma=. 15.已知函数()()()()ln 0ln 0x x f x x x >⎧⎪=⎨--<⎪⎩,若()()()20,0f a f b a b =><,且224a b +的最小值为m ,则()22log mab +-=.16.已知ABC ∆的三个内角所对的边分别为,,a b c ,且cos cos 2cos b C c B a B +=,sin 3sin B A =,则a c=. 三、解答题17.(12分)已知等比数列{}n a 满足:112a =,且895618a a a a +=+. (1)求{}n a 的通项公式及前n 项和; (2)若n nb na =,求{}n b 的前n 项和n T .18.(12分)如图,三棱锥P ABC -中,PAB ABC ⊥平面平面,PA PB =,且AB PC ⊥.(1)求证:CA CB =;(2)若2,PA PB AB PC ====P ABC -的体积.19.(12分)某搜索引擎广告按照付费价格对搜索结果进行排名,点击一次付费价格排名越靠前,被点击的次数也可能会提高,已知某关键词被甲、乙等多个公司竞争,其中甲、乙付费情况与每小时点击量结果绘制成如下的折线图.(1)试根据所给数据计算每小时点击次数的均值方差并分析两组数据的特征;(2)若把乙公司设置的每次点击价格为x ,每小时点击次数为y ,则点(x ,y )近似在一条直线附近.试根据前5次价格与每小时点击次数的关系,求y 关于x 的回归直线ˆˆˆybx a =+.(附:回归方程系数公式:1221ˆˆˆ,ni ii nii x y nxybay bx xnx =-=-==--∑∑) 20.(12分)如图,直线10l y ++=与y 轴交于点A ,与抛物线()2:20C x py p =>交于P ,Q ,点B 与点A 关于x 轴对称,连接QB ,BP 并延长分别与x 轴交于点M ,N. (1)若PQ =,求抛物线C 的方程;(2)若3MN =,求BMN ∆外接圆的方程.21.(12分)已知函数()()2ln f x x axa R =+∈.(1)若()y f x =在2x =处的切线与x 轴平行,求()f x 的极值;(2)若函数()()1g x f x x =--在()0∞,+上单调递增,求实数a 的取值范围. 选考题22.(10分)选修4-4坐标系与参数方程以原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为()253cos28ρθ-=,直线l的参数方程为22x m t y ⎧=-⎪⎪⎨⎪=⎪⎩(其中t 为参数).(1)把曲线C 的极坐标方程化为普通方程;(2)若直线l 与曲线C 有两个公共点,求实数m 的取值范围.23.(10分)选修4-5不等式选讲 已知函数()12f x x x =-+.(1)关于x 的不等式()2f x <的解集为M ,且(),12m m M -⊆,求实数m 的取值范围; (2)求()()22g x f x x x =-+-的最小值,及对应的x 的取值范围. 附加题. 已知函数()()()2ln f x x g x ax bx a b ==-,、为常数.(Ⅰ)求函数()f x 在点()()1,1f 处的切线方程;(Ⅱ)当函数()2g x x =在处取得极值-2,求函数()g x 的解析式;(Ⅲ)当12a=时,设()()()h x f x g x=+,若函数()h x在定义域上存在单调减区间,求实数b的取值范围.河北衡水中学2018届高三数学复习 周日测答案1.【答案】C 【解析】由条件可知A 为偶数集,故(){}R 1,3A B =-I ð.2.【答案】B 【解析】()()()22231i 3i 3i i i 12i i 33i 1i 2轾--骣-÷犏ç-=+=-+=--÷ç÷犏ç桫+臌. 3.【答案】A 【解析】()()32tan sin tan cos sin 23p p a a a a a 骣÷ç++=-=-=-÷ç÷ç桫. 4.【答案】D 【解析】设椭圆的焦距为2c ,由条件可得12c a =,故2a c =,由椭圆的长轴与焦距之差为4可得()24a c -=,即2a c -=,所以,4a =,2c =,故22212b a c =-=,故该椭圆的方程为2211612x y +=.5.【答案】A 【解析】从1,4,1,5,9,2,6这7位数字中任选两位数字的不同情况有:14,11,15,19,12,16,41,45,49,42,46,59,52,56,92,96,26,51,91,21,61,54,94,24,64,95,25,65,29,69,62,共31种不同情况,其中使得到的数字不大于3.14的情况有3种不同情况,故所求概率为32813131-=. 6.【答案】D 【解析】所给程序的运行过程如下:1b =,3a =;2b =,7a =;3b =,15a =;4b =,31a =,不满足30a <,输出b 的值为4.7.【答案】C 【解析】由三视图可知,该几何体是一个圆柱的34,故表面积为()232123213664p p p ??创=+.8.【答案】A 【解析】由条件可知,直线1l 过圆心():1,0C -,则圆心C 到直线2l 的距离等于直线1l 与2l 之间的距离2,故直线2l 被圆C 截得的弦长为4. 9.【答案】B 【解析】不等式组表示的平面区域如下图中的阴影部分所示:且点12,33A 骣÷ç-÷ç÷ç桫,()1,2B ,()1,2C -,易得目标函数3z x y =-在点C 处取得最大值5.10.【答案】C 【解析】设AB =uu u r a ,AC =uuu r b ,BD BC l =uu u r uu u r,则()()1AD AB BD l l l =+=+-=-+u u u r u u u r u u u r a b a a b ,12BE AE AB =-=-u u u r u u u r u u u r b a ,则()()()()()()2211111312221133131142416AD BE l l l l l l l l l 骣÷ç轾?-+?=-?-+÷ç臌÷ç桫=-+-+=-=-uuu r uu u r a b b a a b a b故34l =,即34BD BC =. 11.【答案】B 【解析】由条件可知,()f x 的图象关于直线1x =对称,结合()()()f m x f m x x +=-?R 可得1m =,而()11f =,即221n -+=,解之得2n =,由()2n m f x -≥可得()12f x ≥,当1x ≥时,由22122x -+≥,解之得32x ≤,所以,312x ≤≤,再结合对称性可得x 的取值范围是13,22轾犏犏臌.12.【答案】B 【解析】()()2353sin cos 4cos sin 22cos22sin 2222f x x x x x x x w w w w w w j =-=--=--,其中4sin 5j =,3cos 5j =,由()12f q =可得()sin 21wq j -=,即()f x 关于x q =对称,而2x p q =+与x q =的距离为12个周期,故sin 212p w q j 轾骣÷ç犏+-=-÷ç÷ç犏桫臌,所以,592222f p q 骣÷ç+=--=-÷ç÷ç桫. 13.【答案】2【解析】11MA B Ð即为1A M 与AB 所成角,取11A B 中点N ,连接MN ,则11MN A B ^,则111tan 2MNMA B A N?=. 14.【答案】6【解析】设双曲线的焦距为2c ,则2ca=,即2c a =,则b =2x c a==代入双曲线可得2b y a =?,故22b m a =,所以,2226m b a a==.15.【答案】3【解析】由()()()20,0f a f b a b =><可得()ln ln 2a b =--,即21ab -=,∴12ab =-,则2242242a b a bab +?=≥,当且仅当122ab a b ìïï=-ïíïï=-ïî,即112a b ì=ïïïíï=-ïïî时,224a b +取得最小值2.故()22212log 2log 32m ab +=+=.16.cos cos 2cos b C c B a B +=及正弦定理可得sin cos sin 2sin cos B C Ccos B A B +=,即()sin 2sin cos B C A B +=,而()sin sin 0A B C =+>,∴1cos 2B =.由sin 3sin B A =可得3b a =,由余弦定理可得2222cos b a c ac B =+-,即2229a a c ac =+-,解之得a c=(舍去负值). 17.【解析】(1)设{}n a 的公比为q ,由895618a a a a +=+可得318q =,∴12q =,∴12n n a =,∴11112211212n n n S 骣÷ç-÷ç÷ç桫==--.(5分) (2)由(1)可得2n n n b =,则231232222n n nT =++++L ① 所以,2341112322222n n nT +=++++L ②由①-②可得2311111111111222112222222212n n n n n n n n n T +++骣÷ç-÷ç÷ç桫+=++++-=-=--L , 所以,222n nn T +=-.(12分) 18.【解析】(1)取AB 的中点O ,连接PO ,PC .∵PA PB =,∴PO AB ^, ∵AB PC ^,PC PO P =I ,PC ,PO Ì平面POC , ∴AB ^平面POC ,又∵OC Ì平面POC ,∴AB OC ^, 而O 是AB 的中点,∴CA CB =.(6分)(2)∵平面PAB ^平面ABC ,PO Ì平面PAB ,平面PAB I 平面ABC AB =, ∴PO ^平面ABC,由条件可得PO =OC =.则11222ABC S AB OC =?创V ∴三棱锥P ABC -的体积为:1133ABC V S PO =?V .(12分)19.【解析】(1)由题图可知,甲公司每小时点击次数为9,5,7,8,7,6,8,6,7,7,乙公司每小时点击次数为2,4,6,8,7,7,8,9,9,10. 甲公司每小时点击次数的平均数为:9578768677710x +++++++++==甲,乙公司每小时点击次数的平均数为:24687789071091x +++++++++==乙.甲公司每小时点击次数的方差为:()()222222122212140 1.210S 轾=+-+??+?犏臌甲;乙公司每小时点击次数的方差为:()()()22222222153******** 5.410S 轾=-+-+-+??+?犏臌乙,由计算已知,甲、乙公司每小时点击次数的均值相同,但是甲的方差较小,所以,甲公司每小时点击次数更加稳定.(6分)(2)根据折线图可得数据如下:则3x =, 5.4y =,则5152215 1.4i i i ii x y xy b x n x=-=-==-åå$, 1.2a =$, ∴所求回归直线方程为: 1.4 1.2y x =+$.(12分)20.【解析】(1)由2102y x py++=ï=ïî可得220x p ++=, 设点()11,P x y ,()22,Q x y,则()280p D=->,即1p >,12x x +=-,122x x p =,故12PQ x =-=.由2p =(舍去负值), ∴抛物线C 的方程为24x y =.(5分)(2)设直线BN ,BM 的斜率分别为1k ,2k 点,21221111212111111122222x y x p x x x x x p k x x px px p-----=====,22222221221222221122222x y x p x x x x x p k x x px px p-----=====, ∴120k k +=.直线BN 的方程为:11y k x =+,直线BM 的方程为:21y k x =+,则11,0N k 骣÷ç÷-ç÷ç÷桫,21,0M k 骣÷ç÷-ç÷ç÷桫,则12211211k k MN k k k k -=-==,由120k k +=可得12k k =-,∴1212k k =,∴1k =2k =120k k <,故tan tan BNM BMN ??, 即BMN V 是等腰三角形,且1OB =,则BMN V 的外接圆的圆心一定在y 轴上,设为()0,t ,由圆心到点M ,B 的距离相等可得()2221t t -=+桫,解之得16t =-,外接圆方程为22149636x y 骣÷ç++=÷ç÷ç桫.(12分) 21.【解析】(1)∵()2ln f x x ax =+,∴()()120f x ax x x ¢=+>, 由条件可得()11402f a ¢=+=,解之得18a =-, ∴()21ln 8f x x x =-,()()()()2211044x x f x x x x x --+¢=-=>, 令()0f x ¢=可得2x =或2x =-(舍去)当02x <<时,()0f x ¢>;当2x >时,()0f x ¢<即()f x 在()0,2上单调递增,在()2,+?上单调递减,故()f x 有极大值()12ln 22f =-,无极小值(5分) (2)()2ln 1g x x ax x =+--,则()()2121210ax x g x ax x x x-+¢=+-=> 设()221h x ax x =-+,①当0a =时,()1x g x x-¢=-,当01x <<时,()0g x ¢>, 当1x >时,()0g x ¢<,即()g x 在()0,1上单调递增,在()1,+?上单调递减,不满足条件;②当0a <时,()221h x ax x =-+是开口向下的抛物线,方程2210ax x -+=有两个实根,设较大实根为0x .当0x x >时,有()0h x <,即()0g x ¢<,∴()g x 在()0,x +?上单调递减,故不符合条件(8分)③当0a >时,由()0g x ¢≥可得()221h x ax x =-+在()0,+?上恒成立,故只需()0010400h a a ìïïïï-ïï-ïíïïD >ïïïï>ïî≥≤或0D ≤,即101041800a a a ìïïïïïïïíïï->ïïïï>ïî≥≤或1800a a ì-ïïíï>ïî≤,解之得18a ≥. 综上可知,实数a 的取值范围是1,8轹÷ê+?÷÷êøë.(12分) 22.【解析】(1)方程()253cos28r q -=可化为()22532cos 18r q 轾--=犏臌,即22243cos 4r r q -=,把222c o s x x y r r q ìï=+ïíï=ïî代入可得()222434x y x +-=,整理可得2214x y +=.(5分)(2)把x m y ìïï=-ïïïíïïï=ïïî代入2214x y +=可得225280t m -+-=,由条件可得()()2220280m D =--->,解之得m -<即实数m的取值范围是(-.(10分)23.【解析】(1)当1x ≤时,不等式()2f x <可变为()122x x --+<,解之得1x <,∴1x <;当1x >时,不等式()2f x <可变为()122x x -+<,解之得1x <,∴x 不存在. 综上可知,不等式()2f x <的解集为(),1M =-?.由(),12m m M -?,可得12121m m m ì<-ïïíï-ïî≤,解之得103m <≤,即实数m 的取值范围是10,3轹÷ê÷÷êøë.(5分)(2)()()()()2212121g x f x x x x x x x =-+-=-+----=≥,当且仅当()()120x x --≤,即12x ≤≤时,()g x 取得最小值1,此时,实数x 的取值范围是[]1,2.(10分)附加题(1)1y x =-(2)()2122g x x x =-(3)()2,b ∈+∞ 试题解析:(Ⅰ)由()ln f x x =(0x >),可得()1'f x x =(0x >), ∴()f x 在点()()1,1f 处的切线方程是()()()111y f f x '-=-,即1y x =-,所求切线方程为1y x =-. (Ⅱ)∵又()2g x ax bx =-可得()2g x ax b '=-,且()g x 在2x =处取得极值2-. ∴()()20,22,g g '⎧=⎪⎨=-⎪⎩可得40,422,a b a b -=-=-⎧⎨⎩解得12a =,2b =. 所求()2122g x x x =-(x R ∈). (Ⅲ)∵()()()21ln 2h x f x g x x x bx =+=+-,()21x bx h x x -+'=(0x >). 依题存在0x >使()210x bx h x x-+'=<,∴即存在0x >使210x bx -+<, 不等式210x bx -+<等价于1b x x >+(*) 令()1x x x=+λ(0x >),∵()()()221111(0)x x x x x x λ+-'=-=>. ∴()x λ在()0,1上递减,在[)1,+∞上递增,故()[)12,x x x=+∈+∞λ, ∵存在0x >,不等式(*)成立,∴2b >,所求()2,b ∈+∞.。

2018届高考数学理二轮专题复习限时规范训练:第一部分

2018届高考数学理二轮专题复习限时规范训练:第一部分

限时规范训练十六 圆锥曲线的定义、性质,直线与圆锥曲线限时40分钟,实际用时分值80分,实际得分一、选择题(本题共12小题,每小题5分,共60分)1.若实数k 满足0<k <9,则曲线x 225-y 29-k =1与曲线x 225-k -y 29=1的( )A .焦距相等B .实半轴长相等C .虚半轴长相等D .离心率相等解析:选A.由25+(9-k )=(25-k )+9,知两曲线的焦距相等.2.(2017·宁夏银川质检)抛物线y 2=8x 的焦点到双曲线x 2-y 23=1的渐近线的距离是( )A.12B.32C .1D. 3解析:选D.由抛物线y 2=8x ,有2p =8⇒p =4,焦点坐标为(2,0),双曲线的渐近线方程为y =±3x ,不妨取其中一条3x -y =0,由点到直线的距离公式,有d =|3×2-0|3+1=3,故选D.3.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为y =52x ,且与椭圆x 212+y 23=1有公共焦点.则C 的方程为( )A.x 28-y 210=1B.x 24-y 25=1C.x 25-y 24=1 D.x 24-y 23=1 解析:选B.∵双曲线的一条渐近线方程为y =52x ,则b a =52,①又∵椭圆x 212+y 23=1与双曲线有公共焦点,易知c =3,则a 2+b 2=c 2=9, ②由①②解得a =2,b =5,则双曲线C 的方程为x 24-y 25=1,故选B.4.已知抛物线y 2=2px 的焦点F 与双曲线x 27-y 29=1的右焦点重合,抛物线的准线与x 轴的交点为K ,点A 在抛物线上且|AK |=2|AF |,则△AFK 的面积为( )A .4B .8C .16D .32解析:选D.因为抛物线y 2=2px 的焦点F 与双曲线x 27-y 29=1的右焦点(4,0)重合,所以p =8.设A (m ,n ),又|AK |=2|AF |,所以m +4=|n |, 又n 2=16m ,解得m =4,|n |=8, 所以△AFK 的面积为S =12×8×8=32.5.(2017·安徽合肥模拟)已知双曲线x 2-y 23=1的左顶点为A 1,右焦点为F 2,P 为双曲线右支上一点,则PA 1→·PF 2→的最小值为( )A .-2B .-8116C .1D .0解析:选A.设点P (x ,y ),其中x ≥1.依题意得A 1(-1,0),F 2(2,0),则有y 23=x 2-1,y 2=3(x2-1),PA 1→·PF 2→=(-1-x ,-y )·(2-x ,-y )=(x +1)(x -2)+y 2=x 2+3(x 2-1)-x -2=4x 2-x -5=4⎝ ⎛⎭⎪⎫x -182-8116,其中x ≥1.因此,当x =1时,PA 1→·PF 2→取得最小值-2,选A.6.(2017·浙江宁波模拟)点A 是抛物线C 1:y 2=2px (p >0)与双曲线C 2:x 2a 2-y 2b2=1(a >0,b>0)的一条渐近线的交点,若点A 到抛物线C 1的准线的距离为p ,则双曲线C 2的离心率等于( )A. 2B. 3C. 5D. 6解析:选C.取双曲线的一条渐近线为y =bax ,联立⎩⎪⎨⎪⎧y 2=2px ,y =bax ⇒⎩⎪⎨⎪⎧x =2pa 2b2,y =2pab ,故A ⎝ ⎛⎭⎪⎫2pa 2b2,2pa b .因为点A 到抛物线C 1的准线的距离为p .所以p 2+2pa 2b 2=p ,所以a 2b 2=14.所以双曲线C 2的离心率e =ca=a 2+b 2a 2= 5. 7.(2017·山东德州一模)已知抛物线y 2=8x 与双曲线x 2a2-y 2=1(a >0)的一个交点为M ,F为抛物线的焦点,若|MF |=5,则该双曲线的渐近线方程为( )A .5x ±3y =0B .3x ±5y =0C .4x ±5y =0D .5x ±4y =0解析:选A.抛物线y 2=8x 的焦点为F (2,0),准线方程为x =-2,设M (m ,n ),则由抛物线的定义可得|MF |=m +2=5,解得m =3,由n 2=24,可得n =±2 6.将M (3,±26)代入双曲线x 2a2-y 2=1(a >0),可得9a 2-24=1(a >0),解得a =35,故双曲线的渐近线方程为y =±53x ,即5x ±3y=0.故选A.8.(2016·高考全国卷Ⅲ)已知O 为坐标原点,F 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )A.13B.12C.23D.34解析:选A.由题意可知直线AE 的斜率存在,设为k ,直线AE 的方程为y =k (x +a ),令x =0可得点E 坐标为(0,ka ),所以OE 的中点H 坐标为⎝⎛⎭⎪⎫0,ka 2,又右顶点B (a,0),所以可得直线BM 的斜率为-k 2,可设其方程为y =-k 2x +k2a ,联立⎩⎪⎨⎪⎧y =k x +a ,y =-k 2x +k 2a ,可得点M 横坐标为-a3,又点M 的横坐标和左焦点相同,所以-a 3=-c ,所以e =13.9.已知双曲线的标准方程为x 29-y 216=1,F 为其右焦点,A 1,A 2分别是实轴的左、右端点,设P 为双曲线上不同于A 1,A 2的任意一点,直线A 1P ,A 2P 与直线x =a 分别交于M ,N 两点,若FM →·FN→=0,则a 的值为( )A.169B.95C.259D.165解析:选B.∵双曲线x 29-y 216=1,右焦点F (5,0),A 1(-3,0),A 2(3,0),设P (x ,y ),M (a ,m ),N (a ,n ),∵P ,A 1,M 三点共线,∴m a +3=y x +3,m =y a +x +3, ∵P ,A 2,N 三点共线,∴na -3=yx -3,∴n =y a -x -3.∵x 29-y 216=1,∴x 2-99=y 216,∴y 2x 2-9=169.又FM →=⎝⎛⎭⎪⎫a -5,y a +x +3,FN →=⎝⎛⎭⎪⎫a -5,y a -x -3,∴FM →·FN →=(a -5)2+y 2a 2-x 2-9=(a -5)2+a 2-9,∵FM →·FN →=0,∴(a -5)2+a 2-9=0,∴25a 2-90a +81=0,∴a =95.故选B.10.(2017·山东东营模拟)设F 1,F 2是双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,若双曲线右支上存在一点P ,使PF 1→·PF 2→=0,且|PF 1|=3|PF 2|,则该双曲线的离心率为( )A.2+12 B.2+1C.3+12D.3+1解析:选C.因为双曲线右支上存在一点P ,使PF 1→·PF 2→=0,所以PF 1→⊥PF 2→, 因为|PF 1|=3|PF 2|,所以|F 1F 2|=2|PF 2|=4c ,即|PF 2|=2c , 所以|PF 1|-|PF 2|=3|PF 2|-|PF 2| =(3-1)|PF 2|=2a ,因为|PF 2|=2c ,所以2c (3-1)=2a ,e =c a =13-1=3+12. 11.以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.已知|AB |=42,|DE |=25,则C 的焦点到准线的距离为( )A .2B .4C .6D .8解析:选B.设抛物线方程为y 2=2px (p >0),圆的方程为x 2+y 2=r 2. ∵|AB |=42,|DE |=25, 抛物线的准线方程为x =-p2,∴不妨设A ⎝ ⎛⎭⎪⎫4p ,22,D ⎝ ⎛⎭⎪⎫-p 2,5. ∵点A ⎝ ⎛⎭⎪⎫4p ,22,D ⎝ ⎛⎭⎪⎫-p 2,5在圆x 2+y 2=r 2上,∴⎩⎪⎨⎪⎧16p 2+8=r 2,p 24+5=r 2,∴16p 2+8=p24+5,∴p =4(负值舍去). ∴C 的焦点到准线的距离为4.12.(2017·高考全国卷Ⅰ)已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A ,B 两点,直线l 2与C 交于D ,E 两点,|AB |+|DE |的最小值为( )A .16B .14C .12D .10解析:选A.设AB 倾斜角为θ,则|AB |=2psin 2θ,又DE 与AB 垂直,即DE 的倾斜角为π2+θ,|DE |=2p sin 2⎝ ⎛⎭⎪⎫π2+θ=2p cos 2θ而y 2=4x ,即p =2. ∴|AB |+|DE |=2p ⎝⎛⎭⎪⎫1sin 2θ+1cos 2θ=4sin 2θcos 2θ=16sin 22θ≥16,当θ=π4时取等号, 即|AB |+|DE |最小值为16,故选A.二、填空题(本题共4小题,每小题5分,共20分)13.已知离心率e =52的双曲线C :x 2a 2-y2b2=1(a >0,b >0)的右焦点为F ,O 为坐标原点,以OF 为直径的圆与双曲线C 的一条渐近线相交于O ,A 两点,若△AOF 的面积为4,则a 的值为________.解析:因为e =1+⎝ ⎛⎭⎪⎫b a2=52,所以b a =12,|AF ||OA |=b a =12,设|AF |=m ,|OA |=2m ,由面积关系得12×m ×2m =4,所以m =2,由勾股定理,得c =m 2+m2=25,又c a =52,所以a = 4.答案:414.设F 1,F 2分别是椭圆E :x 2+y 2b2=1(0<b <1)的左、右焦点,过点F 1的直线交椭圆E 于A ,B 两点.若|AF 1|=3|F 1B |,AF 2⊥x 轴,则椭圆E 的方程为________.解析:设F 1(-c,0),F 2(c,0),其中c =1-b 2, 则可设A (c ,b 2),B (x 0,y 0),由|AF 1|=3|F 1B |,可得(-2c ,-b 2)=3(x 0+c ,y 0),故⎩⎪⎨⎪⎧-2c =3x 0+3c ,-b 2=3y 0,即⎩⎪⎨⎪⎧x 0=-53c ,y 0=-13b 2,代入椭圆方程可得-b29+19b 2=1, 解得b 2=23,故椭圆方程为x 2+3y 22=1.答案:x 2+3y22=115.(2016·高考江苏卷)如图,在平面直角坐标系xOy 中,F 是椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点,直线y =b2与椭圆交于B ,C 两点,且∠BFC =90°,则该椭圆的离心率是________.解析:由已知条件易得B ⎝ ⎛⎭⎪⎫-32a ,b 2,C ⎝ ⎛⎭⎪⎫32a ,b 2,F (c,0), ∴BF →=⎝ ⎛⎭⎪⎫c +32a ,-b 2,CF →=⎝ ⎛⎭⎪⎫c -32a ,-b 2,由∠BFC =90°,可得BF →·CF →=0, 所以⎝ ⎛⎭⎪⎫c -32a ⎝ ⎛⎭⎪⎫c +32a +⎝ ⎛⎭⎪⎫-b 22=0, 即c 2-34a 2+14b 2=0,即4c 2-3a 2+(a 2-c 2)=0,亦即3c 2=2a 2,所以c 2a 2=23,则e =c a =63.答案:6316.(2017·山东潍坊模拟)抛物线y 2=2px (p >0)的焦点为F ,已知点A ,B 为抛物线上的两个动点,且满足∠AFB =120°.过弦AB 的中点M 作抛物线准线的垂线MN ,垂足为N ,则|AB ||MN |的最小值为________.解析:设AF =a ,BF =b ,由余弦定理得|AB |2=a 2+b 2-2ab cos 120°=a 2+b 2+ab =(a +b )2-ab ≥(a +b )2-⎝ ⎛⎭⎪⎫a +b 22=34(a +b )2,因为a +b 2=AF +BF2=MN ,所以|AB |2≥34|2MN |2,所以|AB ||MN |≥3,所以最小值为 3.答案: 3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

每日一题 规范练(第六周)[题目1] (本小题满分12分)在△ABC 中,2b -ca=cos Ccos A. (1)求∠A 的大小;(2)若a =10,b =82,求△ABC 的面积S . 解:(1)因为a sin A =b sin B =csin C ,由题意,可得2sin B -sin C sin A =cos Ccos A.所以2sin B cos A =cos C sin A +sin C cos A , 即2sin B cos A =sin(A +C )=sin B . 因为B ∈(0,π),所以sin B ≠0, 所以cos A =22. 因为A ∈(0,π),所以∠A =π4.(2)因为a =10,b =82, 所以102=(82)2+c 2-2×82×22c , 解之得c =14或c =2,所以S =12bc sin A =56或S =12bc sin A =8.[题目2] (本小题满分12分)已知等比数列{a n }的前n 项和为S n ,且满足S n =2n +1+2p (n ∈N *).(1)求p 的值及数列{a n }的通项公式; (2)若数列{b n }满足a n +12=(3+p )a n b n ,求数列{b n }的前n 项和T n .解:(1)因为S n =2n +1+2p (n ∈N *),所以a 1=S 1=4+2p , 当n ≥2时,a n =S n -S n -1=2n. 由于{a n }是等比数列,所以a 1=4+2p =2,则p =-1,因此a n =2n (n ∈N *). (2)由a n +12=(3+p )a n b n =2a n b n ,得2n=22nb n ,所以b n =n2n .T n =12+222+323+…+n2n .①12T n =122+223+…+n -12n +n 2n +1② ①-②得12T n =12+122+123+…+12n -n 2n +1,所以T n =1+12+122+…+12n -1-n 2n =1·⎝ ⎛⎭⎪⎫1-12n 1-12-n 2n =2⎝ ⎛⎭⎪⎫1-12n -n2n ,因此T n =2-12n -1-n2n .[题目3] (本小题满分12分)为了响应我市“创建宜居港城,建设美丽莆田”的号召,某环保部门开展以“关爱木兰溪,保护母亲河”为主题的环保宣传活动,将木兰溪流经市区河段分成10段,并组织青年干部职工对每一段的南、北两岸进行环保综合测评,得到分值数据如下表:为优良的概率;(2)根据表中数据完成下面茎叶图;(3)分别估计两岸分值的中位数,并计算它们的平均数,试从计算结果分析两岸环保情况,哪边保护更好?解:(1)从10段中任取一段的基本事件为(77,72),(92,87),(84,78),(86,83),(74,83),(76,85),(81,75),(71,89),(85,90),(87,95)共10个,这些基本事件是等可能的.用A 表示“同一段中两岸环保评分均为优良”的事件,则A 包含的基本事件为:(92,87),(86,83),(85,90),(87,95)共4个,所以P (A )=410=25.(2)根据表中数据完成下面茎叶图(2)南岸10段的分值数据的中位数z 1=81+842=82.5,南岸10段分值数据的平均数:x 1=(70×4+1+4+6+7)+(80×5+1+4+5+6+7)+9210=81.3.北岸10段分值数据的中位数z 2=83+852=84,北岸10段分值数据的平均数:x 2=(70×3+2+5+8)+(80×5+3+3+5+7+9)+(90×2+0+5)10=83.7.由z 1<z 2,x 1<x 2,可看出北岸保护更好.[题目4] (本小题满分12分)如图,五面体ABCDE ,四边形ABDE 是矩形,△ABC 是正三角形,AB =1,AE =2,F 是线段BC 上一点,直线BC 与平面ABD 所成角为30°,CE ∥平面ADF .(1)试确定F 的位置; (2)求三棱锥A ­CDF 的体积.解:(1)连接BE 交AD 于点O ,连接OF ,因为CE ∥平面ADF ,CE ⊂平面BEC ,平面ADF ∩平面BEC =OF , 所以CE ∥OF .因为O 是BE 的中点,所以F 是BC 的中点.(2)因为BC 与平面ABD 所成角为30°,BC =AB =1, 所以C 到平面ABD 的距离为h =BC ·sin 30°=12.因为AE =2,所以V A ­CDF =V F ­ACD =12V B ­ACD =12V C ­ABD =12×13×12×1×2×12=112.[题目5] (本小题满分12分)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)经过点M ⎝⎛⎭⎪⎫1,233,离心率为33. (1)求椭圆E 的标准方程;(2)若A 1,A 2分别是椭圆E 的左、右顶点,过点A 2作直线l 与x 轴垂直,点P 是椭圆E 上的任意一点(不同于椭圆E 的四个顶点),连接PA 1交直线l 于点B ,点Q 为线段A 2B 的中点,求证:直线PQ 与椭圆E 只有一个公共点.(1)解:依题意得⎩⎪⎨⎪⎧e =c a =33,1a 2+43b 2=1,a 2=b 2+c 2,⇒⎩⎨⎧a =3,b =2,c =1,所以椭圆E 的标准方程为x 23+y 22=1.(2)证明:设P (x 0,y 0)(x 0≠0且x 0≠±3), 则直线PA 1的方程为y =y 0x 0+3(x +3),令x =3,得B ⎝⎛⎭⎪⎫3,23y 0x 0+3,则线段A 2B 的中点Q ⎝ ⎛⎭⎪⎫3,3y 0x 0+3,所以直线PQ 的斜率k PQ =y 0-3y 0x 0+3x 0-3=x 0y 0x 20-3.① 因为P 是椭圆E 上的点,所以x 2=3⎝ ⎛⎭⎪⎫1-y 202,代入①式,得k PQ =-2x 03y 0, 所以直线PQ 的方程为y -y 0=-2x 03y 0(x -x 0),联立方程式⎩⎪⎨⎪⎧y -y 0=-2x 03y 0(x -x 0),x 23+y22=1,整理得x 2-2x 0x +x 20=0,因为Δ=0,所以直线PQ 与椭圆E 相切, 故直线PQ 与椭圆E 只有一个公共点.[题目6] (本小题满分12分)已知函数f (x )=x 2-a ln x (a >0)的最小值是1. (1)求a ;(2)若关于x 的方程f 2(x )e x -6mf (x )+9m e -x=0在区间[1,+∞)有唯一的实根,求m 的取值范围.解:(1)f ′(x )=2x -a x=2⎝⎛⎭⎪⎫x +a 2⎝⎛⎭⎪⎫x -a 2x(x >0).所以,当0<x <a2时,f ′(x )<0;当x >a2时,f ′(x )>0, 故f (x )min =f ⎝⎛⎭⎪⎫a 2=a 2-a2ln a2, 由题意,可得a 2-a2ln a2=1,即a 2-a 2ln a2-1=0, 记g (a )=a 2-a 2ln a2-1(a >0),则函数g (a )的零点即为方程a 2-a 2ln a2=1的根;由于g ′(a )=-12ln a2,故a =2时,g ′(2)=0,且0<a <2时,g ′(a )>0;a >2时,g ′(a )<0. 所以a =2是函数g (a )的唯一极大值点, 所以g (a )≤g (2),又g (2)=0,所以a =2. (2)由条件可得f 2(x )e 2x-6mf (x )e x+9m =0, 令h (x )=f (x )e x=(x 2-2ln x ) e x, 则h ′(x )=⎝⎛⎭⎪⎫x 2+2x -2x-2ln x e x,令r (x )=x 2+2x -2x-2ln x (x ≥1),则r ′(x )=2x +2+2x 2-2x >2x -2x =2(x 2-1)x≥0,r (x )在区间[1,+∞)内单调递增,所以h (x )≥h (1)=e ;所以原问题等价于方程t 2-6mt +9m =0在区间[e ,+∞)内有唯一解, 当Δ=0时可得m =0或m =1,经检验m =1满足条件. 当Δ>0时可得m <0或m >1,所以e 2-6m e +9m ≤0,解之得m ≥e 26e -9,综上可知,m 的取值范围是⎩⎨⎧⎭⎬⎫m ⎪⎪⎪m =1或m ≥e 26e -9. [题目7] 请考生在1、2题中任选一题作答,如果多做,则按所做的第一题计分. 1.(本小题满分10分)已知曲线C 的极坐标方程为ρ=4cos θ,以极点为原点,极轴为x 轴的正半轴建立平面直角坐标系,设直线l 的参数方程为⎩⎪⎨⎪⎧x =5+32t ,y =12t(t 为参数).(1)求曲线C 的直角坐标方程与直线l 的普通方程;(2)设曲线C 与直线l 相交于P ,Q 两点,以PQ 为一条边作曲线C 的内接矩形,求该矩形的面积.解:(1)对于曲线C ,由ρ=4cos θ,得ρ2=4ρcos θ, 所以x 2+y 2=4x .对于l :由⎩⎪⎨⎪⎧x =5+32t ,y =12t (t 为参数),消去t 可得y =13(x -5),化为一般式可得x -3y -5=0.(2)由(1)可知C 为圆,且圆心为(2,0),半径为2, 所以弦心距d =|2-3×0-5|1+3=32,所以弦长|PQ |=222-⎝ ⎛⎭⎪⎫322=7,所以以PQ 为边的圆C 的内接矩形面积S =2d ·|PQ |=37.2.(本小题满分10分)已知函数f (x )=|ax -2|. (1)当a =2时,解不等式f (x )>x +1;(2)若关于x 的不等式f (x )+f (-x )<1m有实数解,求m 的取值范围.解:(1)当a =2时,不等式为|2x -2|>x +1, 当x ≥1时,不等式化为2x -2>x +1,解得x >3. 当x <1时,不等式化为2-2x >x +1,解得x <13.综上所述,解集为⎝⎛⎭⎪⎫-∞,13∪(3,+∞). (2)因为f (x )+f (-x )=|ax -2|+|-ax -2|≥|ax -2-ax -2|=4, 所以f (x )+f (-x )的最小值为4, 因为f (x )+f (-x )<1m有实数解,所以4<1m ,则0<m <14.故实数m 的取值范围为⎝ ⎛⎭⎪⎫0,14.。

相关文档
最新文档