微积分习题三

合集下载

微积分综合练习题及参考答案

微积分综合练习题及参考答案

微积分综合练习题及参考答案Last updated on the afternoon of January 3, 20212综合练习题1 (函数、极限与连续部分)1・填空题⑴函数/(X )= —i —的定义域是 ___________________ •答案:兀>2且"3.ln (x _ 2)⑵ 函数=+的定义域是 _________ .答案:ln (x + 2)(-2-1)<J (-L2](3) 函数/(x + 2)=x 1 2 +4x + 7,贝lj f{x)=.答案:fM = x 2+3(4) 若函数/(力= xsin —+ h x < 0=1 x 在― [k 、 x > 0=0处连续,贝1«=.答案:k = \⑸函数/(x-1):=X 2 - 2x,则 /(x) = -答案:f (x )= -v 2 -1⑹v 2 -2x-3函数心Y+1 -的间断点是•答案:兀=一1(7) lim xsin 丄=•答案:1⑻ -..sin4x 若 lim ------ =go sin kx =2,则斤= 答案:k = 22 •单项选择题答案:c1 设函数〉心三匚,则该函数是()•A .奇函数B .偶函数C .非奇非偶函数D .既奇又偶函数答案:B2下列函数中为奇函数是( )•A . xsinxC . ln(x +Jl + / )(3)函数y = —- + ln(x + 5)的定义域为( )・x + 4A . x>-5B . C. X>-5且X HO D. X>-5且X H—答案:D⑷设f(x + Y) = x2则f(x)=()A . x(x + l)B . A 2C ・x(x - 2)D . (x + 2)(x-l)答案:C(5)当斤=()时,函数/(x) = f\+2' °在兀=0处连续.k、x = 0■A . 0B . 1C . 2D . 3答案:Dr2 + 1 X 工0(6)当“()时,函数/(A-)= J1,,在龙=0处连续.k、x = 0A . 0B . 1C . 2D . -1答案:B(7)函数/(A)=()Q - 3x + 2A. x = \,x = 2 B . x = 3答案:A3 •计算题C. x = \,x = 2,x = 3D•无间断点lim .—23x + 2 X2-4= lim (—2)(—1)=恤口—2(X _2)(X + 2) Z X + 2解:UmX 2-3X + 2X 2-4解:lim 一「「I . = nm + " = lim = - = 2XT3 牙・_2X_3 XT3 (牙_3)(牙 + 1) A->3 X +1 4 2解:1曲v'-6a + S = lim(H7 = lim 口 = ?JT — 5x + 4 XT4 (x _ 4)(X - 1) Yf 4 A -1 3综合练习题2 (导数与微分部分)(1)曲线/仗)=仮+ 1在(1,2)点的切斜率是⑵ 曲线/W = e在(0J)点的切线方程是答案:y = x + \(3)已知f(x) = x3+3\则广(3)二答案:f(x) = 3x2+3x]n3/73)=27 (l + hi3)⑷已知/(x) = lnx t贝IJ八x)二答案:广⑴4八g占(5)若/(x) = xe-\ 则厂(0)= 答案:0 = -2宀心2.单项选择题(1)若/Gv) = e'r cosx f则广(0)二()・A. 2B. 1C. -1D. -2因f\x) = (e"v cosxY = (e~v)z cosx + e~v (cos x)9所以广(0) =-e~°(cosO + sin0) = -1 答案:C⑵设y = lg2x,则dy=()・A . 丄 drB . ——!——dx 2xxlnlO 答案:B答案:D⑷若/(x)=sinx + «3,其中"是常数,则厂(劝=(答案:c(1) 设 y 求 ・丄 丄 1 丄解:y f = 2xe K +x 2e v (——)=e T (2x-l)(2)y = sin 4x + cos 3 x , 求解:y f = 4cos4x + 3cos 2 x(-sin x)(3) 设 y = e^+-.求X解:y = e^^=-4(4) 设 y = xy/x + In cosx,求 3丄 1 3丄解:y f = —x 2 + ------- (-sinx) = —x 2 -tanx2 cosx 2c.呱D ・-dx x⑶设y = fM 是可微函数则 df(cos2x)=(A . 2广(COS 2X )C L YB . /\cos2x)siii 2xd2xC . 2广(cos2x)sin2・TdrD . 一广(cos2x)sin2xd2x2A . cosx + 3"- C . -sinx D . cosx综合练习题3 (导数应用部分)1・填空题(1)函数y = 3(x-i)2的单调增加区间是____________________ .答案:(1,+s)(2)函数/(A)= ax2 + 1在区间(0,+8)内单调増加,贝IJd应满足答案:«>02・单项选择题(1)函数y = U+D2在区间(-2,2)是()A •单调増加B .单调减少c •先增后减 D •先减后增答案:D(2)满足方程/V) = 0的点一定是函数y = /(x)的()•A .极值点B .最值点C.驻点D •间断点答案:C(3)下列结论中()不正确•A . /W在“勺处连续,则一定在%处可微.B . /W在x = x Q处不连续,则一定在巾处不可导.C .可导函数的极值点一定发生在其驻点上.D .函数的极值点一定发生在不可导点上.答案:B(4)下列函数在指定区间(p,p)上单调增加的是()•A . sinx答案:B3・应用题(以几何应用为主)(1)欲做一个底为正方形,容积为10创2的长方体开口容器,怎样做法用料最省?解:设底边的边长为xm,高为/?m,容器的表面积为ym2o怎样做法所用材料最省即容器如何设计可使表面积最小。

微积分(经管类第四版)习题1-3答案

微积分(经管类第四版)习题1-3答案

1、⎩⎨⎧>-+≤≤=50)50(25.05.750015.0)(x x x x x f ,, 2、46.779%)71(700%)71(3005=+++=p (元) 3、s d q q =市场均衡时,20534032025===-=-s d q q p p p ,,所以 4、(1),数,所以设产量为因为成本函数是线性函x 1001003100310040001004001001000,其中固定成本为故,时,;当时,当又为常数),(其中则+=⎩⎨⎧==∴⎩⎨⎧+⨯=+⨯=∴====+=x y b a b a b a y x y x b a b ax y(2) 3.52007007001002003200===+⨯==,平均成本时,当y x 5、q q q p q R q p p q 2005)(2005510002+-=⨯=+-=∴-=,故, 320002002005200)200(2002=⨯+-==R q 时,当 6、,,销售量为设销售收入为x y⎩⎨⎧≤<-≤≤=∴-=≤<=≤≤1520x 100025001200100001200x 250012001520x 10001200xy 10000,,,当,,当x x y x y x 7、040400000====Q P Q P 时,;当时,当100040)100040(1000401000400001000400004000400002Q Q Q Q Q P R Q P PQ b a b a b a -=⨯-=⨯=-=-=⎩⎨⎧-==⎩⎨⎧⨯+=⨯+=,故,所以代入得8、(1)设收入为R ,有题意得R=12q ,保本点时C=R ,即81+3q=12q ,所以q=9(2)设利润为L ,则L=R-C=12q-(81+3q)=9q-81,981-109L 01=⨯==时,当q(3)当定价为2元/件时,L=2q-(81+3q)=-q-81,因为q>0,所以L 恒小于0。

微积分综合练习题及参考答案

微积分综合练习题及参考答案

综合练习题1 (函数、极限与连续部分)2 •单项选择题A .奇函数B .偶函数 C.非奇非偶函数 D •既奇又偶函数答案:B(2)下列函数中为奇函数是().x xA. xsin xBe eC l n (x 1 x 2)D . x x 2C. ln(x2答案:C(3)函数yx x 4 ln(x5)的定义域为( ).A. x 5 答案:DB .x4 C . x5 且 x 0D . x 5 且 x 4(4)设 f (x1)2x1则 f (x)()A. x(x 1) B . x 21填空题(1)函数 f (X )时)的定义域是答案:x 2且x 3.(2)函数 f(x)E 4 X 2的定义域是__________ •答案:(2, 1) ( 1,2](3) 函数f(x2)x 24x 7,则 f(x)答案: 2f(x) x 3(4) 若函数f (x).3xsi n x k, 1, 0处连续,(5) 函数 f(x 1)x 22x ,则 f(x)•答案:f(x)(6) 函数2x x 1 3的间断点是•答案:(7) (8).1 xsin xsin4x 右lim xsin kxlim x2,则k•答案:1•答案:k 2(1)设函数yxe,则该函数是().B . x 3A. x 1, x 2答案:3.计算题综合练习题2 (导数与微分部分)C. x(x 2) 答案:C D . (x 2)(x 1)A. 0B . 1C■2D .3答案:D当k时, 函数x 2 1, x 0(6) ()f(x),在x 0处连续k,x 0 A. 0B . 1C2D .1答案:B(7) 函数 f(x)-x 2 3-的间断点是( )(5)当 k (0处连续. 2x 3x 2$2 x ° 在 x k, x 0)时,函数f (x ) C. x 1,x 2,x •无间断点(1)解:(2) lim x 32x 3x 22x42x 3x 2 2 x 42x 9(x 2)(x1) lim^ x 2x 2解: limx 32x !2 小x 2xlim (x 3)(x 3) x 3(x 3)(x1)lim x 3x 1(3) lim 车空 x 4 x 5x 4 解: x 2 6x 8 lim — x 4 x 5x 4^4(X 4)(x2)(x 4)( x 1)x m2^2x 22x 3 lim x 2(x 2)(x2)1 •填空题(1)曲线f(x) 1在(1,2)点的切斜率是答案:12(2)曲线f(x) e在(0,1)点的切线方程是答案:y x 1(3)已知f(x) 3 x 3x,则f (3)=答案:f (x) 3x23x l n3f (3)=27( 1 ln3)(4)已知f(x) In x,则 f (x)答案:1 f(x) f (x) =1' 2x x(5)若f (x) xe x:,则f (0)答案: f (x) 2e xxe xf⑼22. 单项选择题(1)若f (x) e x cosx,贝y f (0)=( )•A. 2B. 1C. -1D. -2因f (x) (e x cosx) (e x) cosx e x(cosx)x x x .e cosx e sin x e (cosx sin x)所以f (0) 0 e (cos0 sin 0) 1答案:C(2)设y lg2x ,则dy ()•1 1 ln 10 1A. dx B . C •dx D .—dxdx2x xln 10 x x 答案:B(3)设y f(x)是可微函数,则df (cos2x) ( )•C . 2 f (cos2x)sin 2xdxD 答案:D(4)若 f (x)si nx a 3,其中 a 是常数,则f (x)().2A . cosx 3aB.sin x 6aC.sin xD.cosx答案:C3.计算题1e x ,求(1 )设 y x 2 y .111 ) £ 2)" x解:y 2xe x2 x /x e x ((2x 1)(2 )设 ysin 4x 3cos x , 求y •2解: y 4cos4x 3cos x( sin x)4cos4x 3sin xcos 2 x2(3)设 y e ,求 y .x解: ye^ 1 21 x 22"x(4) 设y x. x In cosx ,求 y •解: y 3 1x 21 3 - (sinx) x2 tanx 2cosx2综合练习题3 (导数应用部分)1 .填空题(1)函数 y 3(x1)2的单调增加区间是答案:(1,)(2)函数f (x ) ax 2 1在区间(0,)内单调增加,则a 应满足 __________答案:a 0 2•单项选择题(1)函数y (x 1)2在区间(2,2)是( )f (cos2x)sin 2xd2xC.先增后减 D •先减后增答案:D(2)满足方程f(x) 0的点一定是函数y f(x)的( )A极值点B.最值点C .驻点D.间断点答案:C(3)下列结论中( )不正确.A . f(x)在x x0处连续,则一定在x0处可微•B . f (x)在x x0处不连续,则一定在x0处不可导•C •可导函数的极值点一定发生在其驻点上•D.函数的极值点一定发生在不可导点上•答案:B(4)下列函数在指定区间(,)上单调增加的是( ).答案:B3. 应用题(以几何应用为主)(1)欲做一个底为正方形,容积为108m i的长方体开口容器,怎样做法用料最省?解:设底边的边长为x m,高为h m,容器的表面积为y m l。

微积分练习册(上)

微积分练习册(上)

·1·习题1-1 函数1. 填空题: (1)()x y 32loglog =的定义域 。

(2)523arcsin 3x x y -+-=的定义域 。

(3)xx y +-=11的反函数 。

(4)已知31122++=⎪⎭⎫ ⎝⎛+x x x x f ,则=)(x f 。

2. 设⎪⎪⎩⎪⎪⎨⎧≥<=3x , 0 3, sin )(ππϕx x x ,求()2,6-⎪⎭⎫⎝⎛ϕπϕ,并作出函数()x ϕη=的图形。

3. 指出下列函数的复合过程。

(1)xey 1=(2)xey 3sin=(3)()[]12ln arcsin +=x y4. 设()x f 为定义在(-L,L )内的奇函数,若()x f 在(0,L )内单调增加,证明:()x f 在(-L,0)内也单调增加。

5. 设()⎩⎨⎧<≥=0, 10, x x x x f (1)求()1-x f ;(2)求()()1-+x f x f ,(写出最终的结果) 6. 某运输公司规定货物的吨公里运价为:在a 公里内,每公里k 元;超过a 公里,超过部分每公里54k 元,求运价m 和里程s 之间的函数关系,并作出此函数的图形。

7. 某商店年销售某种产品800件,均匀销售,分批进货。

若每批订货费为60元,每件每月库存费为0.2元,试列出库存费与进货费之和p 与批量x 之间的函数关系。

习题1-2 常用的经济函数1. 某车间设计最大生产力为月生产100台机床,至少要完成40台方可保本,当生产x 台时的总成本函数()xx x c102+=(百元),按市场规律,价格为x p 5250-=(x 为需求量),可以销售完,试写出月利润函数。

2. 某工厂生产某种产品年产量为x 台,每台售价为250元,当年产量在600台内时,可全部售出,当年产量超过600台时,经广告宣传后又可再多出售200台,每台平均广告费为20元,生产再多,本年就售不出去了。

经济数学基础 微积分 第三章习题解答

经济数学基础     微积分    第三章习题解答

尖点, 无切线, 不可导
无定义, 不可导
0
x
无确定切线, 不可导
0
x
尖点, 无切线, 不可导
8.讨论下列函数在x 0处的连续性与可导性;若可导,
求出f (0):
1 x
(1) f ( x) 1 x
x0 x0
解 lim f ( x) 1 lim f ( x) 1
x0
x0
所以函数在x 0连续.
3
y 1 (0 6x2 ) 6 x2
16.求下列函数的导数
(1) y
ex ex
ex ex
(e x ) e x ( x) e x
y
(e x
ex
)(e x
ex (e x
) (e x ex )2
e x )(e x
ex
)
(e x e x )2 (e x e x )2
(e x ex )2
y 10( x )9 ( x ) 1 x 1 x
10(
1
x
x
)9
1 x x (1 x)2
10x9 (1 x)11
(6) y ln ln ln x 设y ln u,u ln v,v ln x
y (lnu) (lnv) (ln x) 1 1 1 uv x
1 1 1
1
lnln x ln x x x ln x ln ln x
(3) y
1 1 x2
(1
x2
1
)2
y
1
(1
x2
)
3 2
(1
x
2
)
2
x(1
x
2
)
3 2
1
(1

《微积分》课后答案(复旦大学出版社(曹定华_李建平_毛志强_著))第三章

《微积分》课后答案(复旦大学出版社(曹定华_李建平_毛志强_著))第三章

第三章习题3-11.设s =12gt 2,求2d d t s t =.解:22221214()(2)2lim lim 22t t t g g ds s t s dt t t t →→=-⨯-==--21lim (2)22t g t g →=+=2.设f (x )=1x,求f '(x 0)(x 0≠0).解:1211()()()f x x x x--'''===00201()(0)f x x x '=-≠3.试求过点(3,8)且与曲线2y x =相切的直线方程。

解:设切点为00(,)x y ,则切线的斜率为002x x y x ='=,切线方程为0002()y y x x x -=-。

由已知直线过点(3,8),得00082(3)y x x -=-(1)又点00(,)x y 在曲线2y x =上,故200y x =(2)由(1),(2)式可解得002,4x y ==或004,16x y ==,故所求直线方程为44(2)y x -=-或168(4)y x -=-。

也即440x y --=或8160x y --=。

4.下列各题中均假定f ′(x 0)存在,按照导数定义观察下列极限,指出A 表示什么:(1)0limx ∆→00()()f x x f x x-∆-∆=A ;(2)f (x 0)=0,0limx x →0()f x x x-=A ;(3)0limh →00()()f x h f x h h+--=A .解:(1)0000000()()[()]()limlim ()x x f x x f x f x x f x f x xx →-→--+--'=-=-- 0()A f x '∴=-(2)000000()()()limlim ()x x x x f x f x f x f x x x x x →→-'=-=--- 0()A f x '∴=-(3)000()()limh f x h f x h h→+-- 00000[()()][()()]lim h f x h f x f x h f x h→+----=000000()()[()]()lim lim h h f x h f x f x h f x h h →-→+-+--=+-000()()2()f x f x f x '''=+=02()A f x '∴=5.求下列函数的导数:(1)y;(2)y;(3)y2.解:(1)12y x==11221()2y x x -''∴===(2)23y x-=225133322()33y x x x ----''∴==-=-=(3)2152362y x x xx-==15661()6y x x -''∴===6.讨论函数y在x =0点处的连续性和可导性.解:00(0)x f →==000()(0)0lim lim 0x x x f x f x x →→→--===∞-∴函数y =在0x =点处连续但不可导。

微积分(数学分析)习题及答案.doc

微积分(数学分析)习题及答案.doc

统计专业和数学专业数学分析(3)练习题一 填空题1. 函数 xy xyz +=arcsin 的定义域是 . 2. 函数y x z -=的定义域是 .3. 设 )ln(),(22y x x y x f --=,其中 0>>y x ,则),(=-+y x y x f .4. 设 yx xy y x y x f tan ),(22-+=,则 =),(ty tx f .5. 设2R E ⊂为 点集,则E 在2R 中至少有一个聚点.6. 32),,(yz xy z y x f +=,则 =-)1,1,2(gradf 。

7. xyz z xy u -+=32在点)2,1,1(0P 处沿方向→l (其中方向角分别为00060,45,60)的方向导数为=→)(0P u l.8. ,y x z =其中,0>x ,0≠x 则=dz 。

9. 函数),(y x f 在),(00y x 处可微,则 =-∆df f 。

10. 若函数 ),(y x f 在区域D 上存在偏导数,且,0==y x f f ,则),(y x f 在区域上为 函数。

11. 由方程1(,)sin 02F x y y x y =--=确定的隐函数)(x f y =的导数'()f x = . 12. 设243340x y x y +-=, 则dy dx= . 13. 平面上点P 的直角坐标),(y x 与极坐标),(θr 之间的坐标变换公式为 .其雅可比行列式(,)(,)x y r θ∂=∂ .14. 直角坐标),,(z y x 与球坐标),,(θϕr 之间的变换公式为 . 其雅可比行列式(,,)(,,)x y z r ϕθ∂=∂ .15. 设平面曲线由方程0),(=y x F 给出, 它在点),(000y x P 的某邻域内满足隐函数定理的条件,则该曲线在点0P 处存在切线和法线,其方程分别为切线: , 法线: .16. 设空间曲线由参数方程βα≤≤===t t z z t y y t x x L ),(),(),(:给出, 它在点0000000(,,)((),(),())P x y z x t y t z t =处的切线和法平面方程为 切线: ,法平面: . 17. 设空间曲线L 由方程组(,,)0,(,,)0F x y zG x y z =⎧⎨=⎩ 给出, 若它在点0000(,,)P x y z 的某邻域内满足隐函数定理的条件,则该曲线在点0P 处存在切线和法平面,其方程分别为切线: , 法平面: .18. 设曲面由方程0),,(F =z y x 给出,它在点),,(0000z y x P 的某邻域内满足隐函数定理条件,则该曲面在0P 处有切平面与法线,它们的方程分别是切平面: , 法线: . 19. 条件极值问题的一般形式是在条件组)(,,2,1,0),,,(21n m m k x x x n k <== ϕ的限制下,求目标函数 ),,,(21n x x x f y = 的极值.其拉格朗日函数是 , 其中m λλλ,,,21 为拉格朗日乘数.20. 若(,)f x y 在矩形区域R 上连续, 则对任何[]0,x a b ∈, 都有0lim (,)dcx x f x y dy →=⎰.21. (可微性)若函数),(y x f 与其偏导数),(y x f x∂∂都在矩形区域[][]d c b a R ,,⨯=上连续,则⎰=dcdy y x f x I ),()(在[]b a ,上可微,且(,)dcd f x y dy dx =⎰ .22. (可微性) 设),(),,(y x f y x f x 在[][]q p b a R ,,⨯=上连续,()()x d x c ,为定义在[]b a ,上其值含于[]q p ,内的可微函数,则函数⎰=)()(),()(x d x c dy y x f x F 在[]b a ,上可微,且'()F x = .23. (两个累次积分的关系)若),(y x f 在矩形区域[][]d c b a R ,,⨯=上连续,则(,)bdacdx f x y dy =⎰⎰ .24. 含参量反常积分(,)cf x y dy +∞⎰在[]b a ,上一致收敛的充要条件是:对任一趋于∞+的递增数列{}n A (其中c A =1),函数项级数 在[]b a ,上一致收敛. 25. 设有函数)(y g ,使得.,),(),(+∞<≤≤≤≤y c b x a y g y x f 若⎰+∞cdy y g )(收敛,则⎰+∞cdy y x f ),(在[]b a ,上 .26. (连续性)设),(y x f 在[][)+∞⨯,,c b a 上连续,若含参量反常积分⎰+∞=cdyy x f x I ),()(在[]b a ,上 ,则)(x I 在[]b a ,上 .27. (可微性)设),(y x f 与),(y x f x 在区域[][)+∞⨯,,c b a 上连续。

微积分复习题

微积分复习题

复习题 一:选择题1:如果322sin 3lim0=→x mx x ;则m=A 32,B 23, c 94, D 49. 2: 当x →∞时, 下列变量中是无穷小量的是A 221)1sin(x x x --,B 221sin )1(xx x --, C xx x 2211sin)1(--, Dx x x221sin 11-- 3: 函数fx=0{11--x e11=≠x x 在点x=1处A 连续B 不连续, 但有右连续.C 不连续, 但有左连续.D 左,右都不连续4: 设fx=⎪⎪⎩⎪⎪⎨⎧+b x x ax x 1sin sin 1000>=<x x x 在x=0处, 不一定正确的结论是 (A) 当a=1时fx 左连续, B 当a=b 时fx 右连续, C 当b=1时fx 必连续, D 当a=b=1时fx 必连续 5: 若),1()1(2-=-x x x f 则fx=A 2)1(+x x , B 2)1(-x x , C )1(2+x x , D )1(2-x x 6: 函数21)(x x f --= 0<x<1 的反函数)(1x f -A 21x - B-21x - C21x --1<x<0 D -21x --1<x<07: 下列函数y=fu,u=φx 中能构成复合函数y=f φx 的是 A 1)(,11)(2+-==-==x x u u u f y ϕBy=fu=lg1—u, u=φx=12+x Cy=fu=arcsinu, u=φx= 22+x Dy=fu=arccosu, u=φx= 22+-x8: 设⎪⎩⎪⎨⎧>≤=00)(312x xx x x f 则fx 在x=0处A 左导数不存在, 右导数存在B 右导数不存在, 左导数存在C 左, 右导数都存在D 左, 右导数都不存在9: 在曲线y=lnx 与直线x=e 的交点处, 曲线y=lnx 的切线方程是 A 0=-ey x B 02=--ey x C 0=-y ex D 0=--e y ex10: 设fx=⎪⎩⎪⎨⎧01cos 2xx 0=≠x x 则fx 在点x=0处 A 极限不存在, B 极限存在但不连续 C 连续但不可导 D 可导 11`:设fx=⎩⎨⎧≥<00x xex xx 在点x=0处, 下列结论错误的是A 连续B 可导C 不可导D 可微12: 函数3123)(x x x f -=在下列区间上不满足垃格朗日定理条件是A0,1 B--1,1 C0,27/8 D--1,0 13: 求下列极限, 能直接使用洛必达法则的是Ax x x sin lim ∞→ B x xx sin lim 0→ C x x x 3sin 5tan lim 2π→D x x x x sin 1sin20lim →14: 设函数fx 在开区间a,b 内有0)('<x f 且,0)("<x f 则y=fx 在a,b 内 A 单调增加, 图形上凹 B 单调增加, 图形下凹 C 单调减少, 图形上凹 D 单调减少, 图形下凹15:fx=||31x , 点x=0是fx 的A 间断点B 极小值点C 极大值点D 拐点16:关于函数231)(xx x f -=的结论错误的是 A 有一个零点 B 有两个极值点 C 有一个拐点 D 有两条渐近线 17下列函数中有一个不是xx f 1)(=的原函数, 它是 AFx=ln|x| BFx=ln|Cx| C 不为零且不为1的常数CFx=Cln|x| C 不为零且不为1的常数 DFx=ln|x|+C C 是不为零的常数 18若C xdx x f +=⎰2)(,则⎰=-dx x xf )1(2A C x +-22)1(2 B C x +--22)1(2 C C x +-22)1(21 D C x +--22)1(2119=+⎰dx x x 10)1(AC x ++10)1(111 B C x x +++112)1(11121 C C x x ++-+1112)1(111)1(121 D C x x ++++1112)1(111)1(121 20: 若sinx 是fx 的一个原函数, 则⎰=dx x xf )('Axcosx---sinx+C Bxsinx+cosx+C Cxcosx+sinx+C Dxsinx---cosx+C 21设x e f x+=1)(', 则fx=A1+lnx+C Bxlnx+C C C x x ++22Dxlnx---x+C 22⎰=-20|sin 21|πdx x A14-π B 4π- C 1123--πD0 23⎰+-=xdt t t y 02)2()1(则==0x dx dyA---2 B2 C---1 D1 24 已知Fx 是fx 的原函数, 则=+⎰xadt a t f )(AFx---Fa BFt —Fa CFx+a —Fx —a DFx+a___F2a 25已知广义积分⎰+∞+01kxdx收敛于1k.>0, 则k= A 2πB 22πC 2πD 42π26对于级数nn n na )1(1∑∞=+ a>0 下列结论中正确的是 Aa>1时, 级数收敛 Ba<1时, 级数发散 Ca=1时, 级数收敛 Da=1时级数发散27幂级数∑∞=1n nn x 的收敛域是A-1,1 B--1,1 C-1,1 D-1,1 28设幂级数∑∞=0n nn x a 的收敛半径为R0<R<+∞则n nx a )2(∑的收敛半径为 A2R B2R CR D R229设函数z=fx,y 在点),(00y x 处存在对x,y 的偏导数, 则=)(0,0'y x f xAxy x f y x x f x ∆-∆-→∆),(),2(00000limBxy x x f y x f x ∆∆--→∆),(),(00000limCxy x f y y x x f x ∆-∆+∆+→∆),(),(00000limD00),(),(limx x y x f y x f x x --→30设区域D 是单位园122≤+y x 在第一象限的部分, 则二重积分⎰⎰=Dxyd σA⎰⎰--221010x y xydy dx B ⎰⎰-yxydy dx 1010C ⎰⎰-2101y xydx dyD ⎰⎰102202sin 21dr r d θθπ31⎰⎰-=xdy y x f dx 101),(A ⎰⎰-1010),(dx y x f dy xB⎰⎰-xdx y x f dy 1010),(C⎰⎰101),(dx y x f dy D⎰⎰-ydx y x f dy 101),(32:⎰⎰-2201),(x x dy y x f dx=A:⎰⎰--211010),(y dx y x f dy. B:⎰⎰-+2111),(y dx y x f dy .C:⎰⎰--11112),(y dx y x f dy. D:⎰⎰-+--2211111),(y y dx y x f dy33:⎰⎰⎰⎰-+xx dy y x f dxdy y x f dx 202110),(),(=A:⎰⎰-yydx y x f dy22),(.B:⎰⎰-yydx y x f dy21),(C:⎰⎰⎰⎰-+y y dx y x f dydx y x f dy 20211),(),(. D:⎰⎰-xxdx y x f dy 210),(34关于微分方程xe y dx dy dxy d =++222的下列结论: 1 该方程是齐次微分方程 2 该方程是线性微分方程3 该方程是常系数微分方程 3 该方程是二阶微分方程 其中正确的是A 2 3 B1 4 2 C1 3 4 D 2 3435:微分方程0)(22'"=-y yy 的通解是 A x C C y 211-=B xC C y 211-= C x C y -=1D Cxy -=1136. 21sin(1)lim 1x x x →-- =37. 下列变量在给定的变化过程中为无穷大量的是 38. 若03sin()2lim23x mx x →=, 则m =39. 下列结论正确的是2. 21sin(1)lim 1x x x →-- =40. 下列变量在给定的变化过程中为无穷大量的是 41. 若03sin()2lim23x mx x →=, 则m =42. 下列结论正确的是 43. 设1cos ,00,0(){x x x x f x ≠==,则()f x 在点0x 处()A 极限不存在 ()B 极限存在但不连续()C 连续但不可导 ()D 可导 44. 下列结论错误的是()A 若函数()f x 在 0x x =处连续,则()f x 在0x x =处可导 ()B 若函数()f x 在 0x x =处可导,则()f x 在0x x =处连续()C 若函数()f x 在 0x x =处不连续,则()f x 在0x x =处不可导()D 若函数()f x 在 0x x =处不可导,则()f x 在0x x =处也可能连续45. “''0()0f x =”是()f x 的图形在点0x 处有拐点的()A 必要非充分条件 ()B 充分非必要条件()C 充分必要条件 ()D 既非必要条件又非充分条件 46. 设'(ln )1f x x =+,则()f x = 47.21|sin |2x dx π-⎰=()C112π- ()D 0二: 计算题1: 确定函数的定义域225151sinxx acr y -+-=2已知函数⎩⎨⎧+=22)(x x x f 4,220≤<≤≤x x 求).1(-x f3xxx f -=1)( 求)]}([{)],([x f f f x f f 4设⎪⎩⎪⎨⎧=101)(x f 000>=<x x x 求).1(,,),1(2-+x f x f5求证: 如果A x f x x =→)(lim 0而且A>0, 则总存在一个正数δ, 使当δ<-<||00xx 时fx>06求证y 以A 为极限的充分必要条件是: 变量y 可以表示为A 与个无穷小量的和. 7: 求x x x )21(lim +∞→ 8设⎪⎪⎩⎪⎪⎨⎧--=241)(22x x x x f 2;10;1≠>≠≤x x x x 求函数的间断点, 并判断其类型.9用定义讨论函数⎪⎩⎪⎨⎧=01sin)(x x x f00=≠x x 在点x=0处的连续性与可导性 10讨论函数⎪⎪⎩⎪⎪⎨⎧++-=421121)(2x x xx x f x x x x <≤<≤<≤221100在点x=0, x=1, x=2处的连续性与可导性.11求曲线x x x 223=+在点1,1 处切线方程与法线方程 12求)1(arcsin xf y =,求其导数 13xxx x y +++=3333 求其导数 14xyy x arctan ln22=+确定y 是x 的函数, 求函数y 的导数15设fx=sinx, 20π≤≤x ,求满足垃格朗日公式的ξ值16求)ln 11(lim 1xx x x --→= =+-→)]11ln([2lim x x x x 17求函数3223)(x x x f -=的单调增减区间和极值以及凹向与拐点181作函数2221)(x ex -=πϕ的图形 2 作函数axbe cy -+=1 a, b, c 均为大于0的常数的图形19求下列极限1x arc x x cot )11ln(lim +∞→ 2x x x 10)sin 1(lim +→ 32)1ln(sin 1tan 1lim x x x x x x -++-+→ 20求下列不定积分 1⎰-dx x x 322⎰+32xx dx 3⎰xdxx arctan 4⎰+--dxx x x 65122211求]sin [2⎰x x tdt dx d 2求极限⎰→x t x dt e xsin 001lim3 设fx ⎩⎨⎧++=2112x x 4,22||≤<≤x x 求k 的值, 使⎰=3340)(k dx x f 4dx x xe 21)(ln 12⎰5⎰+∞∞-+21x dx 6⎰-112x dx 7dx e x xr ⎰+∞--01λ 22求抛物线4, (22)-==x y x y 所围成的图形的面积23求曲线2211,2xy x y +==与直线3,3-==x x 所围成的图形的面积 24求椭园1222=+by a x 分别绕x 轴与y 轴旋转产生的旋转体体积 251求级数∑∞=1n n n n x 的收敛半径和收敛域 2 求级数∑∞=+1)12(n nn x 的收敛半径和收敛域26求幂级数∑∞=-11n n nx的收敛域及和函数, 并求级数∑∞=12n nn的和271求2223xy y x z -+=的各二阶偏导数 2 求yye x z 2=的各二阶偏导数 28要造一个容量一定的长方体箱子,问选择怎样的尺寸,才能使所用的材料最少 29计算二重积分⎰⎰-Ddxdy y x )2(,其中D 是由直线y=1,2x —y+3=0与x+y —3=0围成的图形30计算二重积分⎰⎰+Dd y x σ22, 其中D 是园y y x 222=+围成的区域,31;计算1x x x x x sin tan lim 20-→ 2 12x 32x lim 1x +∞→⎪⎭⎫⎝⎛++x 3)0(x >x y x =4已知⎩⎨⎧==tb y t a x sin cos ,求22dx yd .5 dx x x ⎰+)ln 21(1 6;)0>( 22a dx x a ⎰- 7⎰21arcsin xdx 8⎰+∞∞-+231x dx 9 )1sin 1)(11(tan sin lim 320-+-+-→x x xx x100)>(ln lim 0n x x nx +→ 11)0(sin x >x y x= 12已知⎩⎨⎧==tb y t a x sin cos ,求22dx yd 13 dx x x x x ⎰+++)1(122 14)0>( 22a dx x a ⎰- 15 ⎰-π053sin sin dx x x 16 ⎰+∞∞-+21x dx 1721lim[ln(1)]x x x x→∞-+ 18方程2sin()0y xe y π-=确定隐函数()y y x =,求'0,1|x y y ==-;1920cos 2x xdx π⎰ 202ln xdx x ⎰四证明及综合题1指出函数14123223+-+=x x x y 的单调区间、凹凸区间、极值点及拐点. 2指出函数123+--=x x x y 的单调区间、凹凸区间、极值点及拐点 3证明方程3520x x --=在区间(,)-∞+∞内只有一个正根;.4设()f x 在[0,]a 上连续(0)a ≠,在(0,)a 内可导,且()0f a =,证明存在一点ξ,使得'()()0f f ξξξ+=5用极限的定义证明211lim21=--→x x x 6如果fx 在a ,b 上连续,在a ,b 内可导,则在a ,b 内至少存在一点ξ a <ξ<b , 使等式fb -fa =f •'fξb -a 成立.7.用极限定义证明当0>0x 时,00limx x x x =→8.如果fx 及Fx 在a ,b 上连续,在a ,b 内可导,且对于任一x ∈a,b,F ′x ≠0, 则在a ,b 内至少存在一点ξ a <ξ<b ,使等式)()()()()()(ξξF f a F b F a f b f ''=--成立.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

题号:1 题型:单选题(请在以下几个选项中选择唯一正确答案) 本题分数:4
内容:
图片3-20
图形:

选项:
a、A
b、B
c、C
d、D

题号:2 题型:单选题(请在以下几个选项中选择唯一正确答案) 本题分数:4
内容:
图片3-17
图形:

选项:
a、A

b、B
c、C
d、D

题号:3 题型:单选题(请在以下几个选项中选择唯一正确答案) 本题分数:4
内容:
图片3-27
图形:

选项:
a、A
b、B
c、C
d、D

题号:4 题型:单选题(请在以下几个选项中选择唯一正确答案) 本题分数:4
内容:
图片3-7
图形:

选项:
a、A
b、B
c、C
d、D

题号:5 题型:单选题(请在以下几个选项中选择唯一正确答案) 本题分数:4
内容:
图片3-12
图形:

选项:
a、A
b、B
c、C
d、D

题号:6 题型:单选题(请在以下几个选项中选择唯一正确答案) 本题分数:4
内容:
图片3-2
图形:

选项:
a、A
b、B
c、C
d、D

题号:7 题型:单选题(请在以下几个选项中选择唯一正确答案) 本题分数:4
内容:
图片3-28
图形:

选项:
a、A
b、B
c、C
d、D

题号:8 题型:单选题(请在以下几个选项中选择唯一正确答案) 本题分数:4
内容:
图片3-5
图形:

选项:
a、A
b、B
c、C
d、D

题号:9 题型:单选题(请在以下几个选项中选择唯一正确答案) 本题分数:4
内容:
图片3-6
图形:

选项:
a、A
b、B
c、C
d、D

题号:10 题型:单选题(请在以下几个选项中选择唯一正确答案) 本题分数:4
内容:
图片3-29
图形:

选项:
a、A
b、B
c、C
d、D

题号:11 题型:单选题(请在以下几个选项中选择唯一正确答案) 本题分数:4
内容:
图片3-8
图形:
选项:
a、A
b、B
c、C
d、D

题号:12 题型:单选题(请在以下几个选项中选择唯一正确答案) 本题分数:4
内容:
图片3-9
图形:

选项:
a、A
b、B
c、C
d、D

题号:13 题型:单选题(请在以下几个选项中选择唯一正确答案) 本题分数:4
内容:
图片3-16
图形:

选项:
a、A
b、B
c、C
d、D
题号:14 题型:单选题(请在以下几个选项中选择唯一正确答案) 本题分数:4
内容:
图片3-3
图形:

选项:
a、A
b、B
c、C
d、D

题号:15 题型:单选题(请在以下几个选项中选择唯一正确答案) 本题分数:4
内容:
图片3-14
图形:

选项:
a、A
b、B
c、C
d、D

题号:16 题型:单选题(请在以下几个选项中选择唯一正确答案) 本题分数:4
内容:
图片3-24
图形:
选项:
a、A

b、B
c、C
d、D

题号:17 题型:单选题(请在以下几个选项中选择唯一正确答案) 本题分数:4
内容:
图片3-13
图形:

选项:
a、A
b、B
c、C
d、D

题号:18 题型:单选题(请在以下几个选项中选择唯一正确答案) 本题分数:4
内容:
图片3-10
图形:

选项:
a、A
b、B
c、C
d、D
题号:19 题型:单选题(请在以下几个选项中选择唯一正确答案) 本题分数:4
内容:
图片3-18
图形:

选项:
a、A
b、B
c、C
d、D

题号:20 题型:单选题(请在以下几个选项中选择唯一正确答案) 本题分数:4
内容:
图片3-15
图形:

选项:
a、A
b、B
c、C
d、D

题号:21 题型:单选题(请在以下几个选项中选择唯一正确答案) 本题分数:4
内容:
图片3-25
图形:
选项:
a、A

b、B
c、C
d、D

题号:22 题型:单选题(请在以下几个选项中选择唯一正确答案) 本题分数:4
内容:
图片3-22
图形:

选项:
a、A
b、B
c、C
d、D

题号:23 题型:单选题(请在以下几个选项中选择唯一正确答案) 本题分数:4
内容:
图片3-23
图形:

选项:
a、A
b、B
c、C
d、D
题号:24 题型:单选题(请在以下几个选项中选择唯一正确答案) 本题分数:4
内容:
图片3-19
图形:

选项:
a、A
b、B
c、C
d、D

题号:25 题型:单选题(请在以下几个选项中选择唯一正确答案) 本题分数:4
内容:
图片3-26
图形:

选项:
a、A
b、B
c、C
d、D

相关文档
最新文档