人教版八年级数学上册第十四章 整式乘法与因式分解习题(含答案)
八年级数学上册第十四章《整式的乘法与因式分解》测试卷-人教版(含答案)

八年级数学上册第十四章《整式的乘法与因式分解》测试卷-人教版(含答案)三总分题号一二19 20 21 22 23 24分数一、选择题(每题3分,共30分)1.下列左边到右边的变形,属于因式分解的是()A.(x+1)(x﹣1)=x2﹣1 B.x2﹣2x+1=x(x﹣2)+1C.a2﹣b2=(a+b)(a﹣b) D.x2﹣16+3x=(x+4)(x﹣4)+3x 2.计算a3•(﹣a2)结果正确的是()A.﹣a5B.a5C.﹣a6D.a63.下列计算中,结果正确的是()A.2a﹣a=2 B.t2+t3=t5C.(﹣x2)3=﹣x6D.x6÷x3=x2 4.若3x=15,3y=5,则3x-y等于( ).A.5 B.3 C.15 D.105.下列计算中,正确的个数有()①3x3•(﹣2x2)=﹣6x5;②4a3b÷(﹣2a2b)=﹣2a;③(a3)2=a5;④(﹣a)3÷(﹣a)=﹣a2.A.1个B.2个 C.3个 D.4个6.下列各式中能用平方差公式是()A.(x+y)(y+x)B.(x+y)(y-x)C.(x+y)(-y-x)D.(-x+y)(y-x)7.已知x2﹣8x+a(a为常数)可以写成一个完全平方式,则a的值为()A.16 B.﹣16 C.64 D.﹣648.若x2+mx﹣18能分解为(x﹣9)(x+n),那么m、n的值是()A.7、2 B.﹣7、2 C.﹣7、﹣2 D.7、﹣29.如果(2x+m)(x﹣5)展开后的结果中不含有x的一次项,那么m等于()A.5 B.﹣10 C.﹣5 D.1010.如果对于不<8的自然数n,当3n+1是一个完全平方数时,n+1能表示成k 个完全平方数的和,那么k的最小值为()A.1 B.2 C.3 D.4二、填空题(每题3分,共24分)11.已知若a+b=﹣3,ab=2,则(a﹣b)2═.12.因式分解:m2﹣n2﹣2m+1=.13.多项式y2+2y+m因式分解后有一个因式(y﹣1),则m=.14.9992﹣998×1002=.15.因式分解:x3-2x2y+xy2=________.16.已知3a=5,9b=10,则3a+2b的值为________.17.已知A=2x+y,B=2x-y,计算A2-B2=________.18.如图,边长为2m+3的正方形纸片剪出一个边长为m+3的正方形之后,剩余部分可剪拼成一个长方形,若拼成的长方形一边长为m,则另一边长为.三.解答题(共46分,19题6分,20 ---24题8分)19.计算:(1)计算:12﹣38+|3﹣2|;(2)化简:(a+3)(a﹣2)﹣a(a﹣1).20.分解因式:(1)m3n-9mn; (2)(x2+4)2-16x2; (3)x2-4y2-x+2y;(4)4x3y+4x2y2+xy3.21.先化简,再求值:(1)(x 2-4xy +4y 2)÷(x -2y )-(4x 2-9y 2)÷(2x -3y ),其中x =-4,y =15;(2)(m -n )(m +n )+(m +n )2-2m 2,其中m ,n 满足⎩⎨⎧m +2n =1,3m -2n =11.22.有一张边长为a 厘米的正方形桌面,因为实际需要,需将正方形边长增加b 厘米,木工师傅设计了如图所示的三种方案:小明发现这三种方案都能验证公式:a 2+2ab+b 2=(a+b )2, 对于方案一,小明是这样验证的: a 2+ab+ab+b 2=a 2+2ab+b 2=(a+b )2请你根据方案二、方案三,写出公式的验证过程. 方案二: 方案三:23.如图,甲长方形的两边长分别为m +1,m +7;乙长方形的两边长分别为m +2,m +4.(其中m 为正整数)(1)图中的甲长方形的面积S 1,乙长方形的面积S 2,比较:S 1 S 2(填“<”、“=”或“>”),并说明理由;(2)现有一正方形,其周长与图中的甲长方形周长相等,试探究:该正方形面积S 与图中的甲长方形面积S 1的差(即S ﹣S 1)是一个常数,求出这个常数.24.阅读下列材料:在因式分解中,把多项式中某些部分看作一个整体,用一个新的字母代替(即换元),不仅可以简化要分解的多项式的结构,而且能使式子的特点更加明显,便于观察如何进行因式分解,我们把这种因式分解的方法称为“换元法”.下面是小涵同学用换元法对多项式(x2+3x﹣9)(x2+3x+1)+25进行因式分解的过程.解:设x2+3x=y原式=(y﹣9)(y+1)+25(第一步)=y2﹣8y+16(第二步)=(y﹣4)2(第三步)=(x2+3x﹣4)2(第四步)请根据上述材料回答下列问题:(1)小涵同学的解法中,第二步到第三步运用了因式分解的;A.提取公因式法B.平方差公式法C.完全平方公式法(2)老师说,小涵同学因式分解的结果不彻底,请你写出该因式分解的最后结果:;(3)请你用换元法对多项式(9x2﹣6x+3)(9x2﹣6x﹣1)+4进行因式分解.参考答案一、题号 1 2 3 4 5 6 7 8 9 10 答案 C A C B B B A B C D二、11.解:∵a+b=﹣3,ab=2,∴(a﹣b)2═(a+b)2﹣4ab=(﹣3)2﹣4×2=9﹣8=1.故答案为:1.12.解:原式=m2﹣2m+1﹣n2=(m﹣1)2﹣n2=(m﹣1+n)(m﹣1﹣n).故答案为(m﹣1+n)(m﹣1﹣n).13.解:∵多项式y2+2y+m因式分解后有一个因式为(y﹣1),∵当y=1时多项式的值为0,即1+2+m=0,解得m=﹣3.故答案为:﹣3.14.解:原式=(1000﹣1)2﹣(1000﹣2)×(1000+2)=10002﹣2×1000×1+12﹣10002+22=﹣2000+1+4=﹣1995,故答案为:﹣1995.15.x(x-y)216.5017.8xy18.解:依题意得剩余部分为(2m+3)2﹣(m+3)2=4m2+12m+9﹣m2﹣6m﹣9=3m2+6m,而拼成的矩形一边长为m,∴另一边长是(3m2+6m)÷m=3m+6.故答案为:3m+6. 三、19. 解:(1)原式=23﹣2+2﹣3=3;(2)原式=a 2﹣2a+3a ﹣6﹣a 2+a =2a ﹣6.20.解:(1)原式=mn (m 2-9)=mn (m +3)(m -3);(2)原式=(x 2+4+4x )(x 2+4-4x )=(x +2)2(x -2)2;(3)原式=x 2-4y 2-(x -2y )=(x +2y )(x -2y )-(x -2y )=(x -2y )(x +2y -1);(4)原式=xy (4x 2+4xy +y 2)=xy (2x +y )2.21.解:(1)原式=(x -2y )2÷(x -2y )-(2x +3y )(2x -3y )÷(2x -3y )=x -2y-2x -3y =-x -5y . ∵x =-4,y =15,∴原式=-x -5y =4-5×15=3.(2)原式=m 2-n 2+m 2+2mn +n 2-2m 2=2mn . 解方程组⎩⎨⎧m +2n =1,3m -2n =11,得⎩⎨⎧m =3,n =-1.∴原式=2mn =2×3×(-1)=-6. 22.解:由题意可得,方案二:a 2+ab+(a+b )b=a 2+ab+ab+b 2=a 2+2ab+b 2=(a+b )2, 方案三:.23.如图,甲长方形的两边长分别为m +1,m +7;乙长方形的两边长分别为m +2,m +4.(其中m 为正整数)(1)图中的甲长方形的面积S 1,乙长方形的面积S 2,比较:S 1 > S 2(填“<”、“=”或“>”),并说明理由;(2)现有一正方形,其周长与图中的甲长方形周长相等,试探究:该正方形面积S与图中的甲长方形面积S1的差(即S﹣S1)是一个常数,求出这个常数.解:(1)>.理由:S1=(m+1)(m+7)=m2+8m+7,S=(m+2)(m+4)=m2+6m+8,2∴S1﹣S2=(m2+8m+7)﹣(m2+6m+8)=2m﹣1,∵m为正整数,∴2m﹣1>0,∴S1>S2.(2)图中甲的长方形周长为2(m+7+m+1)=4m+16,∴该正方形边长为m+4,∴S﹣S1=(m+4)2﹣(m2+8m+7)=9,∴这个常数为9.24.解:(1)由y2﹣8y+16=(y﹣4)2可知,小涵运用了因式分解的完全平方公式法故选:C;(2)(x2+3x﹣9)(x2+3x+1)+25,解:设x2+3x=y原式=(y﹣9)(y+1)+25=y2﹣8y+16=(y﹣4)2=(x2+3x﹣4)2=(x﹣1)2(x+4)2;故答案为:(x﹣1)2(x+4)2;(3)(9x2﹣6x+3)(9x2﹣6x﹣1)+4设9x2﹣6x=y,原式=(y+3)(y﹣1)+4,=y2+2y+1,=(y+1)2,=(9x2﹣6x+1)2,=(3x﹣1)4.。
人教版数学八年级上册第十四章《整式的乘法与因式分解》测试卷(含答案)

人教版数学八年级上册第十四章《整式的乘法与因式分解》测试卷(含答案)班级姓名一、选择题(每小题3分,共30分)1.(2021广东深圳中考)下列运算中,正确的是()A.2a2·a=2a3B.(a2)3=a5C.a2+a3=a5D.a6÷a2=a32.(2021山东泰安中考)下列运算正确的是()A.2x2+3x3=5x5B.(-2x)3=-6x3C.(x+y)2=x2+y2D.(3x+2)(2-3x)=4-9x23.(2019湖南株洲中考)下列各选项中因式分解正确的是()A.x2-1=(x-1)2B.a3-2a2+a=a2(a-2)C.-2y2+4y=-2y(y+2)D.m2n-2mn+n=n(m-1)24.若a+b=3,x+y=1,则a2+2ab+b2-x-y+2 015的值为()A.2 023B.2 021C.2 020D.2 0195.(2021江苏南通如皋期末)如图,由4个全等的小长方形与1个小正方形密铺成正方形图案,该图案的面积为64,小正方形的面积为9,若分别用x,y(x>y)表示小长方形的长和宽,则下列关系式中不正确的是()A.x+y=8B.x-y=3C.4xy+9=64D.x2+y2=256.若3x2-5x+1=0,则5x(3x-2)-(3x+1)(3x-1)=()A.-1B.0C.1D.-27.已知多项式ax+b与2x2+2x+3的乘积展开式中不含x的一次项,且常数项为9,则a b的值为()A.18B.-18C.-8D.-68.如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形(a>0),剩余部分沿虚线剪开拼成一个长方形(不重叠,无缝隙),则长方形的面积为()A.(2a2+5a)cm2B.(3a+15)cm2C.(6a+9)cm2D.(6a+15)cm29.(2019四川资阳中考)4张长为a、宽为b(a>b)的长方形纸片按如图所示的方式拼成一个边长为a+b的正方形,图中空白部分的面积为S1,阴影部分的面积为S2.若S1=2S2,则a、b满足()A.2a=5bB.2a=3bC.a=3bD.a=2b10.如图,长方形ABCD的周长是10 cm,分别以AB,AD为边向外作正方形ABEF和正方形ADGH,若正方形ABEF和正方形ADGH的面积之和为17 cm2,则长方形ABCD的面积是()A.3 cm2B.4 cm2C.5 cm2D.6 cm2二、填空题(每小题3分,共24分)11.(2021山东临沂中考)分解因式:2a3-8a=.12.(2022四川宜宾期末)化简:(8x3y3-4x2y2)÷2xy2=.13.(2019四川乐山中考)若3m=9n=2,则3m+2n=.14.(2022独家原创)如图,小明制作了一块长方形滑板模具,其长为2a,宽为a,中间开出两个边长为b的正方形孔.当a=15.7,b=4.3时,阴影部分的面积为.15.已知a2-6a+9与|b-1|互为相反数,则a3b3+2a2b2+ab的值是.16.(2022云南昆明三中期末)若(a+b)2=17,(a-b)2=11,则a2+b2=.17.李老师做了个长方形教具,其中一边长为2a+b,其邻边长为a-b,则该长方形的面积为.18.若(x2-2x-3)(x3+5x2-6x+7)=a5x5+a4x4+a3x3+a2x2+a1x+a0,则a0+a1+a2+a3+a4+a5=.三、解答题(共46分)19.(2021江苏苏州中学期末)(6分)计算:(1)-2x3y2·(x2y3)2;(2)3x·x5+(-2x3)2-x12÷x6.20.(6分)计算:(1)(3x-2)(2x+3)-(x-1)2;(2)(x+2y)(x-2y)-2y(x-2y)+2xy. 21.(8分)先化简,再求值: (1)(2+x)(2-x)+(x-1)(x+5),其中x=32; (2)(2a-b)2-(4a+b)(a-b)-2b 2,其中a=12,b=-13.22.(2021北京一零一中学期末)(8分)先阅读下面的内容,再解决问题: 例题:若m 2+2mn+2n 2-6n+9=0,求m 和n 的值. 解:∵m 2+2mn+2n 2-6n+9=0, ∴(m 2+2mn+n 2)+(n 2-6n+9)=0, ∴(m+n)2+(n-3)2=0,∴m+n=0,n-3=0,∴m=-3,n=3. 问题:(1)若x 2+2y 2-2xy+6y+9=0,求x 2的值;(2)已知△ABC 的三边长a,b,c 都是正整数,且满足a 2+b 2-6a-4b+13+|3-c|=0,请问△ABC 是什么形状的三角形?23.(2022河南郑州实验学校期末)(8分)从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是;(请选择正确的一个)A.a2-2ab+b2=(a-b)2B.b2+ab=b(a+b)C.a2-b2=(a+b)(a-b)D.a2+ab=a(a+b)(2)应用你从(1)中选出的等式,完成下列各题:①已知x2-4y2=12,x+2y=4,求x的值;②计算:(1−122)(1−132)(1−142)·…·(1−12 0202)(1−12 0212).24.(10分) 许多恒等式可以借助图形的面积关系直观表达,如图①,根据图中面积关系可以得到(2m+n)(m+n)=2m2+3mn+n2.(1)如图②,根据图中面积关系写出一个关于m、n的等式:;,则(a+b)2=;(2)利用(1)中的等式求解:若a-b=2,ab=54(3)小明用8个全等的长方形(宽为a,长为b)拼图,拼出了如图甲、乙所示的两种图案,图案甲是一个大的正方形,中间的阴影部分是边长为3的小正方形;图案乙是一个大的长方形,求a,b的值.答案全解全析1.A2a2·a=2a3,原计算正确,(a2)3=a6,原计算错误,a2与a3不是同类项,不能合并,a6÷a2=a4,原计算错误,故选A.2.D A选项,2x2与3x3不是同类项,不能合并,故该选项计算错误;B选项,(-2x)3=-8x3,故该选项计算错误;C选项,(x+y)2=x2+2xy+y2,故该选项计算错误;D选项,(3x+2)(2-3x)=22-(3x)2=4-9x2,故该选项计算正确,故选D.3.D A.x2-1=(x+1)(x-1),故此选项错误;B.a3-2a2+a=a(a2-2a+1)=a(a-1)2,故此选项错误;C.-2y2+4y=-2y(y-2),故此选项错误;D.m2n-2mn+n=n(m2-2m+1)=n(m-1)2,故此选项正确.故选D.4.A a2+2ab+b2-x-y+2 015=(a+b)2-(x+y)+2 015,当a+b=3,x+y=1时,原式=32-1+2 015=8+2 015=2 023.故选A.5.D如图,∵图案的面积为64,小正方形的面积为9,∴大正方形的边长为8,小正方形的边长为3,∴x+y=AQ+DQ=AD=8,因此选项A不符合题意;x-y=HP-EP=HE=3,因此选项B不符合题意;∵一个小长方形的面积为xy,∴4xy+9=64,因此选项C不符合题意;∵x+y=8,x-y=3,∴(x+y)2=64,(x-y)2=9,即x2+2xy+y2=64,x2-2xy+y2=9,∴x2+y2=73,2因此选项D符合题意.故选D.6.A∵3x2-5x+1=0,∴3x2-5x=-1,∴5x(3x-2)-(3x+1)(3x-1)=15x 2-10x-9x 2+1=6x 2-10x+1=2(3x 2-5x)+1=2×(-1)+1=-1.故选A. 7.C (ax+b)(2x 2+2x+3) =2ax 3+2ax 2+3ax+2bx 2+2bx+3b =2ax 3+(2a+2b)x 2+(3a+2b)x+3b,∵乘积展开式中不含x 的一次项,且常数项为9, ∴3a+2b=0且3b=9,∴a=-2,b=3, ∴a b =(-2)3=-8,故选C.8.D 长方形的面积为(a+4)2-(a+1)2=(a+4+a+1)(a+4-a-1)=3(2a+5)=(6a+15)cm 2.故选D. 9.D 由题图可知S 1=12b(a+b)×2+12ab×2+(a-b)2=a 2+2b 2,S 2=(a+b)2-S 1=(a+b)2-(a 2+2b 2) =2ab-b 2,∵S 1=2S 2,∴a 2+2b 2=2(2ab-b 2),整理得(a-2b)2=0,∴a-2b=0,∴a=2b.故选D. 10.B 设AB=x cm,AD=y cm,∵正方形ABEF 和正方形ADGH 的面积之和为17 cm 2,∴x 2+y 2=17, ∵长方形ABCD 的周长是10 cm, ∴2(x+y)=10,∴x+y=5,∵(x+y)2=x 2+2xy+y 2,∴25=17+2xy,∴xy=4, ∴长方形ABCD 的面积为4 cm 2,故选B. 11.2a(a+2)(a-2)解析 原式=2a(a 2-4)=2a(a+2)(a-2). 12.4x 2y-2x解析 原式=8x 3y 3÷2xy 2-4x 2y 2÷2xy 2=4x 2y-2x. 13.4解析 ∵3m =9n =2,∴3m+2n =3m ·32n =3m ·(32)n =3m ·9n =2×2=4. 14.456解析 阴影部分的面积=2a·a-2b 2=2(a 2-b 2)=2(a+b)(a-b), 当a=15.7,b=4.3时,阴影部分的面积=2(a+b)(a-b)=2×(15.7+4.3)×(15.7-4.3)=2×20×11.4=456.15.48解析 依题意得a 2-6a+9+|b-1|=0,即(a-3)2+|b-1|=0,则a-3=0,b-1=0,解得a=3,b=1,所以a 3b 3+2a 2b 2+ab=ab(a 2b 2+2ab+1)=ab(ab+1)2=3×(3+1)2=3×16=48. 16.14解析 (a+b)2=a 2+b 2+2ab=17①, (a-b)2=a 2+b 2-2ab=11②,①+②得2(a 2+b 2)=28,∴a 2+b 2=14. 17.2a 2-ab-b 2解析 该长方形的面积为(2a+b)(a-b)=2a 2-2ab+ab-b 2=2a 2-ab-b 2. 18.-28解析 ∵(x 2-2x-3)(x 3+5x 2-6x+7)=x 5+5x 4-6x 3+7x 2-2x 4-10x 3+12x 2-14x-3x 3-15x 2+18x-21=x 5+3x 4-19x 3+4x 2+4x-21=a 5x 5+a 4x 4+a 3x 3+a 2x 2+a 1x+a 0, ∴a 0=-21,a 1=4,a 2=4,a 3=-19,a 4=3,a 5=1, ∴a 0+a 1+a 2+a 3+a 4+a 5=-21+4+4-19+3+1=-28. 19.解析 (1)-2x 3y 2·(x 2y 3)2=-2x 3y 2·x 4y 6=-2x 7y 8. (2)3x·x 5+(-2x 3)2-x 12÷x 6=3x 6+4x 6-x 6=6x 6.20.解析 (1)原式=6x 2+9x-4x-6-x 2+2x-1=5x 2+7x-7. (2)原式=x 2-4y 2-2xy+4y 2+2xy=x 2. 21.解析 (1)(2+x)(2-x)+(x-1)(x+5) =4-x 2+x 2+5x-x-5=4x-1, 当x=32时,原式=4×32-1=5. (2)(2a-b)2-(4a+b)(a-b)-2b 2 =4a 2-4ab+b 2-(4a 2-3ab-b 2)-2b 2=-ab, 当a=12,b=-13时,原式=-12×(-13)=16. 22.解析 (1)∵x 2+2y 2-2xy+6y+9=0, ∴x 2-2xy+y 2+y 2+6y+9=0, ∴(x-y)2+(y+3)2=0,∴x-y=0,y+3=0,解得x=-3,y=-3,∴x 2=9. (2)∵a 2+b 2-6a-4b+13+|3-c|=0, ∴a 2-6a+9+b 2-4b+4+|3-c|=0, ∴(a-3)2+(b-2)2+|3-c|=0, ∴a-3=0,b-2=0,3-c=0, 解得a=3,b=2,c=3,∴a=c≠b, ∴△ABC 是等腰三角形.23.解析 (1)题图1中阴影部分的面积是a 2-b 2, 题图2的面积是(a+b)(a-b), 则a 2-b 2=(a+b)(a-b).故选C.(2)①∵x 2-4y 2=(x+2y)(x-2y)=12,x+2y=4, ∴12=4(x-2y),∴x-2y=3,联立{x +2y =4,x-2y =3,两方程相加得2x=7,解得x=72.②(1−122)(1−132)(1−142) (1)12 0202)(1−12 0212)=(1−12)(1+12)(1−13)(1+13)(1−14)(1+14)·…·(1−12 020)(1+12 020)(1−12 021)(1+12 021) =12×32×23×43×34×54×…×1 9992 020×2 0212 020×2 0202 021×2 0222 021=12×2 0222 021=1 0112 021. 24.解析 (1)由题图②中大正方形的面积等于各个小长方形和小正方形的面积之和,可得等式(m+n)2=4mn+(m-n)2.(2)由(1)中等式可得(a+b)2=(a-b)2+4ab. ∵a-b=2,ab=54,∴(a+b)2=22+4×54=9.(3)由题意得{b-2a =3,2b =3a +b,整理得{b-2a =3①,b-3a =0②,①-②,得a=3,把a=3代入②,得b-3×3=0,∴b=9,故a=3,b=9.第 11 页共 11。
人教版八年级数学上册《第十四章整式的乘法与因式分解》单元测试卷(带答案)

人教版八年级数学上册《第十四章整式的乘法与因式分解》单元测试卷(带答案)一、单选题(共10小题,满分40分)1.下列计算正确的是( )A .a 2·a 3= a 6B .(a 2)3= a 6C .(2a )3=2aD .a 10÷a 2= a 52.下列因式分解正确的是( ) A .()3333x y x y ++=+B .221142x x x ++=+⎛⎫ ⎪⎝⎭ C .()()22x y x y x y -+=+- D .()()22444x y x y x y -=-+ 3.将295变形正确的是( )A .22295905=+B .()()29510051005=+-C .2229510010005=-+D .22295909055=+⨯+ 4.如果29x mx -+(m 是常数)是完全平方式,那么m 的值为( )A .3B .6±C .9±D .65.下列运算正确的是( )A .a 3+a 3=a 6B .a 2•a 3=a 6C .(ab )2=ab 2D .(a 2)4=a 86.如果一个正整数能表示为两个连续奇数的平方差,那么称这个正整数为“创新数”,如8=32﹣12,16=52﹣32,所以8,16都是“创新数”,下列整数是“创新数”的是( ) A .20 B .22 C .26 D .247.下列各式中不能用平方差公式计算的是( )A .()y-x ()x+yB .()2x-y ()-y+2xC .()x-3y ()x+3yD .()4x-5y ()5y+4x 8.已知(x -3)(x 2+mx +n )的乘积项中不含x 2和x 项,则m ,n 的值分别为( )A .m =3,n =9B .m =3,n =6C .m =-3,n =-9D .m =-3,n =99.如图,长方形ABCD 中812812AB AD <<<<,,放入两个边长都为4的正方形 AEFG ,正方形DJIH 及一个边长为8的正方形KCML ,1S 和2S 分别表示对应阴影部分的面积,若12=S S ,则长方形ABCD 的周长是( )A .36B .40C .44D .4810.如果x y +,x y -与22x y -,4,m n +和mm 分别对应6个字:鹿,鸣,数,我,爱,学,现将()()222244m x y n x y -+-因式分解,结果呈现的可能是哪句话( ) A .我爱鹿鸣 B .爱鹿鸣 C .鹿鸣数学 D .我爱数学二、填空题(共8小题,满分32分)11.如图为杨辉三角表,它可以帮助我们按规律写出()na b +(其中n 为正整数)展开式的系数,请仔细观察表中规律,将()4a b +的展开式补充完整. ()1a b a b +=+ ()2222a b a ab b +=++ ()3322333a b a a b ab b +=+++()4434a b a a b +=++ 22344a b ab b ++12.若4,8x y a b ==,则232x y -可表示为 (用含a 、b 的代数式表示).13.如图,请根据图中标的数据,计算大长方形的面积.通过面积不同的计算方法,可以得到的等式关系是: .14.计算:()2321x x x -⋅+-= . 15.如图所示的运算过程中,若开始输入的值为43,我们发现第1次输出的结果为48,第二次输出的结果为24,…,则第2020次输出的结果为 .16.当2x =时,31ax bx ++的值为6,那么当2x =-时,31ax bx ++的值是 .17.已知关于x 、y 的二次式22754524x xy ay x y ++---可分解为两个一次因式的乘积,则a 的值是 . 18.卫星绕地球运动的速度(第一宇宙速度)为37.910⨯米/秒,求卫星绕地球运行5×103秒后所经过的路程是 米(用科学记数法表示)三、解答题(共6小题,每题8分,满分48分)19.计算.(1)()()2x y a b ++;(2)()()a b a b +-;(3)()13a b a ⎛⎫-- ⎪⎝⎭; (4)()()3223x y x y --;(5)()()322x x +--.20.利用因式分解计算:(1)20032-1999×2001(2)562+442+56×88.21.先化简,再求值:()()()2212112x x x -++-,其中=1x -.22.(1)计算:(﹣2x 2y )3÷(﹣4xy 2);(2)已知,如图,D 是△ABC 的边AB 上一点,AB∥FC ,DF 交AC 于点E ,DE=EF .求证:AE=CE .23.我们已经知道,通过计算几何图形的面积可以表示一些代数恒等式.例如图1可以得到()2222a b a ab b +=++,基于此,请解答下列问题:(1)根据图2,写出一个代数恒等式:_______;(2)若10a b c ++=,25ab ac bc ++=则222a b c ++=_______;(3)在棱长为a 的正方体上割去一个棱长为()b b a <的小正方体(如图3),通过用不同的方法计算图中余下几何体的体积,完成填空:()()33____________a b a b -=-.(4)利用(3)得到的恒等式分解因式:3327x y -.24.请阅读游戏玩法并回答问题:(1)如图1,有一个边长为a 的大正方形纸板,在正中心剪下边长为b 的正方形.则阴影部分面积是______.(2)将图1沿虚线剪开后重新拼接成图2,得到一个平行四边形.则这个平行四边形的底是______,高是______,面积是______.(3)由图1到图2可以得到等式______.(4)利用上述得到的等式计算9991001⨯.参考答案:1.B2.B3.C4.B5.D6.D7.B8.A9.B10.A11.612.a b13.()()2232325a b a b a b ab ++=++14.32363x x x --+15.6.16.-417.6。
人教版八年级数学上册第十四章《整式乘法与因式分解》测试带答案解析

人教版八年级数学上册第十四章《整式乘法与因式分解》测试学校:___________姓名:___________班级:___________考号:___________一、单选题1.计算3325a a 的结果是( ) A .610aB .910aC .37aD .67a2.下列运算正确的是( ) A .22a a a ⋅=B .824a a a ÷=C .()2242a b a b =D .()325a a =3.下列计算正确的是( ) A .623a a a ÷=B .()326a a =C .248a a a ⋅=D .532a a a -=4.下列计算结果正确的是( ) A .()336a a =B .632a a a ÷=C .()248ab ab =D .()2222a b a ab b +=++5.下列计算正确的是( ) A .25611a a a += B .()235326b b b -⋅= C .623623b a a ÷=D .()()22339b a a b a b +-=-6.已知实数m ,n 满足222+=+m n mn ,则2(23)(2)(2)-++-m n m n m n 的最大值为( ) A .24B .443C .163D .4-7.已知()()2221x x x +--=,则2243x x -+的值为( ) A .13B .8C .-3D .58.若2022202020222022202320222021-=⨯⨯n ,则n 的值是( ) A .2023B .2022C .2021D .20209.如图是一个运算程序的示意图,若开始输入的x 值为81,我们看到第一次输出的结果为27.第二次输出的结果为9,…,第2022次输出的结果为( )A .1B .3C .9D .2710.下列等式从左到右的变形,其中属于因式分解的是( ) A .2221(1)--=-x x x B .22221(1)x y xy xy ++=+ C .2(3)(3)9x x x +-=-D .32822(41)a a a a -=-11.有一台特殊功能计算器,对任意两个整数只能完成求差后再取绝对值的运算,其运算过程是:输入第一个整数1x ,只显示不运算,接着再输入整数2x 后则显示12x x -的结果.比如依次输入1,2,则输出的结果是121-=;此后每输入一个整数都是与前次显示的结果进行求差后再取绝对值的运算.有如下结论:①依次输入1,2,3,4,则最后输出的结果是2;②若将1,2,3,4这4个整数任意地一个一个输入,全部输入完毕后显示的结果的最大值是4;③若将1,2,3,4这4个整数任意地一个一个地输入,全部输入完毕后显示的结果的最小值是0;④若随意地一个一个地输入三个互不相等的正整数2,a ,b ,全部输入完毕后显示的最后结果设为k ,若k 的最大值为10,那么k 的最小值是6.上述结论中,正确的个数是( ) A .1个B .2个C .3个D .4个12.在数学中为了书写简便,18世纪数学家欧拉就引进了求和符号“∑”,如记1nk k =∑=1+2+3+…+(n ﹣1)+n ,()3n k x k =+∑=(x +3)+(x +4)+…+(x +n );已知()3nk x x k =⎡+⎤⎣⎦∑=9x 2+mx ,则m 的值是( ) A .45B .63C .54D .不确定二、填空题13.分解因式:216x y xy -=______.14.因式分解:322242m m n mn -+=________. 15.因式分解:32312x xy -=_________.16.已知2223,15a b b c a b c -=-=++=,则ab bc ca ++的值等于________.三、解答题 17.分解因式: (1)22a ab a ++; (2)()()222m n m n +-+18.化简:()()()482x y x y xy xy xy +---÷.19.先化简,再求值:(1)(1)(2)x x x x +-++,其中12x =. 20.先化简,再求值:22()()(2)34x y x y x y y y ⎡⎤+----÷⎣⎦,其中20201x y ==-,.21.已知有理数a ,b ,c 满足()222434|41|02aa cbc b +-+--+--=∣∣,试求313242n n n a b c +++-的值.22.先化简,再求值()()()22x y x y xy xy x +-+-÷,其中11,2x y ==. 23.已知x +1x =3,求下列各式的值:(1)(x ﹣1x)2;(2)x 4+41x . 24.阅读材料:若2222440m mn n n -+-+=,求m ,n 的值.解:∵2222440m mn n n -+-+=,∴()()2222440m mn n n n -++-+=,∴22()(2)0m n n -+-=,∴2()0m n -=,2(2)0n -=,∴2n =,2m =. 根据你的观察,探究下面的问题:(1)已知22228160x y xy y +-++=,则x =________,y =________;(2)已知ABC 的三边长a 、b 、c 都是正整数,且满足22248180a b a b +--+=,求ABC 的周长.25.如图,长为40,宽为x 的大长方形被分割为9小块,除阴影A ,B 两块外,其余7块是形状、大小完全相同的小长方形,其较短一边长为y .(1)分别用含x,y的代数式表示阴影A,B两块的周长,并计算阴影A,B两块的周长和.(2)分别用含x,y的代数式表示阴影A,B两块的面积,并计算阴影A,B的面积差.(3)当y取何值时,阴影A与阴影B的面积差不会随着x的变化而变化,并求出这个值.参考答案:1.A【分析】直接利用单项式乘以单项式运算法则计算得出答案. 【详解】解:6332510a a a =⋅, 故选:A .【点睛】此题主要考查了单项式乘以单项式,正确掌握相关运算法则是解题关键. 2.C【分析】根据同底数幂乘除法、积的乘方和幂的乘方法则进行计算,即可作出判断. 【详解】A :23a a a ⨯=,故A 错误,不符题意; B :826a a a ÷=,故B 错误,不符题意; C :()2242a b a b =,故C 正确,符合题意; D :()326a a =,故B 错误,不符题意; 故选:C.【点睛】此题考查了同底数幂乘除法、积的乘方和幂的乘方运算,熟练掌握运算法则是解本题的关键. 3.B【分析】根据同底数幂的除法法则对A 进行判断;根据幂的乘方法则对B 进行判断;根据同底数幂的乘法法则对C 进行判断;根据合并同类项对D 进行判断. 【详解】A. 624a a a ÷=,所以此项不正确; B. ()326a a =,所以此项正确;C. 246a a a ⋅=,所以此项不正确;D. 53a a -,不能合并,,所以此项不正确; 故选B .【点睛】本题考查了同底数幂的除法:am ÷an =am -n (m 、n 为正整数,m >n ).也考查了同底数幂的乘法、幂的乘方与积的乘方以及合并同类项. 4.D【分析】分别利用幂的乘方法则,同底数幂的除法,积的乘方法则,完全平方公式分别求出即可.【详解】A .()339a a =,故此选项计算错误,不符合题意;B .633a a a ÷=,故此选项计算错误,不符合题意;C .()2428ab a b =,故此选项计算错误,不符合题意;D .()2222a b a ab b +=++,故此选项计算正确,符合题意; 故选:D .【点睛】本题考查幂的乘方法则,同底数幂的除法,积的乘方法则,完全平方公式,熟练掌握相关计算法则是解答本题的关键.幂的乘方,底数不变,指数相乘;同底数幂相除,底数不变,指数相减;积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;222()2a b a ab b +=++与222()2a b a ab b -=-+都叫做完全平方公式,为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式. 5.D【分析】根据合并同类项法则、同底数幂的乘除法、平方差公式计算即可求解. 【详解】A. 5611a a a +=,计算错误,本选项不符合题意;B. ()235326b b b -⋅=-,计算错误,本选项不符合题意;C. 6622362b b a a÷=,计算错误,本选项不符合题意;B. ()()22339b a a b a b +-=-,计算正确,本选项符合题意;故选:D .【点睛】本题考查整式的混合运算,解题的关键是熟练掌握合并同类项法则、同底数幂的乘除法、平方差公式计算法则. 6.B【分析】先将所求式子化简为107mn -,然后根据()22220m n m n mn +++=≥及222+=+m n mn 求出23mn ≥-,进而可得答案.【详解】解:2(23)(2)(2)-++-m n m n m n 222241294m mn n m n =-++- 225125m mn n =-+()5212mn mn =+- 107mn =-;∵()22220m n m n mn +++=≥,222+=+m n mn , ∴220mn mn ++≥, ∴32mn ≥-, ∴23mn ≥-,∴441073mn -≤, ∴2(23)(2)(2)-++-m n m n m n 的最大值为443, 故选:B .【点睛】本题考查了完全平方公式、平方差公式的应用,不等式的性质,正确对所求式子化简并求出mn 的取值范围是解题的关键. 7.A【分析】先化简已知的式子,再整体代入求值即可. 【详解】∵()()2221x x x +--= ∴225x x -=∴222432(2)313x x x x -+=-+= 故选:A .【点睛】本题考查平方差公式、代数式求值,利用整体思想是解题的关键. 8.D【分析】原式先提取公因式,再运用平方差公式进行计算即可. 【详解】解:2022202020222022- =202022022(20221)- =20202022(20221)(20221)+- =2020202220232021⨯⨯∵2022202020222022202320222021-=⨯⨯n ∴2020202220232021202320222021n ⨯⨯=⨯⨯ ∴202020222022n = ∴2020n =. 故选:D .【点睛】本题主要考查了整式的运算,熟练掌握平方差公式是解答本题的关键. 9.A【分析】依次求出每次输出的结果,根据结果得出规律,即可得出答案. 【详解】解:第1次,181273⨯=,第2次,12793⨯=,第3次,1933⨯=,第4次,1313⨯=,第5次,123+=,第6次,1313⨯=,⋯,依此类推,从第3次开始以3,1循环,(20222)21010-÷=,∴第2022次输出的结果为1.故选:A .【点睛】本题考查了求代数式的值,能根据求出的结果得出规律是解此题的关键. 10.B【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案. 【详解】解:2221(1)x x x -+=-,故A 不符合题意; 22221(1)x y xy xy ++=+,故B 符合题意;2(3)(3)9x x x +-=-是整式乘法,故C 不符合题意;32822(41)2(21)(21)a a a a a a a -=-=+-,故D 不符合题意;故选:B【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式,注意因式分解与整式乘法的区别. 11.D【分析】根据输入数据与输出结果的规则进行计算,判断①②③;只有三个数字时,当最后输入最大数时得到的结果取最大值,当最先输入最大数时得到的结果取最小值,由此通过计算判断④.【详解】解:根据题意,依次输入1,2,3,4时,1211-=-=, 1322-=-=,2422-=-=,故①正确;按照1,3,4,2的顺序输入时,1322-=-=, 2422-=-=,220-=,为最小值,故③正确; 按照1,3,2,4的顺序输入时,1322-=-=,220-=,0444-=-=,为最大值,故②正确;若随意地一个一个地输入三个互不相等的正整数2,a ,b ,全部输入完毕后显示的最后结果设为k , k 的最大值为10, 设b 为较大数字,当1a =时,2110a b b --=-=, 解得11b =,故此时任意输入后得到的最小数是:11128--=,设b 为较大数字,当2b a >>时,2210a b a b --=--=, 则210a b --=-,即8b a -= 故此时任意输入后得到的最小数是:2826b a --=-=,综上可知,k 的最小值是6,故④正确; 故选D .【点睛】此题考查绝对值有关的问题,解题的关键是要有试验观察和分情况讨论的能力. 12.B【分析】根据条件和新定义列出方程,化简即可得出答案.【详解】解:根据题意得:x (x +3)+x (x +4)+…+x (x +n )=x (9x +m ), ∴x (x +3+x +4+…+x +n )=x (9x +m ), ∴x [(n ﹣3+1)x +(31)(3)2n n -++]=x (9x +m ),∴n ﹣2=9,m =(31)(3)2n n -++,∴n =11,m =63. 故选:B .【点睛】本题考查了新定义,根据条件和新定义列出方程是解题的关键. 13.(16)xy x -【分析】利用提公因式法进行分解即可. 【详解】解:216(16)x y xy xy x -=-, 故答案为:(16)xy x -.【点睛】本题考查了因式分解-提公因式法,解题的关键是熟练掌握因式分解-提公因式法. 14.()22m m n -【分析】首先提取公因式2m ,再利用完全平方公式即可分解因式. 【详解】解:322242m m n mn -+()2222m m mn n =-+ ()22m m n =-故答案为:()22m m n -【点睛】本题考查了提公因式法和公式法分解因式,熟练掌握和运用分解因式的方法是解决本题的关键.15.()()322x x y x y +-【分析】先提取公因式3x ,然后根据平方差公式因式分解即可求解.【详解】解:原式=()()()2234322x x y x x y x y -=+-.故答案为:()()322x x y x y +-.【点睛】本题考查了因式分解,正确的计算是解题的关键.16.225- 【分析】利用完全平方公式求出(a −b ),(b −c ),(a −c )的平方和,然后代入数据计算即可求解.【详解】解:∵35a b b c -=-=, ∴65a c -=()()()2225425a b b c a c -+-+-= ∴()()222542225a b c ab bc ac ++-++=, ∵2221a b c ++=,∴()27125ab bc ac -++=, ∴225ab bc ca ++=-, 故答案为:225- 【点睛】本题考查了完全平方公式,解题的关键是分别把35a b -=,35b c -=,相加凑出,65a c -=三个式子两边平方后相加,化简求解. 17.(1)()2.a a b ++(2)()32.m m n +【分析】(1)提取公因式a 即可;(2)按照平方差公式进行因式分解即可.【详解】(1)解:22a ab a ++()2.a a b =++(2)()()222m n m n +-+()()22m n m n m n m n =++++--()32.m m n =+【点睛】本题考查的是多项式的因式分解,掌握“提公因式法与公式法分解因式”是解本题的关键.18.222x y -+【分析】根据整式的混合运算法则计算即可.【详解】解:原式()()2222224222x y xy xy x y x y =---÷=---=-+【点睛】本题考查整式的混合运算,熟练掌握该知识点是解题关键.19.12x + ;2 【分析】先利用平方差公式,单项式与多项式乘法化简,然后代入12x =即可求解. 【详解】(1)(1)(2)x x x x +-++2212x x x =-++ 12x =+ 当12x =时, 原式12x =+11222=+⨯=. 【点睛】本题考查了整式的化简求值,正确地把代数式化简是解题的关键.20.2,2022x y -【分析】根据平方差公式,完全平方公式,先计算括号内的,然后根据多项式除以单项式进行计算,最后将20201x y ==-,代入即可求解.【详解】解:原式=()222224434x y x xy y y y --+--÷()2484xy y y =-÷2x y =-.当20201x y ==-,时,原式=2020-2×(-1)=2022.【点睛】本题考查了整式的化简求值,掌握平方差公式,完全平方公式,多项式除以单项式是解题的关键.21.34-【分析】根据非负数的性质求出a ,b ,c 的值,然后代入计算即可. 【详解】解:由题得:22043404102a cbc a b ⎧⎪+-=⎪--=⎨⎪⎪--=⎩, 解得:4141a b c =⎧⎪⎪=⎨⎪=-⎪⎩, 所以313242n n n a b c +++-()3242311414n n n +++⎛⎫=⨯-- ⎪⎝⎭31114144n +⎛⎫=⨯⨯- ⎪⎝⎭34=-. 【点睛】本题考查了非负数的性质,解三元一次方程,积的乘方法则的逆用等知识,利用代入法或加减法把解三元一次方程组的问题转化为解二元一次方程组的问题是解题的关键.22.x 2-2y ,0【分析】首先运用平方差公式计算,再运用单项式乘以多项式计算,最后合并同类项,即可化简,然后把x 、y 值代入计算即可.【详解】解:()()()22x y x y xy xy x +-+-÷=x 2-y 2+y 2-2y=x 2-2y当x =1,y =12时,原式=12-2×12=0.【点睛】本题考查整式化简求值,熟练掌握整式混合运算法则是解题的关键.23.(1)5(2)47【分析】(1)由21()x x +=22112x x x x +⋅⋅+、21()x x -=22112x x x x -⋅⋅+,进而得到21()x x+﹣4x •1x即可解答; (2)由21()x x -=2212x x -+可得221x x +=7,又2221()x x +=4412x x ++,进而得到441x x+=2221()x x +﹣2即可解答. (1)解:∵21()x x +=22112x x x x +⋅⋅+∴21()x x -=22112x x x x -⋅⋅+=2211124x x x x x x+⋅+-⋅=21()x x +﹣4x •1x=32﹣4=5. (2)解:∵21()x x -=2212x x -+,∴221x x +=21()x x -+2=5+2=7,∵2221()x x +=4412x x++,∴441x x +=2221()x x +﹣2=49﹣2=47. 【点睛】本题主要考查通过对完全平方公式的变形求值.熟练掌握完全平方公式并能灵活运用是解答本题的关键.24.(1)-4,-4;(2)ABC 的周长为9.【分析】(1)利用完全平方公式配方,再根据非负数的性质即可得出x 和y 的值;(2)利用完全平方公式配方,再根据非负数的性质即可得出a 和b 的值,从而得出c 的取值范围,根据c 为整数即可得出c 的值,从而求得三角形的周长.【详解】解:(1)由22228160x y xy y +-++=得222)((2816)0x xy y y y -+++=+,22()(4)0x y y -++=,∴0x y -=,40y +=,∴4x y ==-,故答案为:-4,-4;(2)由22248180a b a b +--+=得:222428160a a b b -++-+=,222(1)(4)0a b -+-=,∴a -1=0,b -4=0,∴a =1,b =4,∴3<c <5,∵△ABC 的三边长a 、b 、c 都是正整数,∴c =4,∴ABC 的周长为9.【点睛】本题主要考查了配方法的应用及偶次方的非负性,同时考查了三角形的三边关系,本题难度中等.25.(1)阴影A 的周长为:21480x y -+,∴阴影B 的周长为:21680x y +-,则其周长和为:42x y +;(2)阴影A 的面积为:240120412x y xy y --+,阴影B 的面积为:2416016xy y y -+,阴影A ,B 的面积差为:2404084x y xy y +-- ; (3)当y =5时,阴影A 与阴影B 的面积差不会随着x 的变化而变化,这个值是100.【分析】(1)由图可知阴影A 的长为(404y -),宽为(3x y -),阴影B 的长为4y ,宽为()404x y --⎡⎤⎣⎦,从而可求解;(2)结合(1),利用长方形的面积公式进行求解即可;(3)根据题意,使含x 的项提公因式x ,再令另一个因式的系数为0,从而可求解.(1)解:(1)由题意得:阴影A 的长为(404y -),宽为(3x y -),∴阴影A 的周长为:()()()240432404321480y x y y x y x y -+-=-+-=-+⎡⎤⎣⎦∵阴影B 的长为4y ,宽为()404404x y x y --=-+⎡⎤⎣⎦,∴阴影B 的周长为:()()240424042168044y y x y x y x y +-+=+-+=+-⎡⎤⎣⎦,∴其周长和为:()()214802168042x y x y x y -+++-=+;(2)∵阴影A 的长为(404y -),宽为(3x y -),∴阴影A 的面积为:()()2404340120412y x y x y xy y --=--+. ∵阴影B 的长为4y ,宽为404x y -+,∴阴影B 的面积为:()24404416016y x y xy y y -+=-+, ∴阴影A ,B 的面积差为:()()22240120412416016404084x y xy y xy y y x y xy y --+--+=+--.(3)∵阴影A 与阴影B 的面积差不会随着x 的变化而变化,阴影A ,B 的面积差()22404084408404x y xy y y x y y =+--=-+-.∴当4080y -=,即5y =时,阴影A 与阴影B 的面积差不会随着x 的变化而变化.此时:阴影A ,B 的面积差()2408540545100x =-⨯+⨯-⨯=.【点睛】本题主要考查列代数式,代数式求值,与某个字母无关型问题,解答的关键是根据图表示出两个长方形的长与宽.。
人教版八年级上册数学 第十四章整式的乘法与因式分解试卷(含答案)

人教版八年级上册数学第十四章整式的乘法与因式分解一、单选题1.下列各式,能用平方差公式计算的是()A.(a-2b)(-a+2b)B.(a-2b)(-a-2b)C.(a-1)(a+2)D.(a-2b)(2a+b)2.下列各式中,从左到右的变形是因式分解的是( )A.6x7=3x2⋅2x5B.3x+3y−5=3(x+y)−5C.4x2+4x=4x(x+1)D.(x+1)(x−1)=x2−13.下列运算正确的是()A.a2+a3=a5B.(﹣2a3)2=4a6C.a6÷a3=a2D.(a+2b)2=a2+2ab+b24.在多项式16x2+1添加一个单项式,使得到的多项式能运用完全平方公式分解因式,则下列表述正确的是()嘉琪:添加±8x,16x2+1±8x=(4x±1)2陌陌:添加64x4,64x4+16x2+1=(8x2+1)2嘟嘟:添加−1,16x2+1−1=16x2=(4x)2A.嘉琪和陌陌的做法正确B.嘉琪和嘟嘟的做法正确C.陌陌和嘟嘟的做法正确D.三位同学的做法都不正确5.如图1,将一张长方形纸板的四角各剪去一个边长为a的小正方形(阴影部分),制成如图2的无盖纸盒,若该纸盒的容积为2a2b,则图2中纸盒底部长方形的周长为()A.4a+2b B.2ab C.6a+2b D.4ab6.若x2−kxy+9y2是一个完全平方式,则k的值为()A.3B.6C.±81D.±67.已知a m=2,a n=12,a2m+3n的值为( )A.6B.12C.2D.112b2,则m,n的值分别为()8.已知8a3b m÷28a n+1b2=27A.m=4,n=3B.m=4,n=2C.m=2,n=2D.m=2,n=39.下列有四个结论,其中正确的是()①若(x−1)x+1=1,则x只能是2;②若(x−1)(x2+ax+1)的运算结果中不含x2项,则a=1③若a+b=10,ab=16,则a−b=6④若4x=a,8y=b,则22x−3y可表示为abA.①②③④B.②③④C.①③④D.②④10.已知m=2b+2022,n=b2+2023,则m和n的大小关系中正确的是() A.m>n B.m≥n C.m<n D.m≤n二、填空题11.因式分解:xy−3y=.12.计算:(1)x3⋅x5=;(2)a5÷a2=;(3)[−(−a)2]3=;(4)(−3ab3)3=;(5)(−0.125)2021×82022=;(6)(a−b)2⋅(b−a)3=.13.若x m=4,x n=9,则x2m−n=.14.如果a,b是长方形的长和宽,且(a+b)2=16,(a−b)2=4,则长方形面积是.15.若(2x2+mx−8)(x2−3x+n)的展开式中不含x2和x3项,则m=,n=.16.已知2x-3y-2=0,则(10x)2÷(10y)3=.17.如图,两个正方形的边长分别为a和b,已知a+b=10,ab=22,那么阴影部分的面积是.三、解答题18.计算:(1)a2•(﹣a4)+2(a2)3(2)(2x﹣1)(2x+1)﹣(x﹣6)(4x+3)(3)(2x﹣3y)2+2(y+3x)(3x﹣y)(4)(a﹣2b+3)(a+2b+3)(5)(x−3y−2)2(6)(2m+3n)(2m﹣n)﹣2n(2m﹣n)19.先化简,再求值:[(x−2y)2−(x−y)(x+y)−2y2]÷y,其中x=−1,y=−2.20.如图,在某一禁毒基地的建设中,准备在一个长为6a米,宽为5b米的长方形草坪上修建两条宽分别为a和b米的通道.(1)剩余草坪的面积是多少平方米?(2)若a=1,b=3,则剩余草坪的面积是多少平方米?21.观察以下等式:(x+1)(x2−x+1)=x3+1(x+3)(x2−3x+9)=x3+27(x+6)(x2−6x+36)=x3+216(1)按以上等式的规律,填空:(a+b)()=a3+b3(2)利用多项式的乘法法则,证明(1)中的等式成立.(3)利用(1)中的公式化简:(x+y)(x2−xy+y2)−(x−y)(x2+xy+y2)22.如图,甲长方形的两边长分别为m+1、m+7;乙长方形的两边长分别为m+2、m+4(其中m为正整数).(1)设图中的甲长方形的面积为S1,乙长方形的面积为S2,试比较S1与S2的大小;(2)现有一正方形,其周长与图中的甲长方形周长相等,试探究:该正方形面积S与图中的甲长方形面积S1的差(即S−S1)是一个常数,请求出这个常数.23.阅读材料:若m2−2mn+2n2−8n+16=0,求m、n的值.解:m2−2mn+2n2−8n+16=0,∴(m2−2mn+n2)+(n2−8n+16)=0,∴(m−n)2+(n−4)2=0.∵(m−n)2≥0,(n−4)2≥0,∴(m−n)2=0,(n−4)2=0,∴m=4,n=4.根据你的观察,探究下面的问题:(1)a2+b2−4a+4=0,则a=______;b=______.(2)已知△ABC的三边长a、b、c都是正整数,且a2+b2−2a−6b+10=0,求c的值.24.图①是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)用两种方法表示图②中的阴影部分的面积;(2)观察图②请你写出三个代数式(m+n)2、(m−n)2、4mn之间的等量关系式.(3)请运用(2)中的关系式计算:若x+y=−6,xy=2.75,求(x−y)2的值.参考答案:1.B2.C3.B4.A5.A6.D7.B8.B9.D10.D11.y(x−3)12.x8a3−a6−27a3b9−8(b−a)513.16914.315. 6 1316.10017.1718.(1)a6(2)21x+17(3)22x2−12xy+7y2(4)a2+6a+9−4b2(5)x2−6xy+9y2−4x+12y+4(6)4m2−n219.−4x+3y,−2.20.(1)剩余草坪的面积是20ab平方米;(2)若a=1,b=3,则剩余草坪的面积是60平方米.21.(1)a2−ab+b2(3)2y322.(1)S1>S2(2)S−S1=923.(1)2,0(2)c=324.(1)S阴影=(m−n)2或S阴影=(m+n)2−4mn(2)(m−n)2=(m+n)2−4mn(3)25。
《第14章整式的乘法与因式分解》单元测试题(含答案).doc

(第10题图)第十四章 整式的乘法与因式分解一、选择题1.下列各式由左边到右边的变形为因式分解的是( )A.a 2-b 2+1=(a+b)(a-b)+1B.m 2-4m+4=(m-2)2C.(x+3)(x-3)=x 2-9D.t 2+3t-16=(t+4)(t-4)+3t2.分解因式:x 3-x,结果为( )A.x(x 2-1)B.x(x-1)2C.x(x+1)2D.x(x+1)(x-1)3.下列因式分解正确的是( )A.16m 2-4=(4m+2)(4m-2)B.m 4-1=(m 2+1)(m 2-1)C.m 2-6m+9=(m-3)2D.1-a 2=(a+1)(a-1)4.下列多项式能因式分解的是( )A.m 2+n B .m 2-m+1 C .m 2-2m+1 D .m 2-n5.计算(2x 3y )2的结果是( )A .4x 6y 2B .8x 6y 2C .4x 5y 2D .8x 5y 26.已知a+b=3,ab=2,计算:a 2b+ab 2等于( )A .5B .6C .9D .17、下列运算中结果正确的是( )A 、633·x x x =;B 、422523x x x =+;C 、532)(x x =;D 、222()x y x y +=+.8、ab 减去22b ab a +-等于 ( )。
A 、222b ab a ++;B 、222b ab a +--;C 、222b ab a -+-;D 、222b ab a ++-9、已知x 2+kxy+64y 2是一个完全式,则k 的值是( )A 、8B 、±8C 、16D 、±1610、如下图(1),边长为a 的大正方形中一个边长为b小正方形,小明将图(1)的阴影部分拼成了一个矩形,如图(2)。
这一过程可以验证( )A 、a 2+b 2-2ab=(a -b)2 ;B 、a 2+b 2+2ab=(a+b)2 ;C 、2a 2-3ab+b 2=(2a -b)(a -b) ;D 、a 2-b 2=(a+b) (a -b)二、填空题11.若单项式-3x 4a-b y 2与3x 3y a+b 是同类项,则这两个单项式的积为 . 图1 图212.已知(x-1)(x+2)=ax2+bx+c,则代数式4a-2b+c的值为.13.若16b2+a2+m是完全平方式,则m= .14.分解因式:x3﹣x= .15.因式分解:43a﹣122a+9a= .16、若4x2+kx+25=(2x-5)2,那么k的值是三、解答题17.(8分)因式分解:(1)3a2-27b2; (2)x2-8(x-2).18. (10分)计算:(1)已知a+b=3,ab=-2,求a2+b2和a2-ab+b2的值;(2)已知(x+y)2=1,(x-y)2=49,求x2+y2和xy的值;(3)已知a-b=1,a2+b2=25,求ab的值.19.已知一个长方形的周长为20,其长为a,宽为b,且a,b满足a2-2ab+b2-4a+4b+4=0,求a,b的值.20、李老师给学生出了一道题:当a=0.35,b= -0.28时,求3323323a ab a b a a b a b a-+++--的值.题目出完后,小聪说:“老师给76336310的条件a=0.35,b= -0.28是多余的.”小明说:“不给这两个条件,就不能求出结果,所以不是多余的.”你认为他们谁说的有道理?为什么?21、如图为杨辉三角表,它可以帮助我们按规律写出(a+b)n(其中n为正整数)•展开式的系数,请仔细观察表中规律,填出(a+b)4的展开式中所缺的系数.(a+b)1=a+b;(a+b)2=a2+2ab+b2;(a+b)3=a3+3a2b+3ab2+b3;(a+b)4=a4+_____a3b+_____a2b2+______ab3+b4答案BDCCA BACDD11.-9x 6y 412.013.±8ab14.x (x+1)(x ﹣1).15.a 2(23)a -16.-20;17.解 (1)3a 2-27b 2=3(a 2-9b 2)=3(a+3b)(a-3b);(2)x 2-8(x-2)=x 2-8x+16=(x-4)2.18 (1)a 2+b 2=(a+b)2-2ab=32-2×(-2)=13;a 2-ab+b 2=(a+b)2-3ab=32-3×(-2)=15.(2)∵(x+y)2=x 2+y 2+2xy=1,(x-y)2=x 2+y 2-2xy=49,即解得(3)∵a-b=1,∴(a-b)2=a 2+b 2-2ab=1.∵a 2+b 2=25,∴25-2ab=1,解得ab=12.19.解 ∵长方形的周长为20,其长为a,宽为b,∴a+b=20÷2=10.∵a 2-2ab+b 2-4a+4b+4=0,∴(a-b)2-4(a-b)+4=0.∴(a-b-2)2=0.∴a-b-2=0,由此得方程组解得 20.原式=332(7310)(66)(33)0a a b a b +-+-++-=,合并得结果为0,与a 、b 的取值无关,所以小明说的有道理.21.4;6;4;。
人教版八年级数学上册第十四章 整式乘法与因式分解练习(含答案)

第十四章 整式乘法与因式分解一、单选题1.下列运算正确的是( )A .(﹣3.14)0=0B .x 2•x 3=x 6C .(ab 2)3=a 3b 5D .2a 2•a ﹣1=2a2.已知4y 2+my+9是完全平方式,则m 为( )A .6B .±6C .±12D .123.计算(﹣15)2018×52019的结果是( ) A .﹣1 B .﹣5 C .1 D .54.把多项式232x x -+分解因式,下列结果正确的是( )A .(1)(2)x x -+B .(1)(2)x x --C .(1)(2)x x ++D .(1)(2)x x +- 5.计算()23x -所得结果是( )A .5xB .5x -C .6xD .6x - 6.下列各式中,计算结果是2718x x +-的是( )A .(1)(18)x x -+B .(2)(9)x x ++C .(3)(6)x x -+D .(2)(9)x x -+ 7.已知x+y=5,xy=6,则x 2+y 2的值是( )A .1B .13C .17D .258.现有14米长的木材,要做成一个如图所示的窗户,若窗户横档的长度为a 米,则窗户中能射进阳光的部分的面积(窗框面积忽略不计)是( )A .a (7﹣a )米2B .a (7﹣a )米2C .a (14﹣a )米2D .a (7﹣3a )米29.若(2a+3b)( )=4a 2﹣9b 2,则括号内应填的代数式是( )A .﹣2a ﹣3bB .2a+3bC .2a ﹣3bD .3b ﹣2a 10.(x −2)(x +3)=x 2+px +q ,那么p ,q 的值为( )A .p=5,q=6B .p=l,q=-6C .p=-l,q=6D .p=5,q=-6二、填空题11.分解因式:33a b ab -=___________.12.若()2242x ax x ++=-,则a =_____. 13.若长方形的面积是2482a ab a ++,它的一边长为2a ,则它的周长为_________ 14.若(a -b )2=4,ab =12,则(a +b )2=__.三、解答题15.已知x 2−4x −1=0,求代数式(2x −3)2−(x +y)(x −y)−y 2的值。
人教版初中数学八年级上册第十四章《整式的乘法与因式分解》测试题(含答案)

C. a 2 3a 5
D. a 2 8a 5
1 A. 3
6. 若 a b A. 10
2
1 9
53.7 0
) C. 20
1
D. 2 3
1 8
m
n 2
a 8 b 6 ,那么 m 2 2n 的值是(
B. 52
2 2
D. 32 ( ) D. 30 xy
第十四章《整式的乘法与因式分解》
一、选择题(每小题只有一个正确答案)
1.多项式 xy 2 x y 9 xy 8 的次数是
4 3 3
(
) D. 6
A. 3 2.下列计算正确的是
B. 4 ( )
C. 5
A. 2 x 2 6 x 4 12 x 8 B.
y y
4 m
3 m
五、简答题 21、在长为 3a 2 ,宽为 2b 1 的长方形铁片上,挖去长为 2a 4 ,宽为 b 的小长方形铁 片,求剩余部分面积.
22、在如图边长为 7.6 的正方形的角上挖掉一个边长为 2.6 的小正方形,剩余的图形能否
拼成一个矩形?若能,画出这个矩形,并求出这个矩形的面积是多少. (5 分)
个,多项式有 9.单项式 5 x y z 的系数是
2 4
10.多项式 3ab 4 ab 11. ⑴ x 2 x 5 ⑶ 2a b
1 有 5
.
.
y
5
3 4
2 4
.
2
3
⑷ x y
.
⑸ a9 a3 12.⑴ mn 2 ⑶ ( 2a b( 13. ⑴ a
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十四章 整式乘法与因式分解
一、单选题
1.计算23(2)a 的结果是( )
A .56a
B .58a
C .66a
D .68a
2.化简(﹣x )3•(﹣x )2的结果正确的是( )
A .﹣x 6
B .x 6
C .﹣x 5
D .x 5
3.下列计算,正确的是( )
A .
B .
C .
D . 4.如果m-n=5,那么-3m+3n-7的值是
A .22
B .-8
C .8
D .-22
5.若216x kx -+是完全平方式,则k 的值是( )
A .4
B .8
C .4或-4
D .8或-8 6.已知x+
1x =6,则x 2+21x =( ) A .38 B .36 C .34 D .32
7.如图,能根据图形中的面积说明的乘法公式是( )
A .22()()a b a b a b +-=-
B .222()2a b a ab b +=++
C .222()2a b a ab b -=-+
D .2()()x p x q x p q x pq ++=+++()
8.把8a 3﹣8a 2+2a 进行因式分解,结果正确的是( )
A .2a (4a 2﹣4a +1)
B .8a 2(a ﹣1)
C .2a (2a ﹣1)2
D .2a (2a +1)2 9.若x=﹣3,y=1,则代数式2x ﹣3y+1的值为( )
A .﹣10
B .﹣8
C .4
D .10
10.若a ,b ,c 是三角形的三边,则代数式(a-b )2-c 2的值是( )
A .正数
B .负数
C .等于零
D .不能确定
二、填空题
11.已知6m =2,6n =3,则63m +2n =_____.
12.如果22(1)4x m x +-+是一个完全平方式,则m =__________.
13.若代数式2a 2+3a+1的值是6,则代数式6a 2+9a+5的值为_______.
14.因式分解: ____.
三、解答题
15.计算:
(1)(﹣2x )3(2x 3﹣12
x ﹣1)﹣2x (2x 3+4x 2); (2)(x +3)(x ﹣7)﹣x (x ﹣1).
16.如图1是一个长为2m 、宽为2n 的长方形,沿图中虚线用剪刀平均分成4个小长方形,然后按图2的形状拼成一个正方形.
(1)图2中阴影部分的面积请用两种方法表示:① ;②_________.
(2)观察图2,请你写出式子(m +n)2,(m -n)2,mn 之间的等量关系: ;
(3)若x +y =-6,xy =2.75,求x -y 的值.
(4)观察图3,你能得到怎样的代数恒等式?
17.阅读下面材料:材料1:如果一个多项式中的字母按照任何次序轮换后,原多项式不变,那么称该多项式是轮换多项式,简称轮换式.例如:多项式22a b +,将字母a 换字母b ,字母b 换字母a ,得到多项式22b a +,而2222b a a b +=+,所以多项式22a b +是轮换式.我们把含有两个字母的轮换式称为二元轮换式,其中含字母a ,b 的二元轮换式的基本轮换式是+a b 和ab ,像22a b +,(2)(2)a b ++等二元轮换式都可以用+a b ,ab 表示,例如:222()2a b a b ab +=+-.
材料2:因为2
()()()x a x b x a b x ab ++=+++,所以,对于二次项系数为1的二次三项式2
x px q ++的因式分解,就是把常数项q 分解成两个数的积,且使这两数的和等于p ,即如果有a ,b 两数满足a b q ∙=,a b p +=,则有2()()x px q x a x b ++=++.如分解因式256x x ++:因为236⨯=,235+=,所以256(2)(3)x x x x ++=++.
请根据以上材料解决下列问题:
(1)式子①33a b -;②2222a b +;③22a b -,④33a ab b ++中,属于轮换式的是 (填序号);
(2)因式分解:256x x --= ;272315b a b ab --= ;
(3)若224()()x m x x a x b ++=+∙+(其中0m >),且3223672a b a b ab -+=,求m 的
值并把式子224x mx ++因式分解.
18.如图,一个长方形运动场被分隔成A ,B ,A ,B ,C 共5个区,A 区是边长为a m 的正方形,C 区是边长为c m 的正方形.
(1)列式表示每个B 区长方形场地的周长,并将式子化简;
(2)列式表示整个长方形运动场的周长,并将式子化简;
(3)如果a =40,c =10,求整个长方形运动场的面积.
答案
1.D
2.C
3.D
4.D
5.D
6.C
7.B
8.C
9.B
10.B
11.72.
12.-1或3
13.20
14.
15.解:(1)原式=33431-8(21)(48)2
x x x x x ---+=﹣16x 6+4x 4+8x 3﹣4x 4﹣8x 3=﹣16x 6; (2)原式=x 2﹣7x +3x ﹣21﹣x 2+x =﹣3x ﹣21.
16.图中阴影部分为正方形,其边长为m-n
所以阴影部分面积可表示为:①()2
m n -
图中阴影部分为边长为m+n 的大正方形面积减去四个小长方形面积,所以阴影部分面积还可表示为:
②()24m n mn +-
(2)由(1)的得等量关系式为: ()()224m n mn m n +-=-
(3)解:
()()(
)2226, 2.75
464 2.75
25
5
x y xy x y x y xy
x y +=-=∴-=+-=--⨯=∴-==± (4) 图3可以看做是长为2m+n ,宽为m+n 的长方形,也可看做是两个边长为m 的正方形和一个边长为n 的正方形及三个长宽分别为m,n 的长方形的面积和,所以,可得:()()22223m n m n m mn n ++=++
17.解:(1)①将字母a 换字母b ,字母b 换字母a ,得到多项式33b a -,而3333b a a b -
≠-,
因此不是轮换式,
②字母a 换字母b ,字母b 换字母a ,得到多项式2222b a +,而2222b a +=2222a b +,故是轮换式,
③字母a 换字母b ,字母b 换字母a ,得到多项式22b a -,而2222b a a b ≠--,故不是轮换式,
④字母a 换字母b ,字母b 换字母a ,得到多项式33b ab a ++,而33b ab a ++=33a ab b ++,
故是轮换式;
(2)256x x --=(6)(1)x x -+,
3(8)(3)b a a -+-=3(8)(3)b a a -+-;
(3)由224()()x mx x a x b ++=++可知24ab =且a b m +=
由3223672a b a b ab -+=有22()672ab a ab b -+=即2[()3]672ab a b ab +-= ∴224[()324]672a b ⨯+-⨯=
∴2()a b +=100
∴10a b +=±,即10m ±,
∵0m >,
∴10m =
此时,2
1024(4)(6)x x x x ++=++
18.(1)2[(a +c)+(a -c)]=2(a +c +a -c)=4a(m)
(2)2[(a +a +c)+(a +a -c)]=2(a +a +c +a +a -c)=8a(m)
(3)当a =40,c =10时,长=2a +c =90(m),宽=2a -c =70(m),
所以面积=90×
70=6300(m 2)。