栾城区一中2018-2019学年高三上学期11月月考数学试卷含答案
城区第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案(1)

城区第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 使得(3x 2+)n(n ∈N +)的展开式中含有常数项的最小的n=( )A .3B .5C .6D .102. 已知lga+lgb=0,函数f (x )=a x 与函数g (x )=﹣log b x 的图象可能是( )A. B. C. D.3.已知集合表示的平面区域为Ω,若在区域Ω内任取一点P (x ,y ),则点P的坐标满足不等式x 2+y 2≤2的概率为( )A. B. C. D.4. 四棱锥P ABCD -的底面ABCD 为正方形,PA ⊥底面ABCD ,2AB =,若该四棱锥的所有顶点都在体积为24316π同一球面上,则PA =( ) A .3 B .72 C. D .92【命题意图】本题考查空间直线与平面间的垂直和平行关系、球的体积,意在考查空间想象能力、逻辑推理能力、方程思想、运算求解能力.5. 为了解决低收入家庭的住房问题,某城市修建了首批108套住房,已知C B A ,,三个社区分别有低收入家 庭360户,270户,180户,现采用分层抽样的方法决定各社区所分配首批经济住房的户数,则应从C 社 区抽取低收入家庭的户数为( )A .48B .36C .24D .18【命题意图】本题考查分层抽样的概念及其应用,在抽样考查中突出在实际中的应用,属于容易题.6. 在正方体1111ABCD A B C D -中,M 是线段11AC 的中点,若四面体M ABD -的外接球体积为36p , 则正方体棱长为( )A .2B .3C .4D .5【命题意图】本题考查以正方体为载体考查四面体的外接球半径问题,意在考查空间想象能力和基本运算能力.7. 已知2,0()2, 0ax x x f x x x ⎧+>=⎨-≤⎩,若不等式(2)()f x f x -≥对一切x R ∈恒成立,则a 的最大值为( )A .716-B .916-C .12-D .14-班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________8. 函数y=2x 2﹣e |x|在[﹣2,2]的图象大致为( )A .B .C .D .9. 在高校自主招生中,某学校获得5个推荐名额,其中清华大学2名,北京大学2名,复旦大学1名.并且北京大学和清华大学都要求必须有男生参加.学校通过选拔定下3男2女共5个推荐对象,则不同的推荐方法共有( )A .20种B .22种C .24种D .36种10.在等比数列中,,前项和为,若数列也是等比数列,则等于( )A .B .C .D .11.设f (x )=e x +x ﹣4,则函数f (x )的零点所在区间为( ) A .(﹣1,0)B .(0,1)C .(1,2)D .(2,3)12.设复数z 满足z (1+i )=2(i 为虚数单位),则z=( ) A .1﹣i B .1+i C .﹣1﹣i D .﹣1+i二、填空题13.【泰州中学2018届高三10月月考】设二次函数()2f x ax bx c =++(,,a b c 为常数)的导函数为()f x ',对任意x R ∈,不等式()()f x f x ≥'恒成立,则222b a c+的最大值为__________. 14.已知数列}{n a 的前n 项和为n S ,且满足11a =-,12n n a S +=(其中*)n ∈N ,则n S = .15.图中的三个直角三角形是一个体积为20的几何体的三视图,则h =__________.16.在△ABC 中,A=60°,|AB|=2,且△ABC 的面积为,则|AC|= .17.已知函数()()31,ln 4f x x mxg x x =++=-.{}min ,a b 表示,a b 中的最小值,若函数()()(){}()min ,0h x f x g x x =>恰有三个零点,则实数m 的取值范围是 ▲ .18.在ABC ∆中,已知sin :sin :sin 3:5:7A B C =,则此三角形的最大内角的度数等 于__________.三、解答题19.【启东中学2018届高三上学期第一次月考(10月)】设1a >,函数()()21xf x x e a =+-.(1)证明在(上仅有一个零点;(2)若曲线在点处的切线与轴平行,且在点处的切线与直线平行,(O 是坐标原点),证明:1m ≤20.选修4﹣5:不等式选讲已知f (x )=|ax+1|(a ∈R ),不等式f (x )≤3的解集为{x|﹣2≤x ≤1}. (Ⅰ)求a 的值;(Ⅱ)若恒成立,求k 的取值范围.21.已知函数f (x )=•,其中=(2cosx , sin2x ),=(cosx ,1),x ∈R .(1)求函数y=f (x )的单调递增区间;(2)在△ABC中,角A,B,C所对的边分别为a,b,c,f(A)=2,a=,且sinB=2sinC,求△ABC的面积.22.求函数f(x)=﹣4x+4在[0,3]上的最大值与最小值.23.已知函数f(x)=2x﹣,且f(2)=.(1)求实数a的值;(2)判断该函数的奇偶性;(3)判断函数f(x)在(1,+∞)上的单调性,并证明.24.已知梯形ABCD中,AB∥CD,∠B=,DC=2AB=2BC=2,以直线AD为旋转轴旋转一周的都如图所示的几何体(Ⅰ)求几何体的表面积(Ⅱ)判断在圆A上是否存在点M,使二面角M﹣BC﹣D的大小为45°,且∠CAM为锐角若存在,请求出CM的弦长,若不存在,请说明理由.城区第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】B【解析】解:(3x2+)n(n∈N+)的展开式的通项公式为T r+1=•(3x2)n﹣r•2r•x﹣3r=•x2n ﹣5r,令2n﹣5r=0,则有n=,故展开式中含有常数项的最小的n为5,故选:B.【点评】本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.2.【答案】B【解析】解:∵lga+lgb=0∴ab=1则b=从而g(x)=﹣log b x=log a x,f(x)=a x与∴函数f(x)与函数g(x)的单调性是在定义域内同增同减结合选项可知选B,故答案为B3.【答案】D【解析】解:作出不等式组对应的平面区域如图,则对应的区域为△AOB,由,解得,即B(4,﹣4),由,解得,即A(,),直线2x+y﹣4=0与x轴的交点坐标为(2,0),则△OAB的面积S==,点P的坐标满足不等式x2+y2≤2区域面积S=,则由几何概型的概率公式得点P的坐标满足不等式x2+y2≤2的概率为=,故选:D【点评】本题考查的知识点是几何概型,二元一次不等式(组)与平面区域,求出满足条件A 的基本事件对应的“几何度量”N (A ),再求出总的基本事件对应的“几何度量”N ,最后根据几何概型的概率公式进行求解.4. 【答案】B【解析】连结,AC BD 交于点E ,取PC 的中点O ,连结OE ,则O EP A ,所以OE ⊥底面ABCD ,则O到四棱锥的所有顶点的距离相等,即O 球心,均为2221118222PC PA AC PA =+=+,所以由球的体积可得2341243(8)3216PA ππ+=,解得72PA =,故选B .5. 【答案】C【解析】根据分层抽样的要求可知在C 社区抽取户数为2492108180270360180108=⨯=++⨯.6. 【答案】C7. 【答案】C【解析】解析:本题考查用图象法解决与函数有关的不等式恒成立问题.当0a >(如图1)、0a =(如图2)时,不等式不可能恒成立;当0a <时,如图3,直线2(2)y x =--与函数2y ax x =+图象相切时,916a =-,切点横坐标为83,函数2y ax x =+图象经过点(2,0)时,12a =-,观察图象可得12a ≤-,选C . 8. 【答案】D【解析】解:∵f (x )=y=2x 2﹣e |x|,∴f (﹣x )=2(﹣x )2﹣e |﹣x|=2x 2﹣e |x|,故函数为偶函数,当x=±2时,y=8﹣e 2∈(0,1),故排除A ,B ;当x ∈[0,2]时,f (x )=y=2x 2﹣e x, ∴f ′(x )=4x ﹣e x=0有解,故函数y=2x 2﹣e |x|在[0,2]不是单调的,故排除C ,故选:D9. 【答案】C【解析】解:根据题意,分2种情况讨论:①、第一类三个男生每个大学各推荐一人,两名女生分别推荐北京大学和清华大学,共有=12种推荐方法; ②、将三个男生分成两组分别推荐北京大学和清华大学,其余2个女生从剩下的2个大学中选,共有=12种推荐方法;故共有12+12=24种推荐方法; 故选:C .10.【答案】D【解析】 设的公比为,则,,因为也是等比数列,所以,即,所以 因为,所以,即,所以,故选D答案:D11.【答案】C【解析】解:f (x )=e x+x ﹣4, f (﹣1)=e ﹣1﹣1﹣4<0,f (0)=e 0+0﹣4<0, f (1)=e 1+1﹣4<0, f (2)=e 2+2﹣4>0, f (3)=e 3+3﹣4>0, ∵f (1)•f (2)<0,∴由零点判定定理可知,函数的零点在(1,2). 故选:C .12.【答案】A【解析】解:∵z (1+i )=2,∴z===1﹣i .故选:A .【点评】本题考查了复数的运算法则、共轭复数的定义,属于基础题.二、填空题13.【答案】2【解析】试题分析:根据题意易得:()'2f x ax b =+,由()()'f x f x ≥得:()220ax b a x c b +-+-≥在R上恒成立,等价于:0{ 0a >≤,可解得:()22444b ac a a c a ≤-=-,则:222222241441c b ac a aa c a c c a ⎛⎫- ⎪-⎝⎭≤=++⎛⎫+ ⎪⎝⎭,令1,(0)c t t a =->,24422222t y t t t t==≤=++++,故222b ac +的最大值为2. 考点:1.函数与导数的运用;2.恒成立问题;3.基本不等式的运用 14.【答案】13n --【解析】∵12n n a S +=,∴12n n n S S S +-=, ∴∴13n n S S +=,11133n n n S S --=⋅=. 15.【答案】 【解析】试题分析:由三视图可知该几何体为三棱锥,其中侧棱VA ⊥底面ABC ,且ABC ∆为直角三角形,且5,,6AB VA h AC ===,所以三棱锥的体积为115652032V h h =⨯⨯⨯==,解得4h =.考点:几何体的三视图与体积. 16.【答案】 1 .【解析】解:在△ABC 中,A=60°,|AB|=2,且△ABC 的面积为,所以,则|AC|=1. 故答案为:1.【点评】本题考查三角形的面积公式的应用,基本知识的考查.17.【答案】()53,44--【解析】试题分析:()23f x x m '=+,因为()10g =,所以要使()()(){}()min ,0h x f x g x x =>恰有三个零点,须满足()10,0,0f f m ><<,解得51534244m m >-⇒-<<- 考点:函数零点【思路点睛】涉及函数的零点问题、方程解的个数问题、函数图像交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路. 18.【答案】120 【解析】考点:解三角形.【方法点晴】本题主要考查了解三角形问题,其中解答中涉及到三角形的正弦定理、余弦定理的综合应用,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于基础题,本题的解答中根据sin :sin :sin 3:5:7A B C =,根据正弦定理,可设3,5,7a b ===,即可利用余弦定理求解最大角的余弦,熟记正弦、余弦定理的公式是解答的关键.三、解答题19.【答案】(1)f x ()在∞+∞(﹣,)上有且只有一个零点(2)证明见解析 【解析】试题分析:试题解析:(1)()()()22211xx f x exx e x +='=++,()0f x ∴'≥,()()21xf x x ea ∴=+-在(),-∞+∞上为增函数.1a >,()010f a ∴=-<,又()1fa a =-=-,10,1a ->∴>,即0f>,由零点存在性定理可知,()f x 在(),-∞+∞上为增函数,且()00f f⋅<,()f x ∴在(上仅有一个零点。
栾城区第一中学2018-2019学年高三上学期11月月考数学试卷含答案

栾城区第一中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知正项数列{a n }的前n 项和为S n ,且2S n =a n+,则S 2015的值是( )A.B.C .2015 D.2. 三个实数a 、b 、c 成等比数列,且a+b+c=6,则b 的取值范围是( )A .[﹣6,2]B .[﹣6,0)∪( 0,2]C .[﹣2,0)∪( 0,6]D .(0,2]3. 函数y=f ′(x )是函数y=f (x )的导函数,且函数y=f (x )在点p (x 0,f (x 0))处的切线为l :y=g (x )=f ′(x 0)(x ﹣x 0)+f (x 0),F (x )=f (x )﹣g (x ),如果函数y=f (x )在区间[a ,b]上的图象如图所示,且a <x 0<b ,那么( )A .F ′(x 0)=0,x=x 0是F (x )的极大值点B .F ′(x 0)=0,x=x 0是F (x )的极小值点C .F ′(x 0)≠0,x=x 0不是F (x )极值点D .F ′(x 0)≠0,x=x 0是F (x )极值点4. 棱长为2的正方体被一个平面截去一部分后所得的几何体的三视图如图所示,则该几何体的表面积为( )A. B .18 C. D.5. 集合U=R ,A={x|x 2﹣x ﹣2<0},B={x|y=ln (1﹣x )},则图中阴影部分表示的集合是( )A .{x|x ≥1}B .{x|1≤x <2}C .{x|0<x ≤1}D .{x|x ≤1}班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________6. 如图,直三棱柱ABC ﹣A 1B 1C 1中,侧棱AA 1⊥平面ABC .若AB=AC=AA 1=1,BC=,则异面直线A 1C与B 1C 1所成的角为( )A .30°B .45°C .60°D .90°7. 已知点M (﹣6,5)在双曲线C :﹣=1(a >0,b >0)上,双曲线C 的焦距为12,则它的渐近线方程为( )A .y=±x B .y=±x C .y=±xD .y=±x8. 若双曲线﹣=1(a >0,b >0)的渐近线与圆(x ﹣2)2+y 2=2相切,则此双曲线的离心率等于( )A .B .C .D .29. 若全集U={﹣1,0,1,2},P={x ∈Z|x 2<2},则∁U P=( ) A .{2} B .{0,2}C .{﹣1,2}D .{﹣1,0,2}10.“3<-b a ”是“圆056222=++-+a y x y x 关于直线b x y 2+=成轴对称图形”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【命题意图】本题考查圆的一般方程、圆的几何性质、常用逻辑等知识,有一定的综合性,突出化归能力的考查,属于中等难度.11.下列图象中,不能作为函数y=f (x )的图象的是( )A .B .C .D .12.某学校10位同学组成的志愿者组织分别由李老师和张老师负责.每次献爱心活动均需该组织4位同学参加.假设李老师和张老师分别将各自活动通知的信息独立、随机地发给4位同学,且所发信息都能收到.则甲冋学收到李老师或张老师所发活动通知信息的概率为( )A .B .C .D .二、填空题13.已知各项都不相等的等差数列{}n a ,满足223n n a a =-,且26121a a a =∙,则数列12n n S -⎧⎫⎨⎬⎩⎭项中 的最大值为_________.14.对任意实数x ,不等式ax 2﹣2ax ﹣4<0恒成立,则实数a 的取值范围是 . 15.已知关于 的不等式在上恒成立,则实数的取值范围是__________16.椭圆C : +=1(a >b >0)的右焦点为(2,0),且点(2,3)在椭圆上,则椭圆的短轴长为 .17.已知是圆为圆心)上一动点,线段AB 的垂直平分线交BF 于P ,则动点P 的轨迹方程为 .18.命题p :∀x ∈R ,函数的否定为 .三、解答题19.已知函数f (x )=ax 2﹣2lnx .(Ⅰ)若f (x )在x=e 处取得极值,求a 的值; (Ⅱ)若x ∈(0,e],求f (x )的单调区间;(Ⅲ) 设a >,g (x )=﹣5+ln ,∃x 1,x 2∈(0,e],使得|f (x 1)﹣g (x 2)|<9成立,求a 的取值范围.20.(本小题满分10分)选修4—4:坐标系与参数方程以坐标原点为极点,以x 轴的非负半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为方程为r(],0[πθ∈),直线l 的参数方程为2t cos 2sin x y t aa ì=+ïí=+ïî(t 为参数).(I )点D 在曲线C 上,且曲线C 在点D 处的切线与直线+2=0x y +垂直,求点D 的直角坐标和曲线C的参数方程;(II )设直线l 与曲线C 有两个不同的交点,求直线l 的斜率的取值范围.21.设数列{a n }是等差数列,数列{b n }的前n 项和S n 满足S n =(b n ﹣1)且a 2=b 1,a 5=b 2 (Ⅰ)求数列{a n }和{b n }的通项公式;(Ⅱ)设c n =a n •b n ,设T n 为{c n }的前n 项和,求T n .22.某市出租车的计价标准是4km 以内10元(含4km ),超过4km 且不超过18km 的部分1.5元/km ,超出18km 的部分2元/km .(1)如果不计等待时间的费用,建立车费y 元与行车里程x km 的函数关系式; (2)如果某人乘车行驶了30km ,他要付多少车费?23.已知椭圆C :=1(a >2)上一点P 到它的两个焦点F 1(左),F 2 (右)的距离的和是6.(1)求椭圆C 的离心率的值;(2)若PF 2⊥x 轴,且p 在y 轴上的射影为点Q ,求点Q 的坐标.24.(本小题满分12分)已知向量(cos sin ,sin )m x m x x w w w =-a ,(cos sin ,2cos )x x n x w w w =--b ,设函数()()2n f x x R =??a b的图象关于点(,1)12p对称,且(1,2)w Î. (I )若1m =,求函数)(x f 的最小值;(II )若()()4f x f p£对一切实数恒成立,求)(x f y 的单调递增区间.【命题意图】本题考查三角恒等变形、三角形函数的图象和性质等基础知识,意在考查数形结合思想和基本运算能力.栾城区第一中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】D【解析】解:∵2S n=a n+,∴,解得a1=1.当n=2时,2(1+a2)=,化为=0,又a2>0,解得,同理可得.猜想.验证:2S=…+=,n==,因此满足2S n=a n+,∴.∴S n=.∴S2015=.故选:D.【点评】本题考查了猜想分析归纳得出数列的通项公式的方法、递推式的应用,考查了由特殊到一般的思想方法,考查了推理能力与计算能力,属于难题.2.【答案】B【解析】解:设此等比数列的公比为q,∵a+b+c=6,∴=6,∴b=.当q>0时,=2,当且仅当q=1时取等号,此时b∈(0,2];当q<0时,b=﹣6,当且仅当q=﹣1时取等号,此时b∈[﹣6,0).∴b的取值范围是[﹣6,0)∪(0,2].故选:B.【点评】本题考查了等比数列的通项公式、基本不等式的性质、分类讨论思想方法,考查了推理能力与计算能力,属于中档题.3.【答案】B【解析】解:∵F(x)=f(x)﹣g(x)=f(x)﹣f′(x0)(x﹣x0)﹣f(x0),∴F'(x)=f'(x)﹣f′(x0)∴F'(x0)=0,又由a<x0<b,得出当a<x<x0时,f'(x)<f′(x0),F'(x)<0,当x0<x<b时,f'(x)<f′(x0),F'(x)>0,∴x=x0是F(x)的极小值点故选B.【点评】本题主要考查函数的极值与其导函数的关系,即当函数取到极值时导函数一定等于0,反之当导函数等于0时还要判断原函数的单调性才能确定是否有极值.4.【答案】D【解析】解:由三视图可知正方体边长为2,截去部分为三棱锥,作出几何体的直观图如图所示:故该几何体的表面积为:3×22+3×()+=,故选:D.5.【答案】B【解析】解:由Venn图可知,阴影部分的元素为属于A当不属于B的元素构成,所以用集合表示为A∩(∁U B).A={x|x2﹣x﹣2<0}={x|﹣1<x<2},B={x|y=ln(1﹣x)}={x|1﹣x>0}={x|x<1},则∁U B={x|x≥1},则A∩(∁U B)={x|1≤x<2}.故选:B.【点评】本题主要考查Venn图表达集合的关系和运算,比较基础.6.【答案】C【解析】解:因为几何体是棱柱,BC∥B1C1,则直线A1C与BC所成的角为就是异面直线A1C与B1C1所成的角.直三棱柱ABC﹣AB1C1中,侧棱AA1⊥平面ABC.若AB=AC=AA1=1,BC=,BA1=,1CA1=,三角形BCA1是正三角形,异面直线所成角为60°.故选:C.7.【答案】A【解析】解:∵点M(﹣6,5)在双曲线C:﹣=1(a>0,b>0)上,∴,①又∵双曲线C的焦距为12,∴12=2,即a2+b2=36,②联立①、②,可得a2=16,b2=20,∴渐近线方程为:y=±x=±x,故选:A.【点评】本题考查求双曲线的渐近线,注意解题方法的积累,属于基础题.8.【答案】B【解析】解:由题意可知双曲线的渐近线方程之一为:bx+ay=0,圆(x﹣2)2+y2=2的圆心(2,0),半径为,双曲线﹣=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=2相切,可得:,可得a2=b2,c=a,e==.故选:B.【点评】本题考查双曲线的简单性质的应用,双曲线的渐近线与圆的位置关系的应用,考查计算能力.9.【答案】A【解析】解:∵x2<2∴﹣<x<∴P={x∈Z|x2<2}={x|﹣<x<,x∈Z|}={﹣1,0,1},又∵全集U={﹣1,0,1,2},∴∁U P={2}故选:A.10.【答案】A【解析】11.【答案】B【解析】解:根据函数的定义可知,对应定义域内的任意变量x只能有唯一的y与x对应,选项B中,当x >0时,有两个不同的y和x对应,所以不满足y值的唯一性.所以B不能作为函数图象.故选B.【点评】本题主要考查函数图象的识别,利用函数的定义是解决本题的关键,注意函数的三个条件:非空数集,定义域内x的任意性,x对应y值的唯一性.12.【答案】C【解析】解:设A表示“甲同学收到李老师所发活动信息”,设B表示“甲同学收到张老师所发活动信息”,由题意P(A)==,P(B)=,∴甲冋学收到李老师或张老师所发活动通知信息的概率为:p(A+B)=P(A)+P(B)﹣P(A)P(B)==.故选:C.【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意任意事件概率加法公式的合理运用.二、填空题13.【答案】【解析】考点:1.等差数列的通项公式;2.等差数列的前项和.【方法点睛】本题主要考查等差数列的通项公式和前项和公式.等差数列的通项公式及前项和公式,共涉及1,,,,n na a d n S五个量,知其中三个就能求另外两个,体现了用方程的思想解决问题.数列的通项公式和前项和公式在解题中起到变量代换作用,而1,a d是等差数列的两个基本量,用它们表示已知和未知是常用方法. 14.【答案】(﹣4,0].【解析】解:当a=0时,不等式等价为﹣4<0,满足条件;当a≠0时,要使不等式ax2﹣2ax﹣4<0恒成立,则满足,即,∴解得﹣4<a<0,综上:a的取值范围是(﹣4,0].故答案为:(﹣4,0].【点评】本题主要考查不等式恒成立问题,注意要对二次项系数进行讨论.15.【答案】【解析】因为在上恒成立,所以,解得答案:16.【答案】.【解析】解:椭圆C:+=1(a>b>0)的右焦点为(2,0),且点(2,3)在椭圆上,可得c=2,2a==8,可得a=4,b2=a2﹣c2=12,可得b=2,椭圆的短轴长为:4.故答案为:4.【点评】本题考查椭圆的简单性质以及椭圆的定义的应用,考查计算能力.17.【答案】.【解析】解:依题意可知|BP|+|PF|=2,|PB|=|PA|∴|AP|+|PF|=2根据椭圆的定义可知,点P的轨迹为以A,F为焦点的椭圆,a=1,c=,则有b=故点P的轨迹方程为故答案为【点评】本题主要考查了用定义法求轨迹方程的问题.考查了学生综合分析问题和解决问题的能力.18.【答案】∃x0∈R,函数f(x0)=2cos2x0+sin2x0>3.【解析】解:全称命题的否定是特称命题,即为∃x∈R,函数f(x0)=2cos2x0+sin2x0>3,故答案为:∃x∈R,函数f(x0)=2cos2x0+sin2x0>3,三、解答题19.【答案】【解析】解:(Ⅰ)f′(x)=2ax﹣=由已知f′(e)=2ae﹣=0,解得a=.经检验,a=符合题意.(Ⅱ)1)当a≤0时,f′(x)<0,∴f(x)在(0,e]上是减函数.2)当a>0时,①若<e,即,则f(x)在(0,)上是减函数,在(,e]上是增函数;②若≥e,即0<a≤,则f(x)在[0,e]上是减函数.综上所述,当a ≤时,f (x )的减区间是(0,e],当a >时,f (x )的减区间是,增区间是.(Ⅲ)当时,由(Ⅱ)知f (x )的最小值是f ()=1+lna ; 易知g (x )在(0,e]上的最大值是g (e )=﹣4﹣lna ;注意到(1+lna )﹣(﹣4﹣lna )=5+2lna >0,故由题设知,解得<a <e 2.故a 的取值范围是(,e 2)20.【答案】【解析】【命题意图】本题考查圆的参数方程和极坐标方程、直线参数方程、直线和圆位置关系等基础知识,意在考查数形结合思想、转化思想和基本运算能力.(Ⅱ)设直线l :2)2(+-=x k y 与半圆)0(222≥=+y y x 相切时 21|22|2=+-k k0142=+-∴k k ,32-=∴k ,32+=k (舍去)设点)0,2(-B ,2AB k ==- 故直线l 的斜率的取值范围为]22,32(--.21.【答案】【解析】解:(Ⅰ)∵数列{b n }的前n 项和S n 满足S n =(b n ﹣1),∴b 1=S 1=,解得b 1=3.当n ≥2时,b n =S n ﹣S n ﹣1=,化为b n=3b n﹣1.∴数列{b n}为等比数列,∴.∵a2=b1=3,a5=b2=9.设等差数列{a n}的公差为d.∴,解得d=2,a1=1.∴a n=2n﹣1.综上可得:a n=2n﹣1,.(Ⅱ)c n=a n•b n=(2n﹣1)•3n.∴T n=3+3×32+5×33+…+(2n﹣3)•3n﹣1+(2n﹣1)•3n,3T n=32+3×33+…+(2n﹣3)•3n+(2n﹣1)•3n+1.∴﹣2T n=3+2×32+2×33+…+2×3n﹣(2n﹣1)•3n+1=﹣(2n﹣1)•3n+1﹣3=(2﹣2n)•3n+1﹣6.∴.【点评】本题考查了等差数列与等比数列的通项公式、“错位相减法”和等比数列的前n项和公式,考查了推理能力与计算能力,属于中档题.22.【答案】【解析】解:(1)依题意得:当0<x≤4时,y=10;…(2分)当4<x≤18时,y=10+1.5(x﹣4)=1.5x+4…当x>18时,y=10+1.5×14+2(x﹣18)=2x﹣5…(8分)∴…(9分)(2)x=30,y=2×30﹣5=55…(12分)【点评】本题考查函数模型的建立,考查利用数学知识解决实际问题,考查学生的计算能力,属于中档题.23.【答案】【解析】解:(1)根据椭圆的定义得2a=6,a=3;∴c=;∴;即椭圆的离心率是;(2);∴x=带入椭圆方程得,y=;所以Q(0,).24.【答案】。
城区高级中学2018-2019学年高三上学期11月月考数学试卷含答案(2)

城区高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知||=3,||=1,与的夹角为,那么|﹣4|等于()A .2B .C .D .132. 已知实数x ,y 满足a x <a y (0<a <1),则下列关系式恒成立的是( )A .B .ln (x 2+1)>ln (y 2+1)C .x 3>y 3D .sinx >siny 3. 如图,四面体OABC 的三条棱OA ,OB ,OC 两两垂直,OA=OB=2,OC=3,D 为四面体OABC 外一点.给出下列命题.①不存在点D ,使四面体ABCD 有三个面是直角三角形②不存在点D ,使四面体ABCD 是正三棱锥③存在点D ,使CD 与AB 垂直并且相等④存在无数个点D ,使点O 在四面体ABCD 的外接球面上其中真命题的序号是( )A .①②B .②③C .③D .③④4. sin45°sin105°+sin45°sin15°=( )A .0B .C .D .15. 已知抛物线的焦点为,,点是抛物线上的动点,则当的值最小时,24y x =F (1,0)A -P ||||PF PA PAF ∆的面积为( )B. C.D. 24【命题意图】本题考查抛物线的概念与几何性质,考查学生逻辑推理能力和基本运算能力.6. 设方程|x 2+3x ﹣3|=a 的解的个数为m ,则m 不可能等于( )A .1B .2C .3D .47. 在△ABC 中,C=60°,AB=,AB 边上的高为,则AC+BC 等于()A .B .5C .3D .8. 已知直线l ⊥平面α,直线m ⊂平面β,有下面四个命题:(1)α∥β⇒l ⊥m ,(2)α⊥β⇒l ∥m ,班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________(3)l ∥m ⇒α⊥β,(4)l ⊥m ⇒α∥β,其中正确命题是()A .(1)与(2)B .(1)与(3)C .(2)与(4)D .(3)与(4) 9. 在等差数列中,,公差,为的前项和.若向量,,{}n a 11a =0d ≠n S {}n a n 13(,)m a a u r =133(,)n a a r=-且,则的最小值为( )0m n u r r ×=2163n n S a ++A .B.C .D .432-92【命题意图】本题考查等差数列的性质,等差数列的前项和,向量的数量积,基本不等式等基础知识,意在n 考查学生的学生运算能力,观察分析,解决问题的能力.10.常用以下方法求函数y=[f (x )]g (x )的导数:先两边同取以e 为底的对数(e ≈2.71828…,为自然对数的底数)得lny=g (x )lnf (x ),再两边同时求导,得•y ′=g ′(x )lnf (x )+g (x )•[lnf (x )]′,即y ′=[f (x )]g (x ){g ′(x )lnf (x )+g (x )•[lnf (x )]′}.运用此方法可以求函数h (x )=x x (x >0)的导函数.据此可以判断下列各函数值中最小的是( )A .h ()B .h ()C .h ()D .h ()11.已知命题“如果﹣1≤a ≤1,那么关于x 的不等式(a 2﹣4)x 2+(a+2)x ﹣1≥0的解集为∅”,它的逆命题、否命题、逆否命题及原命题中是假命题的共有( )A .0个B .1个C .2个D .4个12.已知等比数列{a n }的前n 项和为S n ,若=4,则=()A .3B .4C .D .13二、填空题13.如图,在棱长为的正方体中,点分别是棱的中点,是侧1111D ABC A B C D -,E F 1,BC CC P 面内一点,若平行于平面,则线段长度的取值范围是_________.11BCC B 1AP AEF 1A P 14.圆上的点(2,1)关于直线x+y=0的对称点仍在圆上,且圆与直线x ﹣y+1=0相交所得的弦长为,则圆的方程为 .15.已知过球面上 ,,A B C 三点的截面和球心的距离是球半径的一半,且2AB BC CA ===,则球表面积是_________.16.设函数,其中[x]表示不超过x的最大整数.若方程f(x)=ax有三个不同的实数根,则实数a的取值范围是 .17.某高中共有学生1000名,其中高一年级共有学生380人,高二年级男生有180人.如果在全19.0校学生中抽取1名学生,抽到高二年级女生的概率为,先采用分层抽样(按年级分层)在全校抽取100人,则应在高三年级中抽取的人数等于.18.以抛物线y2=20x的焦点为圆心,且与双曲线:的两条渐近线都相切的圆的方程为 .三、解答题19.已知函数f(x)=.(1)求函数f(x)的最小正周期及单调递减区间;(2)当时,求f(x)的最大值,并求此时对应的x的值.20.已知函数f(x)=ax2+lnx(a∈R).(1)当a=时,求f(x)在区间[1,e]上的最大值和最小值;(2)如果函数g(x),f1(x),f2(x),在公共定义域D上,满足f1(x)<g(x)<f2(x),那么就称g (x)为f1(x),f2(x)的“活动函数”.已知函数+2ax.若在区间(1,+∞)上,函数f(x)是f1(x),f2(x)的“活动函数”,求a的取值范围.21.如图,⊙O的半径为6,线段AB与⊙相交于点C、D,AC=4,∠BOD=∠A,OB与⊙O相交于点.(1)求BD 长;(2)当CE ⊥OD 时,求证:AO=AD .22.已知定义域为R 的函数f (x )=是奇函数.(Ⅰ)求b 的值;(Ⅱ)判断函数f (x )的单调性;(Ⅲ)若对任意的t ∈R ,不等式f (t 2﹣2t )+f (2t 2﹣k )<0恒成立,求k 的取值范围. 23.(本小题满分10分)已知函数.()|||2|f x x a x =++-(1)当时,求不等式的解集;3a =-()3f x ≥(2)若的解集包含,求的取值范围.()|4|f x x ≤-[1,2]24.(本小题满分13分)在四棱锥中,底面是直角梯形,,,.P ABCD -ABCD //AB DC 2ABC π∠=AD =33AB DC ==(Ⅰ)在棱上确定一点,使得平面;PB E //CE PAD (Ⅱ)若,,求直线与平面所成角的大小.PA PD ==PB PC =PA PBC ABCDP城区高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题题号12345678910答案C C DCBADBAB题号1112答案CD二、填空题13.14. (x ﹣1)2+(y+1)2=5 .15.649π16. (﹣1,﹣]∪[,) . 17.2518. (x ﹣5)2+y 2=9 .三、解答题19.20. 21. 22.23.(1)或;(2).{|1x x ≤8}x ≥[3,0]-24.。
栾城区第一中学校2018-2019学年高三上学期11月月考数学试卷含答案

栾城区第一中学校2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 设集合S=|x|x <﹣1或x >5},T={x|a <x <a+8},且S ∪T=R ,则实数a 的取值范围是( ) A .﹣3<a <﹣1 B .﹣3≤a ≤﹣1 C .a ≤﹣3或a ≥﹣1 D .a <﹣3或a >﹣12. 如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆.在扇形OAB 内随机取一点,则此点取自阴影部分的概率是( )A .1﹣ B.﹣ C. D.3. 已知集合P={x|﹣1<x <b ,b ∈N},Q={x|x 2﹣3x <0,x ∈Z},若P ∩Q ≠∅,则b 的最小值等于( ) A .0B .1C .2D .34. 已知函数f (x )=x 4cosx+mx 2+x (m ∈R ),若导函数f ′(x )在区间[﹣2,2]上有最大值10,则导函数f ′(x )在区间[﹣2,2]上的最小值为( )A .﹣12B .﹣10C .﹣8D .﹣65. 四面体ABCD 中,截面 PQMN 是正方形, 则在下列结论中,下列说法错误的是( )A .AC BD ⊥B .AC BD =C.AC PQMN D .异面直线PM 与BD 所成的角为45 6. 在△ABC 中,已知a=2,b=6,A=30°,则B=( )A .60°B .120°C .120°或60°D .45°7. △ABC 中,A (﹣5,0),B (5,0),点C在双曲线上,则=( )A.B.C.D .±8.一个算法的程序框图如图所示,若运行该程序后输出的结果为,则判断框中应填入的条件是( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .i ≤5?B .i ≤4?C .i ≥4?D .i ≥5?9. 已知实数x ,y 满足约束条件,若y ≥kx ﹣3恒成立,则实数k 的数值范围是( )A .[﹣,0]B .[0,] C .(﹣∞,0]∪[,+∞)D .(﹣∞,﹣]∪[0,+∞)10.某工厂产生的废气经过过虑后排放,过虑过程中废气的污染物数量P (单位:毫克/升)与时间t (单位:小时)间的关系为0e ktP P -=(0P,k 均为正常数).如果前5个小时消除了10%的污染物,为了消除27.1% 的污染物,则需要( )小时. A.8B.10C. 15D. 18【命题意图】本题考指数函数的简单应用,考查函数思想,方程思想的灵活运用,体现“数学是有用的”的新课标的这一重要思想.11.在正方体1111ABCD A B C D -中,M 是线段11AC 的中点,若四面体M ABD -的外接球体积为36p , 则正方体棱长为( )A .2B .3C .4D .5【命题意图】本题考查以正方体为载体考查四面体的外接球半径问题,意在考查空间想象能力和基本运算能力. 12.设函数的集合,平面上点的集合,则在同一直角坐标系中,P 中函数的图象恰好经过Q 中两个点的函数的个数是 A4 B6 C8 D10 二、填空题13.已知tan β=,tan (α﹣β)=,其中α,β均为锐角,则α= .14.如图,在棱长为的正方体1111D ABC A B C D -中,点,E F 分别是棱1,BC CC 的中点,P 是侧面11BCC B 内一点,若1AP 平行于平面AEF ,则线段1A P 长度的取值范围是_________.15.对于|q|<1(q 为公比)的无穷等比数列{a n }(即项数是无穷项),我们定义S n (其中S n 是数列{a n }的前n 项的和)为它的各项的和,记为S ,即S=S n =,则循环小数0. 的分数形式是 .16.函数f (x )=log a (x ﹣1)+2(a >0且a ≠1)过定点A ,则点A 的坐标为 .17.若直线x ﹣y=1与直线(m+3)x+my ﹣8=0平行,则m= .18.已知集合M={x||x|≤2,x ∈R},N={x ∈R|(x ﹣3)lnx 2=0},那么M ∩N= .三、解答题19.(本小题满分16分)在互联网时代,网校培训已经成为青年学习的一种趋势,假设某网校的套题每日的销售量()h x (单位:千套)与销售价格(单位:元/套)满足的关系式()()()h x f x g x =+(37x <<,m 为常数),其中()f x 与()3x -成反比,()g x 与()7x -的平方成正比,已知销售价格为5元/套时,每日可售出套题21千套,销售价格为3.5元/套时,每日可售出套题69千套. (1) 求()h x 的表达式;(2) 假设网校的员工工资,办公等所有开销折合为每套题3元(只考虑销售出的套数),试确定销售价格的值,使网校每日销售套题所获得的利润最大.(保留1位小数)20.提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v (单位:千米/小时)是车流密度x (单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20≤x ≤200时,车流速度v 是车流密度x 的一次函数.(Ⅰ)当0≤x ≤200时,求函数v (x )的表达式;(Ⅱ)当车流密度x 为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f (x )=x •v (x )可以达到最大,并求出最大值.(精确到1辆/小时).21.在直角坐标系xOy中,直线l的参数方程为(t为参数).再以原点为极点,以x正半轴为极轴建立极坐标系,并使得它与直角坐标系xOy有相同的长度单位.在该极坐标系中圆C的方程为ρ=4sinθ.(1)求圆C的直角坐标方程;(2)设圆C与直线l交于点A、B,若点M的坐标为(﹣2,1),求|MA|+|MB|的值.22.已知函数f(x)=lnx﹣kx+1(k∈R).(Ⅰ)若x轴是曲线f(x)=lnx﹣kx+1一条切线,求k的值;(Ⅱ)若f(x)≤0恒成立,试确定实数k的取值范围.23.设极坐标与直角坐标系xOy有相同的长度单位,原点O为极点,x轴坐标轴为极轴,曲线C1的极坐标方程为ρ2cos2θ+3=0,曲线C2的参数方程为(t是参数,m是常数).(Ⅰ)求C1的直角坐标方程和C2的普通方程;(Ⅱ)若C1与C2有两个不同的公共点,求m的取值范围.24.在数列中,,,其中,.(Ⅰ)当时,求的值;(Ⅱ)是否存在实数,使构成公差不为0的等差数列?证明你的结论;(Ⅲ)当时,证明:存在,使得.栾城区第一中学校2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】A【解析】解:∵S=|x|x<﹣1或x>5},T={x|a<x<a+8},且S∪T=R,∴,解得:﹣3<a<﹣1.故选:A.【点评】本题考查并集及其运算,关键是明确两集合端点值间的关系,是基础题.2.【答案】A【解析】解:设扇形的半径为r,则扇形OAB的面积为,连接OC,把下面的阴影部分平均分成了2部分,然后利用位移割补的方法,分别平移到图中划线部分,则阴影部分的面积为:﹣,∴此点取自阴影部分的概率是.故选A.3.【答案】C【解析】解:集合P={x|﹣1<x<b,b∈N},Q={x|x2﹣3x<0,x∈Z}={1,2},P∩Q≠∅,可得b的最小值为:2.故选:C.【点评】本题考查集合的基本运算,交集的意义,是基础题.4.【答案】C【解析】解:由已知得f′(x)=4x3cosx﹣x4sinx+2mx+1,令g(x)=4x3cosx﹣x4sinx+2mx是奇函数,由f′(x)的最大值为10知:g(x)的最大值为9,最小值为﹣9,从而f′(x)的最小值为﹣9+1=﹣8.故选C.【点评】本题考查了导数的计算、奇函数的最值的性质.属于常规题,难度不大.5. 【答案】B 【解析】试题分析:因为截面PQMN 是正方形,所以//,//PQ MN QM PN ,则//PQ 平面,//ACD QM 平面BDA ,所以//,//PQ AC QM BD ,由PQ QM ⊥可得AC BD ⊥,所以A 正确;由于//PQ AC 可得//AC 截面PQMN ,所以C 正确;因为PN PQ ⊥,所以AC BD ⊥,由//BD PN ,所以MPN ∠是异面直线PM 与BD 所成的角,且为045,所以D 正确;由上面可知//,//BD PN PQ AC ,所以,PN AN MN DN BD AD AC AD==,而,AN DN PN MN ≠=,所以BD AC ≠,所以B 是错误的,故选B. 1 考点:空间直线与平面的位置关系的判定与证明.【方法点晴】本题主要考查了空间中直线与平面的位置关系的判定与证明,其中解答中涉及到直线与平面平行的判定定理和性质定理、正方形的性质、异面直线所成的角等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,属于中档试题,此类问题的解答中熟记点、线、面的位置关系的判定定理和性质定理是解答的关键. 6. 【答案】C 【解析】解:∵a=2,b=6,A=30°,∴由正弦定理可得:sinB===,∵B ∈(0°,180°), ∴B=120°或60°. 故选:C .7. 【答案】D【解析】解:△ABC 中,A (﹣5,0),B (5,0),点C 在双曲线上,∴A 与B 为双曲线的两焦点,根据双曲线的定义得:|AC ﹣BC|=2a=8,|AB|=2c=10,则==±=±.故选:D .【点评】本题考查了正弦定理的应用问题,也考查了双曲线的定义与简单性质的应用问题,是基础题目.8. 【答案】 B【解析】解:模拟执行程序框图,可得 i=1,sum=0,s=0满足条件,i=2,sum=1,s=满足条件,i=3,sum=2,s=+满足条件,i=4,sum=3,s=++满足条件,i=5,sum=4,s=+++=1﹣+﹣+﹣+﹣=.由题意,此时不满足条件,退出循环,输出s的,则判断框中应填入的条件是i≤4.故选:B.【点评】算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误.9.【答案】A【解析】解:由约束条件作可行域如图,联立,解得B(3,﹣3).联立,解得A().由题意得:,解得:.∴实数k的数值范围是.故选:A.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法和数学转化思想方法,是中档题.10.【答案】15【解析】11.【答案】C12.【答案】B【解析】本题考查了对数的计算、列举思想a=-时,不符;a=0时,y=log2x过点(,-1),(1,0),此时b=0,b=1符合;a=时,y=log2(x+)过点(0,-1),(,0),此时b=0,b=1符合;a=1时,y=log2(x+1)过点(-,-1),(0,0),(1,1),此时b=-1,b=1符合;共6个二、填空题13.【答案】.【解析】解:∵tanβ=,α,β均为锐角,∴tan(α﹣β)===,解得:tanα=1,∴α=.故答案为:.【点评】本题考查了两角差的正切公式,掌握公式是关键,属于基础题.14.【答案】⎣⎦【解析】考点:点、线、面的距离问题.【方法点晴】本题主要考查了点、线、面的距离问题,其中解答中涉及到直线与平面平行的判定与性质,三角形的判定以及直角三角形的勾股定理等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,同时考查了学生空间想象能力的训练,试题有一定的难度,属于中档试题.15.【答案】.【解析】解:0.=++…+==,故答案为:.【点评】本题考查数列的极限,考查学生的计算能力,比较基础.16.【答案】 (2,2) .【解析】解:∵log a 1=0, ∴当x ﹣1=1,即x=2时,y=2, 则函数y=log a (x ﹣1)+2的图象恒过定点 (2,2).故答案为:(2,2).【点评】本题考查对数函数的性质和特殊点,主要利用log a 1=0,属于基础题.17.【答案】 .【解析】解:直线x ﹣y=1的斜率为1,(m+3)x+my ﹣8=0斜率为两直线平行,则=1解得m=﹣.故应填﹣.18.【答案】 {1,﹣1} .【解析】解:合M={x||x|≤2,x ∈R}={x|﹣2≤x ≤2}, N={x ∈R|(x ﹣3)lnx 2=0}={3,﹣1,1}, 则M ∩N={1,﹣1}, 故答案为:{1,﹣1},【点评】本题主要考查集合的基本运算,比较基础.三、解答题19.【答案】(1) ()()210473h x x x =+-- (37x <<)(2) 13 4.33x =≈ 试题解析:(1) 因为()f x 与3x -成反比,()g x 与7x -的平方成正比, 所以可设:()13k f x x =-,()()227g x k x =-,12.00k k ≠≠,,则()()()()21273k h x f x g x k x x =+=+--则 ………………………………………2分 因为销售价格为5元/套时,每日可售出套题21千套,销售价格为2.5元/套时,每日可售出套题69千套所以,()()521, 3.569h h ==,即12124212492694k k k k ⎧+=⎪⎪⎨⎪+=⎪⎩,解得:12104k k =⎧⎨=⎩, ……………6分所以,()()210473h x x x =+-- (37x <<) ………………………………………8分 (2) 由(1)可知,套题每日的销售量()()210473h x x x =+--,答:当销售价格为4.3元/套时,网校每日销售套题所获得的利润最大.…………16分 考点:利用导数求函数最值20.【答案】【解析】解:(Ⅰ) 由题意:当0≤x ≤20时,v (x )=60;当20<x ≤200时,设v (x )=ax+b再由已知得,解得故函数v (x)的表达式为.(Ⅱ)依题并由(Ⅰ)可得当0≤x<20时,f(x)为增函数,故当x=20时,其最大值为60×20=1200当20≤x≤200时,当且仅当x=200﹣x,即x=100时,等号成立.所以,当x=100时,f(x)在区间(20,200]上取得最大值.综上所述,当x=100时,f(x)在区间[0,200]上取得最大值为,即当车流密度为100辆/千米时,车流量可以达到最大值,最大值约为3333辆/小时.答:(Ⅰ)函数v(x)的表达式(Ⅱ)当车流密度为100辆/千米时,车流量可以达到最大值,最大值约为3333辆/小时.21.【答案】【解析】解:(1)方程ρ=4sinθ的两边同时乘以ρ,得ρ2=4ρsinθ,将极坐标与直角坐标互化公式代入上式,整理得圆C的直角坐标方程为x2+y2﹣4y=0.(2)由消去t,得直线l的普通方程为y=x+3,因为点M(﹣2,1)在直线l上,可设l的标准参数方程为,代入圆C的方程中,得.设A,B对应的参数分别为t1,t2,由韦达定理,得>0,t1t2=1>0,于是|MA|+|MB|=|t1|+|t2|=,即|MA|+|MB|=.【点评】1.极坐标方程化直角坐标方程,一般通过两边同时平方,两边同时乘以ρ等方式,构造或凑配ρ2,ρcosθ,ρsinθ,再利用互化公式转化.常见互化公式有ρ2=x2+y2,ρcosθ=x,ρsinθ=y,(x≠0)等.2.参数方程化普通方程,关键是消参,常见消参方式有:代入法,两式相加、减,两式相乘、除,方程两边同时平方等.3.运用参数方程解题时,应熟练参数方程中各量的含义,即过定点M0(x0,y0),且倾斜角为α的直线的参数方程为,参数t表示以M0为起点,直线上任意一点M为终点的向量的数量,即当沿直线向上时,t=;当沿直线向下时,t=﹣.22.【答案】【解析】解:(1)函数f(x)的定义域为(0,+∞),f′(x)=﹣k=0,∴x=,由ln﹣1+1=0,可得k=1;(2)当k≤0时,f′(x)=﹣k>0,f(x)在(0,+∞)上是增函数;当k>0时,若x∈(0,)时,有f′(x)>0,若x∈(,+∞)时,有f′(x)<0,则f(x)在(0,)上是增函数,在(,+∞)上是减函数.k≤0时,f(x)在(0,+∞)上是增函数,而f(1)=1﹣k>0,f(x)≤0不成立,故k>0,∵f(x)的最大值为f(),要使f(x)≤0恒成立,则f()≤0即可,即﹣lnk≤0,得k≥1.【点评】本题考查导数的几何意义,考查函数单调区间的求法,确定实数的取值范围,渗透了分类与整合的数学思想,培养学生的抽象概括能力、推理论证能力、运算求解能力和创新意识.23.【答案】【解析】解:(I)曲线C1的极坐标方程为ρ2cos2θ+3=0,即ρ2(cos2θ﹣sin2θ)+3=0,可得直角坐标方程:x2﹣y2+3=0.曲线C2的参数方程为(t是参数,m是常数),消去参数t可得普通方程:x﹣2y﹣m=0.(II)把x=2y+m代入双曲线方程可得:3y2+4my+m2+3=0,由于C1与C2有两个不同的公共点,∴△=16m2﹣12(m2+3)>0,解得m<﹣3或m>3,∴m<﹣3或m>3.【点评】本题考查了参数方程化为普通方程、极坐标方程化为直角坐标方程、直线与双曲线的位置关系,考查了推理能力与计算能力,属于中档题.24.【答案】【解析】【知识点】数列综合应用【试题解析】(Ⅰ),,.(Ⅱ)成等差数列,,即,,即.,.将,代入上式,解得.经检验,此时的公差不为0.存在,使构成公差不为0的等差数列.(Ⅲ),又,令.由,,……,将上述不等式相加,得,即.取正整数,就有。
栾城区高级中学2018-2019学年高三上学期11月月考数学试卷含答案

栾城区高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知定义在R 上的可导函数y=f (x )是偶函数,且满足xf ′(x )<0, =0,则满足的x 的范围为()A .(﹣∞,)∪(2,+∞)B .(,1)∪(1,2)C .(,1)∪(2,+∞)D .(0,)∪(2,+∞)2. 若双曲线﹣=1(a >0,b >0)的渐近线与圆(x ﹣2)2+y 2=2相切,则此双曲线的离心率等于()A .B .C .D .23. 若复数a 2﹣1+(a ﹣1)i (i 为虚数单位)是纯虚数,则实数a=( )A .±1B .﹣1C .0D .14. 如图所示,网格纸表示边长为1的正方形,粗实线画出的是某几何体的三视图,则该几何体的体积为()A .4B .8C .12D .20【命题意图】本题考查三视图、几何体的体积等基础知识,意在考查空间想象能力和基本运算能力.5. 在△ABC 中,a=1,b=4,C=60°,则边长c=( )A .13B .C .D .216. 过点P (﹣2,2)作直线l ,使直线l 与两坐标轴在第二象限内围成的三角形面积为8,这样的直线l 一共有( )A .3条B .2条C .1条D .0条7. 阅读如图所示的程序框图,运行相应的程序.若该程序运行后输出的结果不大于20,则输入的整数i 的最大值为()班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A.3B.4C.5D.68.函数y=f(x)在[1,3]上单调递减,且函数f(x+3)是偶函数,则下列结论成立的是()A.f(2)<f(π)<f(5)B.f(π)<f(2)<f(5)C.f(2)<f(5)<f(π)D.f(5)<f(π)<f(2)9.若函数是R上的单调减函数,则实数a的取值范围是()A.(﹣∞,2)B.C.(0,2)D.10.抛物线y=﹣x2上的点到直线4x+3y﹣8=0距离的最小值是()A.B.C.D.311.设函数f(x)=,则f(1)=()A.0B.1C.2D.312.已知直线x+y+a=0与圆x2+y2=1交于不同的两点A、B,O是坐标原点,且,那么实数a的取值范围是()A.B.C.D.二、填空题13.设全集U=R,集合M={x|2a﹣1<x<4a,a∈R},N={x|1<x<2},若N⊆M,则实数a的取值范围是 .14.已知θ是第四象限角,且sin(θ+)=,则tan(θ﹣)= .15.【2017-2018第一学期东台安丰中学高三第一次月考】若函数在其定义域上恰有两()2,0,{,0x x x f x x lnx x a+≤=->个零点,则正实数的值为______.a 16.设f (x )为奇函数,且在(﹣∞,0)上递减,f (﹣2)=0,则xf (x )<0的解集为 . 17.正六棱台的两底面边长分别为1cm ,2cm ,高是1cm ,它的侧面积为 .18.已知实数,满足约束条件,若目标函数仅在点取得最小值,则的x y ⎪⎩⎪⎨⎧≥+-≥-≤-1122y x y x y x ay x z +=2)4,3(a 取值范围是.三、解答题19.已知f (x )是定义在R 上的奇函数,当x <0时,f (x )=()x .(1)求当x >0时f (x )的解析式;(2)画出函数f (x )在R 上的图象;(3)写出它的单调区间.20.已知,数列{a n }的首项(1)求数列{a n }的通项公式;(2)设,数列{b n }的前n 项和为S n ,求使S n >2012的最小正整数n .21.已知函数f(x)=lg(2016+x),g(x)=lg(2016﹣x)(1)判断函数f(x)﹣g(x)的奇偶性,并予以证明.(2)求使f(x)﹣g(x)<0成立x的集合.22.某实验室一天的温度(单位:)随时间(单位;h)的变化近似满足函数关系;(1) 求实验室这一天的最大温差;(2) 若要求实验室温度不高于,则在哪段时间实验室需要降温?23.在△ABC中,角A,B,C所对的边分别为a,b,c.已知b2+c2=a2+bc.(Ⅰ)求A的大小;(Ⅱ)如果cosB=,b=2,求a的值.24.A={x|x2﹣3x+2=0},B={x|ax﹣2=0},若B⊆A,求a.栾城区高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题题号12345678910答案D B B C B C B B B A题号1112答案D A二、填空题13. [,1] .14. .15.e16. (﹣∞,﹣2)∪(2,+∞) 17. cm2 .-∞-18.(,2)三、解答题19.20.21.22.23.24.。
栾城区实验中学2018-2019学年高三上学期11月月考数学试卷含答案

栾城区实验中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 若关于x 的方程x 3﹣x 2﹣x+a=0(a ∈R )有三个实根x 1,x 2,x 3,且满足x 1<x 2<x 3,则a 的取值范围为( ) A .a>B.﹣<a <1 C .a <﹣1D .a >﹣12. 从1,2,3,4中任取两个数,则其中一个数是另一个数两倍的概率为( ) A.B.C.D.3. 若点O 和点F (﹣2,0)分别是双曲线的中心和左焦点,点P 为双曲线右支上的任意一点,则的取值范围为( )A. B. C. D.4. 已知实数x ,y满足,则目标函数z=x ﹣y 的最小值为( )A .﹣2B .5C .6D .75. 设双曲线=1(a >0,b >0)的渐近线方程为y=x ,则该双曲线的离心率为( )A.B .2C. D.6. 已知椭圆,长轴在y 轴上,若焦距为4,则m 等于( )A .4B .5C .7D .87. 如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆.在扇形OAB 内随机取一点,则此点取自阴影部分的概率是( )A .1﹣ B.﹣ C. D.8. 执行下面的程序框图,若输入2016x =-,则输出的结果为( )A .2015B .2016C .2116D .2048班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________9. 已知向量=(﹣1,3),=(x ,2),且,则x=( )A .B .C .D .10.在《张邱建算经》中有一道题:“今有女子不善织布,逐日所织的布比同数递减,初日织五尺, 末一日织一尺,计织三十日”,由此推断,该女子到第10日时,大约已经完成三十日织布总量的( ) A .33% B .49% C .62% D .88% 11.命题“∀a ∈R ,函数y=π”是增函数的否定是( )A .“∀a ∈R ,函数y=π”是减函数B .“∀a ∈R ,函数y=π”不是增函数C .“∃a ∈R ,函数y=π”不是增函数D .“∃a ∈R ,函数y=π”是减函数12.已知四个函数f (x )=sin (sinx ),g (x )=sin (cosx ),h (x )=cos (sinx ),φ(x )=cos (cosx )在x ∈[﹣π,π]上的图象如图,则函数与序号匹配正确的是( )A .f (x )﹣①,g (x )﹣②,h (x )﹣③,φ(x )﹣④B .f (x )﹣①,φ(x )﹣②,g (x )﹣③,h (x )﹣④C .g (x )﹣①,h (x )﹣②,f (x )﹣③,φ(x )﹣④D .f (x )﹣①,h (x )﹣②,g (x )﹣③,φ(x )﹣④二、填空题13.定义某种运算⊗,S=a ⊗b 的运算原理如图;则式子5⊗3+2⊗4= .14()23k x-+有两个不等实根,则的取值范围是.15.已知点M(x,y)满足,当a>0,b>0时,若ax+by的最大值为12,则+的最小值是.16.x为实数,[x]表示不超过x的最大整数,则函数f(x)=x﹣[x]的最小正周期是.17.数列{a n}是等差数列,a4=7,S7=.18.定义在R上的可导函数()f x,已知()f xy e=′的图象如图所示,则()y f x=的增区间是▲.)(),0,2B且过点()1,1P-的直线与线段AB有公共点, 求直20.若函数f(x)=a x(a>0,且a≠1)在[1,2]上的最大值比最小值大,求a的值.21.已知f (x )=|﹣x|﹣|+x|(Ⅰ)关于x 的不等式f (x )≥a 2﹣3a 恒成立,求实数a 的取值范围;(Ⅱ)若f (m )+f (n )=4,且m <n ,求m+n 的取值范围.22.设圆C 满足三个条件①过原点;②圆心在y=x 上;③截y 轴所得的弦长为4,求圆C 的方程.23.若数列{a n }的前n 项和为S n ,点(a n ,S n )在y=x 的图象上(n ∈N *),(Ⅰ)求数列{a n }的通项公式;(Ⅱ)若c 1=0,且对任意正整数n 都有,求证:对任意正整数n ≥2,总有.24.(本小题满分12分)已知两点)0,1(1 F 及)0,1(2F ,点P 在以1F 、2F 为焦点的椭圆C 上,且1PF 、21F F 、 2PF 构成等差数列. (I )求椭圆C 的方程;(II )设经过2F 的直线m 与曲线C 交于P Q 、两点,若22211PQ F P F Q =+,求直线m 的方程.栾城区实验中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】B【解析】解:由x3﹣x2﹣x+a=0得﹣a=x3﹣x2﹣x,设f(x)=x3﹣x2﹣x,则函数的导数f′(x)=3x2﹣2x﹣1,由f′(x)>0得x>1或x<﹣,此时函数单调递增,由f′(x)<0得﹣<x<1,此时函数单调递减,即函数在x=1时,取得极小值f(1)=1﹣1﹣1=﹣1,在x=﹣时,函数取得极大值f(﹣)=(﹣)3﹣(﹣)2﹣(﹣)=,要使方程x3﹣x2﹣x+a=0(a∈R)有三个实根x1,x2,x3,则﹣1<﹣a<,即﹣<a<1,故选:B.【点评】本题主要考查导数的应用,构造函数,求函数的导数,利用导数求出函数的极值是解决本题的关键.2.【答案】C【解析】解:从1,2,3,4中任取两个数,有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)共6种情况,其中一个数是另一个数两倍的为(1,2),(2,4)共2个,故所求概率为P==故选:C【点评】本题考查列举法计算基本事件数及事件发生的概率,属基础题.3.【答案】B【解析】解:因为F(﹣2,0)是已知双曲线的左焦点,所以a2+1=4,即a2=3,所以双曲线方程为,设点P(x0,y0),则有,解得,因为,,所以=x0(x0+2)+=,此二次函数对应的抛物线的对称轴为,因为,所以当时,取得最小值=,故的取值范围是,故选B.【点评】本题考查待定系数法求双曲线方程,考查平面向量的数量积的坐标运算、二次函数的单调性与最值等,考查了同学们对基础知识的熟练程度以及知识的综合应用能力、运算能力.4.【答案】A【解析】解:如图作出阴影部分即为满足约束条件的可行域,由得A(3,5),当直线z=x﹣y平移到点A时,直线z=x﹣y在y轴上的截距最大,即z取最小值,即当x=3,y=5时,z=x﹣y取最小值为﹣2.故选A.5.【答案】C【解析】解:由已知条件知:;∴;∴;∴. 故选C .【点评】考查双曲线的标准方程,双曲线的渐近线方程的表示,以及c 2=a 2+b 2及离心率的概念与求法.6. 【答案】D【解析】解:将椭圆的方程转化为标准形式为,显然m ﹣2>10﹣m ,即m >6,,解得m=8故选D【点评】本题主要考查了椭圆的简单性质.要求学生对椭圆中对长轴和短轴即及焦距的关系要明了.7. 【答案】A【解析】解:设扇形的半径为r ,则扇形OAB 的面积为,连接OC ,把下面的阴影部分平均分成了2部分,然后利用位移割补的方法,分别平移到图中划线部分,则阴影部分的面积为:﹣,∴此点取自阴影部分的概率是.故选A .8. 【答案】D 【解析】试题分析:由于20160-<,由程序框图可得对循环进行加运算,可以得到2x =,从而可得1y =,由于20151>,则进行2y y =循环,最终可得输出结果为2048.1考点:程序框图.9.【答案】C【解析】解:∵,∴3x+2=0,解得x=﹣.故选:C.【点评】本题考查了向量共线定理、方程的解法,考查了推理能力与计算能力,属于中档题.10.【答案】B【解析】11.【答案】C【解析】解:因为全称命题的否定是特称命题,所以,命题“∀a∈R,函数y=π”是增函数的否定是:“∃a∈R,函数y=π”不是增函数.故选:C.【点评】本题考查命题的否定,特称命题与全称命题的否定关系,是基础题.12.【答案】D【解析】解:图象①是关于原点对称的,即所对应函数为奇函数,只有f(x);图象②④恒在x轴上方,即在[﹣π,π]上函数值恒大于0,符合的函数有h(x)和Φ(x),又图象②过定点(0,1),其对应函数只能是h(x),那图象④对应Φ(x),图象③对应函数g(x).故选:D.【点评】本题主要考查学生的识图、用图能力,从函数的性质入手结合特殊值是解这一类选择题的关键,属于基础题.二、填空题13.【答案】14.【解析】解:有框图知S=a⊗b=∴5⊗3+2⊗4=5×(3﹣1)+4×(2﹣1)=14故答案为14【点评】新定义题是近几年常考的题型,要重视.解决新定义题关键是理解题中给的新定义.14.【答案】53,124⎛⎤⎥⎝⎦【解析】试题分析:作出函数y =()23y k x =-+的图象,如图所示,函数y =直线()23y k x =-+的图象恒过定点()2,3,结合图象,可知,当过点()2,0-时,303224k -==+,当直线()23y k x =-+2=,解得512k =,所以实数的取值范围是53,124⎛⎤⎥⎝⎦.111]考点:直线与圆的位置关系的应用.【方法点晴】本题主要考查了直线与圆的位置关系的应用,其中解答中涉及到点到直线的距离公式、两点间的斜率公式,以及函数的图像的应用等知识点的综合考查,着重考查了转化与化归思想和学生的分析问题和解答问题的能力,属于中档试题,本题的解答中把方程的根转化为直线与半圆的交点是解答的关键. 15.【答案】 4 .【解析】解:画出满足条件的平面区域,如图示:,由,解得:A (3,4),显然直线z=ax+by 过A (3,4)时z 取到最大值12, 此时:3a+4b=12,即+=1,∴+=(+)(+)=2++≥2+2=4,当且仅当3a=4b 时“=”成立,故答案为:4.【点评】本题考查了简单的线性规划,考查了利用基本不等式求最值,解答此题的关键是对“1”的灵活运用,是基础题.16.【答案】[1,)∪(9,25].【解析】解:∵集合,得(ax﹣5)(x2﹣a)<0,当a=0时,显然不成立,当a>0时,原不等式可化为,若时,只需满足,解得;若,只需满足,解得9<a≤25,当a<0时,不符合条件,综上,故答案为[1,)∪(9,25].【点评】本题重点考查分式不等式的解法,不等式的性质及其应用和分类讨论思想的灵活运用,属于中档题.17.【答案】49【解析】解:==7a4=49.故答案:49.【点评】本题考查等差数列的性质和应用,解题时要认真审题,仔细求解.18.【答案】(﹣∞,2) 【解析】 试题分析:由()21()0f x x ef x '≤≥⇒≥′时,()21()0f xx e f x '><⇒<′时,所以()y f x =的增区间是(﹣∞,2) 考点:函数单调区间三、解答题19.【答案】3k ≤-或2k ≥. 【解析】试题分析:根据两点的斜率公式,求得2PA k =,3PB k =-,结合图形,即可求解直线的斜率的取值范围.试题解析:由已知,11212PA k --==-,12310PB k --==-- 所以,由图可知,过点()1,1P -的直线与线段AB 有公共点,所以直线的斜率的取值范围是:3k ≤-或2k ≥.考点:直线的斜率公式. 20.【答案】【解析】解:由题意可得:∵当a >1时,函数f (x )在区间[1,2]上单调递增,∴f (2)﹣f (1)=a 2﹣a=a ,解得a=0(舍去),或a=.∵当 0<a <1时,函数f (x )在区间[1,2]上单调递减,∴f (1)﹣f (2)=a ﹣a 2=,解得a=0(舍去),或a=.故a 的值为或.【点评】本题主要考查指数函数的单调性的应用,体现了分类讨论的数学思想,属于中档题.21.【答案】【解析】解:(Ⅰ)关于x的不等式f(x)≥a2﹣3a恒成立,即|﹣x|﹣|+x|≥a2﹣3a恒成立.由于f(x)=|﹣x|﹣|+x|=,故f(x)的最小值为﹣2,∴﹣2≥a2﹣3a,求得1≤a≤2.(Ⅱ)由于f(x)的最大值为2,∴f(m)≤2,f(n)≤2,若f(m)+f(n)=4,∴m<n≤﹣,∴m+n<﹣5.【点评】本题主要考查分段函数的应用,求函数的最值,函数的恒成立问题,属于中档题.22.【答案】【解析】解:根据题意画出图形,如图所示:当圆心C1在第一象限时,过C1作C1D垂直于x轴,C1B垂直于y轴,连接AC1,由C1在直线y=x上,得到C1B=C1D,则四边形OBC1D为正方形,∵与y轴截取的弦OA=4,∴OB=C1D=OD=C1B=2,即圆心C1(2,2),在直角三角形ABC中,根据勾股定理得:AC1=2,1则圆C1方程为:(x﹣2)2+(y﹣2)2=8;当圆心C2在第三象限时,过C2作C2D垂直于x轴,C2B垂直于y轴,连接AC2,由C2在直线y=x上,得到C2B=C2D,则四边形OB′C2D′为正方形,∵与y轴截取的弦OA′=4,∴OB′=C2D′,=OD′=C2B′=2,即圆心C2(﹣2,﹣2),在直角三角形A′B′C中,根据勾股定理得:A′C2=2,2则圆C1方程为:(x+2)2+(y+2)2=8,∴圆C的方程为:(x﹣2)2+(y﹣2)2=8或(x+2)2+(y+2)2=8.【点评】本题考查了角平分线定理,垂径定理,正方形的性质及直角三角形的性质,做题时注意分两种情况,利用数形结合的思想,分别求出圆心坐标和半径,写出所有满足题意的圆的标准方程,是中档题.23.【答案】【解析】(I )解:∵点(a n ,S n )在y=x 的图象上(n ∈N *),∴,当n ≥2时,,∴,化为,当n=1时,,解得a 1=.∴==.(2)证明:对任意正整数n 都有=2n+1,∴c n =(c n ﹣c n ﹣1)+(c n ﹣1﹣c n ﹣2)+…+(c 2﹣c 1)+c 1 =(2n ﹣1)+(2n ﹣3)+…+3==(n+1)(n ﹣1).∴当n ≥2时, ==.∴=+…+=<=,又=.∴.【点评】本题考查了等比数列的通项公式与等差数列的前n 项和公式、“累加求和”、“裂项求和”、对数的运算性质、“放缩法”、递推式,考查了推理能力与计算能力,属于中档题.24.【答案】【解析】【命题意图】本题考查椭圆标准方程和定义、等差数列、直线和椭圆的位置关系等基础知识,意在考查转化与化归的数学思想的运用和综合分析问题、解决问题的能力.(II )①若m 为直线1=x ,代入13422=+y x 得23±=y ,即)23 , 1(P ,)23 , 1(-Q直接计算知29PQ =,225||||2121=+Q F P F ,22211PQ F PF Q ?,1=x 不符合题意 ; ②若直线m 的斜率为k ,直线m 的方程为(1)y k x =-由⎪⎩⎪⎨⎧-==+)1(13422x k y y x 得0)124(8)43(2222=-+-+k x k x k 设11(,)P x y ,22(,)Q x y ,则2221438k k x x +=+,222143124k k x x +-=⋅由22211PQ F P F Q =+得,110F P FQ ? 即0)1)(1(2121=+++y y x x ,0)1()1()1)(1(2121=-⋅-+++x k x k x x0)1())(1()1(2212212=+++-++k x x k x x k代入得0438)1()143124)(1(222222=+⋅-+++-+k k k k k k ,即0972=-k 解得773±=k ,直线m 的方程为)1(773-±=x y。
栾城县第一中学校2018-2019学年高三上学期11月月考数学试卷含答案

栾城县第一中学校2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 垂直于同一条直线的两条直线一定( )A .平行B .相交C .异面D .以上都有可能2. ABC ∆中,“A B >”是“cos 2cos 2B A >”的( )A. 充分必要条件B. 充分不必要条件C. 必要不充分条件D. 既不充分也不必要条件【命题意图】本题考查三角函数的性质与充分必要条件等基础知识,意在考查构造函数的思想与运算求解能力. 3. 等比数列的前n 项,前2n 项,前3n 项的和分别为A ,B ,C ,则( )A .B 2=ACB .A+C=2BC .B (B ﹣A )=A (C ﹣A )D .B (B ﹣A )=C (C ﹣A )4. 高考临近,学校为丰富学生生活,缓解高考压力,特举办一场高三学生队与学校校队的男子篮球比赛.由于爱好者众多,高三学生队队员指定由5班的6人、16班的8人、33班的10人按分层抽样构成一个12人的篮球队.首发要求每个班至少1人,至多2人,则首发方案数为( ) A .720 B .270 C .390 D .3005. 某程序框图如图所示,则该程序运行后输出的S 的值为( )A .1 B. C. D.6. 已知条件p :|x+1|≤2,条件q :x ≤a ,且p 是q 的充分不必要条件,则a 的取值范围是( ) A .a ≥1 B .a ≤1 C .a ≥﹣1D .a ≤﹣37. 如图所示程序框图中,输出S=( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .45B .﹣55C .﹣66D .668. △ABC 的内角A ,B ,C 所对的边分别为,,,已知3a =,6b =,6A π∠=,则B ∠=( )111]A .4π B .4π或34π C .3π或23π D .3π9. 已知,A B 是球O 的球面上两点,60AOB ∠=︒,C 为该球面上的动点,若三棱锥O ABC -体积的最大值为183,则球O 的体积为( )A .81πB .128πC .144πD .288π【命题意图】本题考查棱锥、球的体积、球的性质,意在考查空间想象能力、逻辑推理能力、方程思想、运算求解能力.10.已知正三棱柱111ABC A B C -的底面边长为4cm ,高为10cm ,则一质点自点A 出发,沿着三棱 柱的侧面,绕行两周到达点1A 的最短路线的长为( )A .16cmB .123cmC .243cmD .26cm11.如图框内的输出结果是( )A .2401B .2500C .2601D .270412.已知向量=(1,n ),=(﹣1,n ﹣2),若与共线.则n 等于( )A .1B .C .2D .4二、填空题13.已知a ,b 是互异的负数,A 是a ,b 的等差中项,G 是a ,b 的等比中项,则A 与G 的大小关系为 .14.设f (x )为奇函数,且在(﹣∞,0)上递减,f (﹣2)=0,则xf (x )<0的解集为 . 15.的展开式中的系数为 (用数字作答).16.【启东中学2018届高三上学期第一次月考(10月)】在平面直角坐标系xOy 中,P 是曲线x C y e :=上一点,直线20l x y c :++=经过点P ,且与曲线C 在P 点处的切线垂直,则实数c 的值为________. 17.如图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是.已知样本中平均气温不大于22.5℃的城市个数为11,则样本中平均气温不低于25.5℃的城市个数为 .18.一组数据2,x ,4,6,10的平均值是5,则此组数据的标准差是 .三、解答题19.已知函数f (x )=log a (x 2+2),若f (5)=3; (1)求a 的值;(2)求的值;(3)解不等式f (x )<f (x+2).20.已知曲线21()f x e x ax=+(0x ≠,0a ≠)在1x =处的切线与直线2(1)20160e x y --+= 平行.(1)讨论()y f x =的单调性;(2)若()ln kf s t t ≥在(0,)s ∈+∞,(1,]t e ∈上恒成立,求实数的取值范围.21.在直角坐标系中,已知圆C 的圆心坐标为(2,0),半径为,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.,直线l 的参数方程为:(t 为参数).(1)求圆C 和直线l 的极坐标方程;(2)点P 的极坐标为(1,),直线l 与圆C 相交于A ,B ,求|PA|+|PB|的值.22.已知圆C 经过点A (﹣2,0),B (0,2),且圆心在直线y=x 上,且,又直线l :y=kx+1与圆C 相交于P 、Q 两点.(Ⅰ)求圆C 的方程; (Ⅱ)若,求实数k 的值; (Ⅲ)过点(0,1)作直线l 1与l 垂直,且直线l 1与圆C 交于M 、N 两点,求四边形PMQN 面积的最大值.23.如图,四边形ABCD内接于⊙O,过点A作⊙O的切钱EP交CB 的延长线于P,己知∠PAB=25°.(1)若BC是⊙O的直径,求∠D的大小;(2)若∠DAE=25°,求证:DA2=DC•BP.24.已知等差数列{a n}满足a2=0,a6+a8=10.(1)求数列{a n}的通项公式;(2)求数列{}的前n项和.栾城县第一中学校2018-2019学年高三上学期11月月考数学试卷含答案(参考答案) 一、选择题1. 【答案】D【解析】解:分两种情况:①在同一平面内,垂直于同一条直线的两条直线平行;②在空间内垂直于同一条直线的两条直线可以平行、相交或异面. 故选D【点评】本题主要考查在空间内两条直线的位置关系.2. 【答案】A.【解析】在ABC ∆中2222cos 2cos 212sin 12sin sin sin sin sin B A B A A B A B >⇒->-⇔>⇔>A B ⇔>,故是充分必要条件,故选A.3. 【答案】C 【解析】解:若公比q=1,则B ,C 成立;故排除A ,D ; 若公比q ≠1,则A=S n =,B=S 2n =,C=S 3n =,B (B ﹣A )=(﹣)=(1﹣q n )(1﹣q n )(1+q n)A (C ﹣A )=(﹣)=(1﹣q n )(1﹣q n )(1+q n);故B (B ﹣A )=A (C ﹣A );故选:C .【点评】本题考查了等比数列的性质的判断与应用,同时考查了分类讨论及学生的化简运算能力.4. 【答案】C解析:高三学生队队员指定由5班的6人、16班的8人、33班的10人按分层抽样构成一个12人的篮球队. 各个班的人数有5班的3人、16班的4人、33班的5人, 首发共有1、2、2;2、1、2;2、2、1类型;所求方案有: ++=390.故选:C . 5. 【答案】 C【解析】解:第一次循环第二次循环得到的结果第三次循环得到的结果第四次循环得到的结果…所以S 是以4为周期的,而由框图知当k=2011时输出S ∵2011=502×4+3 所以输出的S是故选C6. 【答案】A【解析】解:由|x+1|≤2得﹣3≤x ≤1,即p :﹣3≤x ≤1, 若p 是q 的充分不必要条件, 则a ≥1, 故选:A .【点评】本题主要考查充分条件和必要条件的判断,比较基础.7. 【答案】B【解析】解:由程序框图知,第一次运行T=(﹣1)2•12=1,S=0+1=1,n=1+1=2;第二次运行T=(﹣1)3•22=﹣4,S=1﹣4=﹣3,n=2+1=3;第三次运行T=(﹣1)4•32=9,S=1﹣4+9=6,n=3+1=4; …直到n=9+1=10时,满足条件n >9,运行终止,此时T=(﹣1)10•92,S=1﹣4+9﹣16+…+92﹣102=1+(2+3)+(4+5)+(6+7)+(8+9)﹣100=×9﹣100=﹣55.故选:B .【点评】本题考查了循环结构的程序框图,判断算法的功能是解答本题的关键.8. 【答案】B 【解析】试题分析:由正弦定理可得:(),sin 0,,sin 24sin6B B B B πππ=∴=∈∴= 或34π,故选B.考点:1、正弦定理的应用;2、特殊角的三角函数. 9. 【答案】D【解析】当OC ⊥平面AOB 平面时,三棱锥O ABC -的体积最大,且此时OC 为球的半径.设球的半径为R ,则由题意,得211sin 6032R R ⨯⨯︒⋅=6R =,所以球的体积为342883R π=π,故选D . 10.【答案】D 【解析】考点:多面体的表面上最短距离问题.【方法点晴】本题主要考查了多面体和旋转体的表面上的最短距离问题,其中解答中涉及到多面体与旋转体的侧面展开图的应用、直角三角形的勾股定理的应用等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,学生的空间想象能力、以及转化与化归思想的应用,试题属于基础题.11.【答案】B【解析】解:模拟执行程序框图,可得S=1+3+5+…+99=2500,故选:B.【点评】本题主要考查了循环结构的程序框图,等差数列的求和公式的应用,属于基础题.12.【答案】A【解析】解:∵向量=(1,n),=(﹣1,n﹣2),且与共线.∴1×(n﹣2)=﹣1×n,解之得n=1故选:A二、填空题13.【答案】A<G.【解析】解:由题意可得A=,G=±,由基本不等式可得A≥G,当且仅当a=b取等号,由题意a,b是互异的负数,故A<G.故答案是:A<G.【点评】本题考查等差中项和等比中项,涉及基本不等式的应用,属基础题.14.【答案】(﹣∞,﹣2)∪(2,+∞)【解析】解:∵f(x)在R上是奇函数,且f(x)在(﹣∞,0)上递减,∴f(x)在(0,+∞)上递减,由f(﹣2)=0,得f(﹣2)=﹣f(2)=0,即f(2)=0,由f(﹣0)=﹣f(0),得f(0)=0,作出f(x)的草图,如图所示:由图象,得xf(x)<0⇔或,解得x<﹣2或x>2,∴xf(x)<0的解集为:(﹣∞,﹣2)∪(2,+∞)故答案为:(﹣∞,﹣2)∪(2,+∞)15.【答案】20【解析】【知识点】二项式定理与性质【试题解析】通项公式为:令12-3r=3,r=3.所以系数为:故答案为:16.【答案】-4-ln2【解析】点睛:曲线的切线问题就是考察导数应用,导数的含义就是该点切线的斜率,利用这个我们可以求出点的坐标,再根据点在线上(或点在曲线上),就可以求出对应的参数值。
栾城区二中2018-2019学年高三上学期11月月考数学试卷含答案

栾城区二中2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 三个实数a 、b 、c 成等比数列,且a+b+c=6,则b 的取值范围是( )A .[﹣6,2]B .[﹣6,0)∪( 0,2]C .[﹣2,0)∪( 0,6]D .(0,2]2. 若向量=(3,m ),=(2,﹣1),∥,则实数m 的值为()A .﹣B .C .2D .63. 设a ,b ,c ,∈R +,则“abc=1”是“”的()A .充分条件但不是必要条件B .必要条件但不是充分条件C .充分必要条件D .既不充分也不必要的条件4. 已知椭圆C :+y 2=1,点M 1,M 2…,M 5为其长轴AB 的6等分点,分别过这五点作斜率为k (k ≠0)的一组平行线,交椭圆C 于P 1,P 2,…,P 10,则直线AP 1,AP 2,…,AP 10这10条直线的斜率乘积为( )A .﹣B .﹣C .D .﹣5. 已知、、的球面上,且,,球心到平面的距离为A B C AC BC ⊥30ABC ∠=oO ABC 1,点是线段的中点,过点作球的截面,则截面面积的最小值为( )M BC M OA B .CD .34π3π6. 已知点A (1,1),B (3,3),则线段AB 的垂直平分线的方程是( )A .y=﹣x+4B.y=x C .y=x+4D .y=﹣x7. 某校新校区建设在市二环路主干道旁,因安全需要,挖掘建设了一条人行地下通道,地下通道设计三视图中的主(正)视力(其中上部分曲线近似为抛物)和侧(左)视图如图(单位:m ),则该工程需挖掘的总土方数为()A .560m 3B .540m 3C .520m 3D .500m 38. 阅读如图所示的程序框图,运行相应的程序.若该程序运行后输出的结果不大于20,则输入的整数i 的最大值为()班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A D OCBA .3B .4C .5D .69. 已知圆方程为,过点与圆相切的直线方程为( )C 222x y +=(1,1)P -C A . B . C . D .20x y -+=10x y +-=10x y -+=20x y ++=10.在△ABC 中,,则这个三角形一定是()A .等腰三角形B .直角三角形C .等腰直角三角D .等腰或直角三角形11.已知表示数列的前项和,若对任意的满足,且,则( )A .B .C .D .12.设是偶函数,且在上是增函数,又,则使的的取值范围是()()f x (0,)+∞(5)0f =()0f x >A .或B .或C .D .或50x -<<5x >5x <-5x >55x -<<5x <-05x <<二、填空题13.如图,正方形的边长为1,它是水平放置的一个平面图形的直观图,则原图的''''O A B C cm 周长为.1111]14.某几何体的三视图如图所示,则该几何体的体积为 15.函数f (x )=x 2e x 在区间(a ,a+1)上存在极值点,则实数a 的取值范围为 . 16.已知直线l :ax ﹣by ﹣1=0(a >0,b >0)过点(1,﹣1),则ab 的最大值是 .17.若实数,,,a b c d 满足24ln 220b a a c d +-+-+=,则()()22a cb d -+-的最小值为 ▲ .18.若等比数列{a n }的前n 项和为S n ,且,则= .三、解答题19.已知等差数列满足:=2,且,成等比数列。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
栾城区一中2018-2019学年高三上学期11月月考数学试卷含答案
一、选择题
1. 已知函数f (x )的图象如图,则它的一个可能的解析式为(
)
A .y=2
B .y=log 3(x+1)
C .y=4﹣
D .
y=
2. 以A={2,4,6,7,8,11,12,13}中的任意两个元素分别为分子与分母构成分数,则这种分数是可约分数的概率是( )
A .
B .
C .
D .
3. 在△ABC 中,b=,c=3,B=30°,则a=( )
A .
B .2
C .或2
D .2
4. 已知集合A={0,1,2},则集合B={x ﹣y|x ∈A ,y ∈A}中元素的个数是( )
A .1
B .3
C .5
D .9
5. 如图,该程序运行后输出的结果为(
)
A .7
B .15
C .31
D .63
6. 已知直线l ⊥平面α,直线m ⊂平面β,有下面四个命题:(1)α∥β⇒l ⊥m ,(2)α⊥β⇒l ∥m ,(3)l ∥m ⇒α⊥β,(4)l ⊥m ⇒α∥β,其中正确命题是(
)
A .(1)与(2)
B .(1)与(3)
C .(2)与(4)
D .(3)与(4)
7. 如果集合 ,同时满足,就称有序集对
,A B {}{}{}{}1,2,3,41,1,1A B B A B =≠≠U I ,A =为“ 好集对”. 这里有序集对是指当时,和是不同的集对, 那么
(),A B (),A B A B ≠(),A B (),B A “好集对” 一共有(
)个
班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
A .个
B .个
C .个
D .个
8. 已知回归直线的斜率的估计值是1.23,样本点的中心为(4,5),则回归直线的方程是( )
A . =1.23x+4
B . =1.23x ﹣0.08
C . =1.23x+0.8
D . =1.23x+0.08
9. 设为数列的前项的和,且,则( )n S {}n a n *3
(1)()2n n S a n =-∈N n a =A .
B .
C .
D .3(32)n
n
-32n
+3n 1
32
n -⋅10.设直线x=t 与函数f (x )=x 2,g (x )=lnx
t 的值为( )A .1
B .
C .
11.设集合,,则{}|22A x R x =∈-≤≤{}|10B x x =-≥A.
B.
C. {}|12x x <≤{}|21x x -≤<{}|21x x -≤≤【命题意图】本题主要考查集合的概念与运算,属容易题.12.过点(2,﹣2)且与双曲线﹣y 2=1A .
﹣
=1
B .
﹣
=1
C .
﹣
=1
﹣
二、填空题
13.圆心在原点且与直线相切的圆的方程为_____ .
2x y +=【命题意图】本题考查点到直线的距离公式,圆的方程,直线与圆的位置关系等基础知识,属送分题.
14.如图,在矩形中,,
ABCD AB = , 在上,若,
3BC =E AC BE AC ⊥ 则的长=____________
ED 15.若双曲线的方程为4x 2﹣9y 2=36,则其实轴长为 .16.设函数f (x )=
的最大值为M ,最小值为m ,则M+m= .
17.定义在(﹣∞,+∞)上的偶函数f (x )满足f (x+1)=﹣f (x ),且f (x )在[﹣1,0]上是增函数,下面五个关于f (x )的命题中:①f (x )是周期函数;
②f (x ) 的图象关于x=1对称;③f (x )在[0,1]上是增函数;④f (x )在[1,2]上为减函数;⑤f (2)=f (0).正确命题的个数是 .
18.将边长为1的正三角形薄片,沿一条平行于底边的直线剪成两块,其中一块是梯形,记,
则S 的最小值是 .
三、解答题
19.(1)求与椭圆有相同的焦点,且经过点(4,3)的椭圆的标准方程.(2)求与双曲线
有相同的渐近线,且焦距为
的双曲线的标准方程.
20.已知函数
.
(1)求f (x )的周期和及其图象的对称中心;
(2)在△ABC 中,角A 、B 、C 的对边分别是a 、b 、c ,满足(2a ﹣c )cosB=bcosC ,求函数f (A )的取值范围.
21.(本小题满分12分)
设函数()()2741201x x f x a a a --=->≠且.
(1)当a =
时,求不等式()0f x <的解集;(2)当[]01x ∈,
时,()0f x <恒成立,求实数的取值范围.22.已知m ∈R ,函数f (x )=(x 2+mx+m )e x .(1)若函数f (x )没有零点,求实数m 的取值范围;
(2)若函数f(x)存在极大值,并记为g(m),求g(m)的表达式;
(3)当m=0时,求证:f(x)≥x2+x3.
23.(本小题满分12分)为了普及法律知识,达到“法在心中”的目的,某市法制办组织了普法
知识竞赛.统计局调查队随机抽取了甲、乙两单位中各5名职工的成绩,成绩如下表:
甲单位8788919193
乙单位8589919293
(1)根据表中的数据,分别求出甲、乙两单位职工成绩的平均数和方差,并判断哪个单位对法律知识的掌握更稳定;
(2)用简单随机抽样法从乙单位5名职工中抽取2名,他们的成绩组成一个样本,求抽取的2名职工的分数差至少是4的概率.
24.设函数f(x)=x3﹣6x+5,x∈R
(Ⅰ)求f(x)的单调区间和极值;
(Ⅱ)若关于x的方程f(x)=a有3个不同实根,求实数a的取值范围.
栾城区一中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)
一、选择题
题号
1
2
3
4
56
7
8
9
10
答案
C
D
C
C
如图,
该程序运行后输
B
B
D
C
D
题号1112答案
B
A
二、填空题
13.2
2
2
x
y +=14.
21215. 6 .
16. 2 .
17. 3个 . 18. .
三、解答题
19. 20.
21.(1)158⎛
⎫-∞ ⎪⎝⎭,;(2)()11128a ⎫∈⎪⎪⎭
U ,,.22.
23.(1),,,,甲单位对法律知识的掌握更稳定;(2).90=甲x 90=乙x 5242
=甲s 82=乙s 2
124.。