对福建高考数学解析几何试题的评析与思考
福建省2019届高三数学学科研讨会:解析几何复习建议

3.最新《考试大纲》说明
关于解析几何部分的考查,《考试大纲》明确指出:解 析几何是高数学的重要内容,高考主要考查直线与圆、椭圆、 抛物线、双曲线的定义、标准方程和简单几何性质。其中直 线与圆、直线与圆锥曲线的位置关系是考查重点。运动与变 化是研究几何问题的基本观点。利用代数方法研究几何问题 是基本方法。试题强调综合性,综合考查数形结合的思想、 函数与方程思想、特殊与一般的思想等思想方法,突出考查 考生推理论证能力和运算求解能力。
常见重要考点及求解策略分析
02
平面解析几何的本质是用代数方法来研究平面几何问 题,在平面直角坐标系中,将平面上的点与有序实数对之 间建立一一对应关系,进而将直线、曲线与方程之间建立 起对应关系,从而将“数”与“形”结合起来。所以,平 面解析几何体现了代数和几何两个特征,这也为解决解析 几何问题提供了代数与几何两种解题路径。在此,我将近 年来高考中最常见也最重要的考点和相应的解题策略归纳 为以下几个方面。
解析几何复习建议
近六年试题命题特点
目 录
常见重要考点分析 备考策略和建议
从近几年全国Ⅰ卷的试题来看,对解析几何的考查,始终注重 数学运算、逻辑推理、数学抽象和直观想象等核心素养的考查。分值 始终保持5+5+12=22分,约占总分值的14.7%,与该部分内容在整 个高中数学中所占的地位相吻合。对这部分知识的考查,强调基础、 着力创新,试题稳定、平和,特别注重解析几何的学习目的和任务的 考查,并在知识的交汇点处设计试题。全面考查高中数学的基本思想 方法,重点考查直线、圆与圆锥曲线的有关概念、方程、性质,直线 与直线、直线与圆及直线与圆锥曲线的位置关系等。为更科学、更精 准、更高效地备考,本人结合近六年全国高考中的解析几何试题,从 高考试题命题特点、常考重要考点、复习建议三个方面进行分析。
高考数学专题精讲之解析几何内容剖析及备考建议

高考数学专题精讲之解析几何内容剖析及备考建议解析几何是高中数学的重要内容。
高考主要考查直线与圆、椭圆、抛物线、双曲线的定义、标准方程和简单的几何性质。
其中直线与圆、直线与圆锥曲线的位置关系是考查重点。
运动与变化是研究几何问题的基本观点,利用代数方法研究几何问题是基本方法。
试题强调综合性,综合考查数形结合思想、函数与方程思想、特殊与一般思想等思想方法,突出考查考生推理论证能力和运算求解能力。
一、直线与方程1.在平面直角坐标系下,结合具体图形掌握确定直线位置的几何要素.2. 理解直线的倾斜角概念,掌握过两点的直线斜率的计算公式.3.能根据两条直线的斜率判断两条直线平行或垂直.4.掌握确定直线的几何要素,掌握直线方程的三种形式(点斜式、两点式、一般式),了解斜截式与一次函数的关系.5.能用解方程组的方法求两条相交直线的交点坐标.6.掌握两点间的距离公式,点到直线的距离公式,会求两平行直线间的距离.二、圆的方程1.掌握确定圆的几何要素,掌握圆的标准方程与一般方程.2.能根据给定直线、圆的方程判断直线与圆的位置关系;能根据给定两个圆的方程判定圆与圆的位置关系.3.能用直线与圆的方程解决一些简单的问题。
4 .初步了解用代数方法处理几何问题的思想。
三、空间直角坐标系1.了解空间直角坐标系,会用空间直角坐标表示点的位置。
2.会简单应用空间两点间的距离公式。
四、圆锥曲线(理科)1.了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用。
2.掌握椭圆、抛物线的定义、几何图形、标准方程及简单几何性质(范围、对称性、顶点、离心率).3.了解双曲线的定义、几何图形和标准方程,知道双曲线的简单的几何性质(范围、对称轴、顶点、离心率、渐近线).4.了解曲线与方程的对应关系。
5.理解数形结合思想。
了解圆锥曲线的简单应用。
四、圆锥曲线(文科)1.掌握椭圆的定义、几何图形、标准方程及简单几何性质(范围、对称性、顶点、离心率).2.了解双曲线的定义、几何图形和标准方程,知道双曲线的简单的几何性质(范围、对称轴、顶点、离心率、渐近线).3.了解抛物线的定义、几何图形和标准方程,知道其简单的几何性质(范围、对称轴、顶点、离心率).4.理解数形结合思想。
福建省高考数学立体几何试题(课标卷)分析

离嚣舅聪中。?擞’?高中版
万方数据
2014年1月
考卷解析
其中值得特别关注的是角度问题的考查:理科试题 中各类角多次以已知条件出现在题干中,如2011年给出 线面角大小,2012年直接给出二面角大小;文科试题则 没有出现此类问题.解法方面,课改初期引入的向量方 法饱受争议,其后逐步被接受,及至被宠爱,甚至过于 强调向量法,到如今方能比较辨证地看待两种方法的 运用.文科试题仍延续传统的综合几何法求解,但相对
向.
(2010年福建理科6).如
A
图5,若Q是长方体A BcD4.曰。C。Dl
被平面E嬲H截去几何体E彤日B。C。
后得到的几何体,其中E为线黝。B。
上异于B。的点,F为线段船。上异于 B。的点,且删∥A,D.,则下列结论
中不正确的是(
).
覃B 傅一
图5
例8如图6,在四棱椎脚曰CD
中,只D上平面ABcD,AB∥DG,
点评:本题通过平面图形折叠构造几何体.主要考查 直线与直线、直线与平面、平面与平面位置关系等基础知 识,考查空间想象能力、推理论证能力和运算求解能力. 考查数形结合思想、化归与转化思想.解决本题的关键在 于抓住“变中不变量”.
例7
(II)设AB_A』4。,在圆柱DO内随机选取一点,记该点
取自于三棱枇Bc卅。曰。c内的概率为P
的条件.
(2013年福建理科19)在四棱柱ABGD—
AIBlclDl中,倾4棱AAl上J『芪面ABcD,AB∥Dc,AAl=1,AB=
3||},AD=4后,BC=5后.DC=6后(.j}>O).
(I)略;(Ⅱ)略; (Ⅲ)现将与四棱柱ABCD_A。B。C。D。形状和大小完全 相同的两个四棱柱拼接成一个新的四棱柱.规定:若拼接 成的新四棱柱形状和大小完全相同,则视为同一种拼接 方案.问:共有几种不同的拼接方案?在这些拼接成的新
文科高考数学重难点04 解析几何(解析版)

重难点04 解析几何【命题趋势】解析几何一直是高考数学中的计算量代名词,在高考中所占的比例一直是2+1+1模式.即两道选择,一道填空,一道解答题.高考中选择部分,一道圆锥曲线相关的简单概念以及简单性质,另外一道是圆锥曲线的性质会与直线、圆等结合考查一道综合题目,一般难度诶中等.填空题目也是综合题目,难度中等.大题部分一般是以椭圆抛物线性质为主,加之直线与圆的相关性子相结合,常见题型为定值、定点、对应变量的取值范围问题、面积问题等.双曲线一般不出现在解答题中,一般出现在小题中.即复习解答题时也应是以椭圆、抛物线为主.本专题主要通过对高考中解析几何的知识点的统计,整理了高考中常见的解析几何的题型进行详细的分析与总结,通过本专题的学习,能够掌握高考中解析几何出题的脉略,从而能够对于高考中这一重难点有一个比较详细的认知,对于解析几何的题目的做法能够有一定的理解与应用.【满分技巧】定值问题:采用逆推方法,先计算出结果.即一般会求直线过定点,或者是其他曲线过定点.对于此类题目一般采用特殊点求出两组直线,或者是曲线然后求出两组直线或者是曲线的交点即是所要求的的定点.算出结果以后,再去写出一般情况下的步骤.定值问题:一般也是采用利用结果写过程的形式.先求结果一般会也是采用满足条件的特殊点进行带入求值(最好是原点或是(1,0)此类的点).所得答案即是要求的定值.然后再利用答案,写出一般情况下的过程即可.注:过程中比较复杂的解答过程可以不求,因为已经知道答案,直接往答案上凑即可.关于取值范围问题:一般也是采用利用结果写过程的形式.对于答案的求解,一般利用边界点进行求解,答案即是在边界点范围内.知道答案以后再写出一般情况下的步骤比较好写.一般情况下的步骤对于复杂的计算可以不算.方法点睛:求解椭圆或双曲线的离心率的方法如下:a c(1)定义法:通过已知条件列出方程组,求得、的值,根据离心率的定义求解离心率e的值;a c e(2)齐次式法:由已知条件得出关于、的齐次方程,然后转化为关于的方程求解;(3)特殊值法:通过取特殊位置或特殊值,求得离心率.【考查题型】选择,填空,解答题【限时检测】(建议用时:45分钟)一、单选题一、单选题1.(2020·贵州贵阳一中高三月考(文))已知圆C :(x +3)2+(y +4)2=4上一动点B ,则点B 到直线l :3x +4y +5=0的距离的最小值为()A .6B .4C .2D.【答案】C【分析】因为圆心到直线的距离,Cl 4d ==所以最小值为,422-=故选:C .2.(2020·河南开封市·高三一模(文))已知双曲线的离心率与椭圆221(0)x y m m -=>的离心率互为倒数,则该双曲线的渐近线方程为( )2213x y m m +=A .B .C .D.y =y x =y x =y =【答案】B【分析】双曲线的离心率为221(0)x y m m -=>e =在椭圆中,由于,则,所以焦点在轴上2213x y m m +=0m >30m m >>y 所以椭圆的离心率为2213x y m m +=e =解得:1=2m =所以双曲线的渐近线方程为:2212x y -=y x =±故选:B3.(2020·四川成都市·高三一模(文))已知平行于轴的一条直线与双曲线x 相交于,两点,,(为坐标原()222210,0x y a b a b -=>>P Q 4PQ a=π3PQO ∠=O点),则该双曲线的离心率为().A BC D【答案】D【分析】如图,由题可知,是等边三角形,POQ △,,4PQ a =()2,P a ∴将点P 代入双曲线可得,可得,22224121a a a b -=224b a =离心率.∴c e a ===故选:D.4.(2020·河南周口市·高三月考(文))已知直线:与圆:l 340x y m -+=C 有公共点,则实数的取值范围为( )226430x y x y +-+-=m A .B .C .D .()3,37[]37,3-[]3,4[]4,4-【答案】B 【分析】因为圆的标准方程为,C ()()223216x y -++=所以,半径,()3,2C -4r =所以点到直线C :340l x y m -+=根据题意可知,解得.1745m+≤373m -≤≤故选:B5.(2020·全国福建省漳州市教师进修学校高三三模(文))已知直线:210l kx y k --+=与椭圆交于A 、B 两点,与圆交于C 、D22122:1(0)x y C a b a b +=>>222:(2)(1)1C x y -+-=两点.若存在,使得,则椭圆的离心率的取值范围是( )[2,1]k ∈--AC DB =1CA .B .C .D .10,2⎛⎤ ⎥⎝⎦1,12⎡⎫⎪⎢⎣⎭⎛ ⎝⎫⎪⎪⎭【答案】C【分析】直线,即为,可得直线恒过定点,:210l kx y k --+=(2)10k x y -+-=(2,1)圆的圆心为,半径为1,且,为直径的端点,222:(2)(1)1C x y -+-=(2,1)C D 由,可得的中点为,AC DB =AB (2,1)设,,,,1(A x 1)y 2(B x 2)y 则,,2211221x y a b +=2222221x y a b +=两式相减可得,1212121222()()()()0x x x x y y y y a b +-+-+=由.,124x x +=122y y +=可得,由,即有,2122122y y b k x x a -==--21k -- (2)2112b a……则椭圆的离心率.(0c e a ==故选:C6.(2020·全国高三其他模拟(文))已知,为的两个顶点,点()1,0A ()3,0B ABC :C在抛物线上,且到焦点的距离为13,则的面积为( )24x y =ABC :A .12B .13C .14D .15【答案】A【分析】解:因为点在抛物线上,设,C 24x y =()00,C x y 抛物线的准线方程为,24x y =1y =-根据抛物线的性质,抛物线上的点到焦点的距离等于到准线的距离.由,得,0113y +=012y =所以.()01131121222ABC S AB y =⨯⋅=⨯-⨯=△故选:A7.(2020·四川成都市·高三一模(文))已知抛物线的焦点为,过的直线24x y =F F l 与抛物线相交于,两点,.若,则( ).A B 70,2P ⎛-⎫ ⎪⎝⎭PB AB ⊥AF =A .B .C .D .322523【答案】D【分析】由题意可知,,设,,()0,1F 211,4x A x ⎛⎫ ⎪⎝⎭222,4x B x ⎛⎫ ⎪⎝⎭则,,2227,42x PB x ⎛⎫=+ ⎪⎝⎭ 222,14x BF x ⎛⎫=-- ⎪⎝⎭ 因为,且,,三点共线,则由可得,PB AB ⊥A B F 0AB PB ⋅= 0BF PB ⋅=所以,即,222222710424x x x ⎛⎫⎛⎫-++-= ⎪⎪⎝⎭⎝⎭422226560x x+-=解得或(舍),所以.222x =2228x =-2x =设直线的方程为,与抛物线方程联立,AB 1y kx =+得,消去得,则,所以.214y kx x y =+⎧⎨=⎩y 2440x kx --=124x x =-1x =±则.21124x y ==所以.12213y F pA =+==+故选:D.8.(2020·四川高三一模(文))已知直线与双曲线:y kx =C ()222210,0x y a b a b -=>>相交于不同的两点,,为双曲线的左焦点,且满足,(A B F C 3AF BF=OA b=为坐标原点),则双曲线的离心率为()O C AB C .2D【答案】B【分析】设是右焦点,则,,即,F 'BF AF '=3AF BF=3AF AF '=又,∴,,而,∴22AF AF AF a''-==AF a'=3AF a=,OA b OF c'==,OA AF '⊥由得,AOF AOF π'∠+∠=cos cos 0AOFAOF '∠+∠=∴,整理得.222902b c a b bc c +-+===ce a 故选:B .9.(2020·河南新乡市·高三一模(文))已知双曲线的左、()2222:10,0x y C a b a b -=>>右焦点分别为、,过原点的右支于点,若1F 2F O C A ,则双曲线的离心率为( )1223F AF π∠=AB 1C D【答案】D 【分析】推导出,可计算出,利用余弦定理求得112F OA F AF :::1F A =2AF =,进而可得出该双曲线的离心率为,即可得解.1212F F e AF AF =-【详解】题可知,,,123F OA π∠=121AF O F AF ∠=∠ 112F OA F AF ∠=∠112F OA F AF ∴:△△,所以,可得.11112F O F AF A F F =1F A =在中,由余弦定理可得,12F AF :22212121222cos3F F AF AF AF AF π=+-⋅即,解得.2220AF c +=2AF=双曲线的离心率为.1212F F e AF AF ===-故选:D.【点睛】10.(2020·全国高三专题练习(文))已知圆,则在轴和轴上22:(2)2C x y ++=x y 的截距相等且与圆相切的直线有几条( )C A .1条B .2条C .3条D .4条【答案】C【分析】若直线不过原点,其斜率为,设其方程为,1-y x m =-+则,解得或,d 0m =4-当时,直线过原点;0m =若过原点,把代入,()0,0()2200242++=>即原点在圆外,所以过原点有2条切线,综上,一共有3条,故选:C .二、解答题11.(2020·四川成都市·高三一模(文))已知椭圆的离心率()2222:10x y C a b a b +=>>,且直线与圆相切.1x ya b +=222x y +=(1)求椭圆的方程;C(2)设直线与椭圆相交于不同的两点﹐,为线段的中点,为坐标原l C A B M AB O 点,射线与椭圆相交于点,且,求的面积.OM C P OP OM=ABO :【答案】(1);(2.22163x y +=【分析】(1,∴(为半焦距).c a=c∵直线与圆.1x ya b +=222x y +==又∵,∴,.222c b a +=26a =23b =∴椭圆的方程为.C 22163x y +=(2)(ⅰ)当直线的斜率不存在时,l 设直线的方程为.l (x nn =<<∵,∴.OP OM==225n =∴.ABOS ==△(ⅱ)当直线的斜率存在时,设直线,l ():0l y kx m m =+≠,.()11,A x y ()22,B x y 由,消去,得.22163y kx mx y =+⎧⎪⎨+=⎪⎩y ()222214260k x kmx m +++-=∴,即.()()()2222221682138630k m k m k m ∆=-+-=-+>22630k m -+>∴,.122421kmx x k +=-+21222621m x x k -=+∴线段的中点.AB 222,2121kmm M k k ⎛⎫- ⎪++⎝⎭当时,∵,∴.0k =OP OM==215m =∴.ABOS =△当时,射线所在的直线方程为.0k ≠OM 12y x k =-由,消去,得,.2212163y x k x y ⎧=-⎪⎪⎨⎪+=⎪⎩y 2221221P k x k =+22321Py k =+∴M POMy OPy ===∴.经检验满足成立.22521m k =+0∆>设点到直线的距离为,则.O ld d =∴212ABOS x =-===△综上,.ABO :12.(2020·云南高三其他模拟(文))已知椭圆的左右焦点分2222:1(0)x y C a b a b +=>>别为,离心率为,椭圆上的点到点的距离之和等于4.12,F F 12C 31,2M ⎛⎫ ⎪⎝⎭12,F F (1)求椭圆的标准方程;C(2)是否存在过点的直线与椭圆相交于不同的两点,,满足()2,1P l C A B 若存在,求出直线的方程;若不存在,请说明理由.2PA PB PM ⋅= l 【答案】(1);(2)存在直线满足条件,其方程为.22143x y +=l 12y x =【分析】解:(1)由题意得,所以.2221224c a a a b c ⎧=⎪⎪=⎨⎪=+⎪⎩21a c b ⎧=⎪=⎨⎪=⎩故椭圆的标准方程为.C 22143x y +=(2)若存在满足条件的直线,则直线的斜率存在,设其方程为.l l (2)1y k x =-+代入椭圆的方程得.C 222(34)8(21)161680k x k k x k k +--+--=设,两点的坐标分别为,,A B ()11,x y ()22,x y 所以.所以,222[8(21)]4(34)(16168)32(63)0k k k k k k ∆=---+--=+>12k >-且,.1228(21)34k k x x k -+=+21221616834k k x x k --=+因为,即,2PA PB PM ⋅= 12125(2)(2)(1)(1)4x x y y --+--=所以.2212(2)(2)(1)54x x k PM --+==即.[]2121252()4(1)4x x x x k -+++=所以,222222161688(21)44524(1)3434344k k k k k k k k k ⎡⎤---+-⋅++==⎢⎥+++⎣⎦解得.12k =±又因为,所以.12k >-12k =所以存在直线满足条件,其方程为.l 12y x =13.(2020·广西北海市·高三一模(文))已知抛物线的准线为2:2(0)C x py p =>,焦点为F .1y =-(1)求抛物线C 的方程;(2)设过焦点F 的直线l 与抛物线C 交于A ,B 两点,且抛物线在A ,B 两点处的切线分别交x 轴于P ,Q 两点,求的最小值.||||AP BQ ⋅【答案】(1);(2)2.24x y =【分析】(1)因为抛物线的准线为,12py =-=-解得,2p =所以抛物线的方程为.24x y =(2)由已知可判断直线l 的斜率存在,设斜率为k ,由(1)得,则直线l 的方程为.(0,1)F 1y kx =+设,,211,4x A x ⎛⎫ ⎪⎝⎭222,4x B x ⎛⎫ ⎪⎝⎭由消去y ,得,214y kx x y =+⎧⎨=⎩2440x kx --=所以,.124x x k +=124x x =-因为抛物线C 也是函数的图象,且,214y x =12y x '=所以直线PA 的方程为.()2111142x y x x x -=-令,解得,所以,0y =112x x =11,02P x ⎛⎫ ⎪⎝⎭从而||AP =同理得||BQ =所以,||||AP BQ ⋅==,=,==当时,取得最小值2.0k =||||AP BQ ⋅14.(2020·广东东莞市·高三其他模拟(文))在平面直角坐标系中,已知两定点xOy,,动点满足.()2,2A -()0,2B P PAPB=(1)求动点的轨迹的方程;P C (2)轨迹上有两点,,它们关于直线:对称,且满足C E F l 40kx y +-=,求的面积.4OE OF ⋅=OEF ∆【答案】(1)动点的轨迹是圆,其方程为(2)P ()()22228x y -+-=【分析】(1)设动点的坐标为,则.P (),xyPAPB==整理得,故动点的轨迹是圆,且方程为.()()22228x y -+-=P ()()22228x y -+-=(2)由(1)知动点的轨迹是圆心为,半径的圆,圆上两点,关P ()2,2C R =E F 于直线对称,由垂径定理可得圆心在直线:上,代入并求得l ()2,2l 40kx y +-=1k =,故直线的方程为.l 40x y +-=易知垂直于直线,且.OC l OC R=设的中点为,则EF M ()()OE OF OM ME OM MF⋅=+⋅+()()OM ME OM ME=+⋅- ,又,.224OM ME =-= 22222OM OC CM R CM =+=+ 222ME R CM =-∴,,∴,.224CM = CM =ME==2FE ME == 易知,故到的距离等于,∴OC FE :O FE CM 12OEF S ∆=⨯=15.(2020·全国高三专题练习)在平面直角坐标系中,已知椭圆xOy 的长轴长为6,且经过点,为左顶点,为下顶点,椭22221(0)x y a b a b +=>>3(2Q A B 圆上的点在第一象限,交轴于点,交轴于点.P PA y C PB x D (1)求椭圆的标准方程(2)若,求线段的长20OB OC +=PA (3)试问:四边形的面积是否为定值?若是,求出该定值,若不是,请说明理由ABCD 【答案】(1);(2;(3)是定值,6.22194x y +=【分析】(1)解:由题意得,解得.26a =3a =把点的坐标代入椭圆C 的方程,得Q 22221x y a b +=229314ab +=由于,解得3a =2b =所以所求的椭圆的标准方程为.22194x y +=(2)解:因为,则得,即,20OB OC += 1(0,1)2OC OB =-=(0,1)C 又因为,所以直线的方程为.(3,0)A -AP 1(3)3y x =+由解得(舍去)或,即得221(3)3194y x x y ⎧=+⎪⎪⎨⎪+=⎪⎩30x y =-⎧⎨=⎩27152415x y ⎧=⎪⎪⎨⎪=⎪⎩2724,1515P ⎛⎫ ⎪⎝⎭所以||AP ==即线段AP (3)由题意知,直线的斜率存在,可设直线.PB 2:23PB y kx k ⎛⎫=-> ⎪⎝⎭令,得,0y =2,0D k ⎛⎫⎪⎝⎭由得,解得(舍去)或222194y kx x y =-⎧⎪⎨+=⎪⎩()2249360k x kx +-=0x =23649kx k =+所以,即2218849k y k -=+22236188,4949k k P k k ⎛⎫- ⎪++⎝⎭于是直线的方程为,即AP 22218849(3)36314k k y x k k -+=⨯+++2(32)(3)3(32)k y x k -=++令,得,即,0x =2(32)32k y k -=+2(32)0,32k C k -⎛⎫ ⎪+⎝⎭所以四边形的面积等于ABDC 1||||2AD BC ⨯⨯122(32)13212326232232k k k k k k k -+⎛⎫⎛⎫=+⋅+=⋅⋅= ⎪ ⎪++⎝⎭⎝⎭即四边形的面积为定值.ABDC 16.(2020·江西南昌市·南昌二中高三其他模拟(文))已知抛物线的()220y px p =->焦点为,轴上方的点在抛物线上,且,直线与抛物线交于,F x ()2,M m -52MF =l A 两点(点,与不重合),设直线,的斜率分别为,.B A B M MA MB 1k 2k (Ⅰ)求抛物线的方程;(Ⅱ)当时,求证:直线恒过定点并求出该定点的坐标.122k k +=-l 【答案】(Ⅰ);22y x =-(Ⅱ)见解析.(Ⅰ)由抛物线的定义可以,5(2)22p MF =--=,抛物线的方程为.1p ∴=22y x =-(Ⅱ)由(Ⅰ)可知,点的坐标为M (2,2)-当直线斜率不存在时,此时重合,舍去. l ,A B 当直线斜率存在时,设直线的方程为l l y kx b=+设,将直线与抛物线联立得:()()1122,,,A x y B x y l 2222(22)02y kx bk x kb x b y x=+⎧+++=⎨=-⎩212122222,kb b x x x x k k --+==①又,12121222222y y k k x x --+=+=-++即,()()()()()()1221122222222kx b x kx b x x x +-+++-+=-++,()()()()12121212121222248248kx x k x x b x x x x b x x x x ++++-++-=--+-,()1212(2+2)(2+2)40k x x k b x x b ++++=将①代入得,222(1)0b b k b ---+=即(1)(22)0b b k +--=得或1b =-22b k =+当时,直线为,此时直线恒过;1b =-l 1y kx =-(0,1)-当时,直线为,此时直线恒过(舍去)22b k =+l 22(2)2y kx k k x =++=++(2,2)-所以直线恒过定点.l (0,1)-。
【高考数学】高考解析几何解答题题型分析及解答策略(学生).doc

高考解析几何解答题题型分析及解答策略。
©归纳・・1.定点问题(1)解析几何中直线过定点或曲线过定点问题是指不论直线或曲线中的参数如何变化,直线或曲线都经过某一个定点.(2)定点问题是在变化中所表现出来的不变的点,那么就可以用变量表示问题中的直线方程、数量积、比例关系等,这些直线方程、数量积、比例关系不受变量所影响的某个点,就是要求的定点.2.定值问题解析几何中的定值问题是指某些几何量(线段的长度、图形的面积、角的度数、直线的斜率等)的大小或某些代数表达式的值等和题目中的参数无关,不随参数的变化而变化,而始终是一个确定的值.3.最值问题圆锥曲线中的最值问题类型较多,解法灵活多变,但总体上主要有两种方法:一是利用几何方法, 即利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;二是利用代数方法,即把要求最值的几何量或代数表达式表示为某个(些)参数的函数,然后利用函数方法、不等式方法等进行求解.4.圆锥曲线中的范围问题(1)解决这类问题的基本思想是建立目标函数和不等关系.(2)建立目标函数的关键是选用一个合适的变量,其原则是这个变量能够表达要解决的问题;建立不等关系的关键是运用圆锥曲线的几何特征、判别式法或基本不等式等灵活处理.5.圆锥曲线中的存在性问题(1)所谓存在性问题,就是判断满足某个(某些)条件的点、直线、曲线(或参数)等几何元素是否存在的问题.(2)这类问题通常以开放性的设问方式给出,若存在符合条件的几何元素或参数值,就求出这些几何元素或参数值;若不存在,则要求说明理由.6.圆锥曲线中的证明问题圆锥曲线中的证明问题,主要有两类:一类是证明点、直线、曲线等几何元素中的位置关系,如:某点在某直线上、某直线经过某个点、某两条直线平行或垂直等;另一类是证明直线与圆锥曲线中的一些数量关系(相等或不等).7.圆锥曲线与三角、向量的交汇问题8.圆锥曲线与数列、不等式的交汇问题9.圆锥曲线与函数、导数的交汇问题.(1)求椭圆E的方程;(2)过椭圆E的左顶点A作两条互相垂直的直线分别与椭圆E交.于(不同于点A的)M, N两点,试判断直线与x轴的交点是否为定点,若是,求出定点坐标;若不是,请说明理由.[例2].已知椭圆C:务+相=1(泓>0)的离心率e=斗,左、右焦点分别为Fi,F2,点F(2, 茶),点%在线段PF1的中垂线上.(1)求椭圆。
对福建高考数学解析几何试题的评析与思考

对福建高考数学解析几何试题的评析与思考邹黎华(福州十一中,福建福州350001)摘要:在新课标、新考纲和新考试说明的精神指导下,高考数学科解析几何试题与以往大纲课程背景下考查形式和内容,有了显著的变化,这些试题不论在考试评价、命题研究还是高考复习,都成为专家、教师探讨的重点、热点,也是高考命题改革的一块试验田.本文通过对2009年到2012年的福建省高考数学理科解析几何试题的评析,考点统计,揭示这些试题是如何贯彻课程标准,反应考试说明的意图,进而反思教师在解析几何的教学与高三复习,反思高考这一专题的命题.关键词:课程标准;数学高考;解析几何;评析与反思前言福建省从2006年开始实施高中新课程,从2009年开始在新课标、新考纲和新考试说明的精神指导下,高考数学科的新课程卷也呈现其崭新的一面.其中解析几何与以往大纲课程背景下考查形式和内容,有了显著的变化,出现了不少的精彩试题.不论在试题评价、试题研究还是高考复习,解析几何成为专家、教师探讨的重点、热点,解析几何试题成为高考命题改革的一块试验田.本文通过对2009年到2012年的福建省高考数学理科解析几何试题的评析,希望能够为一线教师的教学、高考复习和命题专家提供有益的思考.1.解析几何考查综述1.1《考试说明》对解析几何考点的解读1.1.1解析几何的考点与要求(A:了解;B:理解;C:掌握)1.1.2解析几何是高中数学的一个重要内容,其核心内容是直线和圆以及圆锥曲线.解析几何用代数方法研究图形的几何性质,体现了数形结合的重要数学思想.利用平面直角坐标系,将几何问题代数化,用代数的语言描述几何要素及其关系,进而将几何问题转化为代数问题,运用代数的方法研究曲线的几何性质及其相互位置关系,分析代数结果的几何含义,解决几何问题.用代数方法研究几何图形是解析几何的核心.在解题的过程中计算占了很大的比重,对运算求解能力有较高的要求.因此,首先应强调确定几何图形的几何要素,根据几何要素,用代数方法刻画几何图形,推导出几何图形的方程.其次,强调用“几何”来引导代数的恒等变换的计算,不要把解析几何变成纯粹的形式推导.由于平面向量可以用坐标表示,因此以坐标为桥梁,可以使向量的有关运算与解析几何中的坐标运算产生联系.用向量方法研究解析几何问题,主要是利用向量的平行(共线)、垂直关系及成角研究解析几何中直线的平行、垂直关系及成角.平面向量的引入为高考中解析几何试题的命制开拓了新的思路,为实现在知识网络交汇处设计试题提供了良好的素材.解析几何试题适当关注与向量、解三角形、函数等知识的交汇,关注对数形结合、函数与方程、化归与转化、特殊与一般思想的考查,关注对整体处理问题的策略以及待定系数法、换元法等的考查.1.2 2009——2012福建省高考数学(理科)解析几何试题考点分布统计 新课程背景下的解析几何的考查,最核心的思想是注重考查学生在数形结合思想基础上的图形探究能力,强化自主探究,淡化数值推理运算.形式上按照新课标的要求,对圆锥曲线部分突出了定义和图形、几何性质的研究,强调多曲线的综合,显化了直线和圆的位置关系. 1.3考点分析 ①试题结构平稳,题量均匀.每份试卷基本上是1道小题(2010年2道)1道大题,平均分值19分,理 科考查权重181212%250+=,应考分值18分,实际情况与理论权重基本吻合; ②涉及知识点广.虽然解析几何的题量不多,分值仅占总分的13%,但涉及到的知识点分布较广,覆盖面 较大;③涉及曲线类型较全.每份试卷至少涉及三种以上的曲线,2011年涉及到四种曲线;④注重与其他内容的交汇:四份试卷解析几何试题中,有三份试题与向量的内容交汇,有一份试题内容与 导数交汇.2. 2009——2012福建省高考数学(理科)解析几何试题评析 2.1客观题评析例1:(2009年)过抛物线22(0)y px p =>的焦点F 作倾斜角为45的直线交抛物线于A 、B 两点,若线段AB 的长为8,则p =________________.【试题评析】要求抛物线标准方程中的一个参数p 的值,只要构造一个与p 有关的方程即可.根据已知条件,可根据弦长8AB =列出方程.具体操作时,可根据弦长公式列方程,亦可根据抛物线的定义列方程,但计算量是有差别的.本题主要考查推理论证能力、运算求解能力;考查数形结合思想、化归与转化思想、函数与方程思想. 例2:(2010年)以抛物线24y x =的焦点为圆心,且过坐标原点的圆的方程为( ) .A.22x +y +2x=0B. 22x +y +x=0C. 22x +y -x=0D. 22x +y -2x=0【试题评析】因为已知抛物线的焦点坐标为(1,0),即所求圆的圆心,又圆过原点,所以圆的半径为r=1,故所求圆的方程为22x-1)+y =1(,即22x -2x+y =0,选D .本题考查抛物线的几何性质以及圆的方程的求法.例3:(2010年)若点O 和点(2,0)F -分别是双曲线2221(0)x y a a-=>的中心和左焦点,点P 为双曲线右支上的任意一点,则OP FP ⋅的取值范围为 ( ) .A .)+∞B .[3)++∞C . 7[-,)4+∞ D . 7[,)4+∞ 【试题评析】OP FP ⋅ 中涉及三个点,其中,O F 是定点,P 是双曲线右支上的动点,所以,可以考虑建立OP FP ⋅与P 点坐标之间的函数关系.根据已知双曲线的焦点坐标可以求出待定系数a ,再由P 是双曲线右支上的动点可以用P 的横坐标x来表示P 的纵坐标y ,从而建立OP FP ⋅与P 点横坐标x 之间的函数关系,通过求函数的值域求出取值范围.本题主要考查运算求解能力;考查函数与方程思想、数形结合思想、化归与转化思想.例4:(2011年)设圆锥曲线Γ的两个焦点分别为F 1,F 2,若曲线Γ上存在点P 满足1122::4:3:2PF FF PF =,则曲线Γ的离心率等于( ).A.1322或B.23或2C.12或2 D.2332或 【试题评析】要求圆锥曲线的离心率,可以转化为求圆锥曲线中,a c 之间的关系,由于题干中没有指出具体是何种圆锥曲线,故要分类讨论,在不同曲线背景下,根据已知1122::4:3:2PF F F PF =即可得到,a c 之间的关系,从而求出离心率.本题主要考查推理论证能力、运算求解能力;考查数形结合思想、化归与转化思想、分类与整合思想.例5:(2012年)双曲线22214x y b-=的右焦点与抛物线x y 122=的焦点重合,则该双曲线的焦点到其渐近线的距离等于( ).A .5B .24C .3D .5【试题评析】根据抛物线的标准方程即可求出其焦点坐标,亦为双曲线的焦点,从而求出其标准方程中的待定系数b 的值,进而求出双曲线的渐近线方程,再利用点到直线的距离公式求出答案.本题主要考查推理论证能力、运算求解能力;考查数形结合思想.从以上试题的分析可以看出:我省解析几何的客观题重点考查直线方程、圆的方程,圆锥曲线的定义、标准方程及其简单的几何性质,计算量不大,但突出对解析几何本质的理解,强调运算求解能力与推理论证能力,重视函数与方程思想、数形结合思想的应用,题目难度不大,属于基础题或中档题. 2.2主观题评析例1(2009年)已知,A B 分别为曲线222:1(0,0)x C y y aa+=≥>与x 轴的左、右两个交点,直线l 过点B ,且与x 轴垂直,S 为l 上异于点B 的一点,连结AS 交曲线C 于点T .(Ⅰ)若曲线C 为半圆,点T 为圆弧 AB 的三等分点,试求出点S 的坐标;(II )如图,点M 是以SB 为直径的圆与线段TB 的交点,试问:是否存在a ,使得O,M,S 三点共线?若存在,求出a 的值,若不存在,请说明理由.【试题评析】第一问只要抓住Rt ABS ∆,利用已知条件,即可求解.要注意的是对T 点的位置分两种情况 讨论.第二问是一个开放性的问题,判断参数a 的存在性.这类问题的逻辑思路是假设a 存在,根据满足 的条件,,O M S 三点共线建立与a 有关的方程,由方程解的存在情况确定a 的存在与值.本题考查了推理 论证能力、运算求解能力,考查了数形结合思想、化归与转化的思想以及分类与整合的思想.本题的亮点 是根据,,O M S 三点共线的不同处理方式,可以有建立方程不同的方法,就有了不同的解法,此法在具体解题中,要利用直线与曲线的位置关系求出相关点的坐标,这与学生平时习惯用韦达定理,“设而不求” 的训练不同,规避了解题模式,突出对解析几何基本方法的考查. 例2(2010年)已知中心在坐标原点O 的椭圆C 经过点A (2,3),且点F (2,0)为其右焦点. (Ⅰ)求椭圆C 的方程;(Ⅱ)是否存在平行于OA 的直线l ,使得直线l 与椭圆C 有公共点,且直线OA 与l 的距离等于4?若存在,求出直线l 的方程;若不存在,请说明理由.【试题评析】第一问可以有两种方法:一是用待定系数法,根据已知两个条件,列出两个方程,从而求解; 二是利用椭圆的定义和已知条件求出2a ,再由已知c 的值求出b ,从而求得椭圆方程;第二问是开放性问 题,判断满足题设的直线是否存在.从逻辑思维的角度考虑,假设直线l 存在,则l 应满足三个条件①//l OA (可求k );②l 与椭圆有公共点(可建立k 与b 的不等关系);③l 与OA 的距离等于4(可建立k 与b 的 相等关系),而确定一条直线只需两个条件即可.因此,可利用l 满足其中两个条件求出,再检验是否满足 第三个条件,从而得出l 是否存在.这样,本题有多种不同的解法.本题主要考查运算求解能力、推理论 证能力,考查函数与方程思想、数形结合思想、化归与转化思想.本题的亮点是,背景学生熟悉,试题入 口宽,可以用不同的想法和解法解决,使不同思维方式的学生都能做题,提供给学生充分展示自己的平台. 例3(2011年)已知直线:,l y x m x R =+∈.(I )若以点M (2,0)为圆心的圆与直线l 相切与点P ,且点P 在y 轴上,求该圆的方程; (II )若直线l 关于x 轴对称的直线为l ',问直线l '与抛物线2:4C x y =是否相切?说明理由.【试题评析】第一问可以有两种解法:一是利用l 与圆相切于y 轴上一点,求出切点,进而求出圆的半径,从而确定出圆的方程;二是利用待定系数法,由已知条件列出两个方程,从而确定出圆的方程.第二问是一个开放性问题,判断直线'l 与已知抛物线是否相切.在研究直线与抛物线的位置关系时,通过联立方程,根据m 取不同的值情况判断判别式的符号,从而确定直线'l 是否与已知抛物线相切.本题主要考查运算求解能力,考查函数与方程思想、数形结合思想、化归与转化思想、分类与整合思想.本题的亮点是用方程的工具研究直线与圆锥曲线的位置关系,体现了“以数释形”的“解析”思想.本题不论是题设背景,还是问题设置都是学生所熟悉的,解题的运算量适中,但却能体现解析几何的本质思想和方法.例4(2012年)如图,椭圆)0(1:2222>>=+b a by a x E 的左焦点为1F ,右焦点为2F ,离心率21=e .过1F 的直线交椭圆于B A ,两点,且2ABF ∆的周长为8. (Ⅰ)求椭圆E 的方程.(Ⅱ)设动直线m kx y l +=:与椭圆E 有且只有一个公共点P ,且与直线4=x 相交于点Q .试探究: 在坐标平面内是否存在定点M ,使得以PQ 为直径的圆恒过点M ?若存在,求出点M 的坐标;若不存在,说明理由.【试题评析】第一问由已知条件,根据椭圆的定义和离心率的定义即可求解.第二问难度较大,是一个探 究性的开放试题,判断是否存在满足题设的定点.解决此题要突破两个关键:一是由图形的几何特征,判断出若定点存在,则必在x 轴上,二是,题设要求“以PQ 为直径的圆恒过点M ”应转化为“0MP MQ ⋅=对满足一定关系的,m k 恒成立”,这里一定关系是指l 与椭圆相切22(430)k m -+=.从逻辑的角度想,有两种做法:一是根据“0MP MQ ⋅= 对满足一定关系(即22430k m -+=)的,m k 恒成立”,得出一个关于x 的方程对于满足22430k m -+=的,m k 的恒成立.从而求出定点坐标;二是先通过两组,m k 具体值,得到两个圆方程,求出它们与x 轴的交点,从而找到定点(1,0)M ,再证明点M 满足0MP MQ ⋅=.本题主要考查运算求解能力、推理论证能力,考查化归与转化思想、数形结合思想、特殊与一般的思想.本 题的亮点是体现代数方法对解决几何问题的作用,同时体现图形的几何性质对代数运算的方向和运算量的 减小的作用,在推理论证上,体现不同思维方式引发不同的解题方法,对区分不同数学思维层次的学生有 很好的作用.从以上试题的分析可以看出:福建省高考数学理科解析几何的解答题的考查无论从知识点、能力点、 还是数学方法、数学思想都符合福建省高考数学考试说明对解析几何的要求,以学生熟悉的曲线类型为背 景,以直线与圆锥曲线的位置关系为重点,以开放式的设问方式为主要形式,在解析几何与向量、函数、 不等式等知识点的交汇处设计试题,以能力立意为主,着重考查学生对解析几何基础知识、核心思想和数 学通法的掌握,试题有较好的区分度,对中学解析几何的教学有很好的导向作用. 3.思考3.1从教学的角度思考:通过对四年解析几何的试题分析,进一步坚定在教学中要扎扎实实地讲好直线、圆、圆锥曲线及其几何性质等基础知识.教学中要学生先通过画图,直观地理解要解决的几何问题的几何意义,再转化为代数问题求解,通过这个过程学生很容易体会数形结合的思想,体会解析几何的方法;在研究圆锥曲线时,弄清楚曲线方程和参变量的几何意义是第一位的,在此基础上,运用代数方程的方法解决几何问题,在解决几何问题之后,要回到几何意义的理解上.几何是解决问题的出发点也是问题解决之后的落脚点,要避免让学生陷入代数的恒等变形而不理解其几何含义.在分析问题、解决问题中要突出几何要素,注重几何要素的代数化,要在几何要素的引导下进行代数的恒等变形,要让几何图形帮助我们思考问题、确定恒等变形的方向、简化计算,体会几何直观给我们带来的好处. 3.2从高三复习备考的角度思考:①认真研读《考试大纲》、《考试说明》明确高考对解析几何基础知识、基本技能、基本思想、基本方法的要求,使复习工作有的放矢;②重视解决解析几何问题通法的训练.从试题分析中可以看出,直线方程、圆的方程,圆锥曲线的方程和基本性质(基本量)是重点考查的知识点,一定要熟悉基本方法,而直线与圆锥曲线的位置关系及其引发的各类问题是主观题的考查热点,要通过典型例题的操作、讲解,帮助学生总结解题思路,思考策略和通行通法,此外,要注意解析几何与其他数学内容的交汇,加强知识整体性的认知,锻炼学生在对参数的运算处理和面对繁杂的数学式子变形时应有的沉着心理和坚强毅力;3.3从高考试题命制的角度思考:通过分析发现一些商榷的问题,例如四年解析几何的主观题的第二问都是采用开放式的设问方式,探究存在性的问题,显得“稳定有余”,“变化不足”;考查的切入点可以再丰富一些,比如解析几何中的最值问题,范围问题都是考查学生综合能力的载体.俗话说:他山之石可以攻玉.在研究这几年外省新课程卷解析几何试题时,就很有启发性.比如2010年安徽卷理科19题,该题入题口宽,既可用传统的联立直线与曲线,从方程的角度解决,也可利用点在曲线上的本质,用整体运算、对称运算的方法求解.再比如2011年上海卷理科23题,主要涉及到中学最常见的几个轨迹,通过定义点到线段的距离这一新概念设置了三个问题,特别是第三问,呈现给学生三个选择,学生可根据自已的实际情况选择答题,当然不同层次的问题,评分也不一样,体现让不同的学生在数学上得到不同的发展;试题将用代数方法研究几何问题这一解析几何的本质方法通过新定义的方式得到了精彩演绎.这些命题的思路都值得我们借鉴.总的说四年解析几何的试题命制是成功的.很好的贯彻了“关注交汇,注重探究,规避模式,强调应用,体现理念”的高考命题指导思想和“立足基础、关注过程、突出探究、强调应用、追求‘开放’与‘多样’”的教学指导思想.命题立足学科知识本质,降低试题整体难度,注重考查基础知识、基本技能和基本思想的掌握程度,努力体现对知识和技能、过程和方法、情感态度和价值观等目标的要求,以发挥试题对推进普通高中实施素质教育的积极导向作用. 参考文献:[1]中华人民共和国教育部制订.普通高中数学课程标准(实验)[M].北京:人民教育出版社2003 [2福建省教育考试院编.2012年普通高等学校招生全国统一考试福建省数学考试说明[M]. 福建:福建教育出版社2012[3]王尚志.数学教学研究与案例[M].北京:高等教育出版社2006。
福建省自行命题组专家点评高考数学试卷

2019 年福建省自行命题组专家点评高考数学试卷数学:重视解决实际问题能力闽南网6 月9 日讯福建数学文、理科试卷,分别取材于构成高中数学主体框架内容的函数与导数、立体几何、解析几何、概率与统计、三角函数和数列的试题,不仅考查分值占比高,而且有机融合了与之相关的知识、技能和思想方法,从而全面地检测了考生作为未来公民所必需的数学基础。
试题适度创新命题追求稳中求新,适度考查将已有的知识与方法迁移到新情境中解决问题的能力。
如理8(文16)以等差数列和等比数列的定义为载体综合考查推理论证能力、运算求解能力和创新意识;理10、文21( n )( ii)分别以导数的几何意义和正弦函数的最小正周期为载体综合考查推理论证能力、特殊与一般思想、有限与无限思想和数形结合思想;理15 以纠错码和异或运算为载体综合考查了阅读理解、迁移运用的能力。
考查突出能力命题将考查综合运用数学的知识与方法解决问题的能力置于首要的位置。
如文12 依托“三角函数线”侧重考查推理论证能力、抽象概括能力和数形结合思想;文18、理16 分别依托“全网传播的融合指数”和“银行卡密码”侧重考查数据处理能力、应用意识和必然与或然思想;文20(川)依托“两点之间线段最短”侧重考查了空间想象能力、推理论证能力和化归与转化思想;理10依托“导数的几何意义”侧重考查推理论证能力、特殊与一般思想和数形结合思想; 理15 依托“纠错码和异或运算”侧重考查推理论证能力和创新意识;文22、理20依托“导数的综合应用”侧重考查推理论证能力、运算求解能力、创新意识、数形结合思想和分类与整合思想。
命题立足选拔命题强调数学的应用,既考查了数学知识与方法在学科内的应用。
如文12、文15、文21、文22、理9、理14、理19、理20 ,也考查了数学知识在解决实际问题中的应用; 如文13、文18、理4、理15 、理16。
命题立足选拔的要求,解答题每个小题也从易到难。
如文20、21、22的第(I )和(II)问,理19、20的第(I )问均较易入题,余下各问则着重考查考生的自然语言、图形语言和符号语言的转换和思考的能力。
谈谈我的数学高考——福建卷第18题解答及反思

谈谈我 的数学高考
福 建卷 第 1 8题 解 答及 反 思
福建 省 柘 荣 第 一 中学 袁 峰
转 眼高 考 已过 去 两个 月 有 余 , 这 场 没 有
人 做 剑 这 题 时 想 圆 锥 曲 线 炙 排 在 第
硝烟 的战 争 悄 然 逝 去. 回首 高考 , 那 众 人 奋 1 8题 , 难度 应该 不大 , 首先 想到解 法 如下 : yZ 笔疾 书 的两 天 , 那 令 人 难 忘 的两 天 , 相 信 已 ( 1 )椭 圆 E 的 方 程 是 X z 1_ 一1 ( 过 程 经烙 印在每个 高 三 学子 的心 中. 还 记得 6月
牢记 , 例 如 此 题 以 线 段 AB 为 直 径 的 圆 是 否 过点 G, 等价 于去 判断 若G ・ G 百一0 ∞点 G
所 以 2 5 + _ 主 _ ・ m 2 +
c 一而 2 5 +
1 6 ( +2 2 )
一
一
在 圆上 , 若G ・G 百< 0 ∞ 点 G在 圆 内, 若
一
分 同学 都 采 用 上 述 两 种 方 法 , 若 选 择 方 法
,
—
_+ ¨
: +
+ 2 。( 优 + 2) ’( m。 + 2) + 。 +2 ( + 2) ’
! : +旦 . 不 至 于太 简单 , 平 时 要 把 老 师讲 的基 本 方 法 1 6 。2
一2 一3 一O , 因为 直 线 l 恒过定点 ( 一1 , O ) , 拿下这 些 中 等题 呢 ?下 面 以 2 0 1 5年 福建 卷 Y 与 椭 圆一 定有 两 个 交 点. 设 交 点 第 1 8题第 ( 2 ) 问为 例 , 谈 谈 我解 答 该 题 的 经 所 以直 线 z A( x , ) , B( x z , 2 ) , 贝 0 3 , 1  ̄ - Y 2 m 蕊 2 m 过 及反思 .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对福建高考数学解析几何试题的评析与思考邹黎华(福州十一中,福建福州350001)摘要:在新课标、新考纲和新考试说明的精神指导下,高考数学科解析几何试题与以往大纲课程背景下考查形式和内容,有了显著的变化,这些试题不论在考试评价、命题研究还是高考复习,都成为专家、教师探讨的重点、热点,也是高考命题改革的一块试验田.本文通过对2009年到2012年的福建省高考数学理科解析几何试题的评析,考点统计,揭示这些试题是如何贯彻课程标准,反应考试说明的意图,进而反思教师在解析几何的教学与高三复习,反思高考这一专题的命题.关键词:课程标准;数学高考;解析几何;评析与反思前言福建省从2006年开始实施高中新课程,从2009年开始在新课标、新考纲和新考试说明的精神指导下,高考数学科的新课程卷也呈现其崭新的一面.其中解析几何与以往大纲课程背景下考查形式和内容,有了显著的变化,出现了不少的精彩试题.不论在试题评价、试题研究还是高考复习,解析几何成为专家、教师探讨的重点、热点,解析几何试题成为高考命题改革的一块试验田.本文通过对2009年到2012年的福建省高考数学理科解析几何试题的评析,希望能够为一线教师的教学、高考复习和命题专家提供有益的思考.1.解析几何考查综述1.1《考试说明》对解析几何考点的解读1.1.1解析几何的考点与要求(A:了解;B:理解;C:掌握)1.1.2考点解读解析几何是高中数学的一个重要内容,其核心内容是直线和圆以及圆锥曲线.解析几何用代数方法研究图形的几何性质,体现了数形结合的重要数学思想.利用平面直角坐标系,将几何问题代数化,用代数的语言描述几何要素及其关系,进而将几何问题转化为代数问题,运用代数的方法研究曲线的几何性质及其相互位置关系,分析代数结果的几何含义,解决几何问题.用代数方法研究几何图形是解析几何的核心.在解题的过程中计算占了很大的比重,对运算求解能力有较高的要求.因此,首先应强调确定几何图形的几何要素,根据几何要素,用代数方法刻画几何图形,推导出几何图形的方程.其次,强调用“几何”来引导代数的恒等变换的计算,不要把解析几何变成纯粹的形式推导.由于平面向量可以用坐标表示,因此以坐标为桥梁,可以使向量的有关运算与解析几何中的坐标运算产生联系.用向量方法研究解析几何问题,主要是利用向量的平行(共线)、垂直关系及成角研究解析几何中直线的平行、垂直关系及成角.平面向量的引入为高考中解析几何试题的命制开拓了新的思路,为实现在知识网络交汇处设计试题提供了良好的素材.解析几何试题适当关注与向量、解三角形、函数等知识的交汇,关注对数形结合、函数与方程、化归与转化、特殊与一般思想的考查,关注对整体处理问题的策略以及待定系数法、换元法等的考查.1.2 2009——2012福建省高考数学(理科)解析几何试题考点分布统计新课程背景下的解析几何的考查,最核心的思想是注重考查学生在数形结合思想基础上的图形探究能力,强化自主探究,淡化数值推理运算.形式上按照新课标的要求,对圆锥曲线部分突出了定义和图形、几何性质的研究,强调多曲线的综合,显化了直线和圆的位置关系. 1.3考点分析 ①试题结构平稳,题量均匀.每份试卷基本上是1道小题(2010年2道)1道大题,平均分值19分,理 科考查权重181212%250+=,应考分值18分,实际情况与理论权重基本吻合; ②涉及知识点广.虽然解析几何的题量不多,分值仅占总分的13%,但涉及到的知识点分布较广,覆盖面 较大;③涉及曲线类型较全.每份试卷至少涉及三种以上的曲线,2011年涉及到四种曲线;④注重与其他内容的交汇:四份试卷解析几何试题中,有三份试题与向量的内容交汇,有一份试题内容与 导数交汇.2. 2009——2012福建省高考数学(理科)解析几何试题评析 2.1客观题评析例1:(2009年)过抛物线22(0)y px p =>的焦点F 作倾斜角为45的直线交抛物线于A 、B 两点,若线段AB 的长为8,则p =________________.【试题评析】要求抛物线标准方程中的一个参数p 的值,只要构造一个与p 有关的方程即可.根据已知条件,可根据弦长8AB =列出方程.具体操作时,可根据弦长公式列方程,亦可根据抛物线的定义列方程,但计算量是有差别的.本题主要考查推理论证能力、运算求解能力;考查数形结合思想、化归与转化思想、函数与方程思想. 例2:(2010年)以抛物线24y x =的焦点为圆心,且过坐标原点的圆的方程为( ) .A.22x +y +2x=0B. 22x +y +x=0C. 22x +y -x=0D. 22x +y -2x=0【试题评析】因为已知抛物线的焦点坐标为(1,0),即所求圆的圆心,又圆过原点,所以圆的半径为r=1,故所求圆的方程为22x-1)+y =1(,即22x -2x+y =0,选D .本题考查抛物线的几何性质以及圆的方程的求法.例3:(2010年)若点O 和点(2,0)F -分别是双曲线2221(0)x y a a-=>的中心和左焦点,点P 为双曲线右支上的任意一点,则OP FP ⋅的取值范围为 ( ) .A.)+∞ B.[3)++∞ C . 7[-,)4+∞ D . 7[,)4+∞ 【试题评析】OP FP ⋅ 中涉及三个点,其中,O F 是定点,P 是双曲线右支上的动点,所以,可以考虑建立OP FP ⋅与P 点坐标之间的函数关系.根据已知双曲线的焦点坐标可以求出待定系数a ,再由P 是双曲线右支上的动点可以用P 的横坐标x来表示P 的纵坐标y ,从而建立OP FP ⋅与P 点横坐标x 之间的函数关系,通过求函数的值域求出取值范围.本题主要考查运算求解能力;考查函数与方程思想、数形结合思想、化归与转化思想.例4:(2011年)设圆锥曲线Γ的两个焦点分别为F 1,F 2,若曲线Γ上存在点P 满足1122::4:3:2PF FF PF =,则曲线Γ的离心率等于( ).A.1322或B.23或2C.12或2 D.2332或 【试题评析】要求圆锥曲线的离心率,可以转化为求圆锥曲线中,a c 之间的关系,由于题干中没有指出具体是何种圆锥曲线,故要分类讨论,在不同曲线背景下,根据已知1122::4:3:2PF F F PF =即可得到,a c 之间的关系,从而求出离心率.本题主要考查推理论证能力、运算求解能力;考查数形结合思想、化归与转化思想、分类与整合思想.例5:(2012年)双曲线22214x y b-=的右焦点与抛物线x y 122=的焦点重合,则该双曲线的焦点到其渐近线的距离等于( ).A .5B .24C .3D .5【试题评析】根据抛物线的标准方程即可求出其焦点坐标,亦为双曲线的焦点,从而求出其标准方程中的待定系数b 的值,进而求出双曲线的渐近线方程,再利用点到直线的距离公式求出答案.本题主要考查推理论证能力、运算求解能力;考查数形结合思想.从以上试题的分析可以看出:我省解析几何的客观题重点考查直线方程、圆的方程,圆锥曲线的定义、标准方程及其简单的几何性质,计算量不大,但突出对解析几何本质的理解,强调运算求解能力与推理论证能力,重视函数与方程思想、数形结合思想的应用,题目难度不大,属于基础题或中档题. 2.2主观题评析例1(2009年)已知,A B 分别为曲线222:1(0,0)x C y y a a+=≥>与x 轴的左、右两个交点,直线l 过点B ,且与x 轴垂直,S 为l 上异于点B 的一点,连结AS 交曲线C 于点T .(Ⅰ)若曲线C 为半圆,点T 为圆弧AB 的三等分点,试求出点S 的 坐标;(II )如图,点M 是以SB 为直径的圆与线段TB 的交点,试问:是否存在a ,使得O,M,S 三点共线?若存在,求出a 的值,若不存在,请说明理由.【试题评析】第一问只要抓住Rt ABS ∆,利用已知条件,即可求解.要注意的是对T 点的位置分两种情况 讨论.第二问是一个开放性的问题,判断参数a 的存在性.这类问题的逻辑思路是假设a 存在,根据满足 的条件,,O M S 三点共线建立与a 有关的方程,由方程解的存在情况确定a 的存在与值.本题考查了推理论证能力、运算求解能力,考查了数形结合思想、化归与转化的思想以及分类与整合的思想.本题的亮点 是根据,,O M S 三点共线的不同处理方式,可以有建立方程不同的方法,就有了不同的解法,此法在具体解题中,要利用直线与曲线的位置关系求出相关点的坐标,这与学生平时习惯用韦达定理,“设而不求” 的训练不同,规避了解题模式,突出对解析几何基本方法的考查. 例2(2010年)已知中心在坐标原点O 的椭圆C 经过点A (2,3),且点F (2,0)为其右焦点. (Ⅰ)求椭圆C 的方程;(Ⅱ)是否存在平行于OA 的直线l ,使得直线l 与椭圆C 有公共点,且直线OA 与l 的距离等于4?若存在,求出直线l 的方程;若不存在,请说明理由.【试题评析】第一问可以有两种方法:一是用待定系数法,根据已知两个条件,列出两个方程,从而求解; 二是利用椭圆的定义和已知条件求出2a ,再由已知c 的值求出b ,从而求得椭圆方程;第二问是开放性问 题,判断满足题设的直线是否存在.从逻辑思维的角度考虑,假设直线l 存在,则l 应满足三个条件①//l OA (可求k );②l 与椭圆有公共点(可建立k 与b 的不等关系);③l 与OA 的距离等于4(可建立k 与b 的 相等关系),而确定一条直线只需两个条件即可.因此,可利用l 满足其中两个条件求出,再检验是否满足 第三个条件,从而得出l 是否存在.这样,本题有多种不同的解法.本题主要考查运算求解能力、推理论 证能力,考查函数与方程思想、数形结合思想、化归与转化思想.本题的亮点是,背景学生熟悉,试题入 口宽,可以用不同的想法和解法解决,使不同思维方式的学生都能做题,提供给学生充分展示自己的平台. 例3(2011年)已知直线:,l y x m x R =+∈.(I )若以点M (2,0)为圆心的圆与直线l 相切与点P ,且点P 在y 轴上,求该圆的方程; (II )若直线l 关于x 轴对称的直线为l ',问直线l '与抛物线2:4C x y =是否相切?说明理由.【试题评析】第一问可以有两种解法:一是利用l 与圆相切于y 轴上一点,求出切点,进而求出圆的半径,从而确定出圆的方程;二是利用待定系数法,由已知条件列出两个方程,从而确定出圆的方程.第二问是一个开放性问题,判断直线'l 与已知抛物线是否相切.在研究直线与抛物线的位置关系时,通过联立方程,根据m 取不同的值情况判断判别式的符号,从而确定直线'l 是否与已知抛物线相切.本题主要考查运算求解能力,考查函数与方程思想、数形结合思想、化归与转化思想、分类与整合思想.本题的亮点是用方程的工具研究直线与圆锥曲线的位置关系,体现了“以数释形”的“解析”思想.本题不论是题设背景,还是问题设置都是学生所熟悉的,解题的运算量适中,但却能体现解析几何的本质思想和方法.例4(2012年)如图,椭圆)0(1:2222>>=+b a by a x E 的左焦点为1F ,右焦点为2F ,离心率21=e .过1F 的直线交椭圆于B A ,两点,且2ABF ∆的周长为8. (Ⅰ)求椭圆E 的方程.(Ⅱ)设动直线m kx y l +=:与椭圆E 有且只有一个公共点P ,且与直线4=x 相交于点Q .试探究: 在坐标平面内是否存在定点M ,使得以PQ 为直径的圆恒过点M ?若存在,求出点M 的坐标;若不存在,说明理由.【试题评析】第一问由已知条件,根据椭圆的定义和离心率的定义即可求解.第二问难度较大,是一个探 究性的开放试题,判断是否存在满足题设的定点.解决此题要突破两个关键:一是由图形的几何特征,判断出若定点存在,则必在x 轴上,二是,题设要求“以PQ 为直径的圆恒过点M ”应转化为“0MP MQ ⋅=对满足一定关系的,m k 恒成立”,这里一定关系是指l 与椭圆相切22(430)k m -+=.从逻辑的角度想,有两种做法:一是根据“0MP MQ ⋅= 对满足一定关系(即22430k m -+=)的,m k 恒成立”,得出一个关于x 的方程对于满足22430k m -+=的,m k 的恒成立.从而求出定点坐标;二是先通过两组,m k 具体值,得到两个圆方程,求出它们与x 轴的交点,从而找到定点(1,0)M ,再证明点M 满足0MP MQ ⋅=.本题主要考查运算求解能力、推理论证能力,考查化归与转化思想、数形结合思想、特殊与一般的思想.本 题的亮点是体现代数方法对解决几何问题的作用,同时体现图形的几何性质对代数运算的方向和运算量的减小的作用,在推理论证上,体现不同思维方式引发不同的解题方法,对区分不同数学思维层次的学生有很好的作用.从以上试题的分析可以看出:福建省高考数学理科解析几何的解答题的考查无论从知识点、能力点、还是数学方法、数学思想都符合福建省高考数学考试说明对解析几何的要求,以学生熟悉的曲线类型为背景,以直线与圆锥曲线的位置关系为重点,以开放式的设问方式为主要形式,在解析几何与向量、函数、不等式等知识点的交汇处设计试题,以能力立意为主,着重考查学生对解析几何基础知识、核心思想和数学通法的掌握,试题有较好的区分度,对中学解析几何的教学有很好的导向作用.3.思考3.1从教学的角度思考:通过对四年解析几何的试题分析,进一步坚定在教学中要扎扎实实地讲好直线、圆、圆锥曲线及其几何性质等基础知识.教学中要学生先通过画图,直观地理解要解决的几何问题的几何意义,再转化为代数问题求解,通过这个过程学生很容易体会数形结合的思想,体会解析几何的方法;在研究圆锥曲线时,弄清楚曲线方程和参变量的几何意义是第一位的,在此基础上,运用代数方程的方法解决几何问题,在解决几何问题之后,要回到几何意义的理解上.几何是解决问题的出发点也是问题解决之后的落脚点,要避免让学生陷入代数的恒等变形而不理解其几何含义.在分析问题、解决问题中要突出几何要素,注重几何要素的代数化,要在几何要素的引导下进行代数的恒等变形,要让几何图形帮助我们思考问题、确定恒等变形的方向、简化计算,体会几何直观给我们带来的好处.3.2从高三复习备考的角度思考:①认真研读《考试大纲》、《考试说明》明确高考对解析几何基础知识、基本技能、基本思想、基本方法的要求,使复习工作有的放矢;②重视解决解析几何问题通法的训练.从试题分析中可以看出,直线方程、圆的方程,圆锥曲线的方程和基本性质(基本量)是重点考查的知识点,一定要熟悉基本方法,而直线与圆锥曲线的位置关系及其引发的各类问题是主观题的考查热点,要通过典型例题的操作、讲解,帮助学生总结解题思路,思考策略和通行通法,此外,要注意解析几何与其他数学内容的交汇,加强知识整体性的认知,锻炼学生在对参数的运算处理和面对繁杂的数学式子变形时应有的沉着心理和坚强毅力;3.3从高考试题命制的角度思考:通过分析发现一些商榷的问题,例如四年解析几何的主观题的第二问都是采用开放式的设问方式,探究存在性的问题,显得“稳定有余”,“变化不足”;考查的切入点可以再丰富一些,比如解析几何中的最值问题,范围问题都是考查学生综合能力的载体.俗话说:他山之石可以攻玉.在研究这几年外省新课程卷解析几何试题时,就很有启发性.比如2010年安徽卷理科19题,该题入题口宽,既可用传统的联立直线与曲线,从方程的角度解决,也可利用点在曲线上的本质,用整体运算、对称运算的方法求解.再比如2011年上海卷理科23题,主要涉及到中学最常见的几个轨迹,通过定义点到线段的距离这一新概念设置了三个问题,特别是第三问,呈现给学生三个选择,学生可根据自已的实际情况选择答题,当然不同层次的问题,评分也不一样,体现让不同的学生在数学上得到不同的发展;试题将用代数方法研究几何问题这一解析几何的本质方法通过新定义的方式得到了精彩演绎.这些命题的思路都值得我们借鉴.总的说四年解析几何的试题命制是成功的.很好的贯彻了“关注交汇,注重探究,规避模式,强调应用,体现理念”的高考命题指导思想和“立足基础、关注过程、突出探究、强调应用、追求‘开放’与‘多样’”的教学指导思想.命题立足学科知识本质,降低试题整体难度,注重考查基础知识、基本技能和基本思想的掌握程度,努力体现对知识和技能、过程和方法、情感态度和价值观等目标的要求,以发挥试题对推进普通高中实施素质教育的积极导向作用.参考文献:[1]中华人民共和国教育部制订.普通高中数学课程标准(实验)[M].北京:人民教育出版社2003[2福建省教育考试院编.2012年普通高等学校招生全国统一考试福建省数学考试说明[M].福建:福建教育出版社2012[3]王尚志.数学教学研究与案例[M].北京:高等教育出版社2006。