第三章.点、直线、平面的投影

合集下载

第三章点、直线及平面的投影详解

第三章点、直线及平面的投影详解
第三章 点、直线及平面投影
§3-1 点的投影 §3-2 直线的投影 §3-3 平面的投影
点线面的投影规律
通过上一节的学习及画图实践,可以体会到 画一个物体的三视图,实质上是画出组成物体的 各个面的投影,而各个面是由棱线围成的,各棱 线是由两个端点决定的。
因此,为了迅速而正确地画出物体的视图, 还需研究构成物体的基本几何元素点、线、面的 投影。
Y
H
向下翻
●a
O
W
ay
Y
a ●
X ax
a●
点的投影规律
Z az
a

Z
V a

az
O
Y
ay
A
X ax

●a
O
W
ay
Y
a●
ay
H
Y
① aa⊥OX轴
aa⊥OZ轴
连影垂轴
② aax= aaz= y = A 到 V 面的距离 aax= aay= z = A 到 H 面的距离 aay= aaz= x = A 到 W 面的距离
Z
X
V a′ A
a″ W
a b
a
Z a
b
O
YW
b′
B b″
b
判断方法:
YH
x
ab
H
Y
x 坐标大的在左 y 坐标大的在前
z 坐标大的在上
例2.已知B点在A下10,A后5,A左10 mm处,求B点的三投影。 作图步骤:(1)根据B的相对位置求 其V.H面的投影 b’,b;
(2)根据点的投影规律,求其第三投影 b”。
§3-1 点的投影
一、点在一个投影面上的投影
P

第3章--点、直线和平面的投影

第3章--点、直线和平面的投影

第六节 平面上的直线和点
一. 平面上的直线 判定定理: 1)若一直线通过平面上的两点, 2)若一直线通过平面上的一点,
且与平面内的一直线平行
则该直线在 该平面内
二. 平面上的点
判定定理: 若点通过平面内一直线,则该点在该平面内。
〖例3—5〗已知△ABC的两面投影及△ABC内K点的 水平投影k,作其正面投影k’。
空间两直线的相对位置有: 平行、相交、交叉、垂直(垂直相交或垂直交叉)
1. 两直线平行
判定定理: 三对同面投影均平行,且符合定比性,则二直线平行.
对于一般位置直线,只要有两个同面投影互相平行, 则二直线平行。
判断图中两条直线是否平行?
答案:平行
对于特殊位置直线,只有两个同面投影互相平
行,空间直线不一定平行。
1)在它所垂直的投影面上的投影积 聚成一条斜线,反映该平面对其它两投 影面的夹角实形;
2)其它两面投影为面积缩小的类似 平面图形。
4. 一般位置平面
空间平面与三个投影面都倾斜。
投影特性:三个投影均不反映实形,均为类似形。
一框两直线,定是平行面,框在哪 个面,平行哪个面。
两框一斜线,定是垂直面,斜线哪 个面,垂直哪个面。
〖例3—15〗求 作平面△ABC与四 边形DEFG的交线MN 的两面投影,并表 明可见性。
作图步骤:
1)经试求选定求 作ED、FG与△ABC平 面的交点。四. 两点Βιβλιοθήκη 相对位置1. 两点的相对位置
指两点在空间的上下、前后、左右位置关系。
投 影 面 方 位 图
2. 重影点及其可见性
当空间两点位于同一投影线上时,此两点在该投 影面上的投影重合为一点,该点称为重影点。
请做 本题 练习

第三章 点、直线、平面的投影 ——电信版

第三章 点、直线、平面的投影 ——电信版
平行于某一投影面, 垂直于另两个投影面
正垂面 投影面垂直面 侧垂面 铅垂面
正平面 投影面平行面 侧平面 水平面
与三个投影面都倾斜
一般位置平面
A、投影面垂直面
b
Z
b c c
O
类似性
X
类似性
a
YW
a
β
积聚性
a
γ
c
YH
b
投影特性:
铅垂面
在它垂直的投影面上的投影积聚成直线。该 直线与投影轴的夹角反映空间平面与另外两投影 面夹角的大小。 另外两个投影面上的投影为类似形。

Z
d
e
f Z e(f)

O
b
YW
X
X
O
O
d c
YH
YW
a(b)
e
YH
f
YH
投影特性: 1. 在其垂直的投影面上, 投影有积聚性。 2.另外两个投影,反映线段实长,且垂直 于相应的投影轴。
⑶ 一般位置直线
V
b B a
β
Z
b
W
O
b a
X
Z
b a
X
γ
O
A a H
a
与三个投影面都倾斜的直线
一般位置直线
⑴ 投影面平行线
水平线
V a′
A
X
β
Z
投影特性:
a″
b′
γ
o B
a
β
b″ W
γ
①在其平行的那个投影 面上的投影反映实长, 并反映直线与另两投影 面倾角的真实大小。
Y
H
b Z a ″ b″
a′
b′

第三章 点、直线、平面的投影

第三章 点、直线、平面的投影



C b
O
|YA-YB| X
a b

ab
AB
a
|YA-YB|

|YA-YB|
ab
3 求直线的实长及对侧面投影面的夹角 角
Z
b b Z a
B
a X A a
b a X b a Y a YH O

O b
b YW
|XA-XB|
直线实长
直线实长
直线实长
△Z
△Y
△X
α
水平投影长
β
第三章 点、直线、平面的投影
第一节 点的投影 第二节 直线的投影 第三节 平面的投影
第三章 点、直线、平面的投影
3-1 点的投影
一、点的三面投影
二、点的投影与直角坐标的关系
三、点的投影规律
四、空间点的相对位置
一、点的三面投影
为了统一起见,规定空间点用大写字母表示,如A、B、C等; 水平投影用相应的小写字母表示,如a、b、c等;正面投影用 相应的小写字母加撇表示,如a′、b′、c′;侧面投影用相 应的小写字母加两撇表示,如a″、b″、c″。
b
d d c
b
a
d
A
b
a
例:判断图中两条直线是否平行。

a
a c c c d c b d a b a b b d c b d a c b d
AB与CD平行。
对于一般位置直线, 只要有两组同名投影互 相平行,空间两直线就 平行。

a
d
AB与CD不平行。
对于特殊位置直线, 只有两组同名投影互相 平行,空间直线不一定 平行。
a
X A a O bo b

工程制图 第三章 投影法及点线面投影

工程制图 第三章 投影法及点线面投影

即: AC : CB = ac : cb
B C A a c b b c a c A B C C B b A
a
工程图学基础/机械设计制图 4. 相交二直线的投影也必然相交,交点的投影必是 其投影的交点。
F
B A E b a e f a c k d C K B D
A
b
5. 两平行直线的投影仍然互相平行,且其长度之比投 影后保持不变。
与三个投影面都倾斜
一般位置平面
工程图学基础/机械设计制图
平面对三投影面均倾斜 — 一般位置平面
V
平面相于投影面W 的位置可归纳为 几类?
H
工程图学基础/机械设计制图
一般位置平面的投影
投影特性: 三个投影都为类似形。
b c
a b a
b
c
a
c
工程图学基础/机械设计制图
V W V W
H
V
e f
a(b)
c
投影特性:
① 在其垂直的投影面上,投影有积聚性。 ② 另外两个投影反映线段实长,且垂直 于相应的投影轴。
工程图学基础/机械设计制图
3) 一般位置直线
V
b B
a
β
b b
W X
Z
b a
a
O
γ
A
a H
a b a
Y
b
Y
投影特性
三个投影都倾斜于投影轴,其与投影轴的夹角 并不反映空间线段与三个投影面夹角的大小。三个 投影的长度均比空间线段短,即都不反映空间线段 的实长。
解法二: (应用定比定理)
a

k b


b
b k● a
k● a

工程制图第三章-点、直线、平面投影

工程制图第三章-点、直线、平面投影
从属于投影面的直线 从属于投影面的铅直线 从属于投影轴的直线 二、一般位置直线
(1) 水平线 — 只平行于水平投影面的直线
z
a b
a
b
a
b
A
a
XOYWB来自b a ab
b YH
投影特性:1.ab平行于 OX ; ab平行于 OYW 。 2. ab=AB。
3.反映、 角的真实大小。
(2)正平线—只平行于正面投影面的直线
第三章 点、直线、平面的投影
第一节 点的投影 第二节 直线的投影 第三节 平面的投影 第四节 直线、平面的相对位置 第五节 投影变换
第一节 点的投影
基本要求
§1-1 两投影面体系中点的投影
§1-2 三投影面体系中点的投影
§1-3 两点的相对位置
§1-4 重影点的投影
例题1
例题2
§1-1 两投影面体系中点的投影
|zA-zB|
AB
ab
|zA-zB|
AB
|zA-zB|
ab O
|zA-zB |
AB
2. 求直线的实长及对正面投影面的夹角 角
|yA-yB|
AB
a' b'
AB
|yA-yB|
a' b'
AB
|yA-yB|
O |yA-yB|
3. 求直线的实长及对侧面投影面的夹角 角
|xA-xB|
[例题1] 已知 线段的实长AB,求它的水平投影。
AB垂直于AC,且AB平行于H面,则有ab ac
二、交叉垂直的两直线的投影
O
AB垂直于AC,且AB平行于H面,则有ab ac
[例题8] 过点A作线段EF的垂线AB,并使AB平行于V 面。

第三章 点、直线、平面的投影

第三章  点、直线、平面的投影

侧垂线(垂直于W面,同时平行于H、V面的直线)
V
Z a b ab B W O a Ha X O YW a b Z a(b)
A X
b YH
b
Y
侧面投影积聚为一点;水平投 影及正面投影平行于OX轴,且 反映实长。
投影面垂直线的投影特性
投影面垂直线的投影特性可概括如下:
(1)直线在它所垂直的投影面上的投影积聚成一点;
c'
c
例3:已知C点在直线AB上,求作C点的水平投影。
1、用等比分割作图 2、利用侧面投影作图
a" c" b"
c c
例4:根据投影图判断C点是否在直线AB上。
求解一般位置直线的实长及倾角
根据一般位置直线的投影求解其实长及 倾角是画法几何综合习题中的常遇见的基本 问题之一,也是工程实际中经常需要解决的 问题。而用直角三角形法求解实长及倾角最 为简便、快捷。
一、直线投影的形成
连两 影 一 况 即个 , 直 下 可点 只 线 仍 由 。的 需 , 为 于 投作故直直 影出要线线 ,已获,的 再知得且投 将直直两影 它线线点一 们上的决般 相的投定情
V
a'
b'
B
X
A
O b a H
直线的分类
投影面垂直线 特殊位置直线
直 线
投影面平行线 一般位置直线
二、特殊位置直线
水平投影到OX轴的距 离等于侧面投影到OZ轴 的距离(宽相等)。
a
ay YH
可得出点的投影特性如下: (1)点的投影的连线垂直于相应的投影轴。
(2)点的投影到投影轴的距离,反映该点到相应的投影面的距离。
【例3-1】 已知点A的水平投影a和正面投影a′,求其 侧面投影a″ 解: 作图步骤如下

工程制图 点、直线及平面的投影

工程制图 点、直线及平面的投影

工程制图
B b b
A a
a
a
b
Z
b
a
a
X a
b
O
YW
b
YH
27
工学院 机械系 张文斌
红河学院
从属于V 投影面的铅垂线
工程制图
Z
a
a
b
b
X
O
YW
a(b)
YH
28
工学院 机械系 张文斌
红河学院
从属于OX轴的直线
工程制图
Z
X a
b O
YW
(b)
a
b a(b)
YH
29
工学院 机械系 张文斌
红河学院
二、一般位置直线
(2) 正垂线
(3) 侧垂线
3.从属于投影面的直线
从属于投影面的直线
从属于投影面的铅垂线
从属于投影轴的直线 二、一般位置直线
20
工学院 机械系 张文斌
红河学院 (1) 水平线 — 只平行于水平投影面的直线 工程制图
z
a b
a
b
a
b
A
a
X
O
YW
B
b a
a
b
b YH
投影特性:1.ab OX ; ab OYW
O
YW
b
a(b)
YH
投影特性:1. a b 积聚 成一点
2. a bOX ; a b OYW 3. a b = a b = AB
24
工学院 机械系 张文斌
红河学院 (2)正垂线— 垂直于正面投影面的直线 工程制图
(a)b
(a)b
z a
b
A
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
包 括
直线与平面平行
平面与平面平行
⒈ 直线与平面平行 若平面外的一直线平行于平面内 的某一直线,则该直线与该平面平行。
例1:过M点作直线MN平行于平面ABC。
b
d
c a m

n
b
d a c 有多少解?

n m
有无数解
例2:过M点作直线MN平行于V面和平面ABC。
b d
a
正平线
c m
V Z
X
O
W
H
Y
投影轴
OX轴 OY轴 OZ轴 V面与H面的交线 H面与W面的交线 V面与W面的交线 三个投影面 互相垂直
空间点A在三个投影面上的投影
a a a
点A的正面投影 点A的水平投影
X
Z V a ●

A
O

a
W
点A的侧面投影
注意: 空间点用大写字母 表示,点的投影用 小写字母表示。
a● H
10
唯一解!
⒉ 平面上取点
面上取点的方法:
首先面上取线
先找出过此点而又在平面内的一条直线作为 辅助线,然后再在该直线上确定点的位置。
例1:已知K点在平面ABC上,求K点的水平投影。

k● a a c 利用平面的积聚性求解 k

b c


b
k
d c d
a
b
b
a

k
c 通过在面内作辅助线求解
例2:已知AC为正平线,补全平行四边形 ABCD的水平投影。
解法一:
a k b
解法二:
c a
b
c
d d a k b c a
d d c b
例3:在△ABC内取一点M,并使其到H面V面的 距离均为10mm。
a m ● e c 10 O a d e m

d b
X
b
c
10
3.5 直线与平面及两平面的相对位置 相对位置包括平行、相交和垂直。 一、平行问题
练习
• 请同学们打开练习册24页,25页
3.3 直线的投影
两点确定一条直线,将 两点的同名投影用直线连接, 就得到直线的同名投影。 a 一、直线的投影特性
⒈ 直线对一个投影面的投影特性
A● M● B● A●

a●


a

b
b

b

B ●
A●

B


a≡b≡m 直线垂直于投影面 投影重合为一点 积 聚 性

侧垂线
c e f e(f)

d
b d

a(b)
c
e
f
投影特性:
投影有积聚性。 ① 在其垂直的投影面上, ② 另外两个投影,反映线段实长,且垂直 于相应的投影轴。
⑶ 一般位置直线
V
b a
β
B
b
W X
b a
Z
b a
γ
O
A
a H
b
a
b
a
Y
Y
投影特性
三个投影都倾斜于投影轴,其与投影轴的夹角 并不反映空间线段与三个投影面夹角的大小。三个 投影的长度均比空间线段短,即都不反映空间线段 的实长。

d b
先作正面投影
例2:判断直线AB、CD的相对位置。
c′ b′
相交吗? 不相交! 为什么? 交点不符 合空间一个点 的投影特性。 判断方法? ⒈ 应用定比定理 ⒉ 利用侧面投影
a′
d′ d b c
a
⒊ 两直线交叉
c′ a′ X
b′ d ′ V c′ a′ A a b′ d′ B D d c b H
画斜轴测图
正投影法
画工程图样 及正轴测图
3.2 点的投影
一、点在一个投影面上的投影
过空间点A的投射线 与投影面P的交点即为点A 在P面上的投影。
点在一个投影面上 的投影不能确定点的空 间位置。
解决办法?
A

P

a
P
B1 B2

B3


b

采用多面投影。
二、点的三面投影
投影面
▴正面投影面(简称正 面或V面) ▴水平投影面(简称水 平面或H面) ▴侧面投影面(简称侧 面或W面)
平行于某一投影面, 垂直于另两个投影面
投影面平行面 一般位置平面
与三个投影面都倾斜
⑴ 投影面垂直面
类似性
a
b c c
β
b
类似性
a
积聚性
a
γ
b
c
铅垂面
投影特性: 是什么位置的 为什么? 在它垂直的投影面上的投影积聚成直 平面? 线。该直线与投影轴的夹角反映空间平面 与另外两投影面夹角的大小。 另外两个投影面上的投影为类似形。
★平面平行投影面——投影就把实形现 ★平面垂直投影面——投影积聚成直线 ★平面倾斜投影面——投影类似原平面
实形性
积聚性
类似性
⒉ 平面在三投影面体系中的投影特性
平面对于三投影面的位置可分为三类:
垂直于某一投影面, 倾斜于另两个投影面
投影面垂直面 特殊位置平面
正垂面 侧垂面 铅垂面 正平面 侧平面 水平面

a● 直线平行于投影面 投影反映线段实长 ab=AB
b
a●
b
直线倾斜于投影面 投影比空间线段短 ab=AB.cos
⒉ 直线在三个投影面中的投影特性
其投影特性取决于直线与三个投影 面间的相对位置
平行于某一投影面而 与其余两投影面倾斜 正平线(平行于V面)
投影面平行线 侧平线(平行于W面)
水平线(平行于H面) 统称特殊位置直线 正垂线(垂直于V面) 投影面垂直线 侧垂线(垂直于W面) 铅垂线(垂直于H面)

投影法及其分类 点的投影 直线的投影 平面的投影 直线与平面及两平面的 相对位置 本章小结 结束放映
3.1 3.2 3.3 3.4 3.5
3.1 投影法及其分类
投影法
物体 投影面 投射中心 投射线 投影
斜投影法
正投影法
中心投影法
平行投影法
投射线通过物体,向选定的平面进行投射,并在 该面上得到图形的方法——投影法。
例:已知点的两个投影,求第三投影。
解法一:
a● ax az

a
通过作45°线 使aaz=aax
a●
解法二:
a●
az

a
用圆规直接量 取aaz=aax
ax
a●
三、两点的相对位置
两点的相对位置指两 点在空间的上下、前后、 左右位置关系。 X
a Z
● ●
a

b

b Y
o a

判断方法:
b H

c
3 1(2)
投影特性:
★ 同名投影可能相交,但 “交点”不符合空间一 个 点的投影规律。 ★ “交点”是两直线上的一 对重影点的投影,用其 可帮助判断两直线的空间位置。
练习
• 请同学们打开练习册第30、31页。
3.4
一、平面的表示法
c ●
a● a● b ●b

平面的投影
c ●


B A
M

例1:已知平面由直线AB、AC所确定,试在 平面内任作一条直线。 解法一: 解法二:
b b m ●

d
n c
c
a
m● b n

a
b c d c
a
a
有多少解?
有无数解!
例2:在平面ABC内作一条水平线,使其到 H面的距离为10mm。
a
有多少解?
m n c b b m a n c

n
a
c d
m

n
b
唯一解
⒉ 两平面平行
①若一平面上的两相 交直线分别平行于另 一平面上的两相交直 线,则这两平面相互 平行。
b
c d a c a d b b
e
f
f e f
②若两投影面垂直面 相互平行,则它们具 有积聚性的那组投影 必相互平行。
d
e
a
c c
h
h
a
b
d
中心投影法
投射中心 投射线 物体 投影面 投影
物体位置改 变,投影大 小也改变。




投射中心、物体、投影面三者之间的相 对距离对投影的大小有影响。 度量性较差。
平行投影法




投影大小与物体和投影面之间的距离无关。 度量性较好。 工程图样多数采用正投影法绘制。
画透视图
中心投影法
投影法 平行投影法 斜投影法
例:判断图中两条直线是否平行。

a
a
c
b
d a c
b d
AB与CD平行。
对于一般位置直线, 只要有两组同名投影互 相平行,空间两直线就 平行。
c c d c d b a b b a b d c

a
d
AB与CD不平行。
对于特殊位置直线, 只有两组同名投影互相 平行,空间直线不一定 平行。
垂直于某一投影面
与三个投影面都倾斜的直线
一般位置直线
⑴ 投影面平行线 水平线
V a′ b′
β
A
a
γ
a″ B b″ W
β γ
投影特性: ① 在其平行的那个投影 面上的投影反映实长, 并反映直线与另两投 影面倾角的实大。 ② 另两个投影面上的投 影平行于相应的投影 轴,其到相应投影轴 距离反映直线与它所 平行的投影面之间的 距离。
相关文档
最新文档