人教版八年级下册期末复习:第十八章平行四边形的有关计算与证明专题

合集下载

人教版 八年级下册期末复习:第十八章 平行四边形的有关计算与证明专题

人教版 八年级下册期末复习:第十八章 平行四边形的有关计算与证明专题

平行四边形的有关计算与证明专题一、单选题(本题共12小题,每题3分,满分36分)1.如图,□ABCD的周长是28cm,△ABC的周长是22cm,则AC的长为()A. 6cmB. 12cmC. 4cmD. 8cm2.如图,平行四边形ABCD中,E,F分别为边AB,DC的中点,则图中共有平行四边形的个数是()A. 3B. 4C. 5D. 63.如图,四边形ACED为平行四边形,DF垂直平分BE,甲、乙两虫同时从A点开始爬行到点F,甲虫沿着A-D -E-F的路线爬行,乙虫沿着A-C-B-F的路线爬行,若它们的爬行速度相同,则()A. 甲虫先到B. 乙虫先到C. 两虫同时到D. 无法确定4.如图,在平行四边形ABCD中,对角线AC,BD相交于点O,E,F是对角线AC上的两点,给出下列四个条件:①AE=CF;②DE=BF;③∠ADE=∠CBF;④∠ABE=∠CDF.其中不能判定四边形DEBF是平行四边形的有()A. 0个B. 1个C. 2个D. 3个5.已知等腰三角形的两条中位线长分别为3和5,则此等腰三角形的周长为()A. 22B. 26C. 22或26D. 236.如图,已知四边形ABCD形状大小确定,R、P分别是BC、CD上的点,E、F分别是AP、RP的中点,当点P在CD 上从C向D移动而点R不动时,那么下列结论成立的是( )A. 线段EF的长逐渐增大B. 线段EF的长逐渐减小C. 线段EF的长不变D. 线段EF的长与点P的位置有关7.下列说法错误的是()A. 对角线互相平分的四边形是平行四边形B. 两组对边分别相等的四边形是平行四边形C. 一组对边平行且相等的四边形是平行四边形D. 一组对边相等,另一组对边平行的四边形是平行四边形8.平面直角坐标系中,已知□ABCD的三个顶点坐标分别是A(m,n),B ( 2,-l ),C(-m,-n),则点D的坐标是()A. (-2 ,l )B. (-2,-l )C. (-1,-2 ) D .(-1,2 )9.9.在▱ABCD中,AB=3,BC=4,当▱ABCD的面积最大时,下列结论正确的有()①AC=5;②∠A+∠C=180°;③AC⊥BD;④AC=BD.A. ①②③B. ①②④C. ②③④D. ①③④10.如图,△ABC的面积为16,点D是BC边上一点,且BD=14BC,点G是AB边上一点,点H在△ABC内部,BD∥GH,且BD=GH.则图中阴影部分的面积是()A. 3B. 4C. 5D. 611.如图,在▱ABCD中,∠DAB的平分线交CD于点E,交BC的延长线于点G,∠ABC的平分线交CD于点F,交AD的延长线于点H,AG与BH交于点O,连接BE,下列结论错误的是()A. BO=OHB. DF=CEC. DH=CGD. AB=AE12.如图,在平面直角坐标系中,以A(-1,0),B(2,0),C(0,1)为顶点构造平行四边形,下列各点中不能作为平行四边形顶点坐标的是()A. (3,1)B. (-4,1)C. (1,-1)D. (-3,1)二、填空题13.如图,在▱ABCD中,BE⊥AB交对角线AC于点E,若∠1=20°,则∠2的度数为__.14.如图,在▱ABCD中,两条对角线AC,BD相交于点O,若△ABO的面积是3,则▱ABCD的面积为________.15.如图,在△ABC中,D,E分别是AB,AC的中点,F是BC延长线上的一点,FC=3,DF交CE于点G,且EG=CG,则BC=________.16.16.如图,CD是△ABC的中线,点E,F分别是AC,DC的中点,EF=1,则BD=____________.17.如图,在▱ABCD中,E为边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE交于点F.若∠B=52°,∠DAE=20°,则∠FED′的大小为________.18.如图,□ABCD中,AC=8,BD=6,AD=a,则a的取值范围是_____.19.如图,在平行四边形ABCD中,按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交AB,AD于点M,N;②分别以M,N为圆心,以大于MN的长为半径作弧,两弧相交于点P;③作AP射线,交边CD于点Q,若DQ=2QC,BC=3,则平行四边形ABCD周长为________.三、解答题20.如图,请在下列四个关系中,选出两个恰当的关系作为条件,推出四边形ABCD是平行四边形,并予以证明.(写出一种即可)关系:①AD∥BC,②AB=CD,③∠A=∠C,④∠B+∠C=180°.已知:在四边形ABCD中,,;求证:四边形ABCD是平行四边形.21.已知:如图,在△ABC中,DE、DF是△ABC的中位线,连接EF、AD,其交点为O.求证:(1)△CDE≌△DBF;(2)OA=OD.22.在□中,是的中点,连接并延长交的延长线于点.(1)求证:;(2)连接,若,求证:.23.如图,点O是△ABC内一点,连结OB、OC,并将AB、OB、OC、AC的中点D、E、F、G依次连结,得到四边形DEFG.(1)求证:四边形DEFG是平行四边形;(2)若M为EF的中点,OM=3,∠OBC和∠OCB互余,求DG的长度.24.24.如图,△ABC和△ADE都是等边三角形,点D在BC边上,AB边上有一点F,且BF=DC,连接EF、EB。

人教版初二下册数学第十八章《平行四边形》复习课(34张PPT)

人教版初二下册数学第十八章《平行四边形》复习课(34张PPT)

三角形的中位线
1、 连接三角形两边中点的线段叫三角形的中位线。 (∵E为AC的中点,F为AB的中点,∴EF为△ABC中位线)
2、三角形的中位线平行三角形的第三边,且等于第三边 的一半. (∵EF为△ABC中位线 ∴EF=½ BC,EF∥BC)
3、一个三角形有三条中位线。
A
E
F
C
B
学习检测 1.在△ABC中,D、E分别是边AB、AC的中若BC=5, 则DE的长是 2.5 2.已知:三角形的各边分别为8cm 、10cm和12cm , 10cm _. 连结各边中点所成三角形的周长为___ 3.△ABC中,D、E分别为AB、AC的中点, 18 __ 若DE=4,AD=3,AE=2,则△ABC的周长为____ 4.已知:△ABC中,点D、E、F分别是△ABC三边的 中点,如果△DEF的周长是12cm,那么△ABC的周长 是 24 cm. A
ABF ≌ DCE
E F
D
C
(2)由(1)的结论知∠B=∠C ∵平行四边形ABCD,∴AB∥CD ∴∠B+∠C=180 ∴B=90 ∴四边形ABCD是矩形
7.(2011中考题)如图,在△ABC中,点O是AC边 上(端点除外)的一个动点,过点O作直线MN∥BC. 设MN交∠BCA的平分线于点E,交∠BCA的外角平分线 于点F,连接AE、AF。那么当点O运动到何下时,四边 A 形AECF是矩形?并证明你的结论。 当点O运动到AC的中点(或OA=OC)时, F 四边形AECF是矩形 M 3 E O 证明:∵CE平分∠BCA,∴∠1=∠2, 2 4 1 5 又∵MN∥BC, ∴∠1=∠3, B C ∴∠3=∠2,∴EO=CO. 同理,FO=CO∴EO=FO 又OA=OC, ∴四边形AECF是平行四边形 又∵∠1=∠2,∠4=∠5, ∴∠1+∠5=∠2+∠4.又∵∠1+∠5+∠2+∠4=180° ∴∠2+∠4=90° ∴四边形AECF是矩形

人教版数学八年级下册第十八章平行四边形性质与判定专题复习辅导讲义

人教版数学八年级下册第十八章平行四边形性质与判定专题复习辅导讲义

辅导讲义学员编号:年级:课时数:学员姓名:辅导科目:学科老师:授课类型T 平行四边形的概念、性质T 平行四边形的断定C中位线定理授课日期时段教学内容一、同步学问梳理学问点1:平行四边形的定义:两组对边分别平行的四边形是平行四边形.表示:平行四边形用符号“”来表示.如图,在四边形ABCD中,AB∥DC,AD∥BC,那么四边形ABCD是平行四边形.平行四边形ABCD,记作ABCD”,读作“平行四边形ABCD”.留意:平行四边形中对边是指无公共点的边,对角是指不相邻的角,邻边是指有公共端点的边,邻角是指有一条公共边的两个角.而三角形对边是指一个角的对边,对角是指一条边的对角.学问点2:平行四边形的性质:(1)边:平行四边形的对边平行且相等.(2)角:平行四边形的对角相等.邻角互补(3)对角线:平行四边形的对角线相互平分对称性:平行四边形是中心对称图形,两条对角线的交点是对称中心;二、同步题型分析题型1:平行四边形的边、角例1:已知,如图1,四边形ABCD为平行四边形,∠A+∠C=80°,平行四边形ABCD的周长为46 cm,且AB-BC=3 cm,求平行四边形ABCD的各边长和各内角的度数.分析:由平行四边形的对角相等,邻角互补可求得各内角的度数;由平行四边形的对边相等,得AB+BC=23 cm,解方程组即可求出各边的长.解:由平行四边形的对角相等,∠A+∠C=80°,得∠A=∠C=40°又DC∥AB,∠D及∠A为同旁内角互补,∴∠D=180°-∠A=180°-40°=140°.∴∠B=140°.由平行四边形对边相等,得AB=CD,AD=BC.因周长为46 am,因此AB+BC=23 cm,而AB-BC=3 cm,得AB=13 cm,BC=10 cm,∴CD=13 am.AD=10 cm.题后反思:留意充分利用性质解题.例2:如图2,在平行四边形ABCD中,E、F是直线BD上的两点,且DE=BF,你认为AE=CF吗?试说明理由.分析:本题主要考察平行四边形的性质.要证明AE=CF,可以把两线段分别放在两个三角形里,然后证明两三角形全等.解:AE=CF.理由:在平行四边形ABCD中,∵AB=CD且AB∥CD.∴∠ABE=∠CDF.∵DE=BF,∴ DE+BD=BF+BD,即BE=DF:∴△ABE≌△CDF ∴ AE=CF题后反思:利用平行四边形的性质解题时,一般要用到三角形全等学问,此题还可以证明其他三角形全等来证明两线段相等.题型2:平行四边形的周长例1:如图3,在平行四边形ABCD中,AC、BD相交于点O,作OE⊥BD于O,交CD于E,连接BE,若△BCE的周长为6,则平行四边形ABCD的周长为( B )图3A. 6B. 12C. 18D. 不确定分析:本题主要考察平行四边形的性质:对角线相互平分。

第十八章+平行四边形+单元复习课件人教版八年级数学下册

第十八章+平行四边形+单元复习课件人教版八年级数学下册


在Rt△ABG和Rt△AFG中,
,பைடு நூலகம்

∴△ABG≌△AFG(HL).
(2)解:∵△ABG≌△AFG,∴BG=FG,
设BG=FG=x,则GC=6-x,
∵E为CD的中点,∴CE=EF=DE=3,
∴EG=3+x,∴在Rt△CEG中,32+(6-x)2=(3+x)2,
解得x=2,∴BG=2.
知识点五:中点问题
(1)直角三角形斜边上的中线性质
直角三角形斜边上的中线等于斜边的一半.
(2)三角形的中位线
①定义
三角形两条边中点的连线就是三角形的中位线.
②中位线定理
三角形的中位线平行于三角形的第三边,且等于第三边的一
半.
5.如图,在△ABC中,AD是高,E,F分别是AB,AC的中
点.若AB=10,AC=6,则四边形AEDF的周长为 16 .
⑤一组对边平行且相等的四边形是平行四边形.
(3)判定平行四边形的基本思路
①若已知一组对边平行,可以证这一组对边相等或另一组对
边平行;②若已知一组对边相等,可以证这一组对边平行或
另一组对边相等;③若已知一组对角相等,可以证另一组对
角相等;④若已知条件与对角线有关,可以证对角线互相平
分.
1.(1)(2022广东)如图,在▱ABCD中,一定正确的是( C )
④对角线平分一组对角得到45°角;
⑤边长与对角线的长度比为1∶ .
(2)正方形的判定
①对角线相等的菱形是正方形;
②有一个角为直角的菱形是正方形;
③对角线互相垂直的矩形是正方形;
④有一组邻边相等的矩形是正方形.
(3)判定正方形的核心思路:如果一个四边形既是菱形又是

人教版数学八年级下册第十八章-平行四边形-专题复习辅导讲义

人教版数学八年级下册第十八章-平行四边形-专题复习辅导讲义

辅导讲义是”;是平行四边形,可以记做“ABDC1题图2.如图所示,在ABCD所示,在ABCD125.在ABCD 中,∠B-∠A=30°,则∠A ,∠B ,∠C ,∠D 的度数是( ).A .95°,85°,95°,85°B .85°,95°,85°,95°C .105°,75°,105°,75°D .75°,105°,75°,105° 6.在ABCD 中,∠A :∠B :∠C :∠D 的值可以是( ).A .1:2:3:4B .3:4:4:3C .3:3:4:4D .3:4:3:4 7.如图所示,如果ABCD 的对角线AC ,BD 相交于点O ,•那么图中的全等三角形有( ).A .1对B .2对C .3对D .4对8.如图所示,若平行四边形ABCD 的周长为22cm ,AC ,BD 相交于点O ,•△AOD 的周长比△AOB 的周长小3cm ,则AD=_______,AB=_______. 答案:4cm 7cm知识点3 平行四边形的面积 9.如图所示,ABCD 的对角线AC 的长为10cm ,∠CAB=30°,AB 的长为6cm.求ABCD 的面积.答案:30cm 210.如图所示,在ABCD 中,AB=10cm ,AB 边上的高DH=6cm ,BC=6cm ,求BC 边上的高DF 的长.答案:10cm知识点4 平行四边形的判定11.1已知:如图,ABCD 中,E 、F 分别是AD 、BC 的中点,求证:BE=DF . 提示:证明DE ∥BF ,DE=BF12.1已知:如图,ABCD 中,E 、F 分别是AC 上两点,且BE ⊥AC 于E ,DF ⊥AC 于F . 求证:四边形BEDF 是平行四边形. 提示:证明BE ∥DF ,BE=DF13.1已知:如图ABCD 的对角线AC 、BD 交于点O ,E 、F 是AC 上的两点,并且AE=CF .求证:四边形BFDE 是平行四边形. 提示:证明OB=OD, OE=OF知识点5 三角形的中位线14.1如图,A 、B 两点被池塘隔开,在AB 外选一点C ,连结AC 和BC ,并分别找出AC 和BC 的中点M 、N ,如果测得MN=20 m ,那么A 、B 两点3题图 4题图7题图 8题图3的距离是 m ,理由是 .答案:40 三角形两边的中点连线平行于第三边且等于第三边的一半15.1△ABC 中,D 、E 分别为AB 、AC 的中点,若DE =4,AD =3,AE =2,则△ABC 的周长为______. 答案:1816.1已知:如图(1),在四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点. 求证:四边形EFGH 是平行四边形. 提示:连结BD ,利用中位线定理得:EH BD ,GFBD知识点6 矩形的定义与性质 17.已知在四边形ABCD 中,AB CD ,请添加一个条件,使四边形ABCD 是矩形,•加上的条件是_______.答案:AC=BD (答案不唯一) 18.如图所示,M 是ABCD 的边AD 的中点,且MB=MC .求证:ABCD 是矩形.提示:证明△ABM ≌△DCM ,得到∠A=∠D ,又因为∠A+∠D=180°19.如图所示,矩形ABCD 的两条对角线相交于点D ,∠AOD=120°,AB=4cm ,求矩形的对角线的长.答案:8cm知识点7 直角三角形斜边中线的性质20.已知直角三角形两直角边的长分别为6cm 和8cm ,则斜边上的中线长 . 答案:5cm21.如图所示,在△ABC 中,∠ACB=90°,点D ,E 分别为AC ,AB 的中点,点F•在BC 的延长线上,且∠CDF=∠A .求证:四边形DECF 为平行四边形. 提示:AE=CE,得到角相等,推出DF ∥CE ,又DE ∥BF ,即证 22.如图所示,在△ABC 中,∠C=90°,AC=BC ,AD=BD ,PE ⊥AC 于点E ,PF⊥BC 于点F ,求证:DE=DF . 提示:连结CD ,证明△ADE ≌△CDF 知识点8 矩形的判定 23.下列说法中:(1)四个角都相等的四边形是矩形.(2)两组对边分别相等并且有一个角是直角的四边形是矩形. (3)对角线相等并且有一个角是直角的四边形是矩形.B=AC,推出.如图所示,在菱形ABCD4如图,ABCD.对角线互相平分.若正方形的一条对角线长为,则它的边长是求∠AFD的度数.56提示:证明△ABE ≌△BCF知识点12 正方形的判定43.有下列命题,其中真命题有( ). ①四边都相等的四边形是正方形; ②四个内角都相等的四边形是正方形;③有三个角是直角,且有一组邻边相等的四边形是正方形; ④对角线与一边夹角为45°的四边形是正方形.A .1个B .2个C .3个D .4个 44.如图所示,在△ABC 中,∠ABC=90°,BD 平分∠ABC ,DE ⊥BC ,DF ⊥AB. 求证:四边形BEDF 是正方形.提示:由角平分线的性质可推出:DE=DF ,又三个角为90°的四边形是矩形,所以推出四边形BEDF 是正方形.一、专题精讲专题1 动点问题例1 1如图所示,在矩形ABCD 中,AB=4cm ,BC=8cm 、点P 从点D 出发向点A 运动,同时点Q 从点B 出发向点C 运动,点P 、Q 的速度都是1cm/s .(1)在运动过程中,四边形AQCP 可能是菱形吗?如果可能,那么经过多少秒后,四边形AQCP 是菱形?(2)分别求出菱形AQCP 的周长、面积.分析:(1)设经过x 秒后,四边形AQCP 是菱形,根据菱形的四边相等列方程即可求得所需的时间.(2)根据第一问可求得菱形的边长,从而不难求得其周长及面积. 解答:解:(1)经过x 秒后,四边形AQCP 是菱形 ∴DP=xcm,AP=CP=AD-DP=(8-x )cm , ∵DP 2+CD 2=PC 2,∴16+x 2=(8-x )2,解得x=3 即经过3秒后四边形是菱形.(2)由第一问得菱形的边长为5∴菱形AQCP的周长=5×4=20(cm)菱形AQCP的面积=5×4=20(cm2)点评:此题主要考查菱形的性质及矩形的性质的理解及运用.ABC’D’是菱形,并请说8ABCFD ∴BC′=21AC . 而∠ACB=30°, ∴AB=21AC ∴AB=BC′.∴四边形ABC′D′是菱形.点评:本题即考查了全等的判定及菱形的判定,注意对这两个判定定理的准确掌握.考查了学生综合运用数学的能力. 重合,点D 落到分析:(1)根据平行四边形的性质及折叠的性质我们可以得到∠B=∠D′,AB=AD′,∠1=∠3,从而利用ASA 判定△ABE≌△AD′F;(2)四边形AECF 是菱形,我们可以运用菱形的判定,有一组邻边相等的平行四边形是菱形来进行验证.∴△ABE≌△AD′F(ASA).(2)解:四边形AECF是菱形.证明:由折叠可知:AE=EC,∠4=∠5.∵四边形ABCD是平行四边形,∴AD∥BC.∴∠5=∠6.∴∠4=∠6.∴AF=AE.∵AE=EC,∴AF=EC.又∵AF∥EC,∴四边形AECF是平行四边形.∵AF=AE,∴平行四边形AECF是菱形.点评:此题考查了全等三角形的判定及菱形的判定方法,做题时要求学生对常用的知识点牢固掌握.分析:要证明HG与HB是否相等,可以把线段放在两个三角形中证明这两个三角形全等,或放在一个三角形中证明这个三角形是等腰三角形,而图中没有这样的三角形,因此需要作辅助线,构造三角形.910∴Rt△AGH≌Rt△ABH(HL),∴HG=HB.证法2:连接GB,∵四边形ABCD,AEFG都是正方形,∴∠ABC=∠AGF=90°,由题意知AB=AG,∴∠AGB=∠ABG,∴∠HGB=∠HBG,∴HG=HB.点评:解答本题要充分利用正方形的特殊性质.注意在正方形中的特殊三角形的应用,搞清楚矩形、菱形、正方形中的三角形的三边关系,可有助于提高解题速度和准确率.二、专题过关1. 如图所示,△ABC中,点O是AC边上一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于E,交∠BCA的外角平分线于点F.(1)求证:EO=FO(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.分析:(1)根据平行线性质和角平分线性质及,由平行线所夹的内错角相等易证.(2)根据矩形的判定方法,即一个角是直角的平行四边形是矩形可证解答:(1)证明:∵CE平分∠ACB,∴∠1=∠2,又∵MN∥BC,∴∠1=∠3,∴∠3=∠2,∴EO=CO,同理,FO=CO ,∴EO=FO.(2)解:当点O 运动到AC 的中点时,四边形AECF 是矩形.∵EO=FO,点O 是AC 的中点.∴四边形AECF 是平行四边形,∵C F 平分∠BCA 的外角,∴∠4=∠5,又∵∠1=∠2,∴∠2+∠4=21×180°=90°. 即∠ECF=90度,∴四边形AECF 是矩形.点评:本题涉及矩形的判定定理,解答此类题的关键是要突破思维定势的障碍,运用发散思维,多方思考,探究问题在不同条件下的不同结论,挖掘它的内在联系,向“纵、横、深、广”拓展,从而寻找出添加的条件和所得的结论.12图3【解法指导】欲证两条线段之和等于第三条线段,可通过截长补1415 分析:过F 作AB 、CD 的平行线FG ,由于F 是AD 的中点,那么G 是BC 的中点,即Rt△BCE 斜边上的中点,由此可得BC=2EG=2FG ,即△GEF、△BEG 都是等腰三角形,因此求∠B 的度数,只需求得∠B EG 的度数即可;易知四边形ABGF 是平行四边形,得∠EFG=∠AEF,由此可求得∠FEG 的度数,即可得到∠AEG 的度数,根据邻补角的定义可得∠BEG 的值,由此得解.解答:解:过F 作FG∥AB∥CD,交BC 于G ;则四边形ABGF 是平行四边形,所以AF=BG ,即G 是BC 的中点;连接EG ,在Rt△BEC 中,EG 是斜边上的中线,则BG=GE=FG=21BC ; ∵AE∥FG,∴∠EFG=∠AEF=∠FEG=54°,∴∠AEG=∠AEF+∠FEG=108°,∴∠B=∠BEG=180°-108°=72°.故选D .点评:此题主要考查了平行四边形的性质、直角三角形的性质以及等腰三角形的判定和性质,正确地构造出与所求相关的等腰三角形是解决问题的关键.17。

2020—2021学年人教版数学八年级下册第十八章平行四边形章节知识点复习

2020—2021学年人教版数学八年级下册第十八章平行四边形章节知识点复习

第十八章平行四边形18.1.1平行四边形及其性质1、平行四边形的定义:两组对边分别平行的四边形是平行四边形.注意:平行四边形中对边是指无公共点的边,对角是指不相邻的角,邻边是指有公共端点的边,邻角是指有一条公共边的两个角.而三角形对边是指一个角的对边,对角是指一条边的对角.2、性质:平行四边形性质1 平行四边形的对边相等.平行四边形性质2 平行四边形的对角相等,邻角互补.平行四边形性质3 平行四边形是中心对称图形,两条对角线的交点是对称中心;平行四边形性质4 平行四边形的对角线互相平分.3、两条平行线之间的距离定义:两条平行线中,一条直线上任意一点到另一条直线的距离,叫做这两条平行线之间的距离。

性质:(1)两条平行线之间的距离处处相等;(2)夹在两条平行线间的平行线段相等。

18.1.2平行四边形的判定判定:平行四边形判定方法1 两组对边分别相等的四边形是平行四边形。

平行四边形判定方法2 两组对边分别平行的四边形是平行四边形平行四边形判定方法3 一组对边平行且相等的四边形是平行四边形平行四边形判定方法4 两组对角分别相等的四边形是平行四边形平行四边形判定方法5 对角线互相平分的四边形是平行四边形。

三角形的中位线定义:连接三角形两边中点的线段(任意一个三角形都有三条中位线)(中位线:中点与中点的连线;中线:顶点与对边中点的连线.)三角形中位线的性质:三角形的中位线平行与第三边,且等于第三边的一半.(三角形的三条中位线把原三角形分成4个全等的小三角形,每个小三角形的周长为原三角形周长的1/2,每个小三角形的面积为原三角形面积的1/4。

18.2.1 矩形矩形定义:有一个角是直角的平行四边形叫做矩形(通常也叫长方形).矩形性质1 矩形的四个角都是直角.矩形性质2 矩形的对角线相等.直角三角形斜边中线的性质--直角三角形斜边上的中线等于斜边的一半.矩形判定方法1:对角钱相等的平行四边形是矩形.矩形判定方法2:有三个角是直角的四边形是矩形.18.2.2 菱形菱形定义:有一组邻边相等的平行四边形叫做菱形.菱形的性质1 菱形的四条边都相等;菱形的性质2 菱形的对角线互相垂直平分,并且每条对角线平分一组对角菱形判定方法1 对角线互相垂直的平行四边形是菱形.菱形判定方法2 四边都相等的四边形是菱形.菱形判定方法3 有一组邻边相等的平行四边形是菱形(1)菱形是轴对称图形,有两条对称轴,是对角线所在的直线。

最新人教版初中八年级下册数学【第十八章 平行四边形小专题复习(一)】教学课件

最新人教版初中八年级下册数学【第十八章 平行四边形小专题复习(一)】教学课件
平行四边形小专题复习(一)
——人教版八年级下册第18章
学习目标
1. 会运用等腰三角形、平行四边形及特殊平行四边形 的性质和判定方法进行证明;
2. 感受角平分线在平行四边形中的作用,会运用它进 行解决相关的问题.
一、以退为进
题1 如图,在□ABCD中,BE平分∠ABC,交AD于点E.
求证:∆ABE是 等腰 三角形.
设MN交∠BCA的角平分线于点E,交∠BCA的外角∠ACG的平分线于点F.
(1)试确定点O位置,使四边形AECF是矩形.
A
□AECF
OE=OF OA=OC OE=OC,OC=OF
M
或A∠C=EECFF=90°
B
2OE=2OC
E
OF N
2 1
3
4
C
G
平行线 + 角平分线
等腰三角形
三、学以致用
题5 如图,在∆ABC 中,点O是边AC上的一个动点,过点O作直线MN∥BC, 设MN交∠BCA的角平分线于点E,交∠BCA的外角∠ACG平分线于点F. (2)在(1)的条件下,∆ABC满足什么条件时,四边形AECF是正方形.
A
C
3E
证明: ∵ AC∥BD, ∴ ∠2=∠3. ∵ BE平分∠ABD , ∴ ∠1=∠2. ∴ ∠1=∠3. ∴ AB=AE. 同理 AB=BF.
1
2
D
B
F
∴ AE=BF. 又 AE∥BF, ∴ 四边形ABFE是平行四边形.
∵ AB=AE, ∴ 平行四边形ABFE是菱形.
思考 如图, □ABCD的四个内角的平分线分别是AP,BR,CR,DP,AP
A
证明:∵ 四边形ABCD是平行四边形,
E

2021年人教版八年级下册第18章《平行四边形》专题提升:以平行四边形为背景的计算与证明

2021年人教版八年级下册第18章《平行四边形》专题提升:以平行四边形为背景的计算与证明

2021年人教版八年级下册第18章《平行四边形》专题提升以平行四边形为背景的计算与证明角度的计算与证明(一证一求)1.如图,点E是▱ABCD的边CD的中点,连接AE并延长,交BC的延长线于点F.(1)证明:AD=CF.(2)若∠BAF=90°,试添加一个条件,并写出∠F的度数.2.如图,平行四边形ABCD中,AD=2AB,E为AD的中点,CE的延长线交BA的延长线于点F.(1)求证:FB=AD.(2)若∠DAF=70°,求∠EBC的度数.3.如图,点E在BC上,△ABC≌△EAD.(1)求证:四边形ABCD是平行四边形;(2)若AE平分∠DAB.∠EDC=30°,求∠AED的度数.4.如图,BD是△ABC的角平分线,过点D作DE∥BC交AB于点E,DF∥AB交BC于点F.(1)求证:四边形BEDF是菱形;(2)如果∠A=80°,∠C=30°,求∠BDE的度数.5.如图,在平行四边形ABCD中,AB=AE.若AE平分∠DAB.(1)求证:△ABC≌△EAD;(2)若∠EAC=25°,求:∠AED的度数.6.如图,矩形ABCD中,EF垂直平分对角线BD,垂足为O,点E和F分别在边AD,BC 上,连接BE,DF.(1)求证:四边形BFDE是菱形;(2)若AE=OF,求∠BDC的度数.7.如图,在正方形ABCD中,BE平分∠DBC交CD于点E,延长BC到F,使CF=CE,连接DF交BE的延长线于点G.(1)求∠BGF的度数;(2)求证:DE=CE.8.如图,四边形ABCD的对角线AC、BD相交于点O,∠ACB=∠ADB=90°,M为边AB 的中点,连接MC,MD.(1)求证:MC=MD;(2)若△MCD是等边三角形,求∠AOB的度数.9.如图,四边形ABCD为平行四边形,E为AD上的一点,连接EB并延长,使BF=BE,连接EC并延长,使CG=CE,连接FG.H为FG的中点,连接DH.(1)求证:四边形AFHD为平行四边形;(2)若CB=CE,∠EBC=75°,∠DCE=10°,求∠DAB的度数.10.如图,在正方形ABCD中,点E为线段BC上一动点(点E不与点B、C重合),点B 关于直线AE的对称点为F,作射线EF交CD于H,连接AF.(1)求证:AF⊥EH;(2)连接AH,小王通过观察、实验,提出猜想:点E在运动过程中,∠EAH的度数始终保持不变.你帮助小王求出∠EAH的度数.长度的计算与证明(一证一求)11.如图,在▱ABCD中,E是AD的中点,延长CB到点F,使BF=,连接BE、AF.(1)完成画图并证明四边形AFBE是平行四边形;(2)若AB=6,AD=8,∠C=60°,求BE的长.12.如图,四边形ABCD是平行四边形,延长CB至点E,使得BE=BC,连接DE交AB 于点F.(1)求证:△ADF≌△BEF.(2)连接DB,若AD=DB=5,CD=6,求DE的长.13.在Rt△ABC中,∠BAC=90°,E、F分别是BC、AC的中点,延长BA到点D,使AB =2AD,连接DE、DF、AE、EF,AF与DE交于点O.(1)试说明AF与DE互相平分;(2)若AB=8,BC=12,求DO的长.14.如图,在Rt△ABC中,∠ACB=90°,点E,F分别是边AC,AB的中点,延长BC到点D,使2CD=BC,连接DE.(1)如果AB=10,求DE的长;(2)延长DE交AF于点M,求证:点M是AF的中点.15.如图,在平行四边形ABCD中,AC⊥BC,点E是CD的中点,连接AE,作AF⊥AE,交BC于点F.(1)若AC=6,BC=8,求AE的长;(2)若G为BC延长线上一点,且AG+CG=BC,求证:AF=2EG.16.如图,在▱ABCD中,∠ACB=45°,AE⊥BC于点E,过点C作CF⊥AB于点F,交AE于点M.点N在边BC上,且AM=CN,连接DN.(1)若AB=,AC=4,求BC的长;(2)求证:AD+AM=DN.17.如图,在▱ABCD中,∠BAD,∠ADC的平分线AF,DE分别与线段BC交于点F,E,AF与DE交于点G.(1)求证:AF⊥DE,BF=CE.(2)若AD=10,AB=6,AF=8,求DE的长度.18.如图,已知▱ABCD的对角线AC、BD交于点O,且∠1=∠2.(1)求证:▱ABCD是菱形.(2)F为AD上一点,连接BF交AC于E,且AE=AF,若AF=3,AB=5,求AO的长.19.已知:如图,在▱ABCD中,∠BCD的平分线CE交AD于E,∠ABC的平分线BG交CE于F,交AD于G.(1)试找出图中的等腰三角形,并选择一个加以说明.(2)试说明:AE=DG.(3)若BG将AD分成3:2的两部分,且AD=10,求▱ABCD的周长.参考答案角度的计算与证明(一证一求)1.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AD∥CF,∴∠DAE=∠CFE,∠ADE=∠FCE,∵点E是CD的中点,∴DE=CE,在△ADE和△FCE中,,∴△ADE≌△FCE(AAS),∴CF=AD;(2)∵∠BAF=90°,添加一个条件:当∠B=60°时,∠F=90°﹣60°=30°(答案不唯一).2.【解答】(1)证明∵E为AD的中点,∴DE=AE,∵四边形ABCD是平行四边形,∴AB∥CD,AB=DC,∴∠EDC=∠EAF,在△DEC和△AEF中,,∴△DEC≌△AEF(AAS),∴DC=F A,∵AD=2AB,∴AB=DE=EA=F A,∴FB=AD;(2)解:∵四边形ABCD是平行四边形,∴DA∥CB,∴∠CBF=∠DAF=70°,∠AEB=∠EBC,又∵AE=AB,∴∠AEB=∠ABE,∴∠EBC=∠ABE=35°.3.【解答】(1)证明:∵△ABC≌△EAD,∴BC=AD,∠B=∠EAD,AB=EA,∴∠B=∠AEB,∴∠EAD=∠AEB,∴BC∥AD,∴四边形ABCD是平行四边形;(2)解:由(1)得:∠B=∠AEB=∠EAD,四边形ABCD是平行四边形,∴∠ADC=∠B,∵AE平分∠DAB,∴∠BAE=∠EAD,∴∠B=∠AEB=∠BAE,∴△ABE是等边三角形,∴∠ADC=∠B=∠BAE=∠EAD=60°,∴∠ADE=∠ADC﹣∠EDC=60°﹣30°=30°,∴∠AED=190°﹣60°﹣30°=90°.4.【解答】(1)证明:∵DE∥BC,DF∥AB∴四边形DEBF是平行四边形∵DE∥BC∴∠EDB=∠DBF∵BD平分∠ABC∴∠ABD=∠DBF=∠ABC∴∠ABD=∠EDB∴DE=BE且四边形BEDF为平行四边形∴四边形BEDF为菱形;(2)解:∵∠A=80°,∠C=30°,∴∠ABC=180°﹣80°﹣30°=70°,∵四边形BEDF为菱形,∴∠EDF=∠ABC=70°,∴∠BDE=∠EDF=35°.5.【解答】解:(1)∵四边形ABCD为平行四边形,∴AD∥BC,AD=BC.∴∠DAE=∠AEB.∵AB=AE,∴∠AEB=∠B.∴∠B=∠DAE.在△ABC和△AED中,,∴△ABC≌△EAD(SAS),(2)∵△ABC≌△EAD,∴∠AED=∠BAC,∵AE平分∠DAB(已知),∴∠DAE=∠BAE;又∵∠DAE=∠AEB,∴∠BAE=∠AEB=∠B.∴△ABE为等边三角形.∴∠BAE=60°.∵∠EAC=25°,∴∠BAC=85°,∴∠AED=85°.6.【解答】(1)证明:∵EF垂直平分对角线BD,∴∠DOE=∠BOF=90°,OB=OD,∵四边形ABCD是矩形,∴AD∥BC,∴∠DEO=∠BFO,在△DEO和△BFO中,,∴△DEO≌△BFO(AAS),∴DE=BF,∵EF垂直平分对角线BD,∴DE=BE,BF=DF,∴DE=BE=BF=DF,∴四边形BFDE是菱形;(2)解:∵四边形ABCD是矩形,∴AB=CD,∠A=∠C=90°,∵∠BOF=90°,∴∠A=∠BOF=90°,在Rt△BAE和Rt△BOF中,,∴Rt△BAE≌Rt△BOF(HL),∴AB=OB,∵AB=CD,OB=OD,∴CD=BD,∵∠C=90°,∴∠CBD=30°,∴∠BDC=180°﹣∠C﹣∠CBD=60°.7.【解答】解:(1)∵在△BCE和△DCF中,,∴△BCE≌△DCF(SAS),∴∠BEC=∠DFC,∵∠BEC+∠CBE=90°,∴∠CBE+∠DFC=90°,∴∠BGF=90°;(2)连接EF,∵BE平分∠DBC,∴∠DBG=∠CBG,∵BG=BG,∠BGD=∠BGF=90°,∴△BDG≌△BFG(ASA),∴DG=FG,∴BG垂直平分DF,∴DE=FE,∵CE2+CF2=EF2,CE=CF,∴,∴DE=CE.8.【解答】(1)证明:∵∠ACB=∠ADB=90°,M为边AB的中点,∴MC=AB,MD=AB,∴MC=MD;(2)解:∵MC=MD=AB=AM=BM,∴∠BAC=∠ACM,∠ABD=∠BDM,∴∠BMC=2∠BAC,∠AMD=2∠ABD,∵△MCD是等边三角形,∴∠DMC=60°,∴∠BMC+∠AMD=120°,∴2∠BAC+2∠ABD=120°,∴∠BAO+∠ABO=60°,∴∠AOB=180°﹣60°=120°.9.【解答】(1)证明:∵BF=BE,CG=CE,∴BC为△FEG的中位线,∴BC∥FG,BC=FG,又∵H是FG的中点,∴FH=FG,∴BC=FH.又∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴AD∥FH,AD=FH,∴四边形AFHD是平行四边形;(2)解:∵四边形ABCD是平行四边形,∴∠DAB=∠DCB,∵CE=CB,∴∠BEC=∠EBC=75°,∴∠BCE=180°﹣75°﹣75°=30°,∴∠DCB=∠DCE+∠BCE=10°+30°=40°,∴∠DAB=40°.10.【解答】解:(1)证明:∵点B关于直线AE的对称点为F,∴AB=AF,BE=EF,又∵AE=AE,∴△ABE≌△AFE(SSS),∴∠AFE=∠B=90°,∴AF⊥EH;(2)连接AH,如图:由(1)得AB=AF,AF⊥EH,∴AF=AD,∠D=∠AFH=90°,AH=AH,∴△AFH≌△ADH(HL),∴∠F AH=∠DAH,又∵∠BAE=∠F AE,在正方形ABCD中,∠BAD=90°,∴∠EAH=45°.长度的计算与证明(一证一求)11.【解答】证明:(1)∵四边形ABCD为平行四边形,∴AD∥BC,AD=BC,又E是AD的中点,,∴AE∥BF,AE=BF,∴四边形AFBE是平行四边形;(2)过点A作AG⊥BF于G,由▱ABCD可知∠ABF=∠C=60°,又AB=6,AD=8,∴BG=3,FG=1,AG=,∴BE=AF=.12.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠A=∠FBE,∠ADF=∠E又∵BC=BE,∴AD=BE,在△ADF和△BEF中,,∴△ADF≌△BEF(ASA);(2)解:∵四边形ABCD是平行四边形,∴AB=CD=6,AD=BC,由(1)得:△ADF≌△BEF,∴AD=BE,EF=DF,AF=BF=AB=3,∵AD=DB=5,∴DB=BE=5,∴BF⊥DE,在Rt△BEF中,EF===4,∴DE=2EF=2×4=8.13.【解答】解:(1)∵E、F分别是BC、AC的中点,∴EF是△ABC的中位线,∴EF∥AB且EF=AB.又AB=2AD,即AD=AB,∴AD∥EF,AD=EF,∴四边形AEFD是平行四边形,∴AF与DE互相平分;(2)∵在Rt△ABC中,∠BAC=90°,AB=8,BC=12,∴由勾股定理得AC===4又由(1)知,OA=OF,且AF=CF,∴OA=AC=.∴在△AOD中,∠DAO=90°,AD=AB=4,OA=,∴由勾股定理得DO===.14.【解答】解:(1)连接CF,在Rt△ABC中,F是AB的中点,∴CF=AB=5,∵点E,F分别是边AC,AB的中点,∴EF∥BC,EF=BC,∵2CD=BC,∴EF=CD,EF∥CD,∴四边形EDCF是平行四边形,∴DE=CF=5;(2)如图2,∵四边形EDCF是平行四边形,∴CF∥DM,∵点E是边AC的中点,∴点M是AF的中点.15.【解答】(1)解:∵AC⊥BC,∴∠ACB=90°,∵AC=6,BC=8,∴AB==10,∵四边形ABCD是平行四边形,∴CD=AB=10,AD∥BC∴CA⊥AD,∴∠CAD=90°,∵CE=ED,∴AE=CD=5.(2)证明:延长AE交BC的延长线于M,在CB上取一点N,使得CN=CG,连接AN.∵AD∥CM,∴∠DAE=∠M,在△DAE和△MCE中,,∴△DAE≌△MCE(AAS),∴AE=EM,∵AE=ED=EC,∴AM=CD=AB,∵AC⊥BM,∴BC=CM,∵AC⊥NG,CN=CG,∴AG=AN,∵AG+CG=BC,∴BN=AG=AN,∵CB=CM,CN=CG,∴BN=GM,∴GA=GM,∵AE=EM,∴EG⊥AM,∵F A⊥AM,∴EG∥AF,∵AE=EM,∴FG=GM,∴EG=AF,即AF=2EG.16.【解答】(1)解:∵∠ACB=45°,AE⊥BC,∴∠AEC=∠AEB=90°,△ACE是等腰直角三角形,∴∠EAC=45°,AE=CE===2,由勾股定理得:BE===,∴BC=BE+CE=3;(2)证明:延长AD至G,使DG=AM,连接CG,如图所示:∵AM=CN,∴DG=CN,∵四边形ABCD是平行四边形,∴AB=CD,AD∥BC,∠B=∠ADC,∴DG∥CN,∴四边形CGDN是平行四边形,∴CG=DN,∴∠CFB=90°=∠AEB=∠CEA,∴∠BAE=∠MCE,在△ABE和△CME中,,∴△ABE≌△CME(AAS),∴AB=CM,∠B=∠CME,∴CM=CD,∠CME=∠ADC,∴∠AMC=∠GDC,在△ACM和△GCD中,,∴△ACM≌△GCD(SAS),∴∠G=∠MAC=45°,∵AD∥BC,∴∠DAC=∠ACB=45°,∴△ACG是等腰直角三角形,∴AG=CG,∵AG=AD+DG=AD+AM,CG=DN,∴AD+AM=DN.17.【解答】(1)证明:在平行四边形ABCD中,AB∥DC,∴∠BAD+∠ADC=180°.∵AE,DF分别是∠BAD,∠ADC的平分线,∴∠DAE=∠BAE=∠BAD,∠ADF=∠CDF=∠ADC.∴∠DAE+∠ADF=∠BAD+∠ADC=90°.∴∠AGD=90°.∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD,∴∠DAF=∠AFB,又∵∠DAF=∠BAF,∴∠BAF=∠AFB,∴AB=BF,同理可得CD=CE,∴BF=CE;(2)解:过点C作CK∥AF交AD于K,交DE于点I,∵AK∥FC,AF∥CK,∴四边形AFCK是平行四边形,∠AGD=∠KID=90°,∴AF=CK=8,∵∠KDI+∠DKI=90°,∠DIC+∠DCI=90°,∠IDK=∠IDC,∴∠DKI=∠DCI,∴DK=DC=6,∴KI=CI=4,∵AD∥BC,∴∠ADE=∠DEC=∠CDE,∴CE=CD,∵CI⊥DE,∴EI=DI,∵DI===2,∴DE=2DI=4.18.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠2=∠ACB,∵∠1=∠2,∴∠1=∠ACB,∴AB=CB,∴▱ABCD是菱形.(2)解:由(1)得:▱ABCD是菱形,∴BC=AB=5,AO=CO,∵AD∥BC,∴∠AFE=∠CBE,∵AE=AF=3,∴∠AFE=∠AEF,又∵∠AEF=∠CEB,∴∠CBE=∠CEB,∴CE=BC=5,∴AC=AE+CE=3+5=8,∴AO=AC=4.19.【解答】解:(1)△ABG,△DCE是等腰三角形.在平行四边形ABCD中,则AD∥BC,∴∠AGB=∠GBC,又BG平分∠ABC,∴∠ABG=∠CBG,∴∠ABG=∠AGB,即AB=AG,∴△ABG是等腰三角形;(2)由(1)可得AB=AG=CD=DE,∴AE=DG;(3)假设AG:GD=3:2,∵AD=10,∴AB=AG=AD=6,∴平行四边形的周长为2(10+6)=32;当AG:GD=2:3时,则AB=AG=AD=4,∴平行四边形的周长为2(10+4)=28.所以平行四边形ABCD的周长为32或28.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平行四边形的有关计算与证明专题
、单选题(本题共12小题,每题3分,满分36 分)
1 如图,
CABCD
的周长是28cm
,
A ABC的周长是22cm,贝U AC的长为()
3. 如图,四边形ACED为平行四边形,DF垂直平分BE,甲、乙两虫同时从A点开始爬行到点F,甲虫沿着A —D
—E—F的路线爬行,乙虫沿着A— C —B—F的路线爬行,若它们的爬行速度相同,贝U ()
C.两虫同时到
D.无法确定
4. 如图,在平行四边形ABCD中,对角线AC , BD相交于点O, E, F是对角线AC上的两点,给出下列四个条件:
①AE = CF :②DE = BF ;③/ ADE = Z CBF ;④/ ABE = Z CDF.其中不能判定四边形DEBF是平行四边形的有(

A. 0个
B. 1个
C. 2个
D. 3个
5. 已知等腰三角形的两条中位线长分别为3和5,则此等腰三角形的周长为(

A. 22
B. 26
C. 22 或26
D. 23
6. 如图,已知四边形ABCD形状大小确定,R、P分别是BC、CD
C. 4cm
D. 8cm
ABCD中,E, F分别为边AB, DC的中点,则图中共有平行四边形的个数是
A. 6cm
B. 12cm
2•如图,平行四边形
A. 3
B. 4
C. 5
D. 6
上的点,E、F分别是AP、RP的中点,当点P在CD 上从C向D移动而点R不动时,那么下列结论成立的是()
A.线段EF的长逐渐增大
B.线段EF的长逐渐减小
C.线段EF的长不变
D.线段EF的长与点P的位置有关
7. 下列说法错误的是()
A. 对角线互相平分的四边形是平行四边形
B. 两组对边分别相等的四边形是平行四边形
C. 一组对边平行且相等的四边形是平行四边形
D. 一组对边相等,另一组对边平行的四边形是平行四边形
&平面直角坐标系中,已知口ABCD的三个顶点坐标分别是A(m,n), B ( 2,- l ), C (- m,—n),则点D的坐标是()
A. (—2 ,1)
B. (—2,—I)
C. (—1 , —2 ) D . (—1, 2 )
9. 9.在?ABCD中,AB=3 , BC=4,当?ABCD的面积最大时,下列结论正确的有()
① AC=5 ;②/ A+ / C=180 ;③ AC 丄BD ;④AC=BD .
A.①②③
B.①②④
C.②③④
D.①③④
1
10. 如图,A ABC的面积为16,点D是BC边上一点,且BD = BC ,点G是AB边上一点,点H在△ABC内部,
4
BD // GH,且BD = GH.则图中阴影部分的面积是()
A. 3
B. 4
C. 5
D. 6
11. 如图,在?ABCD中,/ DAB的平分线交CD于点E,交BC的延长线于点
O,连接BE,下列结论错误的是(
A
S
G , / ABC的平分线交CD于点F ,
(-3 1)
D
EG CG 则BC
川兽 盈山*j jiiciiii 爭 nifiii^wimp
■5 7 1 jiftiimp
14. ______________________________________________________________________________________________ 如图,在?ABCD 中,两条对角线 AC , BD 相交于点0,若A ABO 的面积是3,则?ABCD 的面积为 ____________________ .
15. 如图,在 A ABC 中,D , E 分别是 AB , AC 的中点,F 是BC 延长线上的一点,FC = 3, DF 交CE 于点G ,且
A. B0=0H
B. DF=CE
C. DH=CG
D. AB=AE
12.如图,在平面直角坐标系中,以
A (-1 , 0) ,
B ( 2, 0),
C ( 0, 1)为顶点构造平行四边形,下列各点中不能 作为平行四边形顶点坐标的是( )
BD =
16. 16.如图,CD 是△ABC 的中线,点 E , F 分别是AC , DC 的中点,EF = 1,则 17.如图,在?ABCD 中,E 为边CD 上一点,将 A ADE 沿AE 折叠至△AD'E 处,AD'与CE 交于点F .若/ B=52°
、填空题 13.如图,在?ABCD 中,BE 丄AB 交对角线 AC 于点E ,若/仁20 °则/ 2的度数为
/ DAE=20,则/ FED 的大小为
A. (3, 1)
B. (-4, 1)
C. (1, -1)
D.
! -J a 1 ':i 宀 护ii 呻屮已川
I 和川驸冲in 肿 i 丨・I I 応
I [ 4 l 冲! ■ 10■申| 列11 HMij 卄口*山 —L 电豳1
I n 5 9«|||||>4111»||||!«||| I is jllliHII 审⑪科! RW ij ■ 1 'I' I j
18 .如图,dBCD 中,AC=8 , BD=6 , AD=a ,贝U a 的取值范围是
19.如图,在平行四边形 ABCD 中,按以下步骤作图:①以A 为圆心,任意长为半径作弧, 分别交AB , AD 于点M , N ;②分别以M , N 为圆心,以大于 MN 的长为半径作弧,两弧相交于点 P ;③作AP 射线,交边CD 于点Q ,若
20•如图,请在下列四个关系中, 选出两个恰当的关系作为条件, 推出四边形ABCD 是平行四边形,并予以证明.(写 出一种即可) 关系:①AD // BC ,②AB=CD ,③/ A= / C ,④/ B+ / C=180° .
已知:在四边形 ABCD 中, ______________ , ____________ ;
求证:四边形 ABCD 是平行四边形.
DF 是△ABC 的中位线,连接 EF 、AD ,其交点为 O .求证:
(2) OA=OD .
22•在口1川了中,卫是戎的中点,连接船并延长交乩的延长线于点八.
(1) 求证:刖二";
(2) 连接处,若」〔二n ,求证:⑴.
m
ABCD 周长为
23.如图,点 0是△ABC 内一点,连结 OB 、0C ,并将AB 、OB 、OC 、AC 的中点D 、E 、F 、G 依次连结,得到
(1)求证:四边形 DEFG 是平行四边形;
(2)若 M 为EF 的中点,0M=3,/ OBC 和/OCB 互余,求 DG 的长度.
24. 24.如图,A ABC 和A ADE 都是等边三角形,点 D 在BC 边上,AB 边上有一点 F ,且BF=DC ,连接EF 、EB 。

BC=10,过点A 作AD // BC ,且点D 在点A 的右侧.点P 从点A 同时点Q 从点C 出发沿射线CB 方向以每秒2个单位的速度运动, 在线段QC 上取点E ,使得QE=2,连结PE ,设点P 的运动时间为t 秒
.
(1)求证:A ABE ACD ;
(2)求证:四边形 EFCD 是平行四边形。

25.如图,在平面直角坐标系中,
A ( 0, 20),
B 在原点,
C (26, 0),
D (24, 20),动点P 从点A 开始沿AD 边 向点D 以1cm/s 的速度运动,动点 Q 从点C 开始沿CB 以3cm/s 的速度向点B 运动,P 、Q 同时出发,当其中一点
到达终点时,另一点也随之停止运动, 设运动时间为
ts ,当t 为何值时,四边形 PQCD 是平行四边形?并写出 P 、 26.如图,在 A ABC 中,/ BAC=90° , / B=45° , 出发沿射线AD 方向以每秒1个单位的速度运动, A
I' I 1 V’ 上・ I’ 中 A F 屮 s’ $ 严 r
11 ■ Q 的坐
标。

D
Q
(1)若PE丄BC,求BQ的长;
(2)请问是否存在t的值,使以A , B , E, P为顶点的四边形为平行四边形?若存在,求出t的值;若不存在,请说明理由。

相关文档
最新文档