First-time Usability Testing for Bluetooth-enabled Devices KU

合集下载

USP生物指示剂抗性测试

USP生物指示剂抗性测试

USP生物指示剂抗性测试USP 55 BIOLOGICAL INDICATORS—RESISTANCE PERFORMANCE TESTS生物指示剂,抗性测试TOTAL VIABLE SPORE COUNT活孢子数总数计数Remove three specimens of the relevant biological indicator fromtheir original individual containers. Disperse the paper into component fibers by placing the test specimens in a sterile 250-mL cup of a suitable blender containing 100 mL of chilled, sterilized Purified Water and blending for 3 to 5 minutes to achieve a homogeneous suspension. Transfer a 10-mL aliquot of the suspension to a sterile, screw-capped16- × 125-mm tube. 从生物指示剂的原包装袋中取出3支作为样本。

把待测样品放入一个已灭菌的250mL有搅拌器的杯子里,杯子内装100 mL放冷的灭菌纯化水。

把杯子里的纸片磨碎成纤维状,并混合3,5min使之成为均一的悬浮液。

转移10ml的整数倍的悬浮液至一个已灭菌的16× 125mm的螺盖管中。

For Biological Indicator for Steam Sterilization, Paper Carrier,heat the tube containingthe suspension in a water bath at 95 to 100 for 15 minutes (heat shock), starting thetiming when the temperature reaches 95.如果是纸载的蒸汽灭菌生物指示剂,则把装有悬浮液的管放入95?,100?水浴15min(热休克),在悬浮液温度达到95?时开始计时。

1.检测限和定量限的确定方法

1.检测限和定量限的确定方法

目前的一些常用方法的缺陷
空白
真实
SD
低值
假设
导致低
LOD/Q
无法 区分
虚假
分布
对称
忽略事 实(LOD)
LOB
LOB
空白样本结果接近零时的分布
仪器内部产生该类型的信号时,许多仪器自动转换阴性值信号为零或一个 低值阳性值。因此只提供非阴性浓度值输出 假设该值超过空白测量中实际空白样本显著变异分布的第95百分位数 如果样本产生一个超过该限值的观测值,它可以宣称分析物含量大于零
α=β=5%。一个α值为5%对应使用空白值分布第95百分位数,宣称测量值显著高于空白限值 一个空白值呈Gaussian分布:LoB=µB+1.645σB
LOB
计算方法
•浓度低于零的情况下不被报告或空白值不呈Gaussian分布时(空白值呈不 对称分布),第95百分位数通过其他方法估计 直截了当的程序使用基于命令值的非参数原理。通过大量的Nb值排序,第 95百分位数作为阳性第Nb(95/100+0.5)位观测值来估计
LOB
LOB验证举例
•用户进行25次空白测量(5个样本5天测量5次) 目测检查显示空白值呈不对称分布,因此,非参数估计LoB,在观测区的第 24位和第25位之间线性内插法得LoB=19.17 U/L(=18.01+0.25*(22.6518.01))
LOD
LOD
第II类错误
为了表述第II类错误,一方面不得不考虑最小样本浓度等于LoD,即提供规定概率下超过LoB 的结果 当第II类错误β水平设为5%时,那么95%的测量结果超过LoB
LOD
图示
LOD
样本分布
•如果样本中分析物的实际浓度等于LoB,50%的测量值超过LoB(a)。样本 实际浓度等于LoD,(100%-β)(95%)的样本测量值超过LoB(b) •样本不呈Gaussian分布(且不能转换为Gaussian分布),有可能使用非参 数估计LoD,另外,有必要生产浓度接近暂定LoD的样本。用于检查5%或更 低的测量观测值低于LoB的最低水平

IEC-61854架空线.隔离层的要求和检验

IEC-61854架空线.隔离层的要求和检验

NORMEINTERNATIONALECEI IEC INTERNATIONALSTANDARD 61854Première éditionFirst edition1998-09Lignes aériennes –Exigences et essais applicables aux entretoisesOverhead lines –Requirements and tests for spacersCommission Electrotechnique InternationaleInternational Electrotechnical Commission Pour prix, voir catalogue en vigueurFor price, see current catalogue© IEC 1998 Droits de reproduction réservés Copyright - all rights reservedAucune partie de cette publication ne peut être reproduite niutilisée sous quelque forme que ce soit et par aucunprocédé, électronique ou mécanique, y compris la photo-copie et les microfilms, sans l'accord écrit de l'éditeur.No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical,including photocopying and microfilm, without permission in writing from the publisher.International Electrotechnical Commission 3, rue de Varembé Geneva, SwitzerlandTelefax: +41 22 919 0300e-mail: inmail@iec.ch IEC web site http: //www.iec.chCODE PRIX PRICE CODE X– 2 –61854 © CEI:1998SOMMAIREPages AVANT-PROPOS (6)Articles1Domaine d'application (8)2Références normatives (8)3Définitions (12)4Exigences générales (12)4.1Conception (12)4.2Matériaux (14)4.2.1Généralités (14)4.2.2Matériaux non métalliques (14)4.3Masse, dimensions et tolérances (14)4.4Protection contre la corrosion (14)4.5Aspect et finition de fabrication (14)4.6Marquage (14)4.7Consignes d'installation (14)5Assurance de la qualité (16)6Classification des essais (16)6.1Essais de type (16)6.1.1Généralités (16)6.1.2Application (16)6.2Essais sur échantillon (16)6.2.1Généralités (16)6.2.2Application (16)6.2.3Echantillonnage et critères de réception (18)6.3Essais individuels de série (18)6.3.1Généralités (18)6.3.2Application et critères de réception (18)6.4Tableau des essais à effectuer (18)7Méthodes d'essai (22)7.1Contrôle visuel (22)7.2Vérification des dimensions, des matériaux et de la masse (22)7.3Essai de protection contre la corrosion (22)7.3.1Composants revêtus par galvanisation à chaud (autres queles fils d'acier galvanisés toronnés) (22)7.3.2Produits en fer protégés contre la corrosion par des méthodes autresque la galvanisation à chaud (24)7.3.3Fils d'acier galvanisé toronnés (24)7.3.4Corrosion causée par des composants non métalliques (24)7.4Essais non destructifs (24)61854 © IEC:1998– 3 –CONTENTSPage FOREWORD (7)Clause1Scope (9)2Normative references (9)3Definitions (13)4General requirements (13)4.1Design (13)4.2Materials (15)4.2.1General (15)4.2.2Non-metallic materials (15)4.3Mass, dimensions and tolerances (15)4.4Protection against corrosion (15)4.5Manufacturing appearance and finish (15)4.6Marking (15)4.7Installation instructions (15)5Quality assurance (17)6Classification of tests (17)6.1Type tests (17)6.1.1General (17)6.1.2Application (17)6.2Sample tests (17)6.2.1General (17)6.2.2Application (17)6.2.3Sampling and acceptance criteria (19)6.3Routine tests (19)6.3.1General (19)6.3.2Application and acceptance criteria (19)6.4Table of tests to be applied (19)7Test methods (23)7.1Visual examination (23)7.2Verification of dimensions, materials and mass (23)7.3Corrosion protection test (23)7.3.1Hot dip galvanized components (other than stranded galvanizedsteel wires) (23)7.3.2Ferrous components protected from corrosion by methods other thanhot dip galvanizing (25)7.3.3Stranded galvanized steel wires (25)7.3.4Corrosion caused by non-metallic components (25)7.4Non-destructive tests (25)– 4 –61854 © CEI:1998 Articles Pages7.5Essais mécaniques (26)7.5.1Essais de glissement des pinces (26)7.5.1.1Essai de glissement longitudinal (26)7.5.1.2Essai de glissement en torsion (28)7.5.2Essai de boulon fusible (28)7.5.3Essai de serrage des boulons de pince (30)7.5.4Essais de courant de court-circuit simulé et essais de compressionet de traction (30)7.5.4.1Essai de courant de court-circuit simulé (30)7.5.4.2Essai de compression et de traction (32)7.5.5Caractérisation des propriétés élastiques et d'amortissement (32)7.5.6Essais de flexibilité (38)7.5.7Essais de fatigue (38)7.5.7.1Généralités (38)7.5.7.2Oscillation de sous-portée (40)7.5.7.3Vibrations éoliennes (40)7.6Essais de caractérisation des élastomères (42)7.6.1Généralités (42)7.6.2Essais (42)7.6.3Essai de résistance à l'ozone (46)7.7Essais électriques (46)7.7.1Essais d'effet couronne et de tension de perturbations radioélectriques..467.7.2Essai de résistance électrique (46)7.8Vérification du comportement vibratoire du système faisceau/entretoise (48)Annexe A (normative) Informations techniques minimales à convenirentre acheteur et fournisseur (64)Annexe B (informative) Forces de compression dans l'essai de courantde court-circuit simulé (66)Annexe C (informative) Caractérisation des propriétés élastiques et d'amortissementMéthode de détermination de la rigidité et de l'amortissement (70)Annexe D (informative) Contrôle du comportement vibratoire du systèmefaisceau/entretoise (74)Bibliographie (80)Figures (50)Tableau 1 – Essais sur les entretoises (20)Tableau 2 – Essais sur les élastomères (44)61854 © IEC:1998– 5 –Clause Page7.5Mechanical tests (27)7.5.1Clamp slip tests (27)7.5.1.1Longitudinal slip test (27)7.5.1.2Torsional slip test (29)7.5.2Breakaway bolt test (29)7.5.3Clamp bolt tightening test (31)7.5.4Simulated short-circuit current test and compression and tension tests (31)7.5.4.1Simulated short-circuit current test (31)7.5.4.2Compression and tension test (33)7.5.5Characterisation of the elastic and damping properties (33)7.5.6Flexibility tests (39)7.5.7Fatigue tests (39)7.5.7.1General (39)7.5.7.2Subspan oscillation (41)7.5.7.3Aeolian vibration (41)7.6Tests to characterise elastomers (43)7.6.1General (43)7.6.2Tests (43)7.6.3Ozone resistance test (47)7.7Electrical tests (47)7.7.1Corona and radio interference voltage (RIV) tests (47)7.7.2Electrical resistance test (47)7.8Verification of vibration behaviour of the bundle-spacer system (49)Annex A (normative) Minimum technical details to be agreed betweenpurchaser and supplier (65)Annex B (informative) Compressive forces in the simulated short-circuit current test (67)Annex C (informative) Characterisation of the elastic and damping propertiesStiffness-Damping Method (71)Annex D (informative) Verification of vibration behaviour of the bundle/spacer system (75)Bibliography (81)Figures (51)Table 1 – Tests on spacers (21)Table 2 – Tests on elastomers (45)– 6 –61854 © CEI:1998 COMMISSION ÉLECTROTECHNIQUE INTERNATIONALE––––––––––LIGNES AÉRIENNES –EXIGENCES ET ESSAIS APPLICABLES AUX ENTRETOISESAVANT-PROPOS1)La CEI (Commission Electrotechnique Internationale) est une organisation mondiale de normalisation composéede l'ensemble des comités électrotechniques nationaux (Comités nationaux de la CEI). La CEI a pour objet de favoriser la coopération internationale pour toutes les questions de normalisation dans les domaines de l'électricité et de l'électronique. A cet effet, la CEI, entre autres activités, publie des Normes internationales.Leur élaboration est confiée à des comités d'études, aux travaux desquels tout Comité national intéressé par le sujet traité peut participer. Les organisations internationales, gouvernementales et non gouvernementales, en liaison avec la CEI, participent également aux travaux. La CEI collabore étroitement avec l'Organisation Internationale de Normalisation (ISO), selon des conditions fixées par accord entre les deux organisations.2)Les décisions ou accords officiels de la CEI concernant les questions techniques représentent, dans la mesuredu possible un accord international sur les sujets étudiés, étant donné que les Comités nationaux intéressés sont représentés dans chaque comité d’études.3)Les documents produits se présentent sous la forme de recommandations internationales. Ils sont publiéscomme normes, rapports techniques ou guides et agréés comme tels par les Comités nationaux.4)Dans le but d'encourager l'unification internationale, les Comités nationaux de la CEI s'engagent à appliquer defaçon transparente, dans toute la mesure possible, les Normes internationales de la CEI dans leurs normes nationales et régionales. Toute divergence entre la norme de la CEI et la norme nationale ou régionale correspondante doit être indiquée en termes clairs dans cette dernière.5)La CEI n’a fixé aucune procédure concernant le marquage comme indication d’approbation et sa responsabilitén’est pas engagée quand un matériel est déclaré conforme à l’une de ses normes.6) L’attention est attirée sur le fait que certains des éléments de la présente Norme internationale peuvent fairel’objet de droits de propriété intellectuelle ou de droits analogues. La CEI ne saurait être tenue pour responsable de ne pas avoir identifié de tels droits de propriété et de ne pas avoir signalé leur existence.La Norme internationale CEI 61854 a été établie par le comité d'études 11 de la CEI: Lignes aériennes.Le texte de cette norme est issu des documents suivants:FDIS Rapport de vote11/141/FDIS11/143/RVDLe rapport de vote indiqué dans le tableau ci-dessus donne toute information sur le vote ayant abouti à l'approbation de cette norme.L’annexe A fait partie intégrante de cette norme.Les annexes B, C et D sont données uniquement à titre d’information.61854 © IEC:1998– 7 –INTERNATIONAL ELECTROTECHNICAL COMMISSION––––––––––OVERHEAD LINES –REQUIREMENTS AND TESTS FOR SPACERSFOREWORD1)The IEC (International Electrotechnical Commission) is a worldwide organization for standardization comprisingall national electrotechnical committees (IEC National Committees). The object of the IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, the IEC publishes International Standards. Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. The IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.2)The formal decisions or agreements of the IEC on technical matters express, as nearly as possible, aninternational consensus of opinion on the relevant subjects since each technical committee has representation from all interested National Committees.3)The documents produced have the form of recommendations for international use and are published in the formof standards, technical reports or guides and they are accepted by the National Committees in that sense.4)In order to promote international unification, IEC National Committees undertake to apply IEC InternationalStandards transparently to the maximum extent possible in their national and regional standards. Any divergence between the IEC Standard and the corresponding national or regional standard shall be clearly indicated in the latter.5)The IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for anyequipment declared to be in conformity with one of its standards.6) Attention is drawn to the possibility that some of the elements of this International Standard may be the subjectof patent rights. The IEC shall not be held responsible for identifying any or all such patent rights. International Standard IEC 61854 has been prepared by IEC technical committee 11: Overhead lines.The text of this standard is based on the following documents:FDIS Report on voting11/141/FDIS11/143/RVDFull information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.Annex A forms an integral part of this standard.Annexes B, C and D are for information only.– 8 –61854 © CEI:1998LIGNES AÉRIENNES –EXIGENCES ET ESSAIS APPLICABLES AUX ENTRETOISES1 Domaine d'applicationLa présente Norme internationale s'applique aux entretoises destinées aux faisceaux de conducteurs de lignes aériennes. Elle recouvre les entretoises rigides, les entretoises flexibles et les entretoises amortissantes.Elle ne s'applique pas aux espaceurs, aux écarteurs à anneaux et aux entretoises de mise à la terre.NOTE – La présente norme est applicable aux pratiques de conception de lignes et aux entretoises les plus couramment utilisées au moment de sa rédaction. Il peut exister d'autres entretoises auxquelles les essais spécifiques décrits dans la présente norme ne s'appliquent pas.Dans de nombreux cas, les procédures d'essai et les valeurs d'essai sont convenues entre l'acheteur et le fournisseur et sont énoncées dans le contrat d'approvisionnement. L'acheteur est le mieux à même d'évaluer les conditions de service prévues, qu'il convient d'utiliser comme base à la définition de la sévérité des essais.La liste des informations techniques minimales à convenir entre acheteur et fournisseur est fournie en annexe A.2 Références normativesLes documents normatifs suivants contiennent des dispositions qui, par suite de la référence qui y est faite, constituent des dispositions valables pour la présente Norme internationale. Au moment de la publication, les éditions indiquées étaient en vigueur. Tout document normatif est sujet à révision et les parties prenantes aux accords fondés sur la présente Norme internationale sont invitées à rechercher la possibilité d'appliquer les éditions les plus récentes des documents normatifs indiqués ci-après. Les membres de la CEI et de l'ISO possèdent le registre des Normes internationales en vigueur.CEI 60050(466):1990, Vocabulaire Electrotechnique International (VEI) – Chapitre 466: Lignes aériennesCEI 61284:1997, Lignes aériennes – Exigences et essais pour le matériel d'équipementCEI 60888:1987, Fils en acier zingué pour conducteurs câblésISO 34-1:1994, Caoutchouc vulcanisé ou thermoplastique – Détermination de la résistance au déchirement – Partie 1: Eprouvettes pantalon, angulaire et croissantISO 34-2:1996, Caoutchouc vulcanisé ou thermoplastique – Détermination de la résistance au déchirement – Partie 2: Petites éprouvettes (éprouvettes de Delft)ISO 37:1994, Caoutchouc vulcanisé ou thermoplastique – Détermination des caractéristiques de contrainte-déformation en traction61854 © IEC:1998– 9 –OVERHEAD LINES –REQUIREMENTS AND TESTS FOR SPACERS1 ScopeThis International Standard applies to spacers for conductor bundles of overhead lines. It covers rigid spacers, flexible spacers and spacer dampers.It does not apply to interphase spacers, hoop spacers and bonding spacers.NOTE – This standard is written to cover the line design practices and spacers most commonly used at the time of writing. There may be other spacers available for which the specific tests reported in this standard may not be applicable.In many cases, test procedures and test values are left to agreement between purchaser and supplier and are stated in the procurement contract. The purchaser is best able to evaluate the intended service conditions, which should be the basis for establishing the test severity.In annex A, the minimum technical details to be agreed between purchaser and supplier are listed.2 Normative referencesThe following normative documents contain provisions which, through reference in this text, constitute provisions of this International Standard. At the time of publication of this standard, the editions indicated were valid. All normative documents are subject to revision, and parties to agreements based on this International Standard are encouraged to investigate the possibility of applying the most recent editions of the normative documents indicated below. Members of IEC and ISO maintain registers of currently valid International Standards.IEC 60050(466):1990, International Electrotechnical vocabulary (IEV) – Chapter 466: Overhead linesIEC 61284:1997, Overhead lines – Requirements and tests for fittingsIEC 60888:1987, Zinc-coated steel wires for stranded conductorsISO 34-1:1994, Rubber, vulcanized or thermoplastic – Determination of tear strength – Part 1: Trouser, angle and crescent test piecesISO 34-2:1996, Rubber, vulcanized or thermoplastic – Determination of tear strength – Part 2: Small (Delft) test piecesISO 37:1994, Rubber, vulcanized or thermoplastic – Determination of tensile stress-strain properties– 10 –61854 © CEI:1998 ISO 188:1982, Caoutchouc vulcanisé – Essais de résistance au vieillissement accéléré ou à la chaleurISO 812:1991, Caoutchouc vulcanisé – Détermination de la fragilité à basse températureISO 815:1991, Caoutchouc vulcanisé ou thermoplastique – Détermination de la déformation rémanente après compression aux températures ambiantes, élevées ou bassesISO 868:1985, Plastiques et ébonite – Détermination de la dureté par pénétration au moyen d'un duromètre (dureté Shore)ISO 1183:1987, Plastiques – Méthodes pour déterminer la masse volumique et la densitérelative des plastiques non alvéolairesISO 1431-1:1989, Caoutchouc vulcanisé ou thermoplastique – Résistance au craquelage par l'ozone – Partie 1: Essai sous allongement statiqueISO 1461,— Revêtements de galvanisation à chaud sur produits finis ferreux – Spécifications1) ISO 1817:1985, Caoutchouc vulcanisé – Détermination de l'action des liquidesISO 2781:1988, Caoutchouc vulcanisé – Détermination de la masse volumiqueISO 2859-1:1989, Règles d'échantillonnage pour les contrôles par attributs – Partie 1: Plans d'échantillonnage pour les contrôles lot par lot, indexés d'après le niveau de qualité acceptable (NQA)ISO 2859-2:1985, Règles d'échantillonnage pour les contrôles par attributs – Partie 2: Plans d'échantillonnage pour les contrôles de lots isolés, indexés d'après la qualité limite (QL)ISO 2921:1982, Caoutchouc vulcanisé – Détermination des caractéristiques à basse température – Méthode température-retrait (essai TR)ISO 3417:1991, Caoutchouc – Détermination des caractéristiques de vulcanisation à l'aide du rhéomètre à disque oscillantISO 3951:1989, Règles et tables d'échantillonnage pour les contrôles par mesures des pourcentages de non conformesISO 4649:1985, Caoutchouc – Détermination de la résistance à l'abrasion à l'aide d'un dispositif à tambour tournantISO 4662:1986, Caoutchouc – Détermination de la résilience de rebondissement des vulcanisats––––––––––1) A publierThis is a preview - click here to buy the full publication61854 © IEC:1998– 11 –ISO 188:1982, Rubber, vulcanized – Accelerated ageing or heat-resistance testsISO 812:1991, Rubber, vulcanized – Determination of low temperature brittlenessISO 815:1991, Rubber, vulcanized or thermoplastic – Determination of compression set at ambient, elevated or low temperaturesISO 868:1985, Plastics and ebonite – Determination of indentation hardness by means of a durometer (Shore hardness)ISO 1183:1987, Plastics – Methods for determining the density and relative density of non-cellular plasticsISO 1431-1:1989, Rubber, vulcanized or thermoplastic – Resistance to ozone cracking –Part 1: static strain testISO 1461, — Hot dip galvanized coatings on fabricated ferrous products – Specifications1)ISO 1817:1985, Rubber, vulcanized – Determination of the effect of liquidsISO 2781:1988, Rubber, vulcanized – Determination of densityISO 2859-1:1989, Sampling procedures for inspection by attributes – Part 1: Sampling plans indexed by acceptable quality level (AQL) for lot-by-lot inspectionISO 2859-2:1985, Sampling procedures for inspection by attributes – Part 2: Sampling plans indexed by limiting quality level (LQ) for isolated lot inspectionISO 2921:1982, Rubber, vulcanized – Determination of low temperature characteristics –Temperature-retraction procedure (TR test)ISO 3417:1991, Rubber – Measurement of vulcanization characteristics with the oscillating disc curemeterISO 3951:1989, Sampling procedures and charts for inspection by variables for percent nonconformingISO 4649:1985, Rubber – Determination of abrasion resistance using a rotating cylindrical drum deviceISO 4662:1986, Rubber – Determination of rebound resilience of vulcanizates–––––––––1) To be published.。

USP统计Permutation测试的独立性测试(离散、连续和无限维度数据)说明书

USP统计Permutation测试的独立性测试(离散、连续和无限维度数据)说明书

Package‘USP’October12,2022Title U-Statistic Permutation Tests of Independence for all Data TypesVersion0.1.2Author Thomas B.Berrett<**********************.uk>[aut,cre],Ioannis Kontoyian-nis<*****************>[aut],Richard J.Sam-worth<***********************>[aut]Maintainer Thomas B.Berrett<**********************.uk>Description Implements various independence tests for discrete,continuous,and infinite-dimensional data.The tests are based on a U-statistic permutation test,the USP of Berrett,Kon-toyiannis and Samworth(2020)<arXiv:2001.05513>,and shown to be minimax rate opti-mal in a wide range of settings.As the permutation principle is used,all tests have exact,non-asymptotic Type I error control at the nominal level.License MIT+file LICENSEEncoding UTF-8LazyData trueRoxygenNote7.1.1Imports stats,RdpackRdMacros RdpackNeedsCompilation noRepository CRANDate/Publication2021-01-2709:30:21UTCR topics documented:coeffs (2)DiscStat (3)FourierBasis (3)FourierKernel (4)InfKern (5)KernStat (6)sumbasis (6)USP (7)12coeffs USP.test (8)USPFourier (9)USPFourierAdapt (10)USPFunctional (11)Index13 coeffs Calculate coefficients of a function’s series expansionDescriptionThis function is used in InfKern to produce the kernel matrix from functional data defined on the interval[0,1].For further details see Section7.4of(Berrett et al.2021).Usagecoeffs(X,Ntrunc)ArgumentsX The discretised functions whose coefficients are required.This should be a ma-trix with one row per function,and with Ndisc columns,where Ndisc is thegrid size of the discretisation.Ntrunc The number of coefficients that are required.The function returns coefficients 1,...,Ntrunc.ValueThe coefficients of X in its expansion in terms of sine functions.See(Berrett et al.2021)for more detail.ReferencesBerrett TB,Kontoyiannis I,Samworth RJ(2021).“Optimal rates for independence testing via U-statistic permutation tests.”Annals of Statistics,to appear.Examplest=seq(from=0,to=1,length.out=1000);X=t^2U=coeffs(X,100)[1,];L=5plot(t,X,type="l")approx=rep(0,1000)for(l in1:L){approx=approx+qnorm(U[l])*sqrt(2)*sin((l-1/2)*pi*t)/((l-1/2)*pi)lines(t,approx,col=l+1)}DiscStat 3DiscStat Test statistic for dependence in contingency tableDescriptionThis function computes the value of the test statistic T n measuring the strength of dependence in a contingency table.See Section 3.1of (Berrett et al.2021)for a defiageDiscStat(freq)Argumentsfreq Two-way contingency table whose strength of dependence is to be measured.ValueA list containing the value of the test statistic T n ,the table of expected null counts,and the table of contributions to T n .ReferencesBerrett TB,Kontoyiannis I,Samworth RJ (2021).“Optimal rates for independence testing via U-statistic permutation tests.”Annals of Statistics,to appear .Examplesfreq=r2dtable(1,rep(10,5),rep(10,5))[[1]];DiscStat(freq)freq=diag(1:5);DiscStat(freq)freq=r2dtable(1,rep(10,5),rep(10,5))[[1]]+4*diag(rep(1,5))DiscStat(freq)FourierBasis Fourier basis functionsDescriptionComputes the values of the one-dimensional Fourier basis functions at a vector of locations x and with a vector of frequencies m .The scaling factor of 2πis included,so that the function returns,e.g.,√2cos(2πmx ).UsageFourierBasis(a,m,x)4FourierKernelArgumentsa Sine or cosine;a=0gives cosine and a=1gives sine.m Vector of frequencies m.x Vector of locations x.ValueReturns the values of √2cos(2πmx).ReferencesBerrett TB,Kontoyiannis I,Samworth RJ(2021).“Optimal rates for independence testing via U-statistic permutation tests.”Annals of Statistics,to appear.Examplese=FourierBasis(1,1:100,0.01);plot(0.01*(1:100),e,type="l")e=FourierBasis(0,1,0.01*(1:100));plot(0.01*(1:100),e,type="l")FourierBasis(1,1:3,0.1*(1:10))FourierKernel Kernel matrix for Fourier basisDescriptionCalculates the kernel matrix,described in(Berrett et al.2021)for univariate continuous data when using the Fourier basis.This function is used in USPFourier.UsageFourierKernel(x,M)Argumentsx A vector in[0,1]n for some n,containing the observations.M The maximum frequency of Fourier basis functions to compute.ValueThe kernel matrix K,to be used in independence testing.ReferencesBerrett TB,Kontoyiannis I,Samworth RJ(2021).“Optimal rates for independence testing via U-statistic permutation tests.”Annals of Statistics,to appear.InfKern5Examplesn=10;x=runif(n)FourierKernel(x,5)InfKern Kernel for infinite-dimensional exampleDescriptionFunction to produce the kernel matrices in the infinite dimensional example described in Section7.4of(Berrett et al.2021).Here,a random function is converted to a sequence of coefficients andwe use the Fourier basis on these coefficients.This function is an essential part of USPFunctional.UsageInfKern(X,Ntrunc,M)ArgumentsX Matrix giving one of the samples to be tested.Each row corresponds to a dis-cretised function,with each column giving the values of the functions at thecorresponding grid point.Ntrunc The total number of coefficients to look at in the basis expansion of the func-tional data.M The maximum frequency to look at in the Fourier basis.ValueThe kernel matrix for the sample X.ReferencesBerrett TB,Kontoyiannis I,Samworth RJ(2021).“Optimal rates for independence testing via U-statistic permutation tests.”Annals of Statistics,to appear.Examplesn=10#number of observationsNdisc=1000;t=1/Ndisc#functions represented at grid points1/Ndisc,2/Ndisc,...,1X=matrix(rep(0,Ndisc*n),nrow=n)for(i in1:n){x=rnorm(Ndisc,mean=0,sd=1)X[i,]=cumsum(x*sqrt(t))}InfKern(X,2,2)6sumbasis KernStat Test statistic calculated from two kernel matricesDescriptionCalculate the U-statistic measure of dependence given two kernel matrices J and K,as described in Section7.1of(Berrett et al.2021).For the featured examples considered these matrices can be calculated using FourierKernel or InfKern.Alternatively,if a different basis is to be used,then the kernels can be entered separately.UsageKernStat(J,K)ArgumentsJ n×n kernel matrix corresponding tofirst sample.K n×n kernel matrix corresponding to second sample.ValueTest statistic measure the strength of dependence between the two samples.ReferencesBerrett TB,Kontoyiannis I,Samworth RJ(2021).“Optimal rates for independence testing via U-statistic permutation tests.”Annals of Statistics,to appear.Examplesx=runif(100);y=runif(100);M=3J=FourierKernel(x,M);K=FourierKernel(y,M)KernStat(J,K)sumbasis Kernel entries in infinite dimensional caseDescriptionFunction to calculate each entry of the kernel matrix in the infinite dimensional example described in Section7.4of(Berrett et al.2021).Here,a random function is converted to a sequence of coefficients and we use the Fourier basis on these coefficients.This function is only used in the function InfKern.Usagesumbasis(Ntrunc,M,x1,x2)USP7 ArgumentsNtrunc The total number of coefficients to look at.M The maximum frequency to look at in the Fourier basis.x1The coefficients of thefirst data point.x2The coefficients of the second data point.ValueThe entry of the kernel corresponding to the two data points.ReferencesBerrett TB,Kontoyiannis I,Samworth RJ(2021).“Optimal rates for independence testing via U-statistic permutation tests.”Annals of Statistics,to appear.Examplesx1=runif(5);x2=runif(5);sumbasis(5,2,x1,x2)USP Permutation test of independence.DescriptionCarry out an independence test of the independence of two samples,give two kernel matrices J and K,as described in Section7.1of(Berrett et al.2021).We calculate the test statistic and null statistics using the function KernStat,before comparing them to produce a p-value.For the featured examples considered these matrices can be calculated using FourierKernel or InfKern.Alternatively,if a different basis is to be used,then the kernels can be entered separately.UsageUSP(J,K,B=999,ties.method="standard",nullstats=FALSE)ArgumentsJ n×n kernel matrix corresponding tofirst sample.K n×n kernel matrix corresponding to second sample.B The number of permutation used to calibrate the test.ties.method If"standard"then calculate the p-value as in(5)of(Berrett et al.2021),which is slightly conservative.If"random"then break ties randomly.This preservesType I error control.nullstats If TRUE,returns a vector of the null statistic values.8USP.testValueReturns the p-value for this independence test and the value of the test statistic,D n,as defined in (Berrett et al.2021).If nullstats=TRUE is used,then the function also returns a vector of the null statistics.ReferencesBerrett TB,Kontoyiannis I,Samworth RJ(2021).“Optimal rates for independence testing via U-statistic permutation tests.”Annals of Statistics,to appear.Examplesx=runif(100);y=runif(100);M=3J=FourierKernel(x,M);K=FourierKernel(y,M)USP(J,K,999)n=50;r=0.6;Ndisc=1000;t=1/NdiscX=matrix(rep(0,Ndisc*n),nrow=n);Y=matrix(rep(0,Ndisc*n),nrow=n)for(i in1:n){x=rnorm(Ndisc,mean=0,sd=1)se=sqrt(1-r^2)#standard deviation of errore=rnorm(Ndisc,mean=0,sd=se)y=r*x+eX[i,]=cumsum(x*sqrt(t))Y[i,]=cumsum(y*sqrt(t))}J=InfKern(X,2,1);K=InfKern(Y,2,1)USP(J,K,999)USP.test Independence test for discrete dataDescriptionCarry out a permutation independence test on a two-way contingency table.The test statistic is T n, as described in Sections3.1and7.1of(Berrett et al.2021).This also appears as Un in(Berrett and Samworth2021).The critical value is found by sampling null contingency tables,with the same row and column totals as the input,via Patefield’s algorithm,and recomputing the test statistic. UsageUSP.test(freq,B=999,ties.method="standard",nullstats=FALSE)Argumentsfreq Two-way contingency table whose independence is to be tested.B The number of resampled null tables to be used to calibrate the test.ties.method If"standard"then calculate the p-value as in(5)of(Berrett et al.2021),which is slightly conservative.If"random"then break ties randomly.This preservesType I error control.nullstats If TRUE,returns a vector of the null statistic values.ValueReturns the p-value for this independence test and the value of the test statistic,T n,as defined in (Berrett et al.2021).The third element of the list is the table of expected counts,and thefinal element is the table of contributions to T n.If nullstats=TRUE is used,then the function also returnsa vector of the null statistics.ReferencesBerrett TB,Kontoyiannis I,Samworth RJ(2021).“Optimal rates for independence testing via U-statistic permutation tests.”Annals of Statistics,to appear.Berrett TB,Samworth RJ(2021).“USP:an independence test that improves on Pearson’s chi-squared and the G-test.”Submitted,available at arXiv:2101.10880.Examplesfreq=r2dtable(1,rep(10,5),rep(10,5))[[1]]+4*diag(rep(1,5))USP.test(freq,999)freq=diag(1:5);USP.test(freq,999)freq=r2dtable(1,rep(10,5),rep(10,5))[[1]];test=USP.test(freq,999,nullstats=TRUE)plot(density(test$NullStats,from=0,to=max(max(test$NullStats),test$TestStat)),xlim=c(min(test$NullStats),max(max(test$NullStats),test$TestStat)),main="Test Statistics")abline(v=test$TestStat,col=2);TestStats=c(test$TestStat,test$NullStats)abline(v=quantile(TestStats,probs=0.95),lty=2)USPFourier Independence test for continuous dataDescriptionPerforms a permutation test of independence between two univariate continuous random variables, using the Fourier basis to construct the test statistic,as described in(Berrett et al.2021).UsageUSPFourier(x,y,M,B=999,ties.method="standard",nullstats=FALSE)Argumentsx A vector containing thefirst sample,with each entry in[0,1].y A vector containing the second sample,with each entry in[0,1].M The maximum frequency to use in the Fourier basis.B The number of permutation to use when calibrating the test.ties.method If"standard"then calculate the p-value as in(5)of(Berrett et al.2021),whichis slightly conservative.If"random"then break ties randomly.This preservesType I error control.nullstats If TRUE,returns a vector of the null statistic values.ValueReturns the p-value for this independence test and the value of the test statistic,D n,as defined in(Berrett et al.2021).If nullstats=TRUE is used,then the function also returns a vector of the nullstatistics.ReferencesBerrett TB,Kontoyiannis I,Samworth RJ(2021).“Optimal rates for independence testing via U-statistic permutation tests.”Annals of Statistics,to appear.Examplesx=runif(10);y=x^2USPFourier(x,y,1,999)n=100;w=2;x=integer(n);y=integer(n);m=300unifdata=matrix(runif(2*m,min=0,max=1),ncol=2);x1=unifdata[,1];y1=unifdata[,2]unif=runif(m);prob=0.5*(1+sin(2*pi*w*x1)*sin(2*pi*w*y1));accept=(unif<prob);Data1=unifdata[accept,];x=Data1[1:n,1];y=Data1[1:n,2]plot(x,y)USPFourier(x,y,2,999)x=runif(100);y=runif(100)test=USPFourier(x,y,3,999,nullstats=TRUE)plot(density(test$NullStats,from=min(test$NullStats),to=max(max(test$NullStats),test$TestStat)), xlim=c(min(test$NullStats),max(max(test$NullStats),test$TestStat)),main="Test Statistics") abline(v=test$TestStat,col=2);TestStats=c(test$TestStat,test$NullStats)abline(v=quantile(TestStats,probs=0.95),lty=2)USPFourierAdapt Adaptive permutation test of independence for continuous data.DescriptionWe implement the adaptive version of the independence test for univariate continuous data usingthe Fourier basis,as described in Section4of(Berrett et al.2021).This applies USPFourier with arange of values of M,and a properly corrected significance level.UsageUSPFourierAdapt(x,y,alpha,B=999,ties.method="standard")Argumentsx The vector of data points from thefirst sample,each entry belonging to[0,1].y The vector of data points from the second sample,each entry belonging to[0,1].alpha The desired significance level of the test.B Controls the number of permutations to be used.With a sample size of n eachtest uses B log2n permutations.If B+1<1/αthen it is not possible to rejectthe null hypothesis.ties.method If"standard"then calculate the p-value as in(5)of(Berrett et al.2021),which is slightly conservative.If"random"then break ties randomly.This preservesType I error control.ValueReturns an indicator with value1if the null hypothesis of independence is rejected and0otherwise.If the null hypothesis is rejected,the function also outputs the value of M at the which the null was rejected and the value of the test statistic.ReferencesBerrett TB,Kontoyiannis I,Samworth RJ(2021).“Optimal rates for independence testing via U-statistic permutation tests.”Annals of Statistics,to appear.Examplesn=100;w=2;x=integer(n);y=integer(n);m=300unifdata=matrix(runif(2*m,min=0,max=1),ncol=2);x1=unifdata[,1];y1=unifdata[,2]unif=runif(m);prob=0.5*(1+sin(2*pi*w*x1)*sin(2*pi*w*y1));accept=(unif<prob);Data1=unifdata[accept,];x=Data1[1:n,1];y=Data1[1:n,2]plot(x,y)USPFourierAdapt(x,y,0.05,999)USPFunctional Independence test for functional dataDescriptionWe implement the permutation independence test described in(Berrett et al.2021)for functional data taking values in L2([0,1]).The discretised functions are expressed in a series expansion,and an independence test is carried out between the coefficients of the functions,using a Fourier basis to define the test statistic.UsageUSPFunctional(X,Y,Ntrunc,M,B=999,ties.method="standard")ArgumentsX A matrix of the discretised functional data from thefirst sample.There are n rows,where n is the sample size,and Ndisc columns,where Ndisc is the gridsize such that the values of each function on1/Ndisc,2/Ndisc,...,1are given.Y A matrix of the discretised functional data from the second sample.The dis-cretisation grid may be different to the grid used for X,if required.Ntrunc The number of coefficients to retain from the series expansions of X and Y.M The maximum frequency to use in the Fourier basis when testing the indepen-dence of the coefficients.B The number of permutations used to calibrate the test.ties.method If"standard"then calculate the p-value as in(5)of(Berrett et al.2021),which is slightly conservative.If"random"then break ties randomly.This preservesType I error control.ValueA p-value for the test of the independence of X and Y.ReferencesBerrett TB,Kontoyiannis I,Samworth RJ(2021).“Optimal rates for independence testing via U-statistic permutation tests.”Annals of Statistics,to appear.Examplesn=50;r=0.6;Ndisc=1000;t=1/NdiscX=matrix(rep(0,Ndisc*n),nrow=n);Y=matrix(rep(0,Ndisc*n),nrow=n)for(i in1:n){x=rnorm(Ndisc,mean=0,sd=1)se=sqrt(1-r^2)#standard deviation of errore=rnorm(Ndisc,mean=0,sd=se)y=r*x+eX[i,]<-cumsum(x*sqrt(t))Y[i,]<-cumsum(y*sqrt(t))}USPFunctional(X,Y,2,1,999)Indexcoeffs,2DiscStat,3FourierBasis,3FourierKernel,4InfKern,5KernStat,6sumbasis,6USP,7USP.test,8USPFourier,9USPFourierAdapt,10USPFunctional,1113。

托兰斯创造思维测验简介

托兰斯创造思维测验简介

托兰斯创造思维测验简介托兰斯创造思维测验(TTCT)是由美国明尼苏达大学的托兰斯(E.P.Torrance)等人于1966年编制而成,是目前应用最广泛的创造力测验,适用于各年龄阶段的人。

主要考察流畅性、灵活性、独创性、精确性这几个变量。

[1]托兰斯测验由言语创造思维测验、图画创造思维测验以及声音和词的创造思维测验构成。

这些测验均以游戏的形式组织、呈现,测验过程轻松愉快。

言语测验由7个分测验构成。

前三个测验是根据一张图画推演而来,他们分别是A、提问题B、猜原因C、猜后果。

后四个测验是:A、产品改造B、非常用途测验C、非常问题D、假想。

图画测验有三个,都是呈现未完成的或抽象的图案,要求被试完成它们,使其具有一定的意义。

这三个分测验分别是A、图画构造B、未完成图画C、圆圈(或平行线)测验。

声音和词测验的指导语和刺激都用录音磁带形式呈现。

它包括两个分测验:A、音响想象B、象声词想象。

这三套测验的记分有所不同,言语测验从流畅性、变通性和独特性三方面记分;声音和词测验只计独特性得分。

具体的使用细则、信度资料、常模参阅测验手册。

托兰斯创造思维测验的内容托兰斯创造思维测验包括12个分测验,称之为“活动”,以缓解被试紧张心理,它适合于幼儿园直至成人被试。

主要有三套测验,每套皆有两个复本。

言语创造性思维测验:包括7项活动。

头3项活动要求被试根据所呈现的图画,列举出他为了解该图而欲询问的问题、图中所描绘的行为可能的原因及该行为可能的后果;活动4要求被试对给定玩具提出改进意见;活动5要求被试说出普通物体的特殊用途;活动6要求对同一物体提出不寻常的问题;活动7要求被试推断一种不可能发生的事情一旦发生会出现什么后果。

测验按流畅性、变通性及独创性记分。

图画创造性思维测验:包括3项活动。

活动1要求被试把一个边缘为曲线的颜色鲜明的纸片贴在一张空白纸上,贴的部分由他自己选择,然后以此为出发点,画一个非同寻常的能说明一段有趣的振奋人心的故事的图画;活动2要求利用所给的少量不规则线条画物体的草图;活动3要求利用成对的短平行线?(A本)或圆(B本)尽可能多地画出不同的图。

ILTS测评的使用方法

ILTS测评的使用方法
Part5
总结与回顾
1
邦国教育 ILTS测评 简介
Click here to add your title
流 程
E-ILTS(E-Personalized Private Tutoring System), 其核心流程为 “个性化分析诊断报告→找出学习优势和类型→定制教学辅导方案→ 匹配适合的一对一学科授课教师→构建个性学习方法策略→教研团队 跟踪管理→定期测评→回访反馈。”

非智力因素

自信心与好强心(自信心与成就动机)
努力——以努力程度间接测试学生对自己能力的信心 能力——直接测试学生对自己能力的信心
首先,合理设计目标,让学生学会自我强化。
其次,对失败要有合理的归因,维护其对自身能力的信心。 最后,会议过去的成功体验,磨练意志,善用学习策略。
好强心——成就动机(包括挑战性、竞争性等)的弱项

智力因素
记忆力——艾宾浩斯遗忘曲线 德国心理学家艾宾浩斯 (Hermann Ebbinghaus )对遗忘 现象做了系统的研究他用无意义的 音节作为记的材料,把实验数据绘制成 一条曲线,称为艾宾浩斯遗忘曲线。这条曲线一般称为艾宾 浩斯遗忘曲线,也称为艾宾浩斯保持曲线,它的纵坐标代表保持 曲线表明了遗忘发展的一条规律:遗忘的进程不是均衡的,不是固 定的一天丢掉几个,,转天又丢掉几个的,而是在记忆的最初 阶段遗忘的速度很快,后来就逐渐减慢了,到了相当长的时候 后,几乎就不再遗忘了,这就是遗忘的发展规律,即“先快后 慢”的原则。
习惯。现代学生先天性的智力水平大致相近,而最终造成学生不同成绩的原因, 主要是非智力因素,ILTS测评是基于这个研究结果,系统着艳于学生的非智力因 素,指出影响学习的要素——智力
目录

美国和日本溶出曲线相似性判定方法介绍

美国和日本溶出曲线相似性判定方法介绍

美国和日本溶出曲线相似性判定方法介绍来源:中国食品药品检定研究院固体制剂口服给药后,药物的吸收取决于药物从制剂中的溶出以及在胃肠道的渗透。

由于药物的溶出对吸收具有重要影响,因此药物体外溶出度试验可能会与体内行为具有一定关联。

对于仿制药而言,与原研制剂体外溶出曲线具有相似性,虽然不能完全证明与原研制剂具有相同的生物等效性,但却可以大大提高生物等效性试验( BE 试验) 的成功率,而体外溶出曲线不相似,BE 试验的失败率将大大提高。

目前国外已有相关指导原则用于溶出曲线试验的指导。

本文主要对美、日有关仿制药指导原则中溶出曲线相似性方法内容进行介绍,希望通过对两者的解读,能为我国仿制药质量一致性评价固体口服制剂体外评价方法提供借鉴。

1、美国溶出曲线相似性判定方法FDA 在1997 年发布的普通口服固体制剂溶出度试验技术指导原则中,采用非模型依赖法和模型依赖法进行溶出曲线的比较。

1.1非模型依赖法( Model Independent Approaches)差异因子( f1) 和相似因子( f2) 是一种简单的模型非依赖方法用于溶出曲线的比较{ A simple model independent approach uses a difference factor ( f1) and asimilarity factor( f2) to compare dissolution profiles}。

差异因子( f1) 法是计算两条溶出曲线在每一时间点差异,是衡量两条曲线相对偏差的参数,计算公式如下:其中n 为取样时间点个数,Rt为参比制剂( 或变更前产品) 在t 时刻的溶出度值,Tt为试验批次( 变更后样品) 在t 时刻的溶出度值。

相似因子( f2) 是衡量两条溶出曲线相似度的参数,计算公式如下:其中n 为取样时间点个数,Rt为参比制剂( 或变更前产品,后面统称为参比制剂) 在t 时刻的溶出度值,Tt为试验批次( 变更后样品) 在t 时刻的溶出度值。

IVD临床试验流程

IVD临床试验流程

IVD临床试验流程IVD(In Vitro Diagnostic)临床试验是指在体外进行的,用于评估诊断设备、试剂盒以及其他体外诊断试剂的效能和性能的研究。

本文将介绍IVD临床试验的一般流程。

以下是一般的IVD临床试验流程:1.试验设计阶段:在试验设计阶段,需要明确试验的目标和研究问题。

确定试验设计将评估的IVD产品及其所需的样本。

试验设计还应包括样本规模和收集标准,以及统计分析方法。

此外,还需要制定试验计划和数据管理计划,以确保试验的严谨性和准确性。

2.试验前准备:在试验前准备阶段,需要获得适当的伦理审查委员会(IRB)批准。

IRB审查的目的是确保试验符合伦理原则和人体试验法规要求。

同时,还需要制定试验方案和协议,以确保试验的实施满足预期目标。

3.试验实施:试验实施阶段涉及招募合适的试验对象,并收集和存储他们的样本。

试验对象可能是正常人群,也可能是具有特定疾病和临床状况的人群。

试验中还需要进行IVD产品的操作和结果记录。

4.数据分析与结果评估:在试验数据分析与结果评估阶段,需要对收集到的数据进行统计分析,并根据预定的评估标准和目标判断IVD产品的性能和效能。

常用的统计方法包括灵敏度、特异度、准确度、阳性预测值、阴性预测值等。

5.结果解读:在试验完成后,需要对试验结果进行解读。

如果IVD产品性能良好,并满足设定的敏感性和特异性要求,那么该产品可能适合临床使用。

然后,可以编写试验报告,总结试验的结果和结论。

6.结果应用:试验结果可以用于支持IVD产品的注册和上市申请。

另外,试验结果还可以用于制定相关的诊断准则和指南,以指导医生在临床实践中使用IVD产品。

总而言之,IVD临床试验是评估诊断设备和试剂盒性能和效能的重要手段。

通过明确的试验设计和严格的试验执行,可以获取科学的数据,在临床实践中提供可靠的诊断工具。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Technical ReportAbstractWe conducted several surveys of college students’ usage patterns and familiarity with popular devices used in telecommunications and computer applications, such as desktop computers, laptops, mobile phones, hand-help devices, digital cameras, and digital headsets. In addition, we conducted a first-time use study of Bluetooth-enabled devices. In the study, 48 undergraduate participants each worked with three pairs of devices that were presented just as they would appear “out of the box.” They were assigned a different task to complete with each pair, including transfering calendar entries, pictures, and personal contact information between devices using Bluetooth wireless technology. Although the subjects were generally unfamiliar with both the specific devices used and Bluetooth in general, most tasks were completed within an arbitrary 40-min limit, and the average task completion time was about 15 min. There were notable differences between specific devices and device pairings in objective behavioral measures as well as in subjective impressions of usability. Both objective and subjective measures resulted in recommendations for changes and standardization in device design and features.Contents1.1Introduction____________________________________________________________4 1.2Initial Survey___________________________________________________________51.2.1Questionnaire: Please respond to each of the items below to the best of your ability._______51.2.2Initial survey results:_________________________________________________________71.2.3Survey Conclusions__________________________________________________________9 1.3First-time use study______________________________________________________91.3.1Participants and Procedure___________________________________________________101.3.2Test Groups_______________________________________________________________101.3.3Results___________________________________________________________________101.3.3.1Subjective rating scales.____________________________________________________161.3.3.2Summary of Subjective Measurements of User Satisfaction________________________161.3.3.3Subjective Ratings of Usability______________________________________________171.3.3.4User Suggestions_________________________________________________________17 1.4Conclusions____________________________________________________________181IntroductionThe initial phase of the current set of studies was concerned with determining the interoperability of a large sample of Bluetooth-enabled telecommunications and computer devices. Within this set, some devices and pairs were found to be more-or-less easy to use, readily accepted Bluetooth connectivity, and facilitated rapid transfer of information from one device to the other. Other devices and pairings showed consistent or intermittent failures that made their use difficult or impossible for our test team. In the second phase of the current research, some devices were selected for inclusion in first-time use tests with naive participants. Devices that proved difficult to use and pairs that performed relatively poorly in the interoperability tests were specifically excluded from the first-time use testing. The goal of the research was to measure success rate, efficiency of operation, and subjective impressions of specific devices and pairs by people unfamiliar with Bluetooth wireless technology.To begin the second phase of the research, over 100 college students were given a survey that assessed their usage patterns and reported levels of expertise with common computer and telecommunications equipment. The survey data confirmed that while the average undergraduate is quite familiar with devices such as desktop computers and mobile phones, and quite capable of using e-mail and other telecommunications software, they are relatively unfamiliar and naive with respect to local wireless communications systems such as Bluetooth. The survey also confirmed that there are wide variations in device usage patterns and technological expertise within the undergraduate student community.A different sample of 48 undergraduates was then selected for the first-time use study. They were each given six different devices, one pair at a time, and asked to turn them on, attempt to establish a Bluetooth connection between them, and execute a simple transfer of information task using the Bluetooth connection. Their attempts were monitored and recorded, as were the times for successful connection and task completion. They then filled out surveys of their impressions of the usability of each device and their performance in the Bluetooth transfer task. Just as the initial surveys showed that there are large differences among individuals in terms of their familiarity and expertise with device technology, the first-time use research showed large differences between objective and subjective measures of device usability and pair communications. These results are reported in the following sections of this report, along with a conclusion that makes recommendations for how device designs might be standardized for maximum usability. Suggestions are also made for how Bluetooth technology could be implemented in a standard way in such devices to promote the usability and acceptance of wireless communications.2Initial SurveyThe following survey was given to 127 undergraduate students at the University of Kansas at the beginning of the spring semester, 2004. The sample included 92 students enrolled in a lower-level psychology class and 35 students enrolled in an introductory course in engineering.2.1Questionnaire: Please respond to each of the items below tothe best of your ability.1. Below is a list of electronic devices available on the market today. For each one, check (a) the appropriate box to indicate the frequency that you most typically have used each such device over the past six months.Estimated Frequency of Use – Past 6 MonthsNever A few About A few Most Some Everytimes every times days time day fora month week a week every day hours1 2 3 4 5 6 7 DesktopLaptopMobile phoneHead setHand-helddevice (PDA)PrinterDigital cameraPortablemusic playerHuman inter-face device(mouse, key-board, etc.)For the devices above that you have used the most, please indicate by placing a check mark (a) in one of the boxes on the following scales to indicate your best response to each item.2. I am familiar with the design, technology, and some details of the hardware involved.I have no idea I have a general idea I know a lot aboutof how they work of how they work the products’ technology1 2 3 4 5 6 73.I am familiar with the interface that controls the devices that I use most often.I have no idea I understand some I am veryhow to use them of the interfaces familiar with them1 2 3 4 5 6 74. I am familiar with the software that controls the devices that I use most often.I have no idea I understand some I could writehow it works of the software it myself5. I have an understanding of wireless technology in generalI have no idea I understand the I have a deephow it works important principles understanding ofseveral wirelesstechnologies6. I am familiar with Bluetooth technologyI have no idea I know what I am veryhow it works it’s used for, but familiar withhowworksititnothowworks7.Are you familiar with Bluetooth technology, and what is your understanding of how well it works?Never heard I believe that I believe that of it it works sometimes it works very well2.2Initial survey results:The mean values of the responses for each item were determined for students in the psychology class and for those in the engineering class separately. It was decided to use atwo-tailed t-test with a conservative p-value of .01 to test for differences between mean responses for the two student groups. Significant differences are marked with an asterisk (*) and the higher values are indicated in bold in the table below.Mean response for Mean response for t-valuestudentsEngineeringPsychologystudentsage frequency5.36.67.1Desktop3.0 <1Laptop3.22.64*Mobile phone 5.8 4.73.2 <12.6Headset1.8 <11.7Handhelddevice3.9 5.04.04*Printer2.3 <11.9cameraDigital3.1 <13.5musicplayerPortableHuman interface device 5.8 6.7 7.04* 2.Familiarity ratingsHardware4.15.1 3.24*1.274.9Interface4.52.214.64.0Software4.32.29technology 3.7Wirelesstechnology1.4 3.4 6.24*Bluetoothworks 1.4 3.9 7.52*itwellHow3.Function frequencyMean response for Mean response for t-valuePsychologyEngineeringstudentsstudentsProgramming 1.4 4.7 12.52*3.5 1.19 Gameplaying 3.0e-mail 5.3 6.1 4.33* e-chat 1.3 2.9 4.55* Mobile phone calls 5.7 4.4 3.03* Printing 4.2 5.2 3.65* Digital photography 2.0 2.8 2.73* Portable music playing 3.6 3.8 <1Instant messaging 3.4 4.6 2.82* Downloading programs 2.4 4.4 6.44* Downloading music 2.7 3.9 2.90* Send/receive text messages 2.9 3.4 1.302.3Survey ConclusionsIn summary, engineering students make more use of desktop computers (but not laptops), printers, and human interface devices, whereas psychology students make more use ofmobile phones. Engineering students are more familiar with device design, technology, and hardware, and are more familiar with and have more faith in Bluetooth technology than do psychology students. Finally, engineering students spend more time writing and downloading programs, using e-mail, printing, taking digital photographs, anddownloading music, whereas psychology students spend more time talking on mobile phones.3First-time use study3.1Devices selected for first-time usability study.Of all the devices made available for interoperability testing, a small subset was chosen for usability testing based on two criteria: (1) they represented the most commonly useddevices enabled with Bluetooth technology, and (2) they were judged to be easy to use bythe interoperability testing team and succeeded quickly and easily in making Bluetooth connections with other devices in the first phase of the current study. The actual devices chosen for usability testing are listed below:phones:Mobiledevices:Hand-held(dual-device)MP3MP1HH2 MP6HH4 MP4HH5 MP2sets: PCs: Integrated and Adapters: HeadHS1 PC1HS8 PC2HS9HS73.2Device pairs and tasks selected for usability study.The pairings chosen were reflective of the pairs that most likely would be used by consumers in ordinary situations for wireless communication. This resulted in the six pair types shown in the table below. The task assigned to each pair was similarly chosen to represent common uses for wireless technology with the devices in each pair.Device pair TaskMobile phone - headset Place a call to a land line and talk with the headsetMobile phone - mobile phone Create a calendar entry on one phone(name, date, time, purpose) and send itphoneothertotheMobile phone - PC Locate a specific picture on the phoneand send it to the PCMobile phone - hand held Create a contact entry on the phone(name, phone no. and e-mail address) andsend it to the hand heldHand help - PC Locate a specific picture on the handheld and send it to the PCHand held - hand held Create a contact entry on one hand heldand send it to the other3.3Participants and ProcedureParticipants were 48 University of Kansas student volunteers, 24 selected from undergraduate psychology classes, and 24 from undergraduate engineering classes. They were randomly assigned to two groups with the constraint that each group was made up of half engineering and half psychology students. Each person filled in several questionnaires and was given three pairs of devices and tasks to accomplish. A limit of 40 minutes was given for each task.3.4Test Groups21 GroupGroupHH - PC (picture transfer) MP - HS (talk via HS)MP - HH (contact transfer) MP - PC (picture transfer)MP - MP (calendar entry transfer) HH - HH (contact transfer)Thus, each participant performed three different tasks requiring a different type of information transfer using Bluetooth technology, using a total of six different devices.For the contact and calendar entry transfer tasks, a written description was provided that had to be entered into one of the devices by hand before it could be transferred to the other device. The experimenter recorded the times to turn on the devices, the time to achieve a Bluetooth connection, and the time to complete the task. Other obvious behaviours, such as referring to the manuals or looking for information on help menus were also recorded. When each pair was completed, a questionnaire was administered and an additional questionnaire was given at the end of the third task.4ResultsThe main objective measures were the times recorded to achieve a Bluetooth connection between each pair of devices, and the times needed to complete the task successfully. In addition, the number of failures (out of 24 individuals) to complete the task within the arbitrary limit of 40 min was recorded. The median times in min and sec and the number of failures are shown in the table below, and the times are plotted on the graph on the next page.Device Type Pair Time to Connect Time to complete No. of failures Mobile phone - PC (picture) 7:10 9:17 4 Mobile phone – headset (talk) 8:38 12:05 5Hand held - hand held (contact) 12:03 12:46 0 Mobile phone - mobile phone (calendar) 12:12 13:50 2 Mobile phone - hand held (contact) 13:40 17:36 424:147(picture) 14:15–HandheldPCMedian times (min) to connect via Bluetooth and to complete the transfer taskMP3MP4MP6MP2Mean connection and completion times for mobile phonesHH4MP1HH5HH2Mean connection and completion times for hand held devicesHS8HS1HS7HS9Mean connection and completion times for headsetsPC2PC1Mean connection and completion times for PCs4.1Subjective rating scales.In addition to the objective measurements of Bluetooth connection and task completion times, questionnaires were administered after each task and at the end of the third task. These questionnaires asked for ratings, on a one to five scale, of satisfaction with the devices and with the Bluetooth communication system. These data are presented in tables below.4.2Summary of Subjective Measurements of User Satisfaction 1 = disagree strongly; 5 = agree strongly1. I enjoyed working with the devices 4.102. I enjoyed trying to get Bluetooth to work3.813. I was impressed with the wireless technology4.084. I was distressed with the difficulty of getting things to work 2.775. I would like to use Bluetooth technology at home 4.004.3Subjective Ratings of Usability1 = impossible; 7 = very easy, worked on the first tryInpairaAloneDevicePC1 4.9 3.5PC2 5.6 5.2MP1 (dual device) 4.6 4.4HH2 5.0 4.0HH4 5.4 4.5HH5 5.2 4.9MP3 5.5 4.8MP6 5.2 5.1MP4 4.5 4.6MP2 4.3 4.2HS1 3.7 4.2HS8 4.7 5.0HS9 5.2 3.7HS7 5.2 4.74.4User SuggestionsIn addition to the rating scales, open-ended questions were asked of the participants about how the devices themselves or the Bluetooth features might be improved to facilitate usability. The main suggestions and comments are summarized below.Bluetooth:• Try to locate and correct causes of occasional unexplained failures• Standardize menus, icons, locations, and terminology across devices• Make the radio on/off setting apparent or turn it on automatically when sendingHand helds:• Emphasize similarity to Windows• Make stylus and its use more obviousPCs:• PC2 sometimes seems to corrupt transmitted data• PC1 should have all Bluetooth options available in the wizard •Received files should be immediately accessible5ConclusionsEngineering and psychology undergraduates represent a population of future Bluetooth users, and they also represent a range of expertise and experience with technology.First-time users of various devices can usually achieve a Bluetooth connection and complete a simple transfer task within about 15 minutes, although there is considerable variation between both users and devices are some notable failures.The users generally express favorably attitudes toward the devices and Bluetooth technology and would be willing to use them at home.There is room for improvements in device design, software, and implementation of Bluetooth technology.。

相关文档
最新文档