2014年郑州市高三第二次质量预测理科数学答案
河南省中原名校2014届高三下学期第二次联考数学(理)试题(解析版)

河南省中原名校2014届高三下学期第二次联考数学(理)试题(解析版)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.若0,a b >>集合{|},{}2a bM x b x N x x a +=<<=<,则集合M N 等于( )A. {|x b x <B. {|}x b x a <<C. {}2a bx x +<D. {|}2a bx x a +<<2.已知z 为纯虚数,12z i+-是实数,那么z =( ) A. 2i B. 2i - C. 12i D. 12i -【答案】D 【解析】试题分析:由 题意设,()z bi b R =∈,则112(21),225z bi b b iR i i ++-++==∈--所以11,.22b z i =-=-选D考点:复数的运算3.下列命题正确的个数是( )①“在三角形ABC 中,若sin sin A B >,则A B >”的逆命题是真命题;②命题:2p x ≠或3y ≠,命题:5q x y +≠则p 是q 的必要不充分条件;③“32,10x R x x ∀∈-+≤”的否定是“32,10x R x x ∀∈-+>”;④若随机变量~(,)x B n p ,则.DX np =⑤回归分析中,回归方程可以是非线性方程.A.1B.2C.3D.4所以③不正确;因为当~(,)x B n p 时,,(1)EX np DX np p ==-,所以④不正确;由回归分析的定义可知回归方程可以不是线性回归方程,故⑤正确.所以共有3个正确,选C. 考点:正弦定理,逆否命题,数学期望与方差4.一个算法的程序框图如右图所示,若该程序输出的P 位于区间43(10,10)--内,则判断框内应填入的条件是( )A. 3T ≤B. 4T ≤C. 5T ≤D. 6T ≤5.一个空间几何体的三视图如图,则该几何体的体积为( )A. B. C. D.【答案】B 【解析】试题分析:几何体为一个三棱柱截取一个三棱锥,如图所示,体积为22122123-⨯=选B.考点:三视图6.函数()2y f x π=+为定义在R 上的偶函数,且当2x π≥时,1()()sin ,2x f x x =+则下列选项正确的是( )A. (3)(1)(2)f f f <<B. (2)(1)(3)f f f <<C. (2)(3)(1)f f f <<D. (3)(2)(1)f f f <<7.已知双曲线22221x y a b-=,以右顶点为圆心,实半轴长为半径的圆被双曲线的一条渐近线分为弧长为1:2的两部分,则双曲线的离心率为( )A.B.C. D.【答案】B 【解析】试题分析:由题意得,弦所对圆心角为2,3π所以圆心到弦即渐近线0bx ay -=因此有||ba e c == 考点:点到直线距离,双曲线的渐近线8.若{}n b 为等差数列,244,8.b b ==数列{}n a 满足*111,(),n n n a b a a n N +==-∈则8a =( ) A.56 B.57 C.72 D.739.在三角形ABC 中,60,A A ∠=∠ 的平分线交BC 于D ,AB=4, 1()4AD AC AB R λλ=+∈ ,则AD 的长为( )A. 1B.C. 3D.10.已知函数32()(0)g x ax bx cx d a =+++≠的导函数为()f x ,且230a b c ++=,(0)(1)0,f f >设12,x x 是方程()0f x =的两根,则12||x x -的取值范围是( )A. 2[0,)3B. 4[0,)9C. 12(,)33D. 14(,)9911.已知三角形PAD 所在平面与矩形ABCD 所在平面互相垂直,PA=PD=AB=2, 120,APD ∠= 若点P,A,B,C,D 都在同一球面上,则此球的表面积等于( ) A. 8π B. 12π C. 16π D. 20π 【答案】D 【解析】试题分析:设三角形PAD 外接圆圆心为1,O ,则半径为1124,2,sin120AD r r ===矩形ABCD 外接圆圆心为2,O 半径为22,2ACr ==球心为,O 半径为,r 则有222215,420.r S r ππ=+=== 、考点:球,球的表面积12.将数字1,2,3,4填入右侧表格内,要求每行、每列的数字互不相同,如图所示,则不同的填表方式共有( )种.A.432B.576C.720D.864 【答案】B 【解析】试题分析:因为每行、每列的数字互不相同,所以每填一个数字,就会去 掉一行一列,因此按全排列:4²×3²×2²×1=576 考点:全排列第Ⅱ卷(共90分)二、填空题(每题4分,满分16分,将答案填在答题纸上)13.已知实数y x ,满足⎪⎩⎪⎨⎧≥≤+≤14y ay x x y ,若y x z +=3的最大值为,16则.________=a【答案】0 【解析】 试题分析:14.已知,|cos sin |0dx x x a ⎰-=π则73)1(xax x +的展开式中的常数项是.__________(用数字作答)【答案】168 【解析】 试题分析:因为|)sin cos (|)cos (sin )cos (sin )sin (cos |cos sin |440440=--++=-+-=-=⎰⎰⎰πππππππx x x x dx x x dx x x dx x x a 所以73)1(xax x +的展开式中的常数项是.168821257=⨯=a C 考点:学科网定积分,二项式定理15.已知椭圆C A y x ,,13422=+分别是椭圆的上、下顶点,B 是左顶点,F 为左焦点,直线AB 与FC 相交于点D ,则BDF ∠的余弦值是.___________16.已知定义在R 上的函数)(x f y =存在零点,且对任意R n m ∈,都满足.)()]()([2n m f n f m mf f +=+若关于x 的方程)1,0(log 1|3)]([|≠>-=-a a x x f f a恰有三个不同的根,则实数a 的取值范围是.___________三、解答题 (本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.)17.已知函数.21cos )6cos(sin )(2-+-⋅=x x x x f π(Ⅰ)求函数)(x f 的最大值,并写出)(x f 取最大值x 时的取值集合; (Ⅱ)在ABC ∆中,角C B A ,,的对边分别为,,,c b a ,若.3,21)(=+=c b A f 求a 的最小值.【答案】(Ⅰ)34,,6x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭(Ⅱ)32 【解析】试题分析:(Ⅰ)研究三角函数性质,首先将其化为基本三角函数形式,即sin()y A x B ωϕ=++.利用两角和与差余弦公式、二倍角公式、配角公式,化简得22111()sin sin cos cos cos 222f x x x x x x x x⎫=++-=+⎪⎝⎭18.某市为“市中学生知识竞赛”进行选拔性测试,且规定:成绩大于或等于90分的有参赛资格,90分以下(不包括90分)的被淘汰.若有500人参加测试,学生成绩的频率分布直方图如图.(Ⅰ)求获得参赛资格的人数;(Ⅱ)根据频率直方图,估算这500名学生测试的平均成绩;(Ⅲ)若知识竞赛分初赛和复赛,在初赛中每人最多有5次选题答题的机会,累计答对3题或答错3题即终止,答对3题者方可参加复赛.已知参赛者甲答对每一个问题的概率都相同,并且相互之间没有影响.已知他连续两次答错的概率为91,求甲在初赛中答题个数 的分布列及数学期望.ξE.【答案】(Ⅰ) 125 ,(Ⅱ) 78.48 ,(Ⅲ)Eξ=107 27【解析】(Ⅲ)设学生甲答对每道题的概率为()P A ,则21(1())9P A -=,∴()P A =23.学生甲答题个数ξ的可能值为3,4,5,则(3)P ξ==,31313233=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛(4)P ξ==,271031323231313313=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛C C (5)P ξ==.27832312224=⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛C 所以ξ的分布列为E ξ=13×3+1027×4+827×5=10727.…………………………..……………….. (12分) 考点:频率分布直方图, 分布列及数学期望19.如图,在直角梯形ABCP 中, 221,,//===⊥AP BC AB AB AP BC AP ,D 是AP 的中点,E,G 分别为PC,CB 的中点,将三角形PCD 沿CD 折起,使得PD 垂直平面ABCD.(Ⅰ)若F 是PD 的中点,求证:AP //平面EFG;(Ⅱ)当二面角G-EF-D 的大小为4π时,求FG 与平面PBC 所成角的余弦值.【答案】(Ⅰ)详见解析, 【解析】试题分析:(Ⅰ)证明线面平行, 关键找线线平行.因为本题条件涉及中点较多,宜从中位线性质出发寻找.如取AD 中点M ,则有//.AP FM 又////,EF AB MG 所以平面EFG =平面EFGM .本题也可从证面面平行出发,推出线面平行.(Ⅱ)已知二面角平面角,求线面角,宜利用空间向量解决.先建立空间直角坐标系,设出各点的坐标,πF a,利用二面角G-EF-D的大小为E,设(0,0,)C,(0,0,2)(1,2,0)G,(0,2,0)P,(0,1,1)4 a=,再利用空间向量数量积求线面角. 利用空间向量求角,关键是正确表示平面的求出1法向量,明确向量夹角与二面角或线面角之间关系.20.如图,已知抛物线C的顶点在原点,开口向右,过焦点且垂直于抛物线对称轴的弦长为2,过C上一点A作两条互相垂直的直线交抛物线于P,Q两点. (Ⅰ)若直线PQ过定点)2,3(- T ,求点A 的坐标;(Ⅱ)对于第(Ⅰ)问的点A ,三角形APQ 能否为等腰直角三角形?若能,试确定三角形APD 的个数;若不能,说明理由.【答案】(Ⅰ)(,(Ⅱ)一个 【解析】则所求抛物线的方程为22y x =.………………………………………………(2分) 设直线PQ 的方程为x my n =+,点P 、Q 的坐标分别为11(,),P x y 22(,)Q x y .由22x my ny x=+⎧⎨=⎩,消x 得2220y my n --=.由0>∆,得220m n +>, 122y y m +=,122y y n ⋅=-.∵AP AQ ⊥,∴0AP AQ ⋅=.设A 点坐标为2,2a a ⎛⎫ ⎪⎝⎭,则有221212()()022a a x x y a y a ⎛⎫⎛⎫--+--= ⎪⎪⎝⎭⎝⎭.221212,22y y x x ==,[]1212()()()()40y a y a y a y a ∴--+++=, ∴12()()0y a y a --=或12()()40y a y a +++=.∴222n a ma =-或2224n a ma =++, ∵0>∆恒成立. ∴2224n a ma =++.又直线PQ 过定点(3,T ,即3n =,代入上式得22624,22(0,a ma a m a +=++-+=注意到上式对任意m 都成立,故有a =从而A 点坐标为(.…………………………………………(8分)21.已知函数2ln )(bx x a x f -=图像上一点))2(,2(f P 处的切线方程为.22ln 23++-=x y (Ⅰ)求b a ,的值;(Ⅱ)若方程0)(=+m x f 在区间],1[e e内有两个不等实根,求m 的取值范围;(Ⅲ)令),()()(R k kx x f x g ∈-=如果)(x g 的图像与x 轴交于))(0,(),0,(2121x x x B x A <两点,AB 的中点为)0,(o x C ,求证:.0)(0≠'x g【答案】(Ⅰ) a =2,b =1. (Ⅱ) 2112m e <+≤ (Ⅲ)详见解析. 【解析】(Ⅱ)()22ln f x x x =-,设()2()2ln h x f x m x x m =+=-+,则()222(1)2x h x x x x -'=-=,令()0h x '=,得x =1(x =-1舍去).当x∈1[,1)e时,()0h x '>, h(x)是增函数;当x∈(1,e]时,()0h x '<, h(x)是减函数.则方程()0h x =在1[,e]e内有两个不等实根的充要条件是1()0,e (1)0,(e)0.h h h ⎧⎪⎪⎪>⎨⎪⎪⎪⎩≤≤解得2112m e <+≤ (8))22.如图,在锐角三角形ABC 中,D 为C 在AB 上的射影,E 为D 在BC 上的射影,F 为DE 上一点,且满足.DBADFD EF =(Ⅰ)证明:;AE CF ⊥(Ⅱ)若AD=2,CD=3.DB=4,求BAE ∠tan 的值.【答案】(Ⅰ)详见解析,(Ⅱ) 24.43【解析】试题分析:(Ⅰ) 设CF 与AE 交于点G ,由条件EF ADFD DB= ,就可找相似三角形. EF AD FD DB =ED AB FD DB ∴= ,又CD DB DE BE= ,所以CD ABFD BE = ,从而有△CDF ∽△ABE ,即DCG DAG ∠=∠,90AGC ADC ∠=∠=︒, (Ⅱ)由(Ⅰ)知BAE DCF DCB BCF ∠=∠=∠-∠,已知4tan 3DCB ∠=,又由条件EF ADFD DB =得EF ADED AB =,所以125DE =4,5EF =,而95CE =,所以4tan 9ECF ∠=,从而442439tan .1643127DCF -∠==+ 试题解析:CABDEF G a23.在直角坐标系中,以原点为极点,x 轴的正半轴为极轴建立极坐标系,两种坐标系取相同单位长度.已知曲线),0(:>=a a C ρ过点)2,0(p 的直线l 的参数方程为⎪⎪⎩⎪⎪⎨⎧+==t y t x 232,2(t 为参数). (Ⅰ)求曲线C 与直线l 的普通方程;(Ⅱ)设曲线C 经过伸缩变换⎩⎨⎧='='yy xx 2得到曲线C ',若直线l 与曲线C '相切,求实数a 的值. 【答案】(Ⅰ) 222x y a +=,2y =+ (Ⅱ) a =【答案】(Ⅰ) 10|03x x x ⎧⎫≤≥⎨⎬⎩⎭或 ,(Ⅱ) {}|106a a a ≥≤-或 【解析】试题分析:(Ⅰ)解含绝对值不等式问题,关键是去绝对值.一般利用绝对值定义分段讨论,因为35,1()3,1235,2x x f x x x x x -+≤⎧⎪=-+<<⎨⎪-≥⎩,所以1355x x ≤⎧⎨-+≥⎩ 或1235x x <<⎧⎨-+≥⎩或2355x x ≥⎧⎨-≥⎩ 解得10|03x x x ⎧⎫≤≥⎨⎬⎩⎭或。
2014河南高考理科数学真题及答案

2014河南高考理科数学真题及答案理科数学(一)注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答题前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每个小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮搽干净后,再选涂其他答案标号,写在本试卷上无效.3. 回答第Ⅱ卷时,将答案写在答题卡上,答在本试题上无效.4. 考试结束,将本试题和答题卡一并交回.第Ⅰ卷一.选择题:共12小题,每小题5分,共60分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
1.已知集合A={x |2230x x --≥},B={x |-2≤x <2=,则A B ⋂= A .[-2,-1] B .[-1,2) C .[-1,1] D .[1,2)【答案】A【难度】容易【点评】本题考查集合之间的运算关系,即包含关系.在高一数学强化提高班上学期课程讲座1,第一章《集合》中有详细讲解,其中第02节中有完全相同类型题目的计算.在高考精品班数学(理)强化提高班中有对集合相关知识的总结讲解. 2.32(1)(1)i i +-= A .1i + B .1i - C .1i -+ D .1i --【答案】D【难度】容易【点评】本题考查复数的计算。
在高二数学(理)强化提高班下学期,第四章《复数》中有详细讲解,其中第02节中有完全相同类型题目的计算。
在高考精品班数学(理)强化提高班中有对复数相关知识的总结讲解。
3.设函数()f x ,()g x 的定义域都为R ,且()f x 时奇函数,()g x 是偶函数,则下列结论正确的是A .()f x ()g x 是偶函数B .|()f x |()g x 是奇函数C .()f x |()g x |是奇函数D .|()f x ()g x |是奇函数【答案】C【难度】中等【点评】本题考查函数的奇偶性。
在高一数学强化提高班上学期课程讲座1,第二章《函数》有详细讲解,在高考精品班数学(理)强化提高班中有对函数相关知识的总结讲解。
河南省高三理数第二次质量检测试卷解析版

高三理数第二次质量检测试卷一、单项选择题.集合M =+ +.F =o] , N = {(Kp)|F = ln(x + 2)},那么()A. {-1,0}B. {(-1,0)}C. MD. N.假设复数吗,那么同=()1 — 1A.3拒B.6C. VlOD. 103.假设等差数列{,”}和等比数列{2}满足6=4=7 , a ="=8,贝1]鲁=()A.-4B.-1C. 1-rk /A \.1 mi _ 5sinacosa /.aw(。
,兀,,.s//7a-co.su =—,贝i 」〃〃72a +;—=(4 cos'a-si 汇 a 36 A. 一B. 12C. -1275 .函数/(xb-7J ,假设/侑(/%10))=。
,那么/体(3))=()e +eA. c"-1B, 3〃一1C. c l-3u D ・ 1-4.“中国天眼”射电望远镜的反射面的形状为球冠(球冠是球面被平面所截后剩下的曲面,截得的圆 面为底,垂直于圆面的直径被截得的局部为高,球冠面积5 = 2n/?力,其中R 为球的半径,力为球冠的高),设球冠底的半径为r,周长为C,球冠的面积为S,那么当。
=2&5兀,5 = 14兀时,(=D. 4)hOi ——R-hr _ 2M于是R 一 7 - 7 o 2故答案为:B.【分析】根据题意结合球冠的周长公式得出r 的值,再利用球冠的面积公式得出Rh 的值,由勾股定理可得出h,R 的值,进而得出 三的值。
R【解析】【解答】解:由题意得X 的可能取值为1, 2, 3,那么丝川专小?《 = 2)=霍S3)号22 19所以 E(X) = lx- + 2x- + 3x : =一, 939 9I -19. 2 口 19、2 x — + (2) x — + (3) 9939y 的可能取值为o, 1, 2, 22I 8(y )= 0x —+lx —+ 2x —=一 ,939 95 y )=(0 ])2冬° .新亭(2 1)飞得 E (x )^£(r ), D(X) = D(Y).故答案为:D.【分析】由古典概型概率计算公式计算X, Y,取每一个值对应概率,得到其分布列,再由期望, 方差计算公式得出结果,即可判断。
2014年河南高考理科数学试题及答案 word最终版

2014年普通高等学校招生全国统一考试理科数学注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答题前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每个小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮搽干净后,再选涂其他答案标号,写在本试卷上无效.3. 回答第Ⅱ卷时,将答案写在答题卡上,答在本试题上无效.4. 考试结束,将本试题和答题卡一并交回.第Ⅰ卷一.选择题:共12小题,每小题5分,共60分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
1.已知集合A={x |2230x x --≥},B={x |-2≤x <2=,则A B ⋂=A .[-2,-1]B .[-1,2)C .[-1,1]D .[1,2)2.32(1)(1)i i +-=A .1i +B .1i -C .1i -+D .1i --3.设函数()f x ,()g x 的定义域都为R ,且()f x 时奇函数,()g x 是偶函数,则下列结论正确的是A .()f x ()g x 是偶函数B .|()f x |()g x 是奇函数C .()f x |()g x |是奇函数D .|()f x ()g x |是奇函数4.已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为A B .3 C D .3m5.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率A .18B .38C .58D .786.如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则y =()f x 在[0,π]上的图像大致为7.执行下图的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M =A .203 B .165 C .72 D .1588.设(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ+=,则A .32παβ-=B .22παβ-=C .32παβ+=D .22παβ+=9.不等式组124x y x y +≥⎧⎨-≤⎩的解集记为D .有下面四个命题:1p :(,),22x y D x y ∀∈+≥-,2p :(,),22x y D x y ∃∈+≥,3P :(,),23x y D x y ∀∈+≤,4p :(,),21x y D x y ∃∈+≤-.其中真命题是A .2p ,3PB .1p ,4pC .1p ,2pD .1p ,3P10.已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个焦点,若4FP FQ =,则||QF =A .72 B .52C .3D .211.已知函数()f x =3231ax x -+,若()f x 存在唯一的零点0x ,且0x >0,则a 的取值范围为A .(2,+∞)B .(-∞,-2)C .(1,+∞)D .(-∞,-1)12.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的个条棱中,最长的棱的长度为A .B .C .6D .4第Ⅱ卷本卷包括必考题和选考题两个部分。
郑州市2014年高中毕业年级第二次质量预测题文科数学试题(含答案)(高清扫描版)

又由 知 ,所以 , .---10分
23.解(Ⅰ)圆 ,即 ,
故圆 的直角坐标方程为: ,------2分
直线 ,即 ,
则直线 的直角坐标方程为: .------4分
(Ⅱ)由⑴知圆 与直线 的直角坐标方程,
将两方程联立得 解得 ------6分
即圆 与直线 在直角坐标系下的公共点为(0,1),------8分
当 时,对应的切线斜率 ,
当 时,对应的切线斜率 ,
令 ,则 ,
所以 在 上为减函数,即 , ,
所以 .------------12分
22.解(Ⅰ)如图,连结 ,由 为直径可知 ,又 ,所以 ,因此 四点共圆.------4分
(Ⅱ)连结 ,由 四点共圆,所以 ,---6分
在 中, ,------8分
(Ⅱ)设切点为 ,则所作切线的斜率 ,
所以直线 的方程为: ,
注意到点 在 上,所以 ,-----7分
整理得: ,故此方程解的个数,即为可以做出的切线条数,
令 ,则 ,பைடு நூலகம்
当 时, ,当 时, 或 ,
所以,函数 在 上单调递减,在 上单调递增,---9分
注意到 ,
所以方程 的解为 ,或 ,
即过点 恰好可以作两条与曲线 相切的直线.----10分
及 得, ,②---------10分
由①、②解得 .---------12分
18.解(Ⅰ)如图(2):在 中,由E、F分别是AC、BC的中点,所以EF//AB,
又 平面DEF, 平面DEF,
∴ 平面DEF.---------6分
(Ⅱ)由直二面角 知平面 平面 ,
又在正 中, 为边AB中点,
2014级高三二诊数学(理)参考答案及评分意见

( 一㊁ 选择题 : 每小题 5 分 , 共6 0 分) 1. D; 2. A; 3. B; 4. A; 5. D; ; ; ; ; 7. B 8. C 9. D 1 0. C 1 1. D; ) 第 Ⅱ 卷( 非选择题 , 共9 分 0 ( 二㊁ 填空题 : 每小题 5 分 , 共2 0 分) 2 n 1 3. ㊀㊀1 4. 3 2. 8; ㊀㊀1 5. 4; ㊀㊀1 6. . -2; n +1 ( 三㊁ 解答题 : 共7 0 分) B E C E ( 解: 在 әB 据正弦定理 , 有 1 7. Ⅰ) E C 中, . = s i n øB C E s i n B 2 π , ȵ øB = B E =1, C E= 7, 3 3 B E ������s i n B 2 2 1 ʑ s i n øB C E= . = = C E 1 4 7 ( 由平面几何知识 , 可知 øD Ⅱ) E A = øB C E. π 在R t әA E D中, ȵ øA = , A E =5, 2 3 57 2 ʑc o s øD E A = 1-s i n øD E A = 1- = . 2 8 1 4 第 Ⅰ 卷( 选择题 , 共6 0 分) 6. C; 1 2. A.
ɡ ɡ ɡ
C D2 = C E2 +D E2 -2 C E������D E������ c o s øC E D = 7+2 8-2ˑ 7 ˑ2 7 ˑ ( -
当 x =5 7 0时, 3ˑ5 7 0+4 3 3. 2=6 0 4. 2. y =0.
������������������������1 0分
高三数学 ( 理科 ) 二诊测试参考答案第 ㊀ 共 5页) 1 页(
������������������������1 特征量 y 的估计值为 6 ʑ 当 x =5 7 0时, 0 4. 2. 2分 ( 解: 如图 , 作 GM ʊ C 交B 连接 MF . 1 9. Ⅰ) D, C 于点 M , 作 BH ʊ AD , 交 GM 于 N , 交D C 于H. ȵE F ʊC D ,ʑGM ʊ E F. ʑGN =A B =3, HC =9. ȵA B ʊ GM ʊ D C, NM BM A G 2 ʑ = = = . HC B C AD 3 ʑNM =6. ʑGM =GN + NM =9. ������������������������4 分 ʑGM ������E F. ʑ 四边形 GMF E 为平行四边形 . ʑG E ʊ MF . 又 MF ⊂ 平面 B C F, G E ⊄ 平面 B C F, ������������������������6 分 ʑG E ʊ 平面 B C F. ( Ⅱ )ȵ 平面 AD E ʅ 平面 C D E F, AD ʅ D E, AD ⊂ 平面 AD E, ʑAD ʅ 平面 C D E F. 以 D 为坐标原点 , D C 为x 轴 , D E 为y 轴 , DA 为z 轴建立如图所示的空间直角坐标 系D x z. y ʑ E (0, 4, 0) , F (9, 4, 0) , C (1 2, 0, 0) , B (3, 0, 4 3) . ң ң , , , ( ) ʑE F = 900 E B = (3, 4 3) . -4, 设平面 E B F 的法向量n1 = (x1 , z1 ) . y1 , ң x1 =0 n ������E F =0, 9 由 1 得 . ң 3 x1 -4 z1 =0 ������ y1 +4 3 n1 E B =0 ������������������������8 分 取 y1 = 3 , 得 n1 = (0,3, 1) . ң ң 同理 , F C = (3, 0) , F B = ( -6, -4, 4 3) . -4, , ) 设平面 B C F 的法向量n2 = ( x2 , z . y2 2 ң 3 x 4 ������ - =0 2 2 y n F C =0, 由 2 得 . ң x2 -4 z2 =0 -6 y2 +4 3 n2 ������F B =0 ������������������������1 取 x2 =4, 得 n2 = (4, 0分 3, 3 3) . n1 ������ n2 0ˑ4+ 3 ˑ3+1ˑ3 3 63 3 3 9 ʑ c o s< n1 , n2 >= . = = = n1 | n2 | 2 6 | | 2ˑ 1 6+9+2 7 2ˑ2 1 3 ������������������������1 1分 ȵ 二面角 E -B F -C 为钝二面角 ,
新课标I(第03期)-2014届高三名校数学(理)试题分省分项汇编 专题03 导数解析版Word版含解析

一.基础题组1. 【河南省郑州市2014届高中毕业年级第一次质量预测试题】已知曲线23ln 4x y x =-的一条切线的斜率为12-,则切点的横坐标为( ) A .3 B .2 C .1 D .122. 【山西省忻州一中、康杰中学、临汾一中、长治二中四校2014届高三第二次联考】定积分=-⎰-dx x x 2222( ) A.5B.6C.7D.83. 【山西省太原市太远五中2014届高三12月月考】已知函数xe xx f cos )(=,则函数)(x f 在点))0(,0(f 处切线方程为 . 【答案】10x y +-= 【解析】试题分析:∵'2sin cos ()()x xx xe xe f x e --=,∴1k =-,(0)1f =,∴1y x -=-,即10x y +-=. 考点:利用导数求曲线的切线.4. 【唐山市2013-2014学年度高三年级第一学期期末考试】已知0a >,函数32f(x)x ax bx c =+++在区间[2,2]-单调递减,则4a b +的最大值为 .5. 【河北省衡水中学2014届高三上学期四调考试】设()ln af x x x x=+, 32()3g x x x =--.(Ⅰ)当2a =时,求曲线()y f x =在1x =处的切线的方程;(Ⅱ)如果存在12,[0,2]x x ∈,使得12()()g x g x M -≥成立,求满足上述条件的最大整数M ;(Ⅲ)如果对任意的1,[,2]2s t ∈,都有()()f s g t ≥成立,求实数a 的取值范围.6. 【河北省唐山市一中2014届高三12月月考】(本小题满分12分)某地区注重生态环境建设,每年用于改造生态环境总费用为x 亿元,其中用于风景区改造为y 亿元。
该市决定制定生态环境改造投资方案,该方案要求同时具备下列三个条件:①每年用于风景区改造费用随每年改造生态环境总费用增加而增加;②每年改造生态环境总费用至少a 亿元,至多b 亿元;③每年用于风景区改造费用不得低于每年改造生态环境总费用的15%,但不得高于每年改造生态环境总费用的25%.若1=a ,4=b ,请你分析能否采用函数模型y =31(416)100x x ++作为生态环境改造投资方案.二.能力题组1. 【河北省唐山市一中2014届高三12月月考】已知函数()f x 对于一切实数x,y 均有()()()21f x y f y x x y +-=++成立,且()()110,0,21g 2a f x f x o x ⎛⎫=∈+ ⎪⎝⎭则当,不等式< 恒成立时,实数a 的取值范围是 .2. 【山西省太原市太远五中2014届高三12月月考】由曲线sin ,cos y x y x ==与直线0,2x x π==所围成的平面图形(图中的阴影部分)的面积是 .【答案】2 【解析】3. 【山西省忻州一中、康杰中学、临汾一中、长治二中四校2014届高三第二次联考】(本小题满分12分) 已知函数ln(1)()2x x f x x -=-.(Ⅰ)讨论函数()f x 的单调性;(Ⅱ)设2()23g x x x =++,证明:对任意1(1,2)(2,)x ∈+∞ ,总存在2x R ∈,使得12()()f x g x >.试题解析:(1)''2212ln(1)1[ln(1)]ln(1)1()(2)(2)x x x x x x x f x x x --+------==-- .................1分设1()2ln(1)11h x x x x =--+---, 22'22(1)2(1)1(2)()0(1)(1)x x x h x x x ---+-==≥--∴()h x 在(1,)+∞是增函数,又(2)0h = ………………3分 ∴当(1,2)x ∈时, ()0h x < ,则'()0f x <,()f x 是单调递减函数; 当(2,)x ∈+∞时, ()0h x > ,则'()0f x >,()f x 是单调递增函数. 综上知:()f x 在(1,2)单调递减函数,()f x 在(2,)+∞单调递增函数 ……………………6分三.拔高题组1. 【山西省忻州一中、康杰中学、临汾一中、长治二中四校2014届高三第二次联考】0.50.521log log 1(1)(7)x mx x x +>---对任意x ∈[2,4]恒成立,则m 的取值范围为 .∴当4x =时,max 45y =,∴45m >.考点:1.对数函数的单调性;2.恒成立问题;3.利用导数求函数最值.2. 【唐山市2013-2014学年度高三年级第一学期期末考试】(本题满分12分)已知函数(x)1x x e f xe =+.(1)证明:0(x)1f <≤; (2)当0x >时,21(x)1f ax >+,求a 的取值范围.试题解析:(Ⅰ)设(x)xe 1x g =+,则'(x)(x 1)e xg =+.当(,1)x ∈-∞-时,'(x)0g <,(x)g 单调递减; 当(1,)x ∈-+∞时,'(x)0g >,(x)g 单调递增. 所以1(x)g(1)1e0g -≥-=->.又0xe >,故(x)0f >.…2分'2(1e )(x)(xe 1)x x x e f -=+ 当(,0)x ∈-∞时,'(x)0f >,(x)f 单调递增; 当(0,)x ∈+∞时,'(x)0f <,(x)f 单调递减. 所以(x)f(0)1f ≤=. 综上,有0(x)1f <≤.…5分3. 【河北省唐山市一中2014届高三12月月考】(本小题满分12分)已知)0()(>-=a e x x f ax.(1)曲线y=f (x )在x=0处的切线恰与直线012=+-y x 垂直,求a 的值;(2)若x ∈[a ,2a]求f (x )的最大值; (3)若f (x 1)=f (x 2)=0(x 1<x 2),求证:.【答案】(1)13a =;(2)当ln a a a >,即a e <时,max ()()f x f a a e ==-,当ln 2a a a a ≤≤,即2e a e ≤≤时,max ()(ln )ln f x f a a a a a ==-,当2ln a a a <,即2a e >时,2max ()(2)2f x f a a e ==-;(3)证明过程详见解析. 【解析】试题分析:本题主要考查导数的运算,利用导数研究函数的单调性、最值、切线方程以及不等式的证明等基础知识,考查分类讨论思想,综合分析和解决问题的能力.第一问,对()f x 求导,将0x =代入得到切线的斜率,由已知切线与直线210x y -+=垂直得出方程,解出a 的值;第二问,先对()f x 求导,利用导数的正负判断出函数的单调区间,再讨论已知[,2]x a a ∈和单调区间的关系来决定最值的位置;第三问,利用第二问的结论,得出max ()ln f x a a a =-,因为12()()0f x f x ==,所以数形结合,得max ()0f x >,解得a e >,数形结合得出两组点的横坐标的关系21ln x x a a a ->-,又利用12()()0f x f x ==,得出11x a x e =,22x ax e =,进行转换得到所求证的不等式.(3)由(2)知,max ()(ln )ln f x f a a a a a ==-,∵12()()0f x f x ==,∴max ()(ln )ln 0f x f a a a a a ==->, ∴ln 1a >,得a e >,∴()0f a a e =->,且(ln )0f a a >. 得21ln x x a a a ->-,又11x a x e =,22x ax e =,∴1211()(ln )12x x a a a a a x e e e x a--=<=. 考点:1.利用导数求切线的斜率;2.两条直线垂直的充要条件;3.利用导数判断函数的单调性;4.利用导数求函数的最值.4. 【河南省郑州市2014届高中毕业年级第一次质量预测试题】(本小题满分12分)已知函数()ln f x x x =,()(1)g x k x =-.(1)若()()f x g x ≥恒成立,求实数k 的值;(2)若方程()()f x g x =有一根为11(1)x x >,方程''()()f x g x =的根为0x ,是否存在实数k ,使1x k x =?若存在,求出所有满足条件的k 值;若不存在,说明理由. 试题解析:⑴解:注意到函数()f x 的定义域为(0,)+∞, 所以()()f x g x ≥恒成立()()f xg x x x⇔≥恒成立, 设(1)()ln (0)k x h x x x x-=->, 则221()k x kh x x x x -'=-=, ------------2分当0k ≤时,()0h x '>对0x >恒成立,所以()h x 是(0,)+∞上的增函数, 注意到(1)0h =,所以01x <<时,()0h x <不合题意.-------4分5. 【山西省曲沃中学2014届高三上学期期中考试】已知函数()e x f x =,点(,0)A a 为一定点,直线()x t t a =≠分别与函数()f x 的图象和x 轴交于点M ,N ,记AMN ∆的面积为()S t . (1)当0a =时,求函数()S t 的单调区间;(2)当2a >时, 若0[0,2]t ∃∈,使得0()e S t ≥, 求实数a 的取值范围.(II )因为1()||e 2t S t t a =-,其中t a ≠ 当2a >,[0,2]t ∈时,1()()e 2tS t a t =-因为0[0,2]t ∃∈,使得0()e S t ≥,所以()S t 在[0,2]上的最大值一定大于等于e1'()[(1)]e 2t S t t a =---,令'()0S t =,得1t a =- …………………8分6. 【山西省太原市太远五中2014届高三12月月考】已知函数ln 1af x x a x =+∈+R ()(). (1)当92a =时,如果函数g x f x k =-()()仅有一个零点,求实数k 的取值范围; (2)当2a =时,试比较f x ()与1的大小; (3)求证:1111ln 135721n n +>+++++ ()n ∈*N ()一个交点,所以关键是()y f x =的图像,对()f x 求导,令'()0f x >和'()0f x <判断函数的单调性,确定函数的极值和最值所在位置,求出具体的数值,便可以描绘出函数图像,来决定k 的位置;第二问,先将2=a 代入,得到()f x 解析式,作差法比较大小,得到新函数()h x ,判断()h x 的正负即可,通过对()h x 求导,可以看出()h x 在(0,)+∞上是增函数且(1)0h =,所以分情况会出现3种大小关系;第三问,法一:利用第二问的结论,得到表达式1211ln+>+k k k ,再利用不等式的性质得到所证表达式的右边,左边是利用对数的运算性质化简,得证;法二,用数学归纳法证明,先证明当1n =时不等式成立,再假设当n k =时不等式成立,然后利用假设的结论证明当1n k =+时不等式成立即可.①当1>x 时,0)1()(=>h x h ,即1)(>x f ; ②当10<<x 时,0)1()(=<h x h ,即1)(<x f ;③当1=x 时,0)1()(==h x h ,即1)(=x f . ……………………………8分(3)(法一)根据(2)的结论,当1>x 时,112ln >++x x ,即11ln +->x x x . 令k k x 1+=,则有1211ln +>+k k k , ∑∑==+>+∴n k nk k k k 111211ln . ∑=+=+nk k k n 11ln )1ln( , 1215131)1ln(++++>+∴n n . …………………………………12分。
2014年河南高考数学试题及答案(理科)

2014年普通高等学校招生全国统一考试理科数学注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答题前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每个小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮搽干净后,再选涂其他答案标号,写在本试卷上无效.3. 回答第Ⅱ卷时,将答案写在答题卡上,答在本试题上无效.4. 考试结束,将本试题和答题卡一并交回.第Ⅰ卷一.选择题:共12小题,每小题5分,共60分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
1.已知集合A={x |2230x x --≥},B={x |-2≤x <2=,则A B ⋂=A .[-2,-1]B .[-1,2)C .[-1,1]D .[1,2)2.32(1)(1)i i +-=A .1i +B .1i -C .1i -+D .1i --3.设函数()f x ,()g x 的定义域都为R ,且()f x 时奇函数,()g x 是偶函数,则下列结论正确的是A .()f x ()g x 是偶函数B .|()f x |()g x 是奇函数C .()f x |()g x |是奇函数D .|()f x ()g x |是奇函数4.已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为A 3B .3C 3mD .3m5.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率A .18B .38C .58D .786.如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则y =()f x 在[0,π]上的图像大致为7.执行下图的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M =A .203 B .165 C .72 D .1588.设(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ+=,则A .32παβ-=B .22παβ-=C .32παβ+=D .22παβ+=9.不等式组124x y x y +≥⎧⎨-≤⎩的解集记为D .有下面四个命题:1p :(,),22x y D x y ∀∈+≥-,2p :(,),22x y D x y ∃∈+≥,3P :(,),23x y D x y ∀∈+≤,4p :(,),21x y D x y ∃∈+≤-.其中真命题是A .2p ,3PB .1p ,4pC .1p ,2pD .1p ,3P10.已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个焦点,若4FP FQ =,则||QF =A .72B .52C .3D .211.已知函数()f x =3231ax x -+,若()f x 存在唯一的零点0x ,且0x >0,则a 的取值范围为A .(2,+∞)B .(-∞,-2)C .(1,+∞)D .(-∞,-1)12.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的个条棱中,最长的棱的长度为A 62B .42C .6D .4第Ⅱ卷本卷包括必考题和选考题两个部分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年高中毕业年级第二次质量预测
理科数学 参考答案
一、 选择题
BADC CABD BCDA 二、 填空题
13.1;4
14.21; 15.(,);e e 16.1.2-
三、解答题
17.解(Ⅰ)由已知,令p q n == 可得22n n n a a ⋅= ,------2分
因为0n a > ,所以2n n a = .------5分 (Ⅱ)2n n n b na n ==⋅ ,------6分
1231122232(1)22,n n n S n n -=⋅+⋅+⋅++-+⋅ ① 23412122232(1)22,n n n S n n +=⋅+⋅+⋅++-+⋅ ②
由①-②得:1231122222,n n n S n +-=⋅++++-⋅ ------8分
即:12(12)
2.12
n n n S n +--=
-⋅-------10分 整理可得:1(1)2 2.n n S n +=-⋅+------12分
18. 解(Ⅰ)如图(2):在ABC ∆中,由E 、F 分别是AC 、BC 的中点,所以EF //AB ,
又⊄AB 平面DEF ,⊂EF 平面DEF , ∴//AB 平面DEF . ------4分
(Ⅱ)以点D 为坐标原点,以直线DB 、DC 、DA 分别为x 轴、y 轴、z 轴,建立空间直角坐标系.
则
11(0,0,1),(100),(22A B C E F ,,),
(1,0,1),(AB BC =-=-
11),(22DE DF ==
设BP BC λ=
,则
(1,1)AP AB BP λ=+=--
, –---7分 注意到1
1033
AP DE AP DE BP BC λ⊥⇔⋅=⇔=⇔= ,
∴在线段BC 上存在点P ,使AP ⊥DE . ------9分
(Ⅲ)平面CDF 的法向量(0,0,1)DA = ,设平面EDF 的法向量为(,,)n x y z =
,
则0,0,DF n DE n ⎧⋅=⎪⎨⋅=⎪⎩
即0,0,
x z ⎧=⎪+=
取(3,n =
,----10分
7
21|
|||cos =
⋅>=
⋅<n DA , 所以二面角E -DF -C 的平面角的余弦值为
7
21
. ---12分 19.解(Ⅰ)设印有“美丽绿城行”的球有n 个,同时抽两球不都是“美丽绿城行”标志为事件A ,
则同时抽取两球都是“美丽绿城行”标志的概率是226
(),n
C P A C = ------3分
由对立事件的概率: ()P A =4
1().5
P A -= 即2261()5n C P A C ==,解得 3.n = ------5分
(Ⅱ)由已知,两种球各三个,故η可能取值分别为1,2,3, -----6分
23261(1).5C P C η===------7分 22112
33332222264641
(2)5
C C C C C P C C C C η==⋅+⋅=,------9分
3
(3)1(1)(2)
P P P ηηη==-=-==
,则η 的分布列为: ------11分
所以11312
1235555
E η=⨯+⨯+⨯= .------12分
20.解(Ⅰ)由题知2x ≠±,且12y k x =+,22y k x =-, 则3
224y y x x ⋅=-+-,--------2分
整理得,曲线C 的方程为22
1(0)43
x y y +
=≠.-----------5分 (Ⅱ)设MP 与x 轴交于(,0)D t ,则直线MP 的方程为(0)x my t m =+≠, 记1122(,),(,)M x y P x y ,由对称性知11
22(,),(,)Q x y N x y --,
由223412,
x y x my t
⎧+=⎨=+⎩消x 得:222(34)63120m y mty t +++-=,-----7分
所以2248(34)0m t ∆=+->,且1,22
62(34)
mt y m -=
+, 故1222
1226,34312,34mt y y m t y y m ⎧
+=-⎪⎪+⎨-⎪⋅=⎪+⎩
------------9分 由M N S 、、三点共线知MS NS k k =,即
12
1244
y y x x -=--,
所以1221(4)(4)0y my t y my t +-++-=,整理得12122(4)()0my y t y y +-+=,----10分
所以222(312)6(4)
034
m t mt t m ---=+,即24(1)0m t -=,1t =,
所以直线MP 过定点(1,0)D ,同理可得直线NQ 也过定点(1,0)D ,
即四边形MNPQ 两条对角线的交点是定点,且定点坐标为(1,0).--------12分
21.解(Ⅰ)由题知()(1)()R x f x x e x -'=-∈,当()0f x '>时,1x <,当()0f x '<时,1x >,----3分
所以函数()f x 的增区间为(,1)-∞,减区间为(1,)+∞,
其极大值为1
(1)f e
=,无极小值.-----------5分
(Ⅱ)由题知01x <<, 当0k ≤时,因为01k
x x
≤<<,由⑴知函数在(,1)-∞单调递增,
所以()()k
f x f x
>,符合题意;-------7分
当01k <<时,取x k =,可得()(1)f k f >,这与函数在(,1)-∞单调递增不符;9分 当1k ≥时,因为
1
1k x x
≥>,由⑴知函数()f x 在(1,)+∞单调递减, 所以1()()k f f x x ≤,即只需证1()()f x f x
>,即证11x
x xe e x -->,
即1ln ln x x x x ->--
,12ln 0x x x -+>,令1
()2ln (01)h x x x x x
=-+<<, 则22
22
21(1)()0x x x h x x x -+--'=
=-<对01x <<恒成立, 所以()h x 为(0,1)上的减函数,所以()(1)0h x h >=,
所以()()k
f x f x
>,符合题意.-------11分
综上:(,0][1,)k ∈-∞+∞ 为所求.------------12分 22.解(Ⅰ)如图,连结AM ,由AB 为直径可知90AMB ︒∠= ,
又CD AB ⊥ ,所以90AEF AMB ︒∠=∠=,
因此A E F M 、、、四点共圆. ------4分
(Ⅱ)连结AC ,由A E F M 、、、四点共圆, 所以BF BM BE BA ⋅=⋅ ,------6分 在RT ABC ∆中,2BC BE BA =⋅ ,------8分
又由44MF BF ==知1,5BF BM == ,所以25BC = ,BC =.---10分 23.解(Ⅰ)圆:cos sin O ρθθ=+,即2cos sin ρρθρθ=+,
故圆O 的直角坐标方程为:220x y x y +--=,------2分
直线:s i n 42l πρθ⎛⎫-= ⎪
⎝⎭ ,即si n cos 1ρθρθ-=, 则直线l 的直角坐标方程为:10x y -+=.------4分 (Ⅱ)由⑴知圆O 与直线l 的直角坐标方程,
将两方程联立得220,10
x y x y x y ⎧+--=⎨-+=⎩,解得0,
1x y =⎧⎨=⎩,------6分
即圆O 与直线l 在直角坐标系下的公共点为(0,1),------8分
将(0,1)转化为极坐标为1,2π⎛⎫
⎪⎝⎭
,即为所求.------10分
24.解 (Ⅰ)由()51f x x >+化简可得|2|1x a ->,
即21x a ->或21x a -<-,------2分 解得:12a x -<
或1
2
a x +>, 所以,不等式()51f x x >+的解集为11
{|}22
a a x x x -+<>或 .------4分
(Ⅱ)不等式|2|50x a x -+≤等价于525x x a x ≤-≤-,
即52,25x x a x a x ≤-⎧⎨-≤-⎩ ,化简得,3
7a x a x ⎧
≤-⎪⎪⎨⎪≤
⎪⎩
.------6分
若0a < ,则原不等式的解集为{|}7a
x x ≤={|1}x x ≤-,此时,7a =- ;-----8分
若0a ≥ ,则原不等式的解集为{|}3
a
x x ≤-={|1}x x ≤-,此时,3a = .
综上所述,7a =- 或3a = .------10分。