平面向量的应用——三角形四心的性质

合集下载

三角形四心的向量性质及应用 学生版

三角形四心的向量性质及应用 学生版

---1---
五.欧拉线: △ABC 的外心 O ,重心 G ,垂心 H 三点共线(欧拉线),且 OG 1 GH . 2
测试题
一.选择题
1. O 是 ABC 所在平面上一定点,动点 P 满足 OP OA ( AB AC) , 0, ,
则点 P 的轨迹一定通过 ABC 的( )
A.外心
B.内心
8.在 △ABC 中,动点
P
2
满足: CA
2
CB
2 AB
CP
,则
P
点轨迹一定通过△ABC
的(
)
A.外心 B.内心 C.重心 D.垂心
9.已知 ABC 三个顶点 A、B、C 及平面内一点 P ,满足 PA PB PC 0 ,若实数 满足: AB AC AP ,
则 的值为(
A.2
)
B. 3 2
,若
2
AB
AB
AC
AB CB
BC CA ,则 ABC 为(
)
A.等腰三角形 二.填空题
C.重心
D.垂心
2.(03 全国理 4) O 是 ABC 所在平面上一定点,动点 P 满足 OP OA ( AB AC ) , 0, ,
AB AC
则点 P 的轨迹一定通过 ABC 的(
)
A.外心
B.内心
C.重心
D.垂心
3. O 是 ABC 所在平面上一定点,动点 P 满足 OP OA ( AB AC ) , R , AB cosB AC cosC
变式:已知 D,E,F 分别为 △ABC 的边 BC,AC,AB 的中点.则 AD BE CF 0 .
二、三角形的外心的向量表示及应用
2
2

平面向量“四心”知识点总结与经典习题【强烈推荐】

平面向量“四心”知识点总结与经典习题【强烈推荐】

平面向量“四心”知识点总结与经典习题【强烈推荐】平面向量的“四心”是指三角形的外心、内心、重心和垂心,它们各自具有特殊的性质。

在高中数学中,向量问题经常与“四心”问题结合考查。

因此,熟悉向量的代数运算和几何意义是解决这类问题的关键。

四心知识点总结如下:重心:1.重心是三角形三条中线的交点,也是重心到三角形三个顶点距离之和最小的点。

2.重心坐标为$(\frac{1}{3}(x_A+x_B+x_C),\frac{1}{3}(y_A+y_B+y_C))$。

垂心:1.垂心是三角形三条高线的交点,也是垂足到三角形三边距离之积最大的点。

2.若垂心为$O$,则有$OA\cdot OB=OA\cdot OC=OB\cdot OC$。

外心:1.外心是三角形三条中垂线的交点,也是到三角形三个顶点距离相等的点。

2.若外心为$O$,则有$OA=OB=OC$,或$(OA+OB)\cdot AB=(OB+OC)\cdot BC=(OC+OA)\cdot CA$。

内心:1.内心是三角形三条角平分线的交点,也是到三角形三边距离之和最小的点。

2.若内心为$O$,则有$a\cdot OA+b\cdot OB+c\cdotOC=0$,其中$a,b,c$为三角形三边的长度。

下面是一些经典题:1.在$\triangle ABC$中,$D,E,F$分别为$BC,CA,AB$的中点,$M$为重心,则$\vec{AM}$等于()。

A。

$\frac{1}{3}(\vec{AD}+\vec{BE}+\vec{CF})$B。

$\frac{1}{2}(\vec{AD}+\vec{BE}+\vec{CF})$C。

$\frac{1}{3}(\vec{AD}+\vec{BE}+\vec{CF})+\vec{OG}$ D。

$\frac{1}{2}(\vec{AD}+\vec{BE}+\vec{CF})+\vec{OG}$ 答案:C2.在$\triangle ABC$中,$O$为坐标原点,$P$满足$\vec{OP}=\frac{1}{3}(\vec{OA}+\vec{OB}+\vec{OC})$,则$P$一定在()上。

平面向量与三角形“四心”

平面向量与三角形“四心”

解题技巧与方法JIETI JIQIAO YU FANGFA 121平面向量与三角形“四心”◎胡建勋刘健( 永吉实验高中132200)平面向量是高中数学的重要工具之一,它不仅可以把几何问题转化为代数问题求解,也可以把代数问题转化为几何问题求解. 它与高中数学的许多模块( 三角函数,平面解析几何,立体几何,数列,不等式等) 都有紧密联系. 借助平面向量研究三角形“四心”问题更会起到意想不到的效果. 本文仅从几个方面加以说明,以餐读者.一、“三角形四心”的向量表示1. 三角形重心的向量表示→ → →G 是△ABC 重心 GA + GB + GC = 0 若 D ,E ,F 分别为→ → → → → →AB ,BC ,CA 中点则CG = 2 GD ( 或AG = 2 GE ,BG = 2GF ) 2. 三角形外心的向量表示 →→ →O 是 △ABC 外 心,==OB OC ( → →→ → →→ → →→OA + OB )·AB = ( OB + OC )·BC = ( OA + OC ) ·AC = 0.3. 三角形内心的向量表示 (→ → )→ →I 是 △ABC 内 心IA ·= IB ·( → → ( →→= IC·= 0.4. 三角形垂心的向量表示H 是 △ABC→→ → → → →垂心 HA ·BC = HB ·AC = HC ·AB→ → → → → →HA·HB = HB·HC = HC·HA .二、“三角形四心”相关问题 1.“三角形四心”的判定解题策略 利用向量运算化简题干中的向量等式,再据“三角形四心”的向量表示判定. 例,(→→)1 点 O 为 △ABC 所在平面内一点OA + OB ·→ ( → →) → ( → →) →AB = OB + OC ·BC = OA + OC ·OB = 0,则 O 是△ABC() .A . 重心B . 外心C . 内心D . 垂心→解析 设 D 为 AB→ →边中点,( OA + OB ) = 2 OD ,由→ →→ → →( OA + OB )·AB = 0,∴ OD·AB = 0,O 在 AB 垂直平分线上,同理 O 应在 BC ,AC 垂直平分线上.∴ O 是△ABC 外心. 应选 B .例 2 点 O 为△ABC 所在平面内一点,且满足→2 +OA BC → 2 = OB → 2 + AC → 2 = OC → 2 +AB →2 ,则 O 是 △ABC的( ) . A . 重心 B . 外心 C . 内心 D . 垂心解析由→2 +→2 = → 2 +→ 2得,OABC OB AC → → → →→ → →→→ ( AC - BC ) ( AC + BC ) + ( OB - OA ) ( OB + OA ) =0, AB( → →) →( → →)AC + BC + AB OB + OA = 0.→ →2 AB·OC = 0,则 O 是△ABC 中 AB 边的高上,同理 O 应在△ABC 中 AC ,BC 边的高上, ∴O 是△ABC 垂心. 应选 D .2.“三角形四心”与动点轨迹解题策略: 探究动点经过特殊点问题,首先据题干给出的向量等式,利用向量运算化简后,结合向量运算的几何意义,判定动点轨迹特征. 例 3 点 O 是△ABC 所在平面内一定点,P 是△ABC 所→ →( → → ),则 P 点轨在平面内一动点,若OP = OA + λ 迹一定通过△ABC 的() .A . 重心B . 外心C . 内心D . 垂心( → → )解析由若+ →OP = OA + λ→→AP =→→→→分别为→,→同向的单位向λ量,AP 与∠A 平分线所在直线共线, ∴ P 过△ABC 内心,应选 C .例 4 点 O 是△ABC 所在平面内一定点,P 是△ABC 所( → →) ( → →)在平面内一动点,若 OP - OA · AB - AC = 0,则 P 点轨迹一定通过△ABC 的A . 重心B . 外心C . 内心D . 垂心解析→ → → → → →→ →AB - AC = CB ,OP - OA = AP ,又∵ ( OP - OA )·( → →)AB - AC= 0,→ →→ →∴ AP·CB = 0,AP ⊥BC . ∴ P 在过 A 点且垂直于 BC 的垂线上,点 P 轨迹过 △ABC 的垂心应选 D .例 5 点 O 是△ABC 所在平面内一定点,P 是△ABC 所→ →→→,则 P 点轨迹一定通过△ABC 的() . A . 重心 B . 外心C . 内心 D.垂心→ → →→得:解析由OA = OP + λ+→→,→ →= λ= 0.→ →∴ PA ⊥BC .∴ P 在过 A 点且垂直于 BC 的直线上,( 转下页)数学学习与研究 2016. 9解题技巧与方法122 JIETI JIQIAO YU FANGFA数列{ n2 }和 S n 的新求法◎郑晶晶 ( 永嘉县东瓯街道办事处消防办,浙江温州 325100) 【摘要】介绍数列{ n2}和 S n的新求法.【关键词】数列; 初等数学= 4 + 4 + 4 + 4笔者在文中介绍了数列{ n2}和 S n的新求法.其很好的= 3 + 3 + 3 = 2 + 2展现了数学之美且易懂.= 1.即: T n + S n =[1 + 2 + 3 + 4 + … + ( n - 1) + n]一式: n2 = 1 + 3 + 5 + 7 + … + ( 2n - 3) + ( 2n - 1) +[1 + 2 + 3 + 4 + … + ( n - 1) + n]= 2 + 4 + 6 + 8 + … + ( 2n - 2) + 2n - n=[1 + 2 + 3 + 4 + … + ( n - 1) + n]·2 - n.+[1 + 2 + 3 + 4 + … + ( n - 1) + n]得到三式:( n2 + n) /2 = 1 + 2 + 3 + 4 + … + ( n - 1) + n +[1 + 2 + 3 + 4 + … + ( n - 1) + n](在这里我们把等号的右边部分看作数列{ n( n + 1) /2}其+[1 + 2 + 3 + 4 + … + ( n - 1) + n].和 T n.(上共有( n + 1)个[1 + 2 + 3 + 4 + … + ( n - 1) + n]相T n =[1 + 2 + 3 + 4 + … + ( n - 1) + n]+ 加)[1 + 2 + 3 + … + ( n - 1)]所以容易得出T n + S n =[1 + 2 + 3 + 4 + … + ( n - 1) + n]·( n + 1) + ( 1 + 2 + 3 + 4) = n·( n + 1) /2·( n + 1)+ ( 1 + 2 + 3) =[n·( n + 1)2]/2.+ ( 1 + 2) 又因为 T n为数列{ n( n + 1) /2}和,+ 1.因为 n( n + 1) /2 = ( n2 + n) /2,二式: n2 = n + n + n + … + n + n.(此处共有 n 个 n 相所以 Tn=[n( n + 1) /2 + S ]/2.加) 所以 T n + S n =[n( n + 1) /2 + S n]/2 + S n.所以所以[n( n + 1) /2 + S n]/2 + S n =[n·( n + 1)2]/2.S n = n + n + n + … + n + n.(此处共有 n 个 n 相加) 最后得出 S n = n( n + 1) ( 2n + 1) /6.= n + n + n + … + n(此处共有 n - 1 个 n - 1 相加)( 接上页)∴ P 在 BC 边高上,应过△ABC 的垂心,应选 D.→例 6 在△ABC 中,动点 M →2 -→2 →满足AC AB = 2 AM·BC,则点 M 一定通过△ABC 的( ) .A.重心B.外心C.内心→2-→2D.垂心→ →→→解析由 AC AB = 2 AM · BC 得: ( AC - AB )→ →→→( AC + AB) = 2 AM·BC→→→→→→设 D 为 BC 中点,AC + AB = 2 AD,2 BC·AD = 2 AM·→ → →BC,BC·MD = 0.M 点应在 BC 的垂直平分线上.应选B.3.“三角形四心”的应用解题策略: 利用向量法解决有关“三角形四心”相关问题,首先确定一组基底,再根据“三角形四心”的向量表示,用向量线性运算,模的运算,向量数量积运算等简化( 经常利用正弦定理和余弦定理) 题干条件.例 7 G 是△ABC 的重心,AB,AC 的边长为 2 和 1,→→) .∠BAC = 60°,则AG·BG等于(A.8 B.-1099C.5 -槡3 D.-5 + 槡39 9→ 1 → →解析AG = ( AB + AC),3→ 1 →→ 1 →→BG = ( BC + BA) = ( AC - 2 AB).3 3→ → 1 →→ 1 →→AG·BG = ( AB + AC) ×( AC - 2 AB)3 31 →2 →→→2)8= ( AC - AB·AC - 2 AB = -.9 9→例 8 O 是外接圆半径为 1 的△ABC 外心,且满足了 3 →→→→OA + 4 OB + 5 OC = 0,则OA·BC =→→→→→→解法 1 →→→OA·BC = OA ( OC - OB) = ,OA ·OC - OA ·→= →= →,OB又∵OA OB OC→→→3 OA +4 OB +5 OC = 0,∴ 9 → 2 →→→= 25 → 2OA + 12 OA·OB + 16 OB OC→→→→→→ 2 →→OA·OB = 0,3 OA + 5 OC = - 4 OB,9 OA + 30 OA·→ 2 = 16 → 2OC + 25 OC OB→ → 3 → → 3∴ OA·OC = -,∴ OA·BC = -.5 5→→解法 2 →→→→由 3 OA + 4 OB + 5 OC = 0,则以 3 OA,4 OB,5 →→OC为边可构成一个边长为3,4,5 的三角形,OA ·BC =→·→cos ∠AOC -→·→cos ∠AOB = cos OA OC OA OB∠AOC - cos∠AOB.∵ cos∠AOB = ,cos∠AOC = -3 →→ 3,∴ OA·BC = -.5 5数学学习与研究2016. 9。

平面向量中的四心问题总结

平面向量中的四心问题总结

平面向量中的四心问题总结平面向量中的四心问题是数学中的一个经典问题,涉及到平面向量的几何性质和运算规律。

在平面向量中,有四个重要的“心”,重心、垂心、外心和内心。

这四个心点在平面向量的运算和几何关系中起着重要的作用,对于理解平面向量的性质和应用具有重要意义。

首先,重心是指由若干个向量确定的几何图形的中心点。

在平面向量中,如果有n个向量A1,A2,...,An,那么它们的重心G可以表示为G=(A1+A2+...+An)/n。

重心在平面向量的平移和旋转中具有重要的作用,可以帮助我们理解向量的平均位置和集中趋势。

其次,垂心是指在三角形中,从顶点到对边的垂线的交点。

在平面向量中,如果有三个向量A、B、C分别代表三角形的三个顶点,那么垂心H可以表示为H=(A+B+C)。

垂心在平面向量中可以帮助我们理解三角形的垂线性质和垂心定理,对于解决相关的几何问题具有重要的作用。

第三,外心是指在三角形中,三条中垂线的交点。

在平面向量中,如果有三个向量A、B、C分别代表三角形的三个顶点,那么外心O可以表示为O=(A+B+C)/2。

外心在平面向量中可以帮助我们理解三角形的外接圆性质和外心定理,对于解决相关的几何问题具有重要的作用。

最后,内心是指在三角形中,三条角平分线的交点。

在平面向量中,如果有三个向量A、B、C分别代表三角形的三个顶点,那么内心I可以表示为I=(aA+bB+cC)/(a+b+c),其中a、b、c分别代表三角形的三个内角的平分线。

内心在平面向量中可以帮助我们理解三角形的内切圆性质和内心定理,对于解决相关的几何问题具有重要的作用。

总的来说,平面向量中的四心问题涉及到重心、垂心、外心和内心这四个重要的几何点,在理论研究和实际应用中都具有重要的地位。

通过对这些问题的研究和理解,可以更深入地理解平面向量的性质和应用,为解决相关的数学和几何问题提供重要的理论基础。

平面向量的应用——三角形四心的性质

平面向量的应用——三角形四心的性质

平面向量的应用——三角形四心的性质一 知识点精讲三角形四“心”向量形式的充要条件设O 为ABC ∆所在平面上一点,角,,A B C 所对边长分别为,,a b c ,则(1)O 为ABC ∆的外心222O A O B O C ⇔== . (2)O 为ABC ∆的重心0OA OB OC ⇔++= .证明: 证明: (3)O 为ABC ∆的垂心OA OB OB OC OC OA ⇔⋅=⋅=⋅.证明: (4)O 为ABC ∆的内心0aOA bOB cOC ⇔++=. 证明:二 典例解析一、重心1. 已知O 是平面上一定点,AB C ,,是平面上不共线的三个点,动点P 满足()OP OA AB AC λ=++,(0)λ∈+∞,,则P 的轨迹一定通过ABC △的( ). A.外心 B.内心 C.重心 D.垂心2. 已知O 是平面上一定点,AB C ,,是平面上不共线的三个点,动点P 满足sin ||sin ||(CAC BAB ++=λ,(0)λ∈+∞,,则动点P 的轨迹一定通过ABC △的( ).A.外心 B.内心 C.重心 D.垂心二、垂心3. O 是ABC △所在平面上一点,222222||||||||||||+=+=+,O 是ABC △___A.外心 B.内心 C.重心 D.垂心4. 已知O 是平面上一定点,AB C ,,是平面上不共线的三个点,动点P 满足cos ||cos ||(CAC BAB ++=λ,(0)λ∈+∞,,则动点P 的轨迹一定通过ABC △的( ).A.外心 B.内心 C.重心 D.垂心三、内心4.(2003江苏) 已知O 是平面上一定点,AB C ,,是平面上不共线的三个点,动点P 满足AB AC OP OA AB AC λ⎛⎫ ⎪=++ ⎪⎝⎭,(0)λ∈+∞,,则动点P 的轨迹一定通过ABC △的( ). A.外心 B.内心 C.重心 D.垂心四、外心5. 已知O 是平面上的一定点,AB C ,,是平面上不共线的三个点,动点P 满足2cos cos OB OC AB AC OP AB B AC C λ⎛⎫+ ⎪=++ ⎪⎝⎭,(0)λ∈+∞,,则动点P 的轨迹一定通过ABC △的.A.外心 B.内心 C.重心 D.垂心6. (2005湖南).设P 是△ABC 内任意一点,S △ABC 表示△ABC 的面积,λ1=ABcPBCS S ∆∆, λ2=ABCPCAS S ∆∆, λ3=ABCPAB S S ∆∆,定义),,()(321λλλ=p f ,若G 是△ABC 的重心,)61,31,21()(=Q f ,则( )A .点Q 在△GAB 内 B .点Q 在△GBC 内C .点Q 在△GCA 内D .点Q 与点G 重合定理:设P 是△ABC 内任意一点,S △ABC 表示△ABC 的面积,则有=++∆∆∆S S S PBC PAC PAB五 判断三角形的形状及求最值 7.在△ABC 中,已知向量210(==⋅+BC AC AB 满足与,则△ABC 为( )A .三边均不相等的三角形B .直角三角形C .等腰非等边三角形D .等边三角形8. 在ΔABC 中,O 为中线AM 上的一个动点,若AM=2,则)(+⋅的最小值为 .六 轨迹问题9.已知)0,1(),0,4(N M ,若动点(,)P x y 满足6||MN MP NP ⋅=,求动点P 的轨迹方程.三课堂检测:1若O 为ABC ∆的内心,且满足()(2)0OB OC OB OC OA -⋅+-=,则ABC ∆的形状为( ) A.等腰三角形 B.正三角形 C.直角三角形 D.钝角三角形2.已知ABC ∆的三个顶点,,A B C 及平面内一点P ,且PA PB PC AB ++=,则点P 与ABC ∆的位置关系是( ) A.P 在ABC ∆内部 B.P 在ABC ∆外部 C.P 在AB 边上或其延长线上 D.P 在AC 边上3.平面直角坐标坐标系中,O 为坐标原点,已知两点A(3,1),B (-1,3),若点C 满足OC=αOA +βOB,若中α、β∈R ,且α+β=1,则点C 的轨迹方程为( )A 、(x -1)2+(y -2)2=5 B 、3x+2y -11=0 C 、2x -y=0 D 、x+2y -5=04.已积OB =(2,0),OC =(2,2),CA = (2cos α,2sin α),则OA 与OB 夹角的范围是( )A 、[0,π4]B 、[π4,5π12]C 、[π12,5π12] D、[5π12,π2] 5.平面向量a =(x ,y ),b =(x 2,y 2),c =(1,1),d =(2,2),若a ·c =b ·d =1,则这样的向量a有A 、1个B 、2个C 、多于2个D 、不存在6.设O 为ABC ∆所在平面上一定点, P 为平面上的动点,且满足()()0OP OA AB AC -⋅-=,则P 点的轨迹一定通过ABC ∆的 心.7. 已知ABC ∆的重心为G ,点O 为ABC ∆所在平面上任意一点,求证:1()3OG OA OB OC =++ .8.,,a b c 为△ABC 的内角A 、B 、C 的对边,(cos ,sin )22C C m = ,(cos ,sin )22C Cn =- ,且m 与n 的夹角为3π,求C ;9.已知A 、B 、C 是直线l 上的不同的三点,O 是外一点,向量,,OA OB OC满足23(1)[ln(23)]02OA x OB x y OC -+∙-+-∙=,记()y f x =.求函数()y f x =的解析式;。

专题:平面向量与三角形四心问题

专题:平面向量与三角形四心问题

专题:平面向量与三角形四心问题三角形四心指的是三角形的垂心、重心、内心和外心,在高考中常常结合平面向量的知识进行考察,是高中数学的一个难点.很多学生对三角形四心总是产生混淆,面对与四心有关的问题也常常束手无策,为了解决广大学子的困扰,本文以四心的常见结论出发,借助几道经典的例题,对三角形四心问题进行系统梳理,希望能够为读者提供帮助.如果读者是在校高中生,则标注了星号的内容可作为拓展知识. 一、三角形的内心(1)定义:三角形内切圆的圆心,即三角形三条角平分线的交点(如图1). (2)向量表示:若O 为△ABC 的内心→→→→=⋅+⋅+⋅⇔0OC c OB b OA a . (注:本文中的边a ,b ,c 分别表示BC ,AC ,AB .角A ,B ,C 分别表示BAC ∠,ABC ∠,ACB ∠.)证明:→→→→→→→→→→=+⋅++⋅+⋅⇔=⋅+⋅+⋅0)()(0AC OA c AB OA b OA a OC c OB b OA a→→→→=⋅+⋅+⋅++⇔0)(AC c AB b OA c b a →→→⋅+⋅=⋅++⇔AC c AB b AO c b a )(||||||||)(→→→→→→→⋅⋅+⋅⋅=⋅++⇔AC AC AC c AB AB AB b AO c b a)||||()(→→→→→+⋅=⋅++⇔AC ACAB ABbc AO c b a)||||(→→→→→+⋅++=⇔AC ACAB AB c b a bc AO (图1)⇔点O 在角A 的角平分线上,同理点O 也在角B 、C 的角平分线上. ⇔O 为△ABC 的内心.(3)常用性质性质1:))(||||(R AC ACAB AB∈+⋅→→→→λλ所在的直线与A ∠的角平分线重合(经过内心).证明:如图所示,||→→AB AB 表示→AB 上的单位向量,不妨记作→AD ,||→→AC AC 表示→AC 上的单位向量,不妨记作→AE .设→→→+=AE AD AP ,由平行四边形法则知,四边形ADPE 为菱形, 故直线AP 为A ∠的角平分线.))(||||(RAC ACAB AB∈+⋅∴→→→→λλ所在的直线与A ∠的角平分线重合(经过内心).性质2:r c b a S ABC ⋅++=∆)(21(r △ABC 内切圆的半径). 证明:由等面积法易证.性质3:O 为△ABC 的内心c b a S S S OAB OAC OBC ::::=⇔∆∆∆. 证明:由面积公式易证. (4)典例剖析例1-1:在△ABC 中,O 为平面内一个定点,动点P 满足)||||(→→→→→→++=AC ACAB ABOA OP λ,),0(+∞∈λ.则动点P 的轨迹经过△ABC 的( )A .内心B .外心C .垂心D .重心 解析:由性质1知,答案为A .例1-2:已知O 是△ABC 所在平面上的一点,若cb a PCc PB b PA a PO ++++=→→→→(其中P 是△ABC 所在平面内任意一点),则O 是△ABC 的( )A .内心B .外心C .垂心D .重心 解析:由题意知→→→→→→++=++PC c PB b PA a PO c PO b aPO ,即+-→→)(PO PA a→→→→→=-+-0)()(PO PC c PO PB b ,化简得→→→→=⋅+⋅+⋅0OC c OB b OA a .根据内心的向量表示知,O 是△ABC 的内心,答案为A .例1-3:已知O 是△ABC 内的一点,且满足0)||||(=-⋅→→→→→AC ACAB ABOA ,则OA 所在的直线一定经过三角形的( )A .内心B .外心C .垂心D .重心解析:||→→AB AB 表示→AB 上的单位向量,不妨记作→1e ,||→→AC AC 表示→AC 上的单位向量,不妨记作→2e .故0)(21=-⋅→→→e e OA ,即→→→→⋅=⋅21e OA e OA ,即>>=<<→→→→21,,e OA e OA .∴直线OA 与A ∠的角平分线重合,故OA 所在的直线一定经过三角形的内心,答案A .二、三角形的外心(1)定义:三角形外接圆的圆心,即三角形三边中垂线的交点(如图2). (2)向量表示:若O 为△ABC 的外心||||||→→→==⇔OC OB OA . (3)常用性质:奔驰定理*:已知O 为△ABC 内的一点(不一定为外心), 则→→∆→∆→∆=⋅+⋅+⋅0OC S OB S OA S OAB OAC OBC .(该定理反之也成立)证明:不妨延长AO 到D (如下图),则 (图2)=++===∆∆∆∆∆∆∆∆ACD ABD OAC OAB ACD OAC ABD OAB S S S S S S S S AD AO ABC OACOAB S S S ∆∆∆+, 即→∆∆∆→+=AD S S S AO ABCOAC OAB .且根据B ,D ,C 三点共线知,→∆∆∆→∆∆∆→+++=AB S S S AC S S S AD OAC OAB OACOAC OAB OAB ,故→∆∆→∆∆→+=AB S S AC S S AO ABC OAC ABC OAB ,即)()(→→∆∆→→∆∆→-+-=-OA OB S S OA OC S S OA ABCOAC ABC OAB . →→∆→∆→∆=⋅+⋅+⋅∴0OC S OB S OA S OAB OAC OBC (反之易证)性质1*:O 为△ABC 的外心C B A S S S OAB OAC OBC 2sin :2sin :2sin ::=⇔∆.证明:如图2所示,O 为△ABC 的外心A R BOC R S OBC 2sin 212sin 2122=∠=⇔∆,B R AOC R S OAC 2sin 212sin 2122=∠=∆,C R AOB R S OAB 2sin 212sin 2122=∠=∆ C B A S S S OAB OAC OBC 2sin :2sin :2sin ::=⇔∆(R 为△ABC 外接圆半径).性质2*:O 为△ABC 的外心→→→→=⋅+⋅+⋅⇔0)2(sin )2(sin )2(sin OC C OB B OA A . 证明:结合性质1与奔驰定理易证.(4)典例剖析例2-1:在△ABC 中,O 为平面内一个定点,动点P 满足++=→→→2OCOB OP )cos ||cos ||(CAC AC BAB AB →→→→+λ,),0(+∞∈λ.则动点P 的轨迹一定经过△ABC 的( )A .内心B .外心C .垂心D .重心 解析:设线段BC 的中点为D ,故)cos ||cos ||(C AC AC BAB AB OD OP →→→→→→++=λ,即)cos ||cos ||(CAC AC BAB AB DP →→→→→+=λ,而)cos ||cos ||(CAC BC AC BAB BC AB BC DP →→→→→→→→⋅+⋅=⋅λ,即)cos ||cos ||||cos ||)cos(||||(CAC CBC AC B AB B BC AB BC DP →→→→→→→→⋅+-⋅=⋅πλ0|)|||(=+-=→→BC BC λ 即→→⊥BC DP ,故点P 在线段BC 的垂直平分线上. ∴动点P 的轨迹一定经过△ABC 的外心,答案B .例2-2:在△ABC 中,动点O 满足→→→→⋅=-BC AO AB AC 222,则点O 一定经过△ABC 的( )A .内心B .外心C .垂心D .重心解析:由题知→→→→→→⋅=+-BC AO AB AC AB AC 2))((,设D 为BC 的中点,则=⋅→→AD BC 2→→⋅BC AO 2,故0=⋅→→OD BC ,即→→⊥OD BC ,O ∴在BC 的垂直平分线上,故点O 一定经过△ABC 的外心,答案B .例2-3:已知O 为△ABC 所在平面内的一点,满足→→→→⋅=⋅BA OB AB OA ,=⋅→→BC OB→→⋅CB OC ,则O 为△ABC 的( )A .内心B .外心C .垂心D .重心解析:由→→→→⋅=⋅BA OB AB OA 知0)(=+⋅→→→OA OB AB ,即0)()(=+⋅-→→→→OA OB OA OB ,即||||→→=OA OB ,同理可得:||||→→=OC OB ,O ∴为△ABC 的外心,答案B .三、三角形的垂心(1)定义:三角形三条高的交点(如图3).(2)向量表示:若O 为△ABC 的垂心→→→→→→⋅=⋅=⋅⇔OC OB OC OA OB OA . 证明:→→→→→→→→→→→⊥⇔=⋅=-⋅⇔⋅=⋅BC OA BC OA OB OC OA OC OA OB OA 0)(.同理→→⊥AC OB ,O AB OC ⇔⊥→→为△ABC 的垂心.(3)常用性质性质1*:O 为锐角△ABC 的垂心⇔=∆∆∆OAB OAC OBC S S S ::C B A tan :tan :tan . (图3)证明:ACDOC b BCDOC a OF b OE a S S OAC OBC ∠⋅⋅∠⋅⋅=⋅⋅=∆∆sin sin ,且在直角△BCD 和直角△ACD 中有 B BCD cos sin =∠,A ACD cos sin =∠.故BAA B B A A b B a S S OAC OBC tan tan cos sin cos sin cos cos =⋅⋅=⋅⋅=∆∆. 同理,CBS S OAB OAC tan tan =∆∆. C B A S S S OAB OAC OBC tan :tan :tan ::=∴∆∆∆,反之易证.性质2*:当O 为锐角△ABC 的垂心→→→→=⋅+⋅+⋅⇔0tan tan tan C OC B OB A OA .证明:利用性质1和“奔驰定理”易证. (4)典例剖析例3-1:在△ABC 中,O 为平面内一个定点,动点P 满足)cos ||cos ||(CAC AC BAB AB OA OP →→→→→→++=λ,),0(+∞∈λ,则动点P 的轨迹一定经过△ABC 的( )A .内心B .外心C .垂心D .重心 解析:由题知)cos ||cos ||(CAC AC BAB AB AP →→→→→+=λ,得=⋅+-⋅=⋅+⋅=⋅→→→→→→→→→→→→→→)cos ||cos ||||cos ||)cos(||||()cos ||cos ||(CAC CBC AC B AB B BC AB CAC BC AC BAB BC AB BC AP πλλ0|)|||(=+-→→BC BC λ,即→→⊥BC AP .P ∴在BC 边上的高上,过垂心,答案C .例3-2:已知O 为△ABC 所在平面内的一点,且满足=+=+→→→→2222||||||||AC OB BC OA22||||→→+AB OC ,则O 是△ABC 的( )A .内心B .外心C .垂心D .重心 解析:由题知2222||||||||→→→→-=-BC AC OB OA ,即=+⋅-→→→→)()(OB OA OB OA)()(→→→→+⋅-BC AC BC AC ,即0)()(=+⋅++⋅→→→→→→OB OA AB BC AC AB ,即02=⋅→→OC AB ,故→→⊥OC AB ,同理→→⊥OB AC ,→→⊥OA BC∴O 是△ABC 的垂心,答案C .例3-3:设O 是△ABC 的外心,点P 满足→→→→=++OP OC OB OA ,则P 是△ABC 的( )A .内心B .任意一点C .垂心D .重心 解析:由题知→→→→→=-=+CP OC OP OB OA ,由于O 是△ABC 的外心,故→→→=+OD OB OA 2(D 为线段AB 的中点)且→→⊥AB OD ,即→→=OD CP 2,→→⊥∴AB CP ,同理→→⊥AC BP ,→→⊥BC AP ,故P 是△ABC 的垂心,答案C .四、三角形的重心(1)定义:三角形三条中线的交点(如图4).(2)向量表示:若O 为△ABC 的重心→→→→=++⇔0OC OB OA . (3)常用性质 ( 图4 )性质1:若O 为△ABC 的重心ABC OBC OAC OAB S S S S ∆∆∆∆===⇔31性质2:若O 为△ABC 的重心→→=⇔AF AO 32,→→=BD BO 32,→→=CF CO 32性质3:已知),(11y x A ,),(22y x B ,),(33y x C .若O 为△ABC 的重心)3,3(321321y y y x x x O ++++⇔.(4)典例剖析例4-1:在△ABC 中,O 为平面内一个定点,动点P 满足)sin ||sin ||(CAC AC BAB AB OA OP →→→→→→++=λ,),0(+∞∈λ,则动点P 的轨迹一定经过△ABC的( )A .内心B .外心C .垂心D .重心 解析:由题知)sin ||sin ||(CAC AC BAB AB AP →→→→→+=λ,其中hC AC B AB ==→→sin ||sin ||(h 表示BC 边上的高),故)(hACh AB AP →→→+=λ→=AF h λ2(F 为线段BC 的中点). P ∴在BC 边上的中线上,故动点P 的轨迹一定经过△ABC 的重心,答案D .例4-2:在△ABC 中,O 为平面内一个定点,动点P 满足])21()1()1[(31→→→→++-+-=OC OB OA OP λλλ,R ∈λ,则动点P 的轨迹一定经过△ABC 的( )A .内心B .外心C .垂心D .重心解析:设AB 的中点为D ,故])21()1(2[31→→→++-=OC OD OP λλ,由于+-3)1(2λ1321=+λ,即点P ,C ,D 三点共线. P ∴在AB 边上的中线上,故动点P 的轨迹一定经过△ABC 的重心,答案D .例4-3:已知O 在△ABC 内,且满足→→→→=++0432OC OB OA ,现在到△ABC 内随机取一点,次点取自△OAB ,△OAC ,△OBC 的概率分别记为1P 、2P 、3P ,则( )A .321P P P ==B .123P P P >>C .321P P P >>D .312P P P >> 解析:法一:如图,延长OA ,OB ,OC 使得OA OD 2=,OB OE 3=,OC OF 4=, 故→→→→=++0OF OE OD ,即O 是△DEF 的重心,即△OED 、△ODF 、 △OEF 的面积相等,不妨令它们的面积都为1. 61=∴∆OAB S ,81=∆OAC S ,121=∆OBC S ,故321P P P >>,答案C . 法二:由“奔驰定理”知,k S OBC 2=∆,k S OAC 3=∆,kS OAB 4=∆(k 为比例系数),故321P P P >>,答案C .法三:根据三角形内心的向量表示,不妨设O 是以2k ,3k ,4k (k 为比例系数)为边长的三角形的内心,所以OBC OAC OAB S S S ∆∆∆>>,即321P P P >>,答案C .五、等腰(边)三角形的四心 (1)等腰三角形等腰三角形只有顶角的角平分线与中线、高三线重合,其余的线不重合.另外,等腰三角形的四心不重合. (2)等边三角形性质1:若△ABC 为等边三角形⇔△ABC 四心合一. 性质2:若△ABC 为等边三角形⇔△ABC 三线合一. 六、欧拉线*瑞士数学家欧拉(1707~1783)于1765年在他的著作《三角形 的几何学》中首次提出:(如图5)任意△ABC (非等边三角形)的垂心D 、重心E 、外心F 三点共线,即欧拉线. (图5)特别地,(如图6)当△ABC 为直角三角形时(A 为直角),垂心D 与A 重合,外心F 在BC 的中点上,欧拉线为直角△ABC 的外接圆半径(或BC 边上的中线).(图6)性质1:在任意三角形中,垂心与重心的距离是重心与外心距离的2倍,即EF DE 2=.。

高考专题之三角形四心的向量性质

高考专题之三角形四心的向量性质

高考专题之三角形“四心”的向量性质四心的概念(1)重心:中线的交点:重心将中线长度分成2:1; (2)垂心:高线的交点:高线与对应边垂直; (3)内心:角平分线的交点(内切圆的圆心):角平分线上的任意点到角两边的距离相等;(4)外心:中垂线的交点(外接圆的圆心):外心到三角形各顶点的距离相等。

一、三角形的重心的向量表示及应用命题一 已知A BC ,,是不共线的三点,G 是ABC △内一点,若G A G B G C ++=0.则G 是ABC △的重心.证明:如图1所示,因为GA GB GC ++=0,所以 ()GA GB GC =-+.以GB ,GC 为邻边作平行四边形BGCD , 则有GD GB GC =+,所以GD GA =-.又因为在平行四边形BGCD 中,BC 交GD 于点E , 所以BE EC =,GE ED =.所以AE 是ABC △的边BC 的中线.故G 是ABC △的重心.点评:①解此题要联系重心的定义和向量加法的意义;②把平面几何知识和向量知识结合起来解决问题是解此类问题的常用方法.例1 如图2所示,ABC △的重心为G O ,为坐标原点,OA =a ,=OB b ,=OC c ,试用a b c ,,表示OG .解:设AG 交BC 于点M ,则M 是BC 的中点,⎪⎩⎪⎨⎧=-=-=-GC OG c GB OG b GA OG a GC GB GA OG c b a ++=-++∴而03=-++∴OG c b a3cb a OG ++=∴ 点评:重心问题是三角形的一个重要知识点,充分利用重心性质及向量加、减运算的几何意义是解决此类题的关键.变式:已知D EF ,,分别为ABC △的边B C A C A ,,的中点.则AD BE CF ++=0.证明:如图的所示,⎪⎪⎪⎩⎪⎪⎪⎨⎧-=-=-=GC CF GBBE GA AD 232323 )(23GC GB GA CF BE AD ++-=++∴0=++GC GB GA AD BE CF ∴++=0..变式引申:如图4,平行四边形ABCD 的中心为O ,P 为该平面上任意一点, 则1()4PO PA PB PC PD =+++.证明:1()2PO PA PC =+,1()2PO PB PD =+, 1()4PO PA PB PC PD ∴=+++.点评:(1)证法运用了向量加法的三角形法则,证法2运用了向量加法的平行四边形法则.(2)若P图3图2与O 重合,则上式变为OA OB OC OD +++=0. 二、三角形的外心的向量表示及应用命题二:已知G 是ABC △==,则点M 为△ABC 的外心。

平面向量及三角形四心问题

平面向量及三角形四心问题

平面向量根本定理与三角形四心O 是ABC ∆内的一点,AOB AOC BOC ∆∆∆,,的面积分别为A S ,B S ,C S ,求证:0=++•••OC S OB S OA S C B A如图2延长OA 与BC 边相交于点D 那么BCCOD ACD BOD ABD COD BOD ACD BD S S DC BD S S S S S S S S A =--===∆∆∆∆∆∆∆图1=OD BC DC OB +BCBDOC=C B BS SS +OB +CB C S S S +OCCB ACOA BOA COD BOD COA COD BOABOD S S S S S S S S S SS OA OD +=++=== 图2∴CB A S S S OD +-=OA∴CB A S S S +-OA =C B BS S S +OB +CB C S S S +OC∴0=++•••OC S OB S OA S C B A推论O 是ABC ∆内的一点,且0=++•••OC OB OA z y x ,那么z y x S S S AOB COA BOC ::::=∆∆∆OA BCDOA BC有此定理可得三角形四心向量式O 是ABC ∆的重心⇔1:1:1::=∆∆∆AOB COA BOC S S S ⇔0=++OC OB OAO 是ABC ∆的内心⇔c b a S S S AOB COA BOC ::::=∆∆∆⇔0=++•••OC OB OA c b aO 是ABC ∆的外心⇔C B A S S S AOB COA BOC 2sin :2sin :2sin ::=∆∆∆ ⇔02sin 2sin 2sin =++•••OCC OB B OA AO 是ABC ∆的垂心⇔C B A S S S AOB COA BOC tan :tan :tan ::=∆∆∆ ⇔0tan tan tan =++•••OC C OB B OA A证明:如图O 为三角形的垂心,DBCDB AD CD A ==tan ,tan ⇒AD DB B A :tan :tan = =∆∆COA BOC S S :AD DB :∴B A S S COA BOC tan :tan :=∆∆同理得C B S S AOB COA tan :tan :=∆∆,C A S S AOB BOC tan :tan:=∆∆∴C B A S S S AOB COA BOC tan :tan :tan ::=∆∆∆奔驰定理是三角形四心向量式的完美统一4.2三角形“四心〞的相关向量问题一.知识梳理:四心的概念介绍:(1) 重心:中线的交点,重心将中线长度分成2:1; (2) 垂心:高线的交点,高线与对应边垂直;(3) 内心:角平分线的交点〔内切圆的圆心〕,角平分线上的任意点到角两边的距离相等; (4) 外心:中垂线的交点〔外接圆的圆心〕,外心到三角形各顶点的距离相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面向量的应用——三角形四心的性质
一 知识点精讲
三角形四“心”向量形式的充要条件
设O 为ABC ∆所在平面上一点,角,,A B C 所对边长分别为,,a b c ,则
(1)O 为ABC ∆的外心222
O A O B O C ⇔== . (2)O 为ABC ∆的重心
0OA OB OC ⇔++= .
证明: 证明: (3)O 为ABC ∆的垂心OA OB OB OC OC OA ⇔⋅=⋅=⋅
.
证明: (4)O 为ABC ∆的内心0aOA bOB cOC ⇔++=
.
证明:
二 典例解析
一、重心
1. 已知O 是平面上一定点,A B C ,,是平面上不共线的三个点,动点P 满足
()OP OA AB AC λ=++
,(0)λ∈+∞,,则P 的轨迹一定通过ABC △的( )
. A.外心 B.内心 C.重心 D.垂心 2. 已知O 是平面上一定点,A B C ,,是平面上不共线的三个点,动点P 满足
)sin ||sin ||C
AC B
AB +
+=λ,(0)λ∈+∞,,则动点P 的轨迹一定通过
ABC △的( )
. A.外心 B.内心 C.重心 D.垂心
二、垂心
3. O 是ABC △所在平面上一点,2
2
2
2
2
2
||||||||||||AB OC CA OB BC OA +=+=+,O 是ABC △___
A.外心 B.内心 C.重心 D.垂心
4. 已知O 是平面上一定点,A B C ,,是平面上不共线的三个点,动点P 满足
cos ||cos ||C
AC B
AB +
+=λ,(0)λ∈+∞,,则动点P 的轨迹一定通过
ABC △的( )
. A.外心 B.内心 C.重心 D.垂心
三、内心
4.(2003江苏) 已知O 是平面上一定点,A B C ,,是平面上不共线的三个点,动点P 满
足AB AC OP OA AB AC λ⎛⎫ ⎪=++ ⎪⎝⎭
,(0)λ∈+∞,
,则动点P 的轨迹一定通过ABC △的( ). A.外心 B.内心 C.重心 D.垂心
四、外心
5. 已知O 是平面上的一定点,A B C ,,是平面上不共线的三个点,动点P 满足
2
cos cos OB OC AB AC OP AB B AC C λ⎛⎫+ ⎪=++ ⎪⎝⎭
,(0)λ∈+∞,,则动点P 的轨迹一定通过ABC △的.
A.外心 B.内心 C.重心 D.垂

6. (2005湖南).设P 是△ABC 内任意一点,S △ABC 表示△ABC 的面积,λ1=
ABc
PBC
S S ∆∆, λ2=
ABC
PCA
S S ∆∆, λ3=
ABC PAB S S ∆∆,定义),,()(321λλλ=p f ,若G 是△ABC 的重心,)6
1
,31,21()(=Q f ,则( ) A .点Q 在△GAB 内 B .点Q 在△GBC 内 C .点Q 在△GCA 内 D .点Q 与点G 重合
定理:设P 是△ABC 内任意一点,S △ABC 表示△ABC 的面积,则有
=++∆∆∆S S S PBC PAC PAB
五 判断三角形的形状及求最值 7.在△ABC 中,已知向量2
1
|
|||0|
||
|=
=⋅+
AC AB AC AB 满足与,则△ABC 为( )
A .三边均不相等的三角形
B .直角三角形
C .等腰非等边三角形
D .等边三
角形
8. 在ΔABC 中,O 为中线AM 上的一个动点,若AM=2,则)(+⋅的最小值
为 .
三课堂检测:
1若O 为ABC ∆的内心,且满足()(2)0OB OC OB OC OA -⋅+-=
,则ABC ∆的形状为
( ) A.等腰三角形 B.正三角形 C.直角三角形 D.钝角三角形
2.已知ABC ∆的三个顶点,,A B C 及平面内一点P ,且PA PB PC AB ++=
,则点P 与
ABC ∆的位置关系是( ) A.P 在ABC ∆内部 B.P 在ABC ∆外部 C.P 在AB 边上或其延长线上 D.P 在AC 边上
3.平面直角坐标坐标系中,O 为坐标原点,已知两点A(3,1),B (-1,3),若点C 满足OC
=αOA +βOB
,若中α、β∈R ,且α+β=1,则点C 的轨迹方程为( )
A 、(x -1)2
+(y -2)2
=5 B 、3x+2y -11=0 C 、2x -y=0 D 、x+2y -5=0
4.已积OB =(2,0),OC =(2,2),CA = (2cos α,2sin α),则OA 与OB 夹角的
范围是( )
A 、[0,π4]
B 、[π4,5π12]
C 、[π12,5π
12
] D

[
5π12,π
2
] 5.平面向量a =(x ,y ),b =(x 2,y 2
),c =(1,1),d =(2,2),若a ·c =b ·d =1,则这样的向量a
有A 、1个
B 、2个
C 、多于2个
D 、不存在
6.设O 为ABC ∆所在平面上一定点, P 为平面上的动点,且满足
()()0O P O A A B A C -⋅-= ,则
P 点的轨迹一定通过ABC ∆的 心.
7. 已知ABC ∆的重心为G ,点O 为ABC ∆所在平面上任意一点,求证:
1()3
OG OA OB OC =++ .
8.,,a b c 为△ABC 的内角A 、B 、C 的对边,(cos ,sin )22C C m = ,(cos ,sin )22
C C
n =- ,
且m 与n 的夹角为3
π
,求C ;
9.已知A 、B 、C 是直线l 上的不同的三点,O 是外一点,向量,,OA OB OC
满足
23(1)[ln(23)]02
OA x OB x y OC -+∙-+-∙=
,记()y f x =.求函数()y f x =的解析式;。

相关文档
最新文档