初中数学专题中考题精选方程和方程组
中考数学真题分类汇编及解析(十七) 函数与方程、不等式

2x−y+m=0
(2022•荆州中考)如图是同一直角坐标系中函数y1=2x和y2=2
x的图象.观察图象可得不等式2x>
2
x的解集为
()
A.﹣1<x<1B.x<﹣1或x>1C.x<﹣1或0<x<1D.﹣1<x<0或x>1
【解析】选D.由图象,函数y1=2x和y2=2
x的交点横坐标为﹣1,1,
所以当﹣1<x<0或x>1时,y1>y2,即2x>2 x .
(2022•鄂州中考)数形结合是解决数学问题常用的思想方法.如图,一次函数y=kx+b(k、b为常数,且k<
0)的图象与直线y=1
3x都经过点A(3,1),当kx+b<
1
3x时,根据图象可知,x的取值范围是()
A.x>3B.x<3C.x<1D.x>1【解析】选A.由图象可得,
当x>3时,直线y=1
3x在一次函数y=kx+b的上方,
所以当kx+b<1
3x时,x的取值范围是x>3.
二元一次方程组{y =2x +b y =−3x +6
的解是( )
A .{x =2y =0
B .{x =1y =3
C .{x =−1y =9
D .{x =3y =1
【解析】选B .由图象可得直线l 1和直线l 2交点坐标是(4,5),所以方程组组{y =2x +b y =−3x +6
的解为{x =1y =3. (2022•扬州中考)如图,函数y =kx +b (k <0)的图象经过点P ,则关于x 的不等式kx +b >3的解集为 x <
﹣1 .
【解析】由图象可得,
当x =﹣1时,y =3,该函数y 随x 的增大而减小,
所以不等式kx +b >3的解集为x <﹣1,
答案:x <﹣1。
初三数学方程式练习题目精选

初三数学方程式练习题目精选1. 解下列方程:(1) 3x - 5 = 10(2) 2(5x + 3) = 26(3) -4(x + 2) - 3 = 5 - 6x2. 某数的一半加上5等于该数的四分之一减去3,求这个数是多少?3. 解方程10 - x = 2(x + 3)。
4. 某数减去8的两倍等于该数加上10的三倍,求这个数是多少?5. 一直线上有两个整数标志,离它们的距离为16,两个整数标志的和是53,求这两个整数是多少?6. 一桶水果有30个,有苹果、橙子和香蕉三种水果,若苹果的个数是橙子个数的3倍,香蕉个数是橙子个数的2倍,求苹果、橙子和香蕉各有多少个?7. 解方程(2x + 1)(3 - 2x) = 2x + 9。
8. 解方程-3(2x - 1) + 4x = 2(3x + 5) - 8。
9. 某数减去它的三分之一再加12等于该数的两倍,求这个数是多少?10. 宁宁买了一些图书,每本10元,若多付1元,则可少买1本,若少付1元,则可多买1本。
求宁宁购买的图书本数和要付多少钱?11. 解方程2(x - 1) + 5 = 3(x + 2) - 4。
12. 解方程2(x - 1) + 3(2x + 1) = 13。
13. 解方程2(3x - 4) = 5(2x + 3) - 7x。
14. 解方程2(3 - x) = 4 - (5 + 2x)。
15. 一辆车以时速60公里从A地出发,一小时后,另一辆车从A地出发,以75公里的时速追赶前一辆车,在追赶了多长时间后,两车相遇?这些题目将帮助你熟练掌握解一元一次方程的方法和技巧。
通过反复练习,相信你的数学功底会得到极大提升。
在解答问题时,要注意仔细分析每道题目给出的条件,并采用合适的方法进行求解。
考虑到字数要求,这里提供了一些题目,希望对你的学习有所帮助。
祝你取得良好的成绩!。
2024届中考数学高频考点专项练习:专题四 一次方程(组)综合训练(B)及答案

2024届中考数学高频考点专项练习:专题四一次方程(组)综合训练(B)1.已知是关于x的一元一次方程,则( )A.3或1B.1C.3D.02.若,,则的值为( )A.4B.C.D.3.端午节前夕,某食品加工厂准备将生产的粽子装入A、B两种食品盒中,A种食品盒每盒装8个粽子,B种食品盒每盒装10个粽子,若现将200个粽子分别装入A、B两种食品盒中(两种食品盒均要使用并且装满),则不同的分装方式有( )A.2种B.3种C.4种D.5种4.如果的值与的值互为相反数,那么x等于( )A. B.0 C.1 D.5.定义:使等式成立的一对有理数a,b称为“伴随数对”,记为,如:数对,都是“伴随数对”,若5是“伴随数对”中的一个有理数,则这个“伴随数对”是( )A. B.C.或D.或6.有这样一首关于周瑜年龄的诗:“而立之年督东吴,早逝英年两位数;十比个位正小三,个位六倍与寿符”.大意为:周瑜病逝时的年龄是一个大于30的两位数,其十位上的数字比个位上的数字小3,个位上的数字的六倍正好等于这个两位数.若设周瑜年龄的个位数为x,十位数为y,则可列出方程组为( )A. B. C. D.7.如图,电子蚂蚁P,Q在边长为1个单位长度的正方形的边上运动,电子蚂蚁P从点A出发,以个单位长度/秒的速度绕正方形作顺时针运动,电子蚂蚁Q从点A出发,以个单位长度/秒的速度绕正方形作逆时针运动,则它们第2019次相遇在( )A.点AB.点BC.点CD.点D8.中国减贫方案和减贫成就是史无前例的人类奇迹,联合国秘书长古特雷斯表示,“精准扶贫”方略帮助贫困人口实现2030年可持续发展议程设定的宏伟目标的唯一途径,中国的经验可以为其他发展中国家提供有益借鉴,为了加大“精准扶贫”力度,某单位将19名干部分成甲、乙、丙三个小组到村屯带领50个农户脱贫,若甲组每人负责4个农户,乙组每人负责3个农户,丙组每人负责1个农户,则分组方案有( )A.6种B.5种C.4种D.30种9.对x,y定义一种新运算T,规定:(其中a,b均为非零常数),这里等式右边是通常的四则运算,例如:,若,,则结论正确的个数为( )(1),;(2)若,则;(3)若,m,n均取整数,则或或;(4)若,当n取s,t时,m对应的值为c,d,当时,;(5)若对任意有理数x,y都成立(这里和T均有意义),则A.2个B.3个C.4个D.5个10.已知关于x,y的二元一次方程组则的值是__________.11.记,则方程所有解的和为_________.12.为进一步改善生态环境,村委会决定将一块土地分成甲,乙,丙三个区域来种树.村委会将三个区域的占地面积划分完毕后,发现将原甲区域的面积错划分给了乙区域,而原乙区域30%的面积错划分给了甲区域,丙区域面积未出错,造成现乙区域的面积占甲,乙两区域面积和的.为了协调三个区域的面积占比,村委会重新调整三个区域的面积,将丙区域面积的分两部分划分给现在的甲区域和乙区域.如果调整结束后,甲,乙,丙三个区域的面积比变为,那么村委会调整时从丙区域划分给甲区域的面积与三个区域总面积的比为_________.13.为了同学们的身体健康,学校初、高中部分别购买了A、B、C三种健身器材.已知初中部购买A、B、C的数量之比为,A、B、C的单价之比为;高中部购买A种器材比初中部购买A种器材多出的费用占高中部购买三种器材总费用的,高中部购买A种工具的单价比初中部少,高中部购买B种工具超出初中部B种工具的费用与高中部购买C种工具超出初中部购买C种工具的费用之比为;高中部购买A种工具的费用与购买B种工具的费用之比为;那么初中部购买A种工具的数量与高中部购买的A种工具的数量之比为_______________.14.为了加强公民的节水意识,合理利用水资源.某市采用阶梯价格调控手段达到节水目的,价目表如图.(1)若某户居民1月份用水,则水费__________元;(2)若某户居民某月用水,则用含x的代数式表示水费;(3)若某户居民3、4月份共用水,(4月份用水量超过3月份),共交水费44元,则该户居民3、4月份各用水多少立方米?15.某市有甲、乙两个有名的乐团,这两个乐团决定向某服装厂购买演出服,已知甲乐团购买的演出服每套70元,乙乐团购买的演出服每套80元,两个乐团共75人,购买演出服的总价钱为5600元.(1)甲、乙两个乐团各有多少人?(2)现从甲乐团抽调人,从乙乐团抽调人,去儿童福利院献爱心演出,并在演出后每位乐团成员向儿童们进行“心连心活动”,甲乐团每位成员负责3位小朋友,乙乐团每位成员负责5位小朋友,这样恰好使得福利院65位小朋友全部得到“心连心活动”的温暖.请写出所有的抽调方案,并说明理由.答案以及解析1.答案:B解析:是关于x的一元一次方程,且,解得:或3,且,.故选B.2.答案:A解析:因为,所以,因为,所以,联立方程组可得解方程组可得,所以,故选A.3.答案:C解析:设使用A食品盒x个,使用B食品盒y个,根据题意得,,x、y都为正整数,解得,,,,一共有4种分装方式;故选C.4.答案:A解析:的值与的值互为相反数,,即,解得:.故选:A.5.答案:C解析:当时,,解得,此时“伴随数对”是,当时,,解得,此时“伴随数对”是,“伴随数对”是或,故选:C.6.答案:C解析:其十位上的数字比个位上的数字小3,可得方程:;根据个位上的数字的六倍正好等于这个两位数,可得方程:,可列出方程组为,故选:C.7.答案:D解析:设两只电子蚂蚁每隔x秒相遇一次,根据题意得:,解得:.电子蚂蚁P从点A出发,以个单位长度/秒的速度绕正方形作顺时针运动,它们第1次相遇电子蚂蚁P走了个单位长度,相遇在B点,同理,第2次相遇在C点,第3次相遇在D点,第4次相遇在A点,第5次相遇在B 点,第6次相遇在C点,….又,第2019次相遇和第3次相遇地点相同,即第2019次相遇在点D.故选:D.8.答案:B解析:设甲组有x名干部,乙组有y名干部,则丙组有名干部,由题意得,化简得,,当,时,,即甲组有1名干部,乙组有14名干部,则乙组有4名干部,当,时,,即甲组有3名干部,乙组有11名干部,则乙组有5名干部,当,时,,即甲组有5名干部,乙组有8名干部,则乙组有6名干部,当,时,,即甲组有7名干部,乙组有5名干部,则乙组有7名干部,当,时,,即甲组有9名干部,乙组有2名干部,则乙组有8名干部,综上,有5种方案,故选:B.9.答案:C解析:由题意可知,,,即,解得,故(1)正确;,;,,则;故(2)正确m,n均取整数,,的取值为,,,1,2,4;当,即时,;当,即时,;当,即时,;当,即时,;当,即时,;当,即时,;故(3)不正确,,,,当时,;故(4)正确;,,,,,,对任意有理数x,y都成立(这里和均有意义),则故(5)正确故选C10.答案:1解析:①-②×2,得,解得,把代入②,得,解得,故.11.答案:/解析:当时,,当时,,当时,,当时,,令,方程可化为,①;②;③;④;解得:或;或;或;或;或,解得:或或;所有解的和为,故答案为:.12.答案:解析:设甲,乙,丙三个区域原来的面积分别为x,y,z,,解得则此时,甲区域:,乙区域:,将丙区域面积的分两部分划分给现在的甲区域和乙区域,甲,乙,丙三个区域的面积比变为,则解得:,设最后从丙区域面积的分两部分划分给现在的甲区域面积为,则,解得,村委会调整时从丙区域划分给甲区域的面积与三个区域总面积的比为,故答案为:.13.答案:解析:设初中部购买A、B、C的数量分别为、、,A、B、C的单价分别为、y、y,则初中部购买A、B、C的费用分别为、、,高中部购买三种工具的总费用为a元,高中部购买B种工具超出初中部B种工具的费用,高中部购买C种工具超出初中部购买C种工具的费用分别为,,根据题意得:,解得:,高中部购买的A种工具的数量为:,初中部购买A种工具的数量与高中部购买的A种工具的数量之比为.故答案为:.14.答案:(1)20(2)水费为(元)(3)该户居民3月份的用水量为,4月份的用水量为解析:(1)(元).故答案为:20.(2)当时,水费为元;当时,水费为元;当时,水费为元.综上所述,水费为(元).(3)设3月份的用水量为,则4月份的用水量为,当时,,解得:,;当时,,解得:(不合题意,舍去);当时,,该情况不符合题意.答:该户居民3月份的用水量为,4月份的用水量为.15.答案:(1)甲乐团有40人,乙乐团有35人(2)共有两种方案:从甲乐团抽调5人,从乙乐团抽调10人;或者从甲乐团抽调10人,从乙乐团抽调7人;见解析解析:(1)设甲乐团有x人,乙乐团有y人,根据题意,得,解得,答:甲乐团有40人,乙乐团有35人;(2)由题意,得,变形得,因为,,且a,b均为整数,所以或,所以共有两种方案:从甲乐团抽调5人,从乙乐团抽调10人;或者从甲乐团抽调10人,从乙乐团抽调7人.。
初中数学解方程专项练习题

初中数学解方程专项练习题解方程是初中数学中的重要内容,它要求我们通过运算和推理,找到未知数的值。
解方程需要一定的技巧和方法,掌握了这些技巧和方法,我们就能够轻松应对各种解方程题目。
本文将通过一些专项练习题,帮助大家巩固解方程的知识点。
一、一元一次方程的解1. 解方程2x - 3 = 7。
解法:首先将方程化简为2x = 7 + 3,即2x = 10。
然后将方程两边同时除以2,得到x = 5。
所以方程的解为x = 5。
2. 解方程3(x - 4) = 15。
解法:首先将方程化简为3x - 12 = 15,然后将方程两边同时加上12,得到3x = 27。
最后将方程两边同时除以3,得到x = 9。
所以方程的解为x = 9。
二、一元一次方程组的解1. 解方程组{x + y = 10,x - y = 2}。
解法:根据第一个方程,可以得到x = 10 - y。
将这个结果代入第二个方程中,得到(10 - y) - y = 2。
化简得到10 - 2y = 2,再继续化简得到2y = 8,最后得到y = 4。
将y = 4代入第一个方程,可以得到x = 10 - 4,即x = 6。
所以方程组的解为{x = 6, y = 4}。
2. 解方程组{2x - y = 5,3x + 2y = 12}。
解法:根据第一个方程,可以得到y = 2x - 5。
将这个结果代入第二个方程中,得到3x + 2(2x - 5) = 12。
化简得到3x + 4x - 10 = 12,再继续化简得到7x = 22,最后得到x = 22/7。
将x = 22/7代入第一个方程,可以得到y = 2(22/7) - 5,即y = 44/7 - 35/7,化简得到y = 9/7。
所以方程组的解为{x = 22/7, y = 9/7}。
三、含绝对值的一元一次方程的解1. 解方程|2x - 3| = 7。
解法:分两种情况讨论,当2x - 3 > 0时,即x > 3/2,方程化简为2x - 3 = 7。
中考数学复习考点题型专题练习05 一次方程(组)与一元二次方程

中考数学复习考点题型专题练习专题05 一次方程(组)与一元二次方程一.选择题1.(2022·内蒙古包头)若12,x x 是方程2230x x --=的两个实数根,则212x x ⋅的值为( )A .3或9-B .3-或9C .3或6-D .3-或62.(2022·黑龙江)2022年北京冬奥会女子冰壶比赛有若干支队伍参加了单循环比赛,单循环比赛共进行了45场,共有多少支队伍参加比赛?( )A .8B .10C .7D .93.(2022·四川雅安)若关于x 的一元二次方程x 2+6x +c =0配方后得到方程(x +3)2=2c ,则c 的值为( )A .﹣3B .0C .3D .94.(2022·贵州黔东南)已知关于x 的一元二次方程220x x a --=的两根分别记为1x ,2x ,若11x =-,则2212a x x --的值为( ) A .7 B .7- C .6 D .6-5.(2022·广西梧州)一元二次方程2310x x -+=的根的情况( )A .有两个相等的实数根B .有两个不相等的实数根C .没有实数根D .无法确定6.(2022·湖北武汉)若关于x 的一元二次方程222410x mx m m -+--=有两个实数根1x ,2x ,且()()121222217x x x x ++-=,则m =( )A .2或6B .2或8C .2D .67.(2022·湖南郴州)一元二次方程2210x x +-=的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根8.(2022·广西贵港)若2x =-是一元二次方程220x x m ++=的一个根,则方程的另一个根及m 的值分别是( )A .0,2-B .0,0C .2-,2-D .2-,09.(2022·北京)若关于x 的一元二次方程20x x m ++=有两个相等的实数根,则实数m 的值为( )A .4-B .14-C .14D .4 10.(2022·山东临沂)方程22240x x --=的根是( )A .16x =,24x =B .16x =,24x =-C .16x =-,24x =D .16x =-,24x =-11.(2022·黑龙江牡丹江)下列方程没有实数根的是( )A .2410x x +=B .23830x x +-=C .2230x x -+=D .()()2312x x --=12.(2022·海南)若代数式1x +的值为6,则x 等于( )A .5B .5-C .7D .7-13.(2022·广西贺州)某餐厅为了追求时间效率,推出一种液体“沙漏”免单方案(即点单完成后,开始倒转“沙漏”, “沙漏”漏完前,客人所点的菜需全部上桌,否则该桌免费用餐).“沙漏”是由一个圆锥体和一个圆柱体相通连接而成.某次计时前如图(1)所示,已知圆锥体底面半径是6cm ,高是6cm ;圆柱体底面半径是3cm ,液体高是7cm .计时结束后如图(2)所示,求此时“沙漏”中液体的高度为( )A.2cm B.21cm4C.4cm D.5cm14.(2022·黑龙江)国家“双减”政策实施后,某校开展了丰富多彩的社团活动.某班同学报名参加书法和围棋两个社团,班长为参加社团的同学去商场购买毛笔和围棋(两种都购买)共花费360元.其中毛笔每支15元,围棋每副20元,共有多少种购买方案?()A.5B.6C.7D.815.(2022·辽宁营口)我国元朝朱世杰所著的《算学启蒙》一书是中国较早的数学著作之一,书中记载一道问题:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之?”题意是:快马每天走240里,慢马每天走150里,慢马先走12天,试问快马几天可以追上慢马?若设快马x天可以追上慢马,则下列方程正确的是()A.24015015012x x+=⨯B.24015024012x x-=⨯C.24015024012x x+=⨯D.24015015012x x-=⨯16.(2022·广西)方程3x=2x+7的解是()A.x=4B.x=﹣4C.x=7D.x=﹣717.(2022·贵州铜仁)为了增强学生的安全防范意识,某校初三(1)班班委举行了一次安全知识抢答赛,抢答题一共20个,记分规则如下:每答对一个得5分,每答错或不答一个扣1分.小红一共得70分,则小红答对的个数为( )A .14B .15C .16D .1718.(2022·广东深圳)张三经营了一家草场,草场里面种植上等草和下等草.他卖五捆上等草的根数减去11根,就等下七捆下等草的根数;卖七捆上等草的根数减去25根,就等于五捆下等草的根数.设上等草一捆为x 根,下等草一捆为y 根,则下列方程正确的是( )A .51177255y x y x -=⎧⎨-=⎩B .51177255x y x y +=⎧⎨+=⎩C .51177255x y x y -=⎧⎨-=⎩D .71155257x y x y-=⎧⎨-=⎩ 19.(2022·贵州贵阳)在同一平面直角坐标系中,一次函数y ax b =+与()0y mx n a m =+<<的图象如图所示,小星根据图象得到如下结论:①在一次函数y mx n =+的图象中,y 的值随着x 值的增大而增大;②方程组y ax b y mx n -=⎧⎨-=⎩的解为32x y =-⎧⎨=⎩; ③方程0mx n +=的解为2x =;④当0x =时,1ax b +=-.其中结论正确的个数是( )A .1B .2C .3D .420.(2022·广西河池)某厂家今年一月份的口罩产量是30万个,三月份的口罩产量是50万个,若设该厂家一月份到三月份的口罩产量的月平均增长率为x .则所列方程为( )A .30(1+x )2=50B .30(1﹣x )2=50C .30(1+x 2)=50D .30(1﹣x 2)=50二.填空题21.(2022·湖北鄂州)若实数a 、b 分别满足a 2﹣4a +3=0,b 2﹣4b +3=0,且a ≠b ,则11a b+的值为 _____.22.(2022·福建)推理是数学的基本思维方式、若推理过程不严谨,则推理结果可能产生错误.例如,有人声称可以证明“任意一个实数都等于0”,并证明如下:设任意一个实数为x ,令x m =,等式两边都乘以x ,得2x mx =.①等式两边都减2m ,得222x m mx m -=-.②等式两边分别分解因式,得()()()x m x m m x m +-=-.③等式两边都除以x m -,得x m m +=.④等式两边都减m ,得x =0.⑤所以任意一个实数都等于0.以上推理过程中,开始出现错误的那一步对应的序号是______.23.(2022·广西梧州)一元二次方程()()270x x -+=的根是_________.24.(2022·四川内江)已知x 1、x 2是关于x 的方程x 2﹣2x +k ﹣1=0的两实数根,且2112x x x x +=x 12+2x 2﹣1,则k 的值为 _____.25.(2022·广东深圳)已知一元二次方程260x x m ++=有两个相等的实数根,则m 的值为________________.26.(2022·上海)某公司5月份的营业额为25万,7月份的营业额为36万,已知5、6月的增长率相同,则增长率为_____.27.(2022·山东威海)幻方的历史很悠久,传说最早出现在夏禹时代的“洛书”.把洛书用今天的数学符号翻译出来,就是一个三阶幻方(如图1),将9个数填在3×3(三行三列)的方格中,如果满足每个横行、每个竖列、每条对角线上的三个数字之和都相等,就得到一个广义的三阶幻方.图2的方格中填写了一些数字和字母,若能构成一个广义的三阶幻方,则mn =_____.28.(2022·广西贺州)若实数m ,n满足50m n --∣∣,则3m n +=__________.29.(2022·广东)若1x =是方程220x x a -+=的根,则=a ____________.30.(2022·江苏无锡)二元一次方程组321221x y x y +=⎧⎨-=⎩的解为________. 31.(2022·四川雅安)已知12x y =⎧⎨=⎩是方程ax +by =3的解,则代数式2a +4b ﹣5的值为 _____. 32.(2022·广西)阅读材料:整体代值是数学中常用的方法.例如“已知32a b -=,求代数式621a b --的值.”可以这样解:()6212312213a b a b --=--=⨯-=.根据阅读材料,解决问题:若2x =是关于x 的一元一次方程3ax b +=的解,则代数式2244421a ab b a b ++++-的值是________.33.(2022·内蒙古呼和浩特)某超市糯米的价格为5元/千克,端午节推出促销活动:一次购买的数量不超过2千克时,按原价售出,超过2千克时,超过的部分打8折.若某人付款14元,则他购买了_______千克糯米;设某人的付款金额为x 元,购买量为y 千克,则购买量y 关于付款金额(10)x x >的函数解析式为______.34.(2022·山东潍坊)方程组2313320x y x y +=⎧⎨-=⎩的解为___________. 35.(2022·贵州贵阳)“方程”二字最早见于我国《九章算术》这部经典著作中,该书的第八章名为“方程”如: 从左到右列出的算筹数分别表示方程中未知数x ,y 的系数与相应的常数项,即可表示方程423x y +=,则 表示的方程是_______.36.(2022·吉林长春)《算法统宗》是中国古代重要的数学著作,其中记载:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.其大意为:今有若干人住店,若每间住7人,则余下7人无房可住;若每间住9人,则余下一间无人住,设店中共有x 间房,可求得x 的值为________.37.(2022·湖南长沙)关于的一元二次方程220x x t ++=有两个不相等的实数根,则实数t 的值为___________.38.(2022·江苏泰州)方程2x 2x m 0-+=有两个相等的实数根,则m 的值为__________.39.(2022·湖北武汉)有大小两种货车,3辆大货车与4辆小货车一次可以运货22吨,5辆大货车与2辆小货车一次可以运货25吨,则4辆大货车与3辆小货车一次可以运货___________吨.40.(2022·上海)解方程组2213x y x y +=⎧⎨-=⎩的结果为_____. 三.解答题 41.(2022·广东)《九章算术》是我国古代的数学专著,几名学生要凑钱购买1本.若每人出8元,则多了3元;若每人出7元,则少了4元.问学生人数和该书单价各是多少?42.(2022·内蒙古赤峰)某学校建立了劳动基地,计划在基地上种植A 、B 两种苗木共6000株,其中A 种苗木的数量比B 种苗木的数量的一半多600株.(1)请问A 、B 两种苗木各多少株?(2)如果学校安排350人同时开始种植这两种苗木,每人每天平均能种植A 种苗木50株或B 种苗木30株,应分别安排多少人种植A 种苗木和B 种苗木,才能确保同时..完成任务?43.(2022·湖南)中国“最美扶贫高铁”之一的“张吉怀高铁”开通后,张家界到怀化的运行时间由原来的3.5小时缩短至1小时,运行里程缩短了40千米.已知高铁的平均速度比普通列车的平均速度每小时快200千米,求高铁的平均速度.44.(2022·四川广安)某企业下属A、B两厂向甲乙两地运送水泥共520吨,A厂比B 厂少运送20吨,从A厂运往甲乙两地的运费分别为40元/吨和35元/吨,从B厂运往甲乙两地的运费分别为28元/吨和25元/吨.(1)求A、B两厂各运送多少吨水泥?(2)现甲地需要水泥240吨,乙地需要水泥280吨.受条件限制,B厂运往甲地的水泥最多150吨.设从A厂运往甲地a吨水泥,A、B两厂运往甲乙两地的总运费为w元.求w 与a之间的函数关系式,请你为该企业设计一种总运费最低的运输方案,并说明理由45.(2022·广西桂林)解二元一次方程组:13x yx y-=⎧⎨+=⎩.46.(2022·江苏常州)第十四届国际数学教育大会(ICME-14)会徽的主题图案有着丰富的数学元素,展现了我国古代数学的文化魅力,其右下方的“卦”是用我国古代的计数符号写出的八进制数3745.八进制是以8作为进位基数的数字系统,有0~7共8个基本数字.八进制数3745换算成十进制数是3210387848582021⨯+⨯+⨯+⨯=,表示ICME-14的举办年份.(1)八进制数3746换算成十进制数是_______;(2)小华设计了一个n进制数143,换算成十进制数是120,求n的值.47.(2022·江苏泰州)如图,在长为50 m,宽为38 m的矩形地面内的四周修筑同样宽的道路,余下的铺上草坪.要使草坪的面积为1260 m2,道路的宽应为多少?48.(2022·黑龙江齐齐哈尔)解方程:22+=+(23)(32)x x49.(2022·贵州贵阳)(1)a,b两个实数在数轴上的对应点如图所示.用“<”或“>”填空:a_______b,ab_______0;(2)在初中阶段我们已经学习了一元二次方程的三种解法,他们分别是配方法、公式法和因式分解法,请从下列一元二次方程中任选两个,并解这两个方程.①x2+2x−1=0;②x2−3x=0;③x2−4x=4;④x2−4=0.50.(2022·内蒙古呼和浩特)计算求解:(1)计算112sin45|23-⎛⎫-+- ⎪⎝⎭︒(2)解方程组451223x yx y+=⎧⎪-⎨+=⎪⎩51.(2022·湖南长沙)电影《刘三姐》中,有这样一个场景,罗秀才摇头晃脑地吟唱道:“三百条狗交给你,一少三多四下分,不要双数要单数,看你怎样分得匀?”该歌词表达的是一道数学题.其大意是:把300条狗分成4群,每个群里,狗的数量都是奇数,其中一个群,狗的数量少:另外三个群,狗的数量多且数量相同.问:应该如何分?请你根据题意解答下列问题:(1)刘三姐的姐妹们以对歌的形式给出答案:“九十九条打猎去,九十九条看羊来,九十九条守门口,剩下三条给财主.”请你根据以上信息,判断以下三种说法是否正确,在题后相应的括号内,正确的打“√”,错误的打“×”.①刘三姐的姐妹们给出的答案是正确的,但不是唯一正确的答案.()②刘三姐的姐妹们给出的答案是唯一正确的答案.()③该歌词表达的数学题的正确答案有无数多种.()(2)若罗秀才再增加一个条件:“数量多且数量相同的三个群里,每个群里狗的数量比数量较少的那个群里狗的数量多40条”,求每个群里狗的数量.52.(2022·四川雅安)某商场购进A,B两种商品,已知购进3件A商品和5件B商品费用相同,购进3件A商品和1件B商品总费用为360元.(1)求A,B两种商品每件进价各为多少元?(列方程或方程组求解)(2)若该商场计划购进A,B两种商品共80件,其中A商品m件.若A商品按每件150元销售,B商品按每件80元销售,求销售完A,B两种商品后获得总利润w(元)与m(件)的函数关系式.53.(2022·海南)我省某村委会根据“十四五”规划的要求,打造乡村品牌,推销有机黑胡椒和有机白胡椒.已知每千克有机黑胡椒比每千克有机白胡椒的售价便宜10元,购买2千克有机黑胡椒和3千克有机白胡椒需付280元,求每千克有机黑胡椒和每千克有机白胡椒的售价.。
初三数学解方程组练习题

初三数学解方程组练习题在初三数学学习中,解方程组是一个重要的知识点。
解方程组涉及到多个方程式之间的关系,能够帮助我们找到多个变量的值。
下面是一些初三数学解方程组的练习题,通过练习这些题目,可以帮助同学们加深对解方程组的理解和掌握。
练习一:二元一次方程组1. 解方程组:{ 2x + y = 7{ 3x - y = 12. 解方程组:{ 4x - 3y = 5{ 2x + y = 33. 解方程组:{ x + y = 8{ x - y = 24. 解方程组:{ 3x + 2y = 10{ 5x - 4y = 13练习二:二元二次方程组1. 解方程组:{ x^2 + y^2 = 5{ x + y = 32. 解方程组:{ x^2 + y^2 = 20{ x - y = 43. 解方程组:{ x^2 - y^2 = 9{ x + y = 54. 解方程组:{ x^2 + y^2 = 13{ x - y = 3练习三:三元一次方程组1. 解方程组:{ x + y + z = 4{ 2x - 3y + z = 1{ 3x + y - z = 02. 解方程组:{ 2x - 3y + z = 7{ 3x + y - 2z = 2{ x + 2y + 3z = 123. 解方程组:{ x + y - z = 1{ x + 2y + z = 4{ 2x - y + 3z = 84. 解方程组:{ x + y - z = -2{ 2x - y + 2z = 3{ 3x + y - 3z = 2以上是一些初三数学解方程组的练习题,通过反复练习和掌握解方程组的方法和技巧,同学们会逐渐提高解方程组的能力。
解方程组是数学中的一个重要内容,不仅在初中阶段用到,更是在高中和大学阶段都会有所涉及。
因此,加强对解方程组的学习是十分必要的。
希望同学们能够利用这些练习题,不断加强自己的解方程组能力,为将来的学习打下坚实的基础。
中考数学专题练习 二元一次方程组(含解析)

二元一次方程组一、填空题1.用加减消元法解方程组,由①×2﹣②得.2.在方程3x﹣y=5中,用含x的代数式表示y为:y= ,当x=3时,y= .3.在代数式3m+5n﹣k中,当m=﹣2,n=1时,它的值为1,则k= ;当m=2,n=﹣3时代数式的值是.4.已知方程组与有相同的解,则m= ,n= .5.若(2x﹣3y+5)2+|x+y﹣2|=0,则x= ,y= .6.有一个两位数,它的两个数字之和为11,把这个两位数的个位数字与十位数字对调,所得的新数比原数大63,设原两位数的个位数字为x,十位数字为y,则用代数式表示原两位数为,根据题意得方程组.7.如果是方程6x+by=32的解,则b= .8.若是关于x、y的方程ax﹣by=1的一个解,且a+b=﹣3,则5a﹣2b= .9.已知a2﹣a+1=2,那么a﹣a2+1的值是.10.若|3a+4b﹣c|+(c﹣2b)2=0,则a:b:c= .二、选择题11.如果3a7x b y+7和﹣7a2﹣4y b2x是同类项,则x,y的值是()A.x=﹣3,y=2 B.x=2,y=﹣3 C.x=﹣2,y=3 D.x=3,y=﹣212.已知是方程组的解,则a,b间的关系是()A.4b﹣9a=1 B.3a+2b=1 C.4b﹣9a=﹣1 D.9a+4b=113.若二元一次方程3x﹣y=7,2x+3y=1,y=kx﹣9有公共解,则k的取值为()A.3 B.﹣3 C.﹣4 D.414.若二元一次方程3x﹣2y=1有正整数解,则x的取值应为()A.正奇数B.正偶数C.正奇数或正偶数D.015.关于x、y的二元一次方程组的解满足不等式x+y>0,则a的取值范围是()A.a<﹣1 B.a<1 C.a>﹣1 D.a>116.方程ax﹣4y=x﹣1是二元一次方程,则a的取值为()A.a≠0 B.a≠﹣1 C.a≠1 D.a≠217.当x=2时,代数式ax3+bx+1的值为6,那么当x=﹣2时这个式子的值为()A.6 B.﹣4 C.5 D.118.设A、B两镇相距x千米,甲从A镇、乙从B镇同时出发,相向而行,甲、乙行驶的速度分别为u千米/小时、v千米/小时,并有:①出发后30分钟相遇;②甲到B镇后立即返回,追上乙时又经过了30分钟;③当甲追上乙时他俩离A镇还有4千米.求x、u、v.根据题意,由条件③,有四位同学各得到第3个方程如下,其中错误的一个是()A.x=u+4 B.x=v+4 C.2x﹣u=4 D.x﹣v=4三、解答题19.解方程组:.20.解方程组:.21.解方程组:.22.王大伯承包了25亩土地,今年春季改种黄瓜和西红柿两种大棚蔬菜,用去了44 000元,其中种黄瓜每亩用了1700元,获纯利润2600元;种西红柿每亩用了1800元,获纯利润2800元,问王大伯一共获纯利润多少元?23.在社会实践活动中,某校甲、乙、丙三位同学一同调查了高峰时段某市的一环路、二环路、三环路的车流量已知关于x、y的方程组与有相同的解,求a、b的值.28.一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车,已知过去两次租用这种货车的情况如表所示.现租用该公司的甲种货车3辆乙种货车5辆,一次刚好运完这批货物,如果按每吨付运费30元计算,问货主应付运费多少元?第一次第二次甲种货车辆(辆) 2 5 乙种货车辆(辆) 3 6 累计运货吨数(吨)15.5 35二元一次方程组参考答案与试题解析一、填空题1.用加减消元法解方程组,由①×2﹣②得2x=﹣3 .【考点】解二元一次方程组.【专题】计算题.【分析】此题主要考查加减消元法的应用,按照题目要求解答即可.【解答】解:①×2﹣②得,6x+2y﹣(4x+2y)=﹣2﹣1,合并同类项得,2x=﹣3.【点评】注意掌握二元一次方程的加减消元法.2.在方程3x﹣y=5中,用含x的代数式表示y为:y= 12x﹣20 ,当x=3时,y= 16 .【考点】解二元一次方程.【分析】本题是将二元一次方程变形,用一个未知数表示另一个未知数,可先移项,再系数化为1,得到y的表达式,最后把x的值代入方程求出y值.【解答】解:①由已知方程3x﹣y=5,移项,得,系数化为1,得y=12x﹣20;②当x=3代入y=12x﹣20,得y=16.【点评】本题考查的是方程的基本运算技能:移项,合并同类项,系数化为1等.3.在代数式3m+5n﹣k中,当m=﹣2,n=1时,它的值为1,则k= ﹣2 ;当m=2,n=﹣3时代数式的值是﹣7 .【考点】代数式求值.【分析】直接把m=﹣2,n=1代入代数式,求得k,再利用代入法求代数式的解.【解答】解:∵m=﹣2,n=1∴3m+5n﹣k=1∴k=﹣2∵m=2,n=﹣3,k=﹣2∴3m+5n﹣k=3×2+5×(﹣3)﹣(﹣2)=﹣7.【点评】解题关键是先把m=﹣2,n=1代入代数式求出k的值,再把k的值,m=2,n=﹣3代入代数式求值.4.已知方程组与有相同的解,则m= ,n= 12 .【考点】同解方程组.【专题】计算题.【分析】解此题可先将第二个方程组解出x、y的值,再代入第一个方程组,化为只有m、n的方程组,即可求出n、m.【解答】解:由(1)×2+(2),得10x=20,x=2,代入,得y=0.将x、y代入第一个方程组可得,解,得.【点评】此题考查的是考生对二元一次方程组的解的理解和二元一次方程组的解法,解出x、y的值,再代入方程组求出m、n的值、最重要的是将方程化简到只含有两个未知数.5.若(2x﹣3y+5)2+|x+y﹣2|=0,则x= ,y= .【考点】解二元一次方程组;非负数的性质:绝对值;非负数的性质:偶次方.【分析】本题可根据非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0”解出x、y的值.【解答】解:∵(2x﹣3y+5)2+|x+y﹣2|=0,∴,解,得x=,y=.【点评】本题考查了非负数的性质.初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.6.有一个两位数,它的两个数字之和为11,把这个两位数的个位数字与十位数字对调,所得的新数比原数大63,设原两位数的个位数字为x,十位数字为y,则用代数式表示原两位数为10y+x ,根据题意得方程组.【考点】由实际问题抽象出二元一次方程组.【分析】如果设原两位数的个位数字为x,十位数字为y,那么原两位数可表示为10y+x.此题中的等量关系有:①有一个两位数,它的两个数字之和为11可得出方程x+y=11;②根据“把这个两位数的个位数字与十位数字对调,所得的新数比原数大63”,可得出方程为(10x+y)﹣(10y+x)=63,那么方程组是.【解答】解:根据数位的意义,该两位数可表示为10y+x.根据有一个两位数,它的两个数字之和为11,可得方程x+y=11;根据把这个两位数的个位数字与十位数字对调,所得的新数比原数大63,可得方程(10x+y)﹣(10y+x)=63.那么方程组是.故答案为:10y+x,.【点评】根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.本题要注意两位数的表示方法.7.如果是方程6x+by=32的解,则b= 7 .【考点】二元一次方程的解.【专题】方程思想.【分析】将x=3,y=2代入方程6x+by=32,把未知数转化为已知数,然后解关于未知系数b的方程.【解答】解:把x=3,y=2代入方程6x+by=32,得6×3+2b=32,移项,得2b=32﹣18,合并同类项,系数化为1,得b=7.【点评】本题的关键是将方程的解代入原方程,把关于x、y的方程转化为关于系数b的方程,此法叫做待定系数法,在以后的学习中,经常用此方法求函数解析式.8.若是关于x、y的方程ax﹣by=1的一个解,且a+b=﹣3,则5a﹣2b= ﹣43 .【考点】二元一次方程的解.【分析】要求5a﹣2b的值,要先求出a和b的值.根据题意得到关于a和b的二元一次方程组,再求出a和b的值.【解答】解:把代入方程ax﹣by=1,得到a+2b=1,因为a+b=﹣3,所以得到关于a和b的二元一次方程组,解这个方程组,得b=4,a=﹣7,所以5a﹣2b=5×(﹣7)﹣2×4=﹣35﹣8=﹣43.【点评】运用代入法,得关于a和b的二元一次方程组,再解方程组求解是解决此类问题的关键.9.已知a2﹣a+1=2,那么a﹣a2+1的值是0 .【考点】代数式求值.【专题】整体思想.【分析】先求出a2﹣a的值,再把原式化为﹣(a2﹣a)+1的形式进行解答.【解答】解:∵a2﹣a+1=2,∴a2﹣a=1,∴a﹣a2+1=﹣(a2﹣a)+1,=﹣1+1=0.【点评】代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式a2﹣a的值,然后利用“整体代入法”求代数式的值.10.若|3a+4b﹣c|+(c﹣2b)2=0,则a:b:c= ﹣2:3:6 .【考点】解三元一次方程组;非负数的性质:绝对值;非负数的性质:偶次方.【分析】解此题可以根据函数的非负性进行求解,含不等式的式子必大于0,含平方的式子也必大于0,因此可知|3a+4b﹣c|=0,且(c﹣2b)2=0,据此可以求出a,b,c的比.【解答】解:依题意得:|3a+4b﹣c|=0,且(c﹣2b)2=0,∴,∴由②得3a=﹣2b,即a=﹣b,∴a:b:c=﹣b:b:2b=﹣2:3:6.故答案为:﹣2:3:6.【点评】此题考查的是非负数的性质,据此可以列出二元一次方程组,求出相应的比,就可以计算出此题.二、选择题11.如果3a7x b y+7和﹣7a2﹣4y b2x是同类项,则x,y的值是()A.x=﹣3,y=2 B.x=2,y=﹣3 C.x=﹣2,y=3 D.x=3,y=﹣2【考点】同类项;解二元一次方程组.【专题】计算题.【分析】本题根据同类项的定义,即相同字母的指数相同,可以列出方程组,然后求出方程组的解即可.【解答】解:由同类项的定义,得,解这个方程组,得.故选B.【点评】根据同类项的定义列出方程组,是解本题的关键.12.已知是方程组的解,则a,b间的关系是()A.4b﹣9a=1 B.3a+2b=1 C.4b﹣9a=﹣1 D.9a+4b=1【考点】二元一次方程组的解.【分析】解此题时可将x,y的值代入方程,化简可得出结论.【解答】解:根据题意得,原方程可化为要确定a和b的关系,只需消去c即可,则有9a+4b=1.故选D.【点评】此题考查的是对方程组性质的理解,运用加减消元法来求解.13.若二元一次方程3x﹣y=7,2x+3y=1,y=kx﹣9有公共解,则k的取值为()A.3 B.﹣3 C.﹣4 D.4【考点】解三元一次方程组.【专题】计算题.【分析】由题意建立关于x,y的方程组,求得x,y的值,再代入y=kx﹣9中,求得k的值.【解答】解:解得:,代入y=kx﹣9得:﹣1=2k﹣9,解得:k=4.故选D.【点评】本题先通过解二元一次方程组,求得后再代入关于k的方程而求解的.14.若二元一次方程3x﹣2y=1有正整数解,则x的取值应为()A.正奇数B.正偶数C.正奇数或正偶数D.0【考点】解二元一次方程.【分析】应先用方程表示y的值,然后再根据解为正整数分析解的情况.【解答】解:由题意,得,要使x,y都是正整数,必须满足3x﹣1大于0,且是2的倍数.根据以上两个条件可知,合适的x值为正奇数.故选A.【点评】解题关键是把方程做适当的变形,再确定符合条件的x的取值范围.15.关于x、y的二元一次方程组的解满足不等式x+y>0,则a的取值范围是()A.a<﹣1 B.a<1 C.a>﹣1 D.a>1【考点】解二元一次方程组;解一元一次不等式.【分析】解此题时可以解出二元一次方程组中x,y关于a的式子,代入x+y>0,然后解出a的取值范围.【解答】解:方程组中两个方程相加得4x+4y=2+2a,即x+y=,又x+y>0,即>0,解一元一次不等式得a>﹣1,故选C.【点评】本题是综合考查了二元一次方程组和一元一次不等式的综合运用,灵活运用二元一次方程组的解法是解决本题的关键.16.方程ax﹣4y=x﹣1是二元一次方程,则a的取值为()A.a≠0 B.a≠﹣1 C.a≠1 D.a≠2【考点】二元一次方程的定义.【专题】计算题.【分析】根据二元一次方程的定义,从二元一次方程的未知数的个数和次数方面考虑求a的取值.【解答】解:方程ax﹣4y=x﹣1变形得(a﹣1)x﹣4y=﹣1,根据二元一次方程的概念,方程中必须含有两个未知数,所以a﹣1≠0,即a≠1.故选C.【点评】二元一次方程必须符合以下三个条件:(1)方程中必须只含有2个未知数;(2)含未知数项的最高次数为一次;(3)方程是整式方程.解本题时是根据条件(1).17.(2013春•苏州期末)当x=2时,代数式ax3+bx+1的值为6,那么当x=﹣2时这个式子的值为()A.6 B.﹣4 C.5 D.1【考点】代数式求值.【专题】整体思想.【分析】把x=2代入ax3+bx+1=6,得到8a+2b=5;又当x=﹣2时,ax3+bx+1=﹣8a﹣2b+1=﹣(8a+2b)+1.所以把8a+2b当成一个整体代入即可.【解答】解:当x=2时,代数式ax3+bx+1的值为6,即8a+2b+1=6,∴8a+2b=5①当x=﹣2时,ax3+bx+1=﹣8a﹣2b+1=﹣(8a+2b)+1②把①代入②得:ax3+bx+1=﹣5+1=﹣4.故选B.【点评】此题考查的是代数式的性质,将已知变形然后求解.18.设A、B两镇相距x千米,甲从A镇、乙从B镇同时出发,相向而行,甲、乙行驶的速度分别为u千米/小时、v千米/小时,并有:①出发后30分钟相遇;②甲到B镇后立即返回,追上乙时又经过了30分钟;③当甲追上乙时他俩离A镇还有4千米.求x、u、v.根据题意,由条件③,有四位同学各得到第3个方程如下,其中错误的一个是()A.x=u+4 B.x=v+4 C.2x﹣u=4 D.x﹣v=4【考点】由实际问题抽象出二元一次方程.【专题】行程问题.【分析】首先由题意可得,甲乙各走了一小时的路程.根据题意,得甲走的路程差4千米不到2x千米,即u=2x﹣4或2x﹣u=4;乙走的路程差4千米不到x千米,则v=x﹣4或x=v+4、x﹣v=4.【解答】解:根据甲走的路程差4千米不到2x千米,得u=2x﹣4或2x﹣u=4.则C正确;根据乙走的路程差4千米不到x千米,则v=x﹣4或x=v+4、x﹣v=4.则B,D正确,A错误.故选:A.【点评】此题的关键是用代数式表示甲、乙走一小时的路程,同时用到了路程公式,关键是能够根据题中的第三个条件得到甲、乙所走的路程分别和总路程之间的关系.三、解答题19.解方程组:.【考点】解二元一次方程组.【专题】计算题.【分析】观察本题可知x的系数的最小公倍数较小,应考虑消去x,具体用加减消元法.【解答】解:(1)×7+(2)×2得:﹣11y=66,y=﹣6,把y=﹣6代入(1)得:2x+18=8,x=﹣5,∴原方程组的解为.【点评】两个未知数系数的符号都相反,可考虑消去最小公倍数较小的未知数.20.解方程组:.【考点】解二元一次方程组.【专题】计算题.【分析】在方程2中,y的系数为1,所以可用含x的式子表示y,即用代入消元法比较简单.【解答】解:由(2)变形得:y=3x+1,代入(1)得:x+2(3x+1)=9,解得:x=1.代入y=3x+1得:y=4.∴方程组的解为.【点评】这类题目的解题关键是掌握方程组解法中的加减消元法和代入法.21.解方程组:.【考点】解二元一次方程组.【专题】计算题.【分析】本题为了计算方便,可先把(2)去分母,然后运用加减消元法解本题.【解答】解:原方程变形为:,两个方程相加,得4x=12,x=3.把x=3代入第一个方程,得4y=11,y=.解之得.【点评】本题考查的是二元一次方程组的解法,方程中含有分母的要先化去分母,再对方程进行化简、消元,即可解出此类题目.22.王大伯承包了25亩土地,今年春季改种黄瓜和西红柿两种大棚蔬菜,用去了44 000元,其中种黄瓜每亩用了1700元,获纯利润2600元;种西红柿每亩用了1800元,获纯利润2800元,问王大伯一共获纯利润多少元?【考点】二元一次方程组的应用.【专题】应用题.【分析】根据建立方程组,先求到两种蔬菜种植的亩数,再求一共获的纯利润.【解答】解:设王大伯种了x亩黄瓜,y亩西红柿,根据题意可得.共获纯利润=2600×10+2800×15=68 000(元)答:王大伯一共获纯利润68 000元.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.本题一共获的纯利润指黄瓜和西红柿的利润和.23.在社会实践活动中,某校甲、乙、丙三位同学一同调查了高峰时段某市的一环路、二环路、三环路的车流量(2014春•惠山区校级期末)已知关于x、y的方程组与有相同的解,求a、b的值.【考点】同解方程组.【分析】因为两个方程组有相同的解,故只需把两个方程组中不含未知数和含未知数的方程分别组成方程组,求出未知数的值,再代入另一组方程组即可.【解答】解:据题意得,解得,代入其他两个方程,可得方程组为,解得.【点评】此题比较复杂,考查了学生对方程组有公共解定义的理解能力及应用能力,是一道好题.28.一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车,已知过去两次租用这种货车的情况如表所示.现租用该公司的甲种货车3辆乙种货车5辆,一次刚好运完这批货物,如果按每吨付运费30元计算,问货主应付运费多少元?第一次第二次甲种货车辆(辆) 2 5乙种货车辆(辆) 3 6累计运货吨数(吨)15.5 35【考点】二元一次方程组的应用.【分析】应先算出甲种货车和乙种货车一次各运多少吨货物.等量关系为:2×每辆甲种车的载重+3×每辆乙种车的载重=15.5;5×每辆甲种车的载重+6×每辆乙种车的载重=35.【解答】解:设甲种车每辆装x吨,乙种车每辆装y吨.则解得,运费为30×(3×4+5×2.5)=735(元).答:货主应付运费735元.【点评】根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.。
中考解方程组练习题

中考解方程组练习题解方程组是数学中的一种重要方法,它可以帮助我们求解未知数之间的关系。
解方程组练习题在中考中经常出现,掌握解方程组的方法对于中考数学考试来说至关重要。
本文将为大家提供一些中考解方程组的练习题,并演示解题过程。
【题目一】已知方程组:2x - y = 43x + y = 7求解方程组的解。
【解析】我们可以使用消元法来解方程组。
首先,将两个方程相加,可以将y的系数消去:(2x - y) + (3x + y) = 4 + 75x = 11接下来,我们再次将两个方程相减,可以求解出x的值:(3x + y) - (2x - y) = 7 - 4x + 2y = 3x = 3 - 2y将x的值代入到第一个方程中,可以求解出y的值:2(3 - 2y) - y = 46 - 4y - y = 4-5y = -2y = 2/5最后,将y的值代入到第一个方程中,可以求解出x的值:2x - (2/5) = 42x = 4 + 2/52x = 22/5x = 11/5所以,方程组的解为x = 11/5,y = 2/5。
【题目二】已知方程组:3x - 4y = 12x + 7y = 8求解方程组的解。
【解析】我们可以使用消元法来解方程组。
首先,将第一个方程乘以7,将第二个方程乘以4,可以消除y的系数:(3x - 4y) * 7 = 1 * 7(2x + 7y) * 4 = 8 * 421x - 28y = 78x + 28y = 32将两个方程相加,可以求解出x的值:(21x - 28y) + (8x + 28y) = 7 + 3229x = 39x = 39/29将x的值代入到第一个方程中,可以求解出y的值:3(39/29) - 4y = 1117/29 - 4y = 1-4y = 1 - 117/29y = -1/29所以,方程组的解为x = 39/29,y = -1/29。
通过以上两道练习题的解答,我们可以看到解方程组的方法是非常灵活的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、方程和方程组1.某河上游的A地,为改善流域环境,把一部分牧场改为林场。
改变后,林场与牧场共有162公顷,牧场面积是林场面积的20%,问退牧还林后林场面积为多少公顷?2.某队伍长450m,以1.5m/s的速度行进,一个通讯兵从排尾赶到排头,并立即返回排尾,他的速度是3m/s,那么往返需要多少时间?3.一个容器盛满酒精20L,倒出一部分后又用水加满;第二次又倒出与第一次相同体积的酒精溶液,再用水加满,这时容器内的水是纯酒精的3倍,求每次倒出溶液的体积。
4.某厂以500万元资金投入生产,在一年中可以得到一定的利润,第二年又以这500万元资金和上年的利润一并投入生产,结果得利润42.2万元。
已知第二年的利润比第一年增加2.5%,求第一年的利润是投产资金的百分之几?5.一水池装有A、B两水管,单独打开A管比单独打开B管注满水池多用10小时,现在先打开B管10小时后,再打开A管,共同注水6小时将水池注满。
问同时打开两管注满水池需要几小时?6.一船由A港到B港顺流需行6小时,由B港逆流需行8小时。
一天船从早晨6点由A港出发顺流行到B港时,发现一救生圈在途中掉落在水中,立刻返回,1小时后找到救生圈。
问:(1)若船按水流速度由A港漂流到B港需要多少小时?(2)救生圈是何时掉入水中的?7.甲、乙两人分别骑摩托车从A、B两地相向而行。
甲行1小时后,乙才出发,又经过4小时两人在途中的C地相遇。
相遇后两人按原来的方向继续前进。
乙在由C地到达A地的途中因故停了20分钟,结果乙由C地到达A地时比甲由C地到达B地还提前了40分钟。
已知乙比甲每小时多行驶4km,求甲、乙两车的速度。
8.某初一学生在做作业时,不慎将墨水瓶打翻,使一道作业题只看到如下字样:“甲、乙两地相距40km,摩托车的速度为45km/h,运货汽车的速度为35km/h,?”请将这道作业题补充完整,并列方程解答。
9.某校参加数学竞赛的有120名男生,80名女生;参加英语竞赛的有120名女生,80名男生。
已知该校总共有260名学生参加了竞赛,其中有75名男生两科竞赛都参加了,那么参加数学竞赛而没有参加英语竞赛的女生人数是多少人?10.果品公司购进苹果5.2万千克,每千克的进价是0.98元,付运费的开支1840元,预计损耗为1%。
如果希望全部销售后能获利17%,问每千克苹果零售价应当定为多少元?11.某种商品因换季准备打折出售。
如果按定价的七五折出售将赔25元;而按定价的九折出售将赚20元,这种商品的定价是多少元?12.一批货物用载重4.5吨的汽车比用载重12吨的大卡车要多运15次才能运完,设这批货物的吨数为x, 则可列方程 。
13.一个两位数,两个数位上的数字之和等于7,如果这个数加上9所得到的两位数的十位数字、个位数字分别是原来两位数的个位数字和十位数字,那么原来的两位数是 。
14.甲步行上午6时从A 地出发,于下午5时到达B 地,乙骑自行车上午10时从A 地出发,于下午3时到达B 地,问乙在什么时间追上甲?15.一通讯员骑摩托车需要在规定的时间内,把文件送到某地,若每小时走60km,就早到12分钟,若每小时走50km ,则要迟到7分钟,求路程是多少千米?16.一个学生用5km/h 的速度行进,可以按时从学校回到家里,走了全程的31,他搭上了速度是20km/h 的汽车,因此,比规定时间早2小时到家,求他家距离学校多远?(用两种方法求解)17.某人计划在15天内加工420个零件,开始3天每天只加工24个零件,问以后每天至少加工多少个零件,才能在规定日期完成任务?18.一个蓄水池装有A 、B 两个进水管和C 一个排水管,单独开放A 管,1小时可以注满全池,单独开放B 管,1.5小时可以注满全池,单独开放C 管,45分钟可以放完全池的水,现在全池蓄有31的水,如果三管一齐开放,多少分钟可以注满全池? 19.甲、乙二人共同加工零件180个,甲每小时加工零件10个,乙每小时加工零件15个,请按下述要求编一道应用题:(1)甲、乙不能同时开始加工零件;(2)所列方程是一元一次方程;(3)把编出的应用题完整地叙述表达出来,语言要准确无误;(4)对编出的应用题只列方程,不必求解。
20.有含盐15%的盐水80g ,要使盐水含盐20%,需加盐xg ,则下述所列方程中错误的是( )A 、80%15)80%(20⨯=+xB 、%)201)(80(%)151(80-+=-⨯xC 、)80(%2080%15x x +∙=+⨯D 、%1580)80%(20=-+x x 21.两种铜块分别含铜60%和80%,试问这两种铜块各取多少克熔化后,才能得到含铜74%的铜块500g ?22.某班有学生45人,选举2人作学生会干部候选人,结果有40人赞成甲,有37人赞成乙,对甲、乙都不赞成的人数是都赞成人数的91。
问都赞成和都不赞成的人数各是多少? 23.某校初二(1)班有40名学生,其中参加数学竞赛的有31人,参加物理竞赛的有20人,有8人没有参加任何一项竞赛,则同时参加两项竞赛的学生共有多少人?24.一项工程由甲队单独做要10天完成,由乙队单独做要30天完成。
现甲、乙两队合做完成这项工程,已知甲队休息了2天,乙队休息了8天,且甲、乙两队没有在同一天休息过,两队合这项工程要多少天完成?25.一个两位数,十位上的数字比个位上的数字小1,十位上的数字与个位上的数字的和是这个两位数的51,求这个两位数是多少? 26.某商店购进一批水果共600千克,测定含水量为98%,存放一段时间后,再测得含水量为97%,求这批水果现在的质量?27.据中国教育报报道:1997年是我国实施“九五”计划的第二年,在这一年里,教育事业取得显著成绩,就高中阶段的教育来雨,1996年全国普通高中和中专(含职业高中)共招生668万人,而1997年普通高中比上年多招了14.3%,中专(含职业高中)多招了7.6%,这样高中阶段招生总人数比1996年增加了10.5%。
根据上述资料,1996年普通高中和中专(含职业高中)各招生 人和 人(精确到1万人)28.某厂制造并出售商品P 、商品Q 和商品R ,前一阶段结束时结算,商品R 的售出金额高达总金额的60%,目前阶段,商品P 和商品Q 的售出金额比前一阶段减少5%,因而商品R 更加是重点。
要想使这一阶段售出总金额比前一阶段增长10%,必须努力使商品R 的售出金额比前阶段增加百分之几?29.某公司为了尽快解决职工住房问题,集资建了一栋每平方米售价1188元的新房,5年后公司将全部购房款还给房主,也就是“5年还本售房”。
王工程师筹款购买了一套70m 2的住房,如果公司收到他的购房款后,拿出一部分存5年定期储蓄,以便到期如数还本给王工程师,那么公司最后得到的钱款是多少?(精确到个位,不计物体上涨因素,5年期存款年利率4.5%)30.彩票发行者预计将彩票发行额的42%作为奖金。
若奖金总数为92400元,彩票每张5元,问应卖出多少张彩票,方能兑现这笔奖金?31. 一商店将每台彩电先按进价提高40%标出售价, 然后在广告中宣传将以80%的优惠价出售,结果每台彩电赚了300元,那么每台彩电进价是多少元?32.某质量检测部门抽取甲、乙两厂相同数量的产品进行质量检测,测得甲厂有合格产品48件,乙厂有合格产品45件,甲厂的合格率比乙厂的合格率高5%,问甲厂的合格率是多少?33.某商店将某种超级VCD 按进价提高35%,然后打出“九打酬宾、外送50元打的费”的广告,结果每台超级VCD 仍获利208元,那么每台超级VCD 的进价是多少元?34.某市居民生活用电基本价格为每度0.40元,若每月用电量超过60度,超出部分按基本电价的70%收费,若某户六月份的电费平均为每度0.36元,求六月份共用电多少度?应交电费多少元?35.李明以两种形式分别储蓄了2000元和1000元。
一年后全部取出,扣除利息所得税后可得利息43.92元。
已知这两种储蓄利率的和为3.24%。
问两种储蓄的年利率各为百分之几? 36.7月1日,红花岗中学初三师生270人准备到息烽集中营接受革命传统教育。
若租一辆45座小客车租金为250元,租一辆60座大客车租金为300元。
已知租用的大客车比租用的小客车我一辆,问租用的大小客车名多少辆?应付租金多少元?37.某商店将甲、乙两种糖果混合销售,并按公式:单价=212211m m m a m a ++(元/千克)。
其中m 1,m 2分别为甲、乙两种糖果的质量(千克),a 1,a 2分别为甲、乙两种糖果的单价(元),已知甲种糖果单价为20元/千克,乙种糖果单价为16元/千克。
现在将10千克乙种糖果和一箱甲种糖果混合(搅拌均匀)销售,售出5千克后,又在混合糖果中加入5千克乙种糖果,再售出时,混合糖果的单价为17.5元/千克。
问这箱甲种糖果有多少千克?38.买一种商品,大包装的比小包装的合算。
如蓝天牙膏60g 装的每支1.15元,150g 装的每支2.50元,两者单位质量的价格比是1.15:1。
牙膏的价格是由生产牙膏的成本、包装成本及运输成本等决定。
忽略运输成本,并假设生产成本与牙膏质量(不包括牙膏质量)成正比,包装成本与牙膏壳的表面积成正比。
请你制定一支180g 装的蓝天牙膏的合理价格。
39.某种商品若按标价的八折出售,可获利20%,若按原标价出售,可获利( )A 、25%B 、40%C 、50%D 、66.7%40.有四种原料:50%的酒精溶液150g ;90%的酒精溶液45g ;纯酒精45g ;水45g 。
请你设计一种方案,只选取三种原料(各取若干或全量)配制成60%的酒精溶液200g 。
(1)选取哪三种原料?各取多少克?(2)设未知数,列方程(组)并解之,说明你配制方法的正确。
41.一个容器盛满纯药液63L ,第一次倒出一部分纯药液后用水加满,第二次又倒出同样多的药液,再用水加满。
这时容器剩下的纯药液是28L ,每次倒出液体多少升?42.一桶中装满含盐量为20%的盐水40kg ,若倒出一部分盐水后,再加入一部分水,倒入水的质量是倒出盐水质量的一半,此时盐水的含盐量是15%,求倒出盐水多少千克?43.某工厂今年一月份的产值为60万元,二月份由于种种原因,经营不善,产值下降10%,以后加强管理,节能增效,月产值又大幅度上升,到四月份产值猛增到96万元。
求三、四月份平均每月增长的百分率是多少?(精确到0.1%)44.某工厂以2001年的产值为基数,计划到2003年产值翻一番,并且要求第二年提高的百分数是第一年提高的百分数的两倍,求第二年提高的百分数(精确到1%)45.将进价单价为40元的商品按50元出售时,能卖500个,已知该商品每涨价1元,其销售量就要减少10个,为了赚8000元利润,售价应定为多少元,这时应进货多少个?46.甲、乙两人完成某项工作,甲的工作效率是乙的2倍。