三角形四心的向量性质

合集下载

向量与三角形内心、外心、重心、垂心

向量与三角形内心、外心、重心、垂心

向量与三角形的重心、垂心、内心、外心的关系一、四心的概念介绍、(1)重心——中线的交点:重心将中线长度分成2:1;(2)垂心——高线的交点:高线与对应边垂直;(3)内心——角平分线的交点(内切圆的圆心):角平分线上的任意点到角两边距离相等;(4)外心——中垂线的交点(外接圆的圆心):外心到三角形各顶点的距离相等。

二、四线与向量的结合121212,PA =1=,=.ABOA OB PB AB λλλλλλ=++ 1.定理:如图,设OP 则,且(记忆:交叉分配系数)=()OA OBAP BPλ+2.若M是OP上的任意一点,则OM (记忆:分母对应分配系数)应用1:(1)中线:(2)高线:(3)角平分线:(4)中垂线:应用2.四线上的动点表示:(1)中线上的动点:()AB AC λ+ 或()||sin ||sin AB ACAB B AC Cλ+(2)高线上的动点:()cos cos AB ACAB B AC Cλ+,(3)角平分线上的动点:()AB ACAB AC λ+ (4)中垂线上的动点:()2||cos ||cos OB OC AB ACOP AB B AC Cλ+=++ ,三、四心与向量的结合1.BOC AOC AOB O ABC S OA S OB S OC ∆∆∆∆++=定理:设是内任意一点,则(记忆:拉力平衡原则)应用:(1)O 是ABC ∆的重心.⇔b a S S S AOB AOC BOC ::::=∆∆∆=1:1:1⇔OA OB OC ++=(2)O 为ABC ∆的垂心.⇔Ctan B tan A tan S S S AOB AOC BOC ::::=∆∆∆⇔0OC C tan OB B tan OA A tan =++(3)O 为ABC ∆的内心.⇔c b a S S S AOB AOC BOC ::::=∆∆∆=sin :sin :sin A B C⇔0OC C sin OB B sin OA A sin 0OC c OB b OA a =++=++或⇔0aOA bOB cOC ++=(4)O 为ABC ∆的外心⇔⇔0OC C 2sin OB B 2sin OA A 2sin =++C 2sin :B 2sin :A 2sin AOB sin AOC sin BOC sin S S S AOB AOC BOC =∠∠∠=∆∆∆::::2.四心的向量表示:(1)O 是ABC ∆的重心.⇔1()3P O P A P B P C =++(2)O 为ABC ∆的垂心.⇔OA OB OB OC OC OA⋅=⋅=⋅(3)O 为ABC ∆的内心.⇔(()()0AB AC BC BA CA CBOA OB OC AB AC BC BA CA CB∙-=∙-=∙= (4)O 为ABC ∆的外心⇔==四.典型例题:一、与三角形“四心”相关的向量问题题1:已知O 是平面上一定点,A、B、C 是平面上不共线的三个点,动点P 满足||||AB AC OP OA AB AC λ⎛⎫=++ ⎪⎝⎭,[0,)λ∈+∞.则P 点的轨迹一定通过△ABC 的A.外心B.内心C.重心D.垂心题2:已知O 是平面上一定点,A、B、C 是平面上不共线的三个点,动点P 满足()OP OA AB AC λ=++,[0,)λ∈+∞.则P 点的轨迹一定通过△ABC 的()A.外心B.内心C.重心D.垂心题3:已知O 是平面上的一定点,A、B、C 是平面上不共线的三个点,动点P 满足()||sin ||sin AB ACOP OA AB B AC Cλ=++,[0,)λ∈+∞,则动点P 的轨迹一定通过△ABC 的A.重心B.垂心C.外心D.内心题4:已知O 是平面上的一定点,A、B、C 是平面上不共线的三个点,动点P 满足(||cos ||cos AB ACOP OA AB B AC Cλ=++,[0,)λ∈+∞,则动点P 的轨迹一定通过△ABC 的()A.重心B.垂心C.外心D.内心题5:已知O 是平面上的一定点,A、B、C 是平面上不共线的三个点,动点P 满足(2||cos ||cos OB OC AB ACOP AB B AC Cλ+=++ ,[0,)λ∈+∞,则动点P 的轨迹一定通过△ABC 的()A.重心B.垂心C.外心D.内心题6:三个不共线的向量,,OA OB OC 满足(||||AB CA OA AB CA ⋅+ =(||BA OB BA ⋅+||CB CB )=(||||BC CA OC BC CA ⋅+=0,则O 点是△ABC 的()A.垂心B.重心C.内心D.外心题7:已知O 是△ABC 所在平面上的一点,若OA OB OC ++=0,则O 点是△ABC的()A.外心B.内心C.重心D.垂心题8:已知O 是△ABC 所在平面上的一点,若1()3PO PA PB PC =++(其中P 为平面上任意一点),则O 点是△ABC 的()A.外心B.内心C.重心D.垂心题9:已知O 是△ABC 所在平面上的一点,若OA OB OB OC OC OA ⋅=⋅=⋅,则O点是△ABC 的()A.外心B.内心C.重心D.垂心题10:已知O 为△ABC 所在平面内一点,满足2222||||||||OA BC OB CA +=+=22||||OC AB +,则O 点是△ABC 的()A.垂心 B.重心C.内心D.外心题11:已知O 是△ABC 所在平面上的一点,若()OA OB AB +⋅ =()OB OC BC +⋅=()OC OA CA +⋅=0,则O 点是△ABC 的()A.外心B.内心C.重心D.垂心题12:已知O 是△ABC 所在平面上的一点,若aOA bOB cOC ++=0,则O 点是△ABC 的()A.外心B.内心C.重心D.垂心题13:已知O 是△ABC 所在平面上的一点,若aPA bPB cPCPO a b c++=++(其中P 是△ABC 所在平面内任意一点),则O 点是△ABC 的()A.外心B.内心C.重心D.垂心题14:△ABC 的外接圆的圆心为O ,两边上的高的交点为H ,OH=()m OA OB OC ++ ,则实数m =____________.二、与三角形形状相关的向量问题题15:已知非零向量AB与AC 满足()||||AB AC BC AB AC +⋅=0且12||||AB AC AB AC ⋅=,则△ABC 为()A.三边均不相等的三角形B.直角三角形C.等腰非等边三角形D.等边三角形题16:已知O 为△ABC 所在平面内一点,满足|||2|OB OC OB OC OA -=+-,则△ABC 一定是()A.等腰直角三角形B.直角三角形C.等腰三角形D.等边三角形题17:已知△ABC,若对任意t R ∈,||BA t BC - ≥||AC,则△ABC()A.必为锐角三角形B.必为钝角三角形C.必为直角三角形D.答案不确定题18:已知a ,b,c 分别为△ABC 中∠A,∠B,∠C 的对边,G 为△ABC 的重心,且a GA b GB c GC ⋅+⋅+⋅=0,则△ABC 为()A.等腰直角三角形B.直角三角形C.等腰三角形D.等边三角形三、与三角形面积相关的向量问题题19:已知点O 是△ABC 内一点,23OA OB OC ++=0,则:(1)△AOB 与△AOC 的面积之比为___________________;(2)△ABC 与△AOC 的面积之比为___________________;(3)△ABC 与四边形ABOC 的面积之比为_____________.四、向量的基本关系(共线)题20:如图,已知点G 是△ABC 的重心,若PQ 过△ABC 的重心,记CA =a ,CB =b ,CP =m a ,CQ =n b ,则11m n+=_____.练习.O 为ABC ∆平面上一定点,该平面上一动点p 满足{|(sin ABM P OP OA C ABλ==++sin )0}ACB ACλ> ,,则ABC ∆的()一定属于集合M .(A)重心(B)垂心(C)外心(D)内心GABC MPQ。

向量形式下的三角形四心相关结论

向量形式下的三角形四心相关结论

向量形式下的三角形四心相关结论
向量形式下的三角形四心相关结论三角形是几何学中的重要概念之一,其四心是指三角形内部的四个特殊点,包括重心、外心、内心和垂心。

在向量形式下,我们可以得出一些有关这四个点的重要结论。

重心是三角形内部三条中线的交点,用向量表示为G=(A+B+C)/3,其中A、B、C分别是三角形的三个顶点。

重心具有平衡的作用,对于任意一点P,PG的向量和PA、PB、PC 的向量和为零。

外心是三角形外接圆的圆心,用向量表示为O=(aA+bB+cC)/(a+b+c),其中a、b、c分别是三角形的三个边长。

外心具有唯一性,且到三角形三个顶点的距离相等。

内心是三角形内切圆的圆心,用向量表示为I=(aA+bB+cC)/(a+b+c),其中a、b、c分别是三角形的三条边的长度。

内心到三角形三个边的距离相等,且与三角形的角度有关。

垂心是三角形三条高的交点,用向量表示为H=A+B+C。

垂心到三角形三个顶点的距离相等,且与三角形的角度有关。

综上所述,向量形式下的三角形四心具有一些重要的性质。

研究这些结论不仅可以帮助我们更好地理解三角形的几何特性,还可以应用于解决一些与三角形相关的问题。

三角形重心、外心、垂心、内心的向量表示及其性质

三角形重心、外心、垂心、内心的向量表示及其性质

三角形“四心”向量形式的充要条件应用1.O 是ABC ∆的重心⇔0OC OB OA =++;若O 是ABC ∆的重心,则AB C AOB AOC B OC S 31S S S ∆∆∆∆===故0OC OB OA =++;1()3PG PA PB PC =++u u u r u u u r u u u r u u u r⇔G 为ABC ∆的重心. 2.O 是ABC ∆的垂心⇔OA OC OC OB OB OA ⋅=⋅=⋅;若O 是ABC ∆(非直角三角形)的垂心,则C tan B tan A tan S S S AOB AOC BOC ::::=∆∆∆ 故C tan B tan A tan =++3.O 是ABC ∆的外心⇔||||||==(或222OC OB OA ==)若O 是ABC ∆的外心则C 2sin :B 2sin :A 2sin AOB sin AOC sin BOC sin S S S AOB AOC BOC =∠∠∠=∆∆∆:::: 故0OC C 2sin OB B 2sin OA A 2sin =++ 4.O 是内心ABC ∆的充要条件是|CB ||CA |(|BC ||BA |(AC|AB |(=⋅=⋅=⋅引进单位向量,使条件变得更简洁。

如果记,,的单位向量为321e ,e ,e ,则刚才O 是ABC ∆内心的充要条件可以写成 0)e e ()e e ()e e (322131=+⋅=+⋅=+⋅ ,O 是ABC ∆内心的充要条件也可以是0OC c OB b OA a =++ 。

若O 是ABC ∆的内心,则c b a S S S AOB AOC BOC ::::=∆∆∆故 0OC C sin OB B sin OA A sin 0OC c OB b OA a =++=++或;||||||0AB PC BC PA CA PB P ++=⇔u u u r u u u r u u u r u u u r u u u r u u u r r是ABC ∆的内心;向量()(0)||||AC AB AB AC λλ+≠u u u r u u u ruu u r u u u r 所在直线过ABC ∆的内心(是BAC ∠的角平分线所在直线);例1.O 是平面上的一定点,A,B,C 是平面上不共线的三个点,动点P 满足++=λ,[)+∞∈,0λ则P 点的轨迹一定通过ABC ∆的( )(A )外心(B )内心(C )重心(D )垂心 解析:因为AB是向量AB u u u r 的单位向量设AB u u u r与AC u u u r 方向上的单位向量分别为21e e 和, 又AP OA OP =-,则原式可化为)(21e e AP +=λ,由菱形的基本性质知AP 平分BAC ∠,那么在ABC ∆中,AP 平分BAC ∠,则知选B.(二)将平面向量与三角形垂心结合考查“垂心定理”例2. H 是△ABC 所在平面内任一点,HA HC HC HB HB HA ⋅=⋅=⋅⇔点H 是△ABC 的垂心. 由AC HB AC HB HA HC HB HC HB HB HA ⊥⇔=⋅⇔=-⋅⇔⋅=⋅00)(, 同理AB HC ⊥,BC HA ⊥.故H 是△ABC 的垂心. (反之亦然(证略))例3.(湖南)P 是△ABC 所在平面上一点,若PA PC PC PB PB PA ⋅=⋅=⋅,则P 是△ABC 的(D )A .外心B .内心C .重心D .垂心解析:由0=⋅-⋅⋅=⋅PC PB PB PA PC PB PB PA 得.即0,0)(=⋅=-⋅CA PB PC PA PB 即 则AB PC BC PA CA PB ⊥⊥⊥,,同理 所以P 为ABC ∆的垂心. 故选D. (三)将平面向量与三角形重心结合考查“重心定理”例4. G 是△ABC 所在平面内一点,GC GB GA ++=0⇔点G 是△ABC 的重心.证明 作图如右,图中GE GC GB =+连结BE 和CE ,则CE=GB ,BE=GC ⇔BGCE 为平行四边形⇒D 是BC 的中点,AD 为BC 边上的中线. 将GE GC GB =+代入GC GB GA ++=0,得EG GA +=0⇒GD GE GA 2-=-=,故G 是△ABC 的重心.(反之亦然(证略)) 例5. P 是△ABC 所在平面内任一点.G 是△ABC 的重心⇔)(31PC PB PA PG ++=. 证明 CG PC BG PB AG PA PG +=+=+=⇒)()(3PC PB PA CG BG AG PG +++++= ∵G 是△ABC 的重心 ∴GC GB GA ++=0⇒CG BG AG ++=0,即PC PB PA PG ++=3 由此可得)(31PC PB PA PG ++=.(反之亦然(证略))例6 若O 为ABC ∆内一点,0OA OB OC ++=u u u r u u u r u u u r r,则O 是ABC ∆ 的( )A .内心B .外心C .垂心D .重心解析:由0OA OB OC ++=u u u r u u u r u u u r r 得OB OC OA +=-u u u r u u u r u u u r,如图以OB 、OC 为相邻两边构作平行四边形,则OB OC OD +=u u u r u u u r u u u r ,由平行四边形性质知12OE OD =u u u r u u u r,2OA OE =,同理可证其它两边上的这个性质,所以是重心,选D 。

向量与三角形内心外心重心垂心

向量与三角形内心外心重心垂心

向量与三角形的重心、垂心、内心、外心的关系一、四心的概念介绍、(1)重心——中线的交点:重心将中线长度分成2:1; (2)垂心——高线的交点:高线与对应边垂直; (3)内心——角平分线的交点(内切圆的圆心):角平分线上的任意点到角两边的距离相等;(4)外心——中垂线的交点(外接圆的圆心):外心到三角形各顶点的距离相等。

二、四线与向量的结合121212,PA =1=,=.ABOA OB PB AB λλλλλλ=++u u r u u u r u u u r1.定理:如图,设OP 则,且(记忆:交叉分配系数)=()OA OBAP BPλ+u u u r u u u r2.若M 是OP 上的任意一点,则OM (记忆:分母对应分配系数)应用1:(1)中线: (2)高线:(3)角平分线: (4)中垂线:应用2.四线上的动点表示:(1)中线上的动点: ()AB AC λ+u u u r u u u r 或()||sin ||sin ABAC AB B AC Cλ+u u u ru u u r u u ur u u u r(2)高线上的动点:()cos cos AB ACAB B AC Cλ+u u u r u u u r u u u r u u u r, (3)角平分线上的动点:()AB ACAB AC λ+u u u r u u u r u u u r u u u r(4)中垂线上的动点: ()2||cos ||cos OB OC AB ACOP AB B AC Cλ+=++u u u r u u u r u u u r u u u r u u u r u u u r u u u r ,三、四心与向量的结合 1.BOC AOC AOB O ABC S OA S OB S OC ∆∆∆∆++=u u u r u u u r u u u r r 定理:设是内任意一点,则(记忆:拉力平衡原则) 应用:(1)O 是ABC ∆的重心. ⇔b a S S S AOB AOC BOC ::::=∆∆∆=1:1:1⇔ 0OA OB OC ++=u u u r u u u r u u u r r(2)O 为ABC ∆的垂心. ⇔ C tan B tan A tan S S S AOB AOC BOC ::::=∆∆∆ ⇔0OC C tan OB B tan OA A tan =++(3)O 为ABC ∆的内心.⇔c b a S S S AOB AOC BOC ::::=∆∆∆=sin :sin :sin A B C⇔0OC C sin OB B sin OA A sin 0OC c OB b OA a =++=++或⇔0aOA bOB cOC ++=u u u r u u u r u u u r r (4)O 为ABC ∆的外心⇔ ⇔ 0OC C 2sin OB B 2sin OA A 2sin =++2.四心的向量表示:(1)O 是ABC ∆的重心. ⇔ 1()3PO PA PB PC =++u u u ru u u ru u u ru u u r(2)O 为ABC ∆的垂心. ⇔OA OB OB OC OC OA ⋅=⋅=⋅u u u r u u u r u u u r u u u r u u u r u u u r(3)O 为ABC ∆的内心.⇔()()()0AB AC BC BA CA CBOA OB OC AB AC BC BA CA CB•-=•-=•-=u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r (4)O 为ABC ∆的外心 ⇔OC OB OA ==四.典型例题:一、与三角形“四心”相关的向量问题题1:已知O 是平面上一定点,A 、B 、C 是平面上不共线的三个点,动点P 满足||||AB AC OP OA AB AC λ⎛⎫=++ ⎪⎝⎭u u u r u u u ru u u r u u u r u u u r u u u r , [0,)λ∈+∞. 则P 点的轨迹一定通过△ABC 的 A. 外心 B. 内心 C. 重心 D. 垂心题2:已知O 是平面上一定点,A 、B 、C 是平面上不共线的三个点,动点P 满足()OP OA AB AC λ=++u u u r u u u r u u u r u u u r, [0,)λ∈+∞. 则P 点的轨迹一定通过△ABC 的( )A. 外心B. 内心C. 重心D. 垂心题3:已知O 是平面上的一定点,A 、B 、C 是平面上不共线的三个点,动点P 满足()||sin ||sin AB ACOP OA AB B AC Cλ=++u u u r u u u ru u u r u u u r u u u r u u u r ,[0,)λ∈+∞, 则动点P 的轨迹一定通过△ABC 的 C 2sin :B 2sin :A 2sin AOB sin AOC sin BOC sin S S S AOB AOC BOC =∠∠∠=∆∆∆::::A. 重心B. 垂心C. 外心D. 内心题4:已知O 是平面上的一定点,A 、B 、C 是平面上不共线的三个点,动点P 满足()||cos ||cos AB ACOP OA AB B AC Cλ=++u u u r u u u ru u u r u u u r u u u r u u u r ,[0,)λ∈+∞, 则动点P 的轨迹一定通过△ABC 的( )A. 重心B. 垂心C. 外心D. 内心题5:已知O 是平面上的一定点,A 、B 、C 是平面上不共线的三个点,动点P 满足()2||cos ||cos OB OC AB ACOP AB B AC Cλ+=++u u u r u u u r u u u r u u u r u u u r u u u r u u u r , [0,)λ∈+∞, 则动点P 的轨迹一定通过△ABC 的( )A. 重心B. 垂心C. 外心D. 内心题6:三个不共线的向量,,OA OB OC u u u r u u u r u u u r 满足()||||AB CA OA AB CA ⋅+u u u r u u u r u u u r u u u r u u u r =(||BA OB BA ⋅u u u r u u u r u u u r+||CB CB u u u r u u u r ) =()||||BC CA OC BC CA ⋅+u u u r u u u r u u u r u u u r u u u r = 0,则O 点是△ABC 的( )A. 垂心B. 重心C. 内心D. 外心题7:已知O 是△ABC 所在平面上的一点,若OA OB OC ++u u u r u u u r u u u r= 0, 则O 点是△ABC的( )A. 外心B. 内心C. 重心D. 垂心题8:已知O 是△ABC 所在平面上的一点,若1()3PO PA PB PC =++u u u r u u u r u u u r u u u r(其中P 为平面上任意一点), 则O 点是△ABC 的( )A. 外心B. 内心C. 重心D. 垂心题9:已知O 是△ABC 所在平面上的一点,若OA OB OB OC OC OA ⋅=⋅=⋅u u u r u u u r u u u r u u u r u u u r u u u r,则O点是△ABC 的( )A. 外心B. 内心C. 重心D. 垂心题10:已知O 为△ABC 所在平面内一点,满足2222||||||||OA BC OB CA +=+u u u r u u u r u u u r u u u r=22||||OC AB +u u u r u u u r ,则O 点是△ABC 的( )A. 垂心B. 重心C. 内心D. 外心题11:已知O 是△ABC 所在平面上的一点,若()OA OB AB +⋅u u u r u u u r u u u r =()OB OC BC +⋅u u u r u u u r u u u r= ()OC OA CA +⋅u u u r u u u r u u u r= 0,则O 点是△ABC 的( )A. 外心B. 内心C. 重心D. 垂心 题12:已知O 是△ABC 所在平面上的一点,若aOA bOB cOC ++u u u r u u u r u u u r= 0,则O 点是△ABC 的( )A. 外心B. 内心C. 重心D. 垂心题13:已知O 是△ABC 所在平面上的一点,若aPA bPB cPCPO a b c++=++u u u r u u u r u u u ru u u r (其中P 是△ABC 所在平面内任意一点),则O 点是△ABC 的( )A. 外心B. 内心C. 重心D. 垂心题14:△ABC 的外接圆的圆心为O ,两边上的高的交点为H ,OH u u u r =()m OA OB OC ++u u u r u u u r u u u r,则实数m =____________.二、与三角形形状相关的向量问题 题15:已知非零向量ABu u u r 与AC uuu r 满足()||||AB AC BC AB AC +⋅u u u r u u u ru u ur u u u r u u u r = 0且12||||AB AC AB AC ⋅=u u u r u u u ru u u r u u u r ,则△ABC 为( ) A. 三边均不相等的三角形 B. 直角三角形 C. 等腰非等边三角形 D. 等边三角形 题16:已知O 为△ABC 所在平面内一点,满足|||2|OB OC OB OC OA -=+-u u u r u u u r u u u r u u u r u u u r,则△ABC 一定是( )A. 等腰直角三角形B. 直角三角形C. 等腰三角形D. 等边三角形题17:已知△ABC ,若对任意t R ∈,||BA tBC -u u u r u u u r ≥||AC u u u r,则△ABC( )A. 必为锐角三角形B. 必为钝角三角形C. 必为直角三角形D. 答案不确定题18:已知a , b, c 分别为△ABC 中∠A, ∠B, ∠C 的对边,G 为△ABC 的重心,且a GA b GB c GC ⋅+⋅+⋅u u u r u u u r u u u r= 0, 则△ABC 为( )A. 等腰直角三角形B. 直角三角形C. 等腰三角形D. 等边三角形 三、与三角形面积相关的向量问题题19:已知点O 是△ABC 内一点,23OA OB OC ++u u u r u u u r u u u r= 0, 则:(1) △AOB 与△AOC 的面积之比为___________________; (2) △ABC 与△AOC 的面积之比为___________________; (3) △ABC 与四边形ABOC 的面积之比为_____________. 四、向量的基本关系(共线)题20:如图,已知点G 是△ABC 的重心,若PQ uuu r过△ABC 的重心,记CA u u u r = a ,CB u u u r = b , CP u u u r = m a , CQ uuu r = n b , 则11m n+=_____.练习.O 为ABC ∆平面上一定点,该平面上一动点p 满足{|(sin ABM P OP OA C ABλ==++u u u ru u u r u u u r u u u r sin )0}AC B ACλ>u u u r u u u r ,,则ABC ∆的( ) 一定属于集合M .(A )重心 (B )垂心 (C )外心 (D )内心GABCMP Q。

高考专题之三角形四心的向量性质

高考专题之三角形四心的向量性质

高考专题之三角形“四心”的向量性质四心的概念(1)重心:中线的交点:重心将中线长度分成2:1; (2)垂心:高线的交点:高线与对应边垂直; (3)内心:角平分线的交点(内切圆的圆心):角平分线上的任意点到角两边的距离相等;(4)外心:中垂线的交点(外接圆的圆心):外心到三角形各顶点的距离相等。

一、三角形的重心的向量表示及应用命题一 已知A BC ,,是不共线的三点,G 是ABC △内一点,若G A G B G C ++=0.则G 是ABC △的重心.证明:如图1所示,因为GA GB GC ++=0,所以 ()GA GB GC =-+.以GB ,GC 为邻边作平行四边形BGCD , 则有GD GB GC =+,所以GD GA =-.又因为在平行四边形BGCD 中,BC 交GD 于点E , 所以BE EC =,GE ED =.所以AE 是ABC △的边BC 的中线.故G 是ABC △的重心.点评:①解此题要联系重心的定义和向量加法的意义;②把平面几何知识和向量知识结合起来解决问题是解此类问题的常用方法.例1 如图2所示,ABC △的重心为G O ,为坐标原点,OA =a ,=OB b ,=OC c ,试用a b c ,,表示OG .解:设AG 交BC 于点M ,则M 是BC 的中点,⎪⎩⎪⎨⎧=-=-=-GC OG c GB OG b GA OG a GC GB GA OG c b a ++=-++∴而03=-++∴OG c b a3cb a OG ++=∴ 点评:重心问题是三角形的一个重要知识点,充分利用重心性质及向量加、减运算的几何意义是解决此类题的关键.变式:已知D EF ,,分别为ABC △的边B C A C A ,,的中点.则AD BE CF ++=0.证明:如图的所示,⎪⎪⎪⎩⎪⎪⎪⎨⎧-=-=-=GC CF GBBE GA AD 232323 )(23GC GB GA CF BE AD ++-=++∴0=++GC GB GA AD BE CF ∴++=0..变式引申:如图4,平行四边形ABCD 的中心为O ,P 为该平面上任意一点, 则1()4PO PA PB PC PD =+++.证明:1()2PO PA PC =+,1()2PO PB PD =+, 1()4PO PA PB PC PD ∴=+++.点评:(1)证法运用了向量加法的三角形法则,证法2运用了向量加法的平行四边形法则.(2)若P图3图2与O 重合,则上式变为OA OB OC OD +++=0. 二、三角形的外心的向量表示及应用命题二:已知G 是ABC △==,则点M 为△ABC 的外心。

三角形四心的向量性质及证明

三角形四心的向量性质及证明

三角形四心的向量性质及证明符号说明:“AB”表示向量,“|AB|”表示向量的模【一些结论】:以下皆是向量1 若P是△ABC的重心PA+PB+PC=02 若P是△ABC的垂心PA*PB=PB*PC=PA*PC(内积)3 若P是△ABC的内心aPA+bPB+cPC=0(abc是三边)4 若P是△ABC的外心|PA|=|PB|=|PC|(AP就表示AP向量 |AP|就是它的模)5 AP=λ(AB/|AB|+AC/|AC|),λ∈[0,+∞) 则直线AP经过△ABC内心6 AP=λ(AB/|AB|cosB+AC/|AC|cosC),λ∈[0,+∞) 经过垂心7 AP=λ(AB/|AB|sinB+AC/|AC|sinC),λ∈[0,+∞)或AP=λ(AB+AC),λ∈[0,+∞) 经过重心8.若aOA=bOB+cOC,则0为∠A的旁心,∠A及∠B,∠C的外角平分线的交点【以下是一些结论的有关证明】1.O是三角形内心的充要条件是aOA向量+bOB向量+cOC向量=0向量充分性:已知aOA向量+bOB向量+cOC向量=0向量,延长CO交AB于D,根据向量加法得:OA=OD+DA,OB=OD+DB,代入已知得:a(OD+DA)+b(OD+DB)+cOC=0,因为OD与OC共线,所以可设OD=kOC,上式可化为(ka+kb+c) OC+(aDA+bDB)=0向量,向量DA与DB共线,向量OC与向量DA、DB不共线,所以只能有:ka+kb+c=0,aDA+bDB=0向量,由aDA+bDB=0向量可知:DA与DB的长度之比为b/a,所以CD为∠ACB的平分线,同理可证其它的两条也是角平分线。

必要性:已知O是三角形内心,设BO与AC相交于E,CO与AB相交于F,∵O是内心∴b/a=AF/BF,c/a=AE/CE过A作CO的平行线,与BO的延长线相交于N,过A作BO的平行线,与CO的延长线相交于M,所以四边形OMAN是平行四边形根据平行四边形法则,得向量OA=向量OM+向量ON=(OM/CO)*向量CO+(ON/BO)*向量BO=(AE/CE)*向量CO+(AF/BF)*向量BO=(c/a)*向量CO+(b/a)*向量BO∴a*向量OA=b*向量BO+c*向量CO∴a*向量OA+b*向量OB+c*向量OC=向量02.已知△ABC 为斜三角形,且O是△ABC所在平面上的一个定点,动点P满足向量OP=OA+入{(AB/|AB|^2*sin2B)+AC/(|AC|^2*sin2C)}, 求证P点轨迹过三角形的垂心OP=OA+入{(AB/|AB|^2*sin2B)+AC/(|AC|^2*sin2C)},OP-OA=入{(AB/|AB|^2*sin2B)+AC/(|AC|^2*sin2C)},AP=入{(AB /|AB|^2*sin2B)+AC /(|AC|^2*sin2C)},AP*BC=入{(AB*BC /|AB|^2*sin2B)+AC*BC /(|AC|^2*sin2C)}, AP*BC=入{|AB|*|BC|cos(180° -B) /(|AB|^2*sin2B) +|AC|*|BC| cosC/(|AC|^2*sin2C)},AP*BC=入{-|AB|*|BC| cos B/(|AB|^2*2sinB cos B) +|AC|*|BC| cosC/(|AC|^2*2sinC cosC)},AP*BC=入{-|BC|/ (|AB|*2sinB) +|BC|/(|AC|*2sinC )},根据正弦定理得:|AB|/sinC=|AC|/ sinB,所以|AB|*sinB=|AC|*sinC ∴-|BC|/ (|AB|*2sinB ) +|BC|/(|AC|*2sinC )=0,即AP*BC=0,P点轨迹过三角形的垂心3. OP=OA+λ(AB/(|AB|sinB)+AC/(|AC|sinC))OP-OA=λ(AB/(|AB|sinB)+AC/(|AC|sinC))AP=λ(AB/(|AB|sinB)+AC/(|AC|sinC))AP与AB/|AB|sinB+AC/|AC|sinC共线根据正弦定理:|AB|/sinC=|AC|/sinB,所以|AB|sinB=|AC|sinC,所以AP与AB+AC共线 AB+AC过BC中点D,所以P点的轨迹也过中点D,∴点P过三角形重心。

三角形四心的向量性质及应用(详细答案版)

三角形四心的向量性质及应用(详细答案版)

三角形“四心”的向量性质及其应用三角形“四心”的概念介绍(1)重心—三条中线的交点:重心将中线长度分成2:1;(2)外心—三边中垂线的交点(外接圆的圆心):外心到三角形各顶点的距离相等;(3)垂心—三条高线的交点:高线与对应边垂直;(4)内心—三条内角平分线的交点(内切圆的圆心):角平分线上的任意点到角两边的距离相等.工具:O 为ABC △内一点,则有:0+⋅+⋅∆∆∆OC S OB S OA S O O CA O BC 证明:作:OA S OA OCB ⋅=∆',OB S OB OCA ⋅=∆',S OC OAB =∆'不难得知:AOB COA BOC OC B S S OC OC OB OB S S ∆∆∆∆⋅=⋅=''''即BO C AO B CO A O C B S S S S ∆∆∆∆⋅⋅='';同理==∆∆''''O B A O A C S S ''O C B BO C AO B CO A S S S S ∆∆∆∆=⋅⋅ 从而:O 为'''C B A ∆的重心,则+'OA +'OB 0'=OC , 得:0=⋅+⋅+⋅∆∆∆OC S OB S OA S O AB O CA O BC .一、三角形的重心的向量表示及应用知识:G 是ABC △的重心⇔)(31AC AB AG +=⇔0=++GC GB GA ⇔)(31OC OB OA OG ++= (O 为该平面上任意一点)变式:已知D E F ,,分别为ABC △的边BC AC AB ,,的中点.则0=++CF BE AD . 二、三角形的外心的向量表示及应用知识:O 是ABC △的外心⇔222||||||OC OB OA OC OB OA ==⇔== 02sin 2sin 2sin =⋅+⋅+⋅⇔OC C OB B OA A略证:C B A S S S O AB O CA O BC 2sin :2sin :2sin ::=∆∆∆,得:02sin 2sin 2sin =⋅+⋅+⋅OC C OB B OA A ;常用结论:O 是ABC △的外心⇒.2|| ;2||22AC AO AC AB AO AB =⋅=⋅ 三、三角形的垂心的向量表示及应用知识:H 是ABC △的垂心⇔HA HC HC HB HB HA ⋅=⋅=⋅⇔222222||||||||||||AB HC CA HB BC HA +=+=+0tan tan tan =⋅+⋅+⋅⇔HC C HB B HA A略证:C B A S S S H AB H CA H BC tan :tan :tan ::=∆∆∆,得:0tan tan tan =⋅+⋅+⋅HC C HB B HA A ; 扩展:若O 是ABC △的外心,点H 满足:OC OB OA OH ++=,则H 是ABC △的垂心. 证明:如图:BE 为直径,H 为垂心,O 为外心,D 为BC 中点;'有:为平行四边形AHCE EA CH AB EA AB CH EC AH BC EC BC AH ⇒⎪⎪⎭⎪⎪⎬⎫⇒⎭⎬⎫⊥⊥⇒⎭⎬⎫⊥⊥////进而得到:,//EC AH 且EC AH =,即:EC AH =; 又易知:OC OB OD EC +==2;故:OA OH OC OB AH -=+=,即:OC OB OA OH ++=又:OG OC OB OA ⋅=++3(G 为重心),故:OG OH ⋅=3;故:得到欧拉线:ABC △的外心O ,重心G ,垂心H 三点共线(欧拉线),且GH OG 21=.证毕. 四、三角形的内心的向量表示及应用知识:I 是ABC △的内心⇔⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=⎭⎫⎝⎛-⋅=⎭⎫⎝⎛-⋅=⎭⎫⎝⎛-⋅0||||0||||0||||CB CB CA CA CI BC BC BA BA BI AC AC AB AB AI ⇔⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=⎭⎫⎝⎛+⋅=⎭⎫⎝⎛+⋅=⎭⎫⎝⎛+⋅0||||0||||0||||CA CA BC BC CI BA BA CB CB BI AC AC BA BA AI 0=⋅+⋅+⋅⇔IC c IB b IA a c b a OCc OB b OA a OI ++⋅+⋅+⋅=⇔cb a ACc AB b AI ++⋅+⋅=⇔ 0sin sin sin =⋅+⋅+⋅⇔IC C IB B IA A 注:式子中|||,||,|AB c CA b BC a ===,O 为任一点.略证:C B A c b a S S S IAB ICA IBC sin :sin :sin ::::==∆∆∆,得之. 五.欧拉线:ABC △的外心O ,重心G ,垂心H 三点共线(欧拉线),且GH OG 21=.(前已证) 测试题一.选择题1.O 是ABC ∆所在平面上一定点,动点P 满足)(AC AB OA OP ++=λ,[)+∞∈,0λ ,则点P 的轨迹一定通过ABC ∆的( )A .外心B .内心C .重心D .垂心 解析:点P 的轨迹为BC 边的中线(射线),选C2.(03全国理4)O 是ABC ∆所在平面上一定点,动点P 满足AC AB OA OP ++=λ,[)+∞∈,0λ ,则点P 的轨迹一定通过ABC ∆的( )A .外心B .内心C .重心D .垂心 解析:AC AB OA OP ++=λ⇔AC AB AP +=λAC AB +必平分BAC ∠,理由如下:ADACABACACABAB=+==1111,1==,故四边形11DCAB为菱形,对角线AD平分一组对角,ADACAB=+必定平分11ACB∠,即BAC∠,从而ACABAP+=λ也平分BAC∠.故知点P的轨迹为A∠的内角平分线(射线),选 B3.O是ABC∆所在平面上一定点,动点P满足ACABOAOP++=λ,R∈λ,则点P的轨迹一定通过ABC∆的( )A.外心B.内心C.重心D.垂心解析:ACABOAOP++=λ⇔ACABAP+=λ由BCACBCABBCACBCABBCAP+=+=⋅λλ得:0|)|||(=+-=⋅BCBCBCAPλ,得BCAP⊥点P的轨迹为BC边的高线所在直线. 选D4.O是ABC∆所在平面上一定点,动点P满足ACABOAOP+=λ,[)+∞∈,0λ,则点P的轨迹一定通过ABC∆的( )A.外心B.内心C.重心D.垂心解析:由于CACCbBcBAB sin||sinsinsin||=⋅=⋅=,知点P的轨迹为BC边的中线(射线),选C5.O是ABC∆所在平面上一定点,动点P满足2cos cosOB OC AB ACOPAB B AC Cλ⎛⎫+ ⎪=++⎪⎝⎭,R∈λ,则点P的轨迹一定通过ABC△的( ).A.外心B.内心C.重心D.垂心解析:0||||=+-=+=⋅+BCBCBCACBCABBCACAB知点P的轨迹为BC边的中垂线, 选A6.O是ABC∆所在平面上一定点,动点P满足])21()1()1[(31OCOBOAOPλλλ++-+-=,*R∈λ,则点P的轨迹一定通过ABC△的( ).A.内心B.垂心C.重心D.AB边的中点解析:])21()1()1[(31OCOBOAOPλλλ++-+-=OCOD3)21(3)22(λλ++-=(D为AB边的中点)知CDP,,三点共线(因1321322=++-λλ),故知点P 的轨迹为AB 边的中线所在直线,但是0≠λ,故除去重心. 选D 7.已知O 是ABC ∆的重心,动点P 满足)22121(31OC OB OA OP ++=,则点P 一定为ABC △的( ) A .AB 边中线的中点 B .AB 边中线的三等分点(非重心)C .重心D .AB 边的中点解析:)22121(31OC OB OA OP ++=OC OD 3231+=(D 为AB 边的中点) 进而有:PC DP 2=,故为AB 边中线的三等分点(非重心), 选B8.在ABC △中,动点P 满足:CP AB CB CA ⋅-=222,则P 点轨迹一定通过△ABC 的( )A.外心 B.内心 C .重心 D .垂心解析:CP AB CB CA ⋅-=222⇔02))((222=⋅-+-=⋅--CP AB CA CB CA CB CP AB CA CB 进而有:02=⋅PD AB (D 为AB 边的中点),故知点P 的轨迹为AB 边的中垂线, 选A9.已知ABC ∆三个顶点C B A 、、及平面内一点P ,满足0=++PC PB PA ,若实数λ满足:AP AC AB λ=+,则λ的值为( )A .2B .23C .3D .6 解析:P 为重心,得)(31AC AB AP +=,故AP AC AB ⋅=+3,选C10.设点P 是ABC ∆内一点,用ABC S ∆表示ABC ∆的面积,令ABC PBC S S ∆∆=1λ,ABCPCA S S∆∆=2λ,ABC PAB S S ∆∆=3λ.定义),,()(321λλλ=P f ,若)61,31,21()(),31,31,31()(==Q f G f 则( )A .点Q 在ABG ∆内B .点Q 在BCG ∆内C .点Q 在CAG ∆内D .以上皆不对 解析:G 为重心,画图得知, 选A11.若ABC ∆的外接圆的圆心为O ,半径为1,0=++OC OB OA ,则=⋅OB OA ( )A .21 B .0 C .1 D .21- 解析:由OC OB OA -=+,平方得知, 选D12.O 是平面上一定点,C B A 、、是平面上不共线的三个点,若222OB BC OA =+222AB OC CA +=+,则O 是ABC ∆的( )A .外心B .内心C .重心D .垂心 解析:由2222CA OB BC OA +=+⇔2222BC CA OB OA -=-BA BC CA OB OA BA BC CA BC CA OB OA OB OA ⋅-=+⋅⇔+-=+-⇔)()())(())(( 0)2()(=⋅=-++⋅⇔OC BA CA BC OB OA BA ,得AB OC ⊥;同理得:AC OB ⊥,BC OA ⊥,故为垂心, 选D 13.(06陕西)已知非零向量AB 与AC 满足0||||=⋅⎭⎫⎝⎛+BC AC AC AB AB 21||||=AC AC AB AB , 则ABC ∆为( ) A .三边均不相等的三角形 B .直角三角形 C .等腰非等边三角形 D .等边三角形解析:21||||=AC AC AB AB 0||||=⋅⎭⎫⎝⎛+BC AC AC AB AB :表明A ∠的内平分线也垂直于BC (三线合一), 知ABC ∆等腰;21||||=AC AC AB AB :得到︒=∠60A ;两者结合得到ABC ∆为等边三角形. 选D 14.已知ABC ∆三个顶点C B A 、、,若CA BC CB AB AC AB AB ⋅+⋅+⋅=2,则ABC ∆为( )A .等腰三角形B .等腰直角三角形C .直角三角形D .既非等腰又非直角三角形 解析:CA BC CB AB AC AB AB ⋅+⋅+⋅=2CA BC AB CA BC CB AC AB ⋅+=⋅++⋅=2)( 得到:0=⋅CA BC ,得:︒=∠90C ,选C 二.填空题15.ABC ∆的外接圆的圆心为O ,两条边上的高的交点为H ,)(OC OB OA m OH ++=,则实数m = 1 . 解析:直接用结论16.ABC ∆中,7,3,1===BC AC AB ,O 为重心,则=⋅AC AO27. 解析:)9(31)(31)(312+⋅=+⋅=+=⋅AC AB AC AC AB AC AC AB AC AO 利用:CB AC AB =-,两边平方得.23=⋅AC AB 故27)923(31=+=⋅AC AO17.点O 在ABC ∆内部且满足032=++OC OB OA ,则:ABC S ∆=∆AOC S 3 .解析:法1:利用工具结论易知:AOB COA BOC S S S ∆∆∆=::3:2:1,得:ABC S ∆=∆AOC S 32:6= 法2:0422232=+=+++=++OD OE OC OB OC OA OC OB OA (E 为AC 的中点,D 为BC 的中点)易得:D O E ,,三点共线,且OD EO 2=,从而得到:ABC ADC AOC S S S ∆∆∆==3132. 法3:作:OA OA =',OB OB 2'=,OC OC 3'=则+'OA +'OB 0'=OC ,则O 为'''C B A ∆的重心,则:''''''O B A O A C O C B S S S ∆∆∆==.设为S又⎪⎩⎪⎨⎧======∆∆∆∆∆∆SS SS S S S S S AOB OB A COA OA C BOC OC B 236'''''' 从而得:331:13:)236(:==++=∆∆S S S S S S COA ABC . 18.点O 在ABC ∆内部且满足AC AB AO 5152+=,则:ABC S ∆=∆AOB S 5 . 解析:法1:AC AB AO 5152+=,用O 拆开得:022=+⋅+⋅OC OB OA , 'A 'B 'C O)(A BC利用工具结论易知:AO B CO A BO C S S S ∆∆∆=::1:2:2,则:ABC S ∆51:5==∆AO B S 法2:AC AD AC AB AO 51545152+=+=,(D 为AB 边的中点),得到:C O D ,,共线,且OD CO 4=, 则:ABC S ∆5:==∆OD CD S AO B . 法3:同上题中法3,此处略.19.已知ABC ∆中,6,5===BC AC AB ,I 为ABC ∆的内心,且BC AB AI μλ+=,则=+μλ1615. 解析:法1:由BC AB BC AB AB AC AB c b a AC c AB b AI ⋅+⋅=+⋅+⋅=++⋅+⋅=++⋅+⋅=165161016)(5555655法2:如图,线长易知,角平分线分线段成比例,得:3:5:=ID AI , 故)21(8585BC AB AD AI ⋅+⋅=⋅=AB +⋅=1658520.已知ABC ∆中,1,1,2-=⋅==AC AB AC AB ,O 为ABC ∆的外心,且BC y AB x AO +=,则=+y x 27. 解析:法1:由BC y AB x AO +=AC y AB y x +-=)(,由AC AB y AB y x ABBC y AB y x AB AO AB ⋅+-=⇒+-⋅=⋅22)(2))((,得:y y x --=)(42;同理22)(2))((AC y AC AB y x ACBC y AB y x AC AO AC +⋅-=⇒+-⋅=⋅,得:y y x +--=)(21;易得:34,613==y x ,得27=+y x . 法2:以},{AC AB 为基底,表示:CO BO AO ,,,利用222CO BO AO ==,得之BC y AB x AO +=AC y AB y x +-=)(,y y x y y x AO )(2)(4222--+-=; AC y AB y x AB AO BO +--=-=)1(,y y x y y x BO )1(2)1(4222---+--=; AC y AB y x AC AO CO )1()(-+-=-=,)1)((2)1()(4222----+-=y y x y y x CO ;由22BO AO =0254=--⇒⇒y x 移项做差; 由22CO AO =0142=+-⇒⇒y x 移项做差; 联立方程解得:34,613==y x ,得27=+y x .BCA MNG21.已知O 为锐角ABC ∆的外心,︒=∠30A ,若AO m B C AC C B AB 2sin cos sin cos =⋅+⋅,则=m 21. 解析:由AO m AB B CAC C B AB AB 2)sin cos sin cos (⋅=⋅+⋅⋅ 得:22||sin cos cos ||||sin cos ||AB m B CA AC ABC B AB =⋅⋅⋅+⋅得:C m C A B mc BCA b c CB c sin cos cos cos sin cos cos sin cos 22⋅=+⇒=⋅⋅⋅+⋅得到:C A C A C A C A B C m sin sin cos cos )cos(cos cos cos sin =++-=+=⋅ 得:.2130sin sin =︒==A m 22.在ABC∆中,1,==⊥AD BC AB AD ,则⋅AD AC解析:.33)(2===⋅=⋅+=⋅AD AD AD BC AD BC AB AD AC 三.解答题23. 如图,已知点G 是ABC ∆的重心,过G 作直线与AC AB ,两边分别交于N M ,两点,且AM xAB = ,AN yAC = ,求证:113x y+=.解:由N G M ,,三点共线, 得:AN t AM t AG ⋅+⋅-=)1(AC ty AB x t ⋅+⋅-=)1(--------①又G 是ABC ∆的重心得:AC AB AG ⋅+⋅=3131 ---------② 由①②得:⎪⎪⎩⎪⎪⎨⎧==-3131)1(ty x t ,消去t 得:113x y +=.24.设O 在ABC ∆的内部,若有正实数321,,λλλ满足:0321=⋅+⋅+⋅OC OB OA λλλ, 求证:AO B CO A BO C S S S ∆∆∆=::::321λλλ.证明:作:OA OA ⋅=1'λ,OB OB ⋅=2'λ,OC OC ⋅=3'λ 则+'OA +'OB 0'=OC ,则O 为'''C B A ∆的重心,则:''''''O B A O A C O C B S S S ∆∆∆==.设为S又⎪⎩⎪⎨⎧=⋅==⋅==⋅=∆∆∆∆∆∆SS SS S S S S S AOB OB A COA OA C BOC OC B 2!''13''32''λλλλλλ 从而得:AOB COA BOC S S S SSS∆∆∆==::::::211332321λλλλλλλλλ25.已知向量1OP ,2OP ,3OP 满足条件1OP +2OP +3OP =0,|1OP |=|2OP |=|3OP |=1,求证:321P P P ∆为正三角形. 证明:由1OP +2OP +3OP =0⇒1OP +2OP =3OP -平方得:1212112121-=⋅⇒=⋅++OP OP OP OP'A 'B 'C OABC从而得:3||21====P P同理可得:3||||1332==P P P P ,即321P P P ∆为正三角形. 26.在ABC ∆中,︒===60,5,2A AC AB ,求从顶点B A ,出发的两条中线BE AD ,的夹角的余弦值.解:设b AB a AC ==,,则,560cos 25,4,2522=︒⨯⨯=⋅==b a b a且b a BE b a AD -=+=21),(21; 则,3)8525(41)2(41)21()(2122=--=-⋅-=-⋅+=⋅b b a a b a b a BE AD2394102521|)(|21||=++==+=b a AD22116202521|)2(|21||=+-==-=b a BE 故:.919149142212393||||,cos ==⋅=>=<BE AD BEAD BE AD27.已知H 是ABC △的垂心,且||||BC AH =,试求∠A 的度数.解:设ABC △的外接圆半径为R ,点O 是ABC △的外心。

三角形四心的向量性质及应用(教师用标准答案版)

三角形四心的向量性质及应用(教师用标准答案版)

三角形四心的向量性质及应用(教师用答案版)————————————————————————————————作者:————————————————————————————————日期:三角形“四心”的向量性质及其应用三角形“四心”的概念介绍(1)重心—三条中线的交点:重心将中线长度分成2:1;(2)外心—三边中垂线的交点(外接圆的圆心):外心到三角形各顶点的距离相等; (3)垂心—三条高线的交点:高线与对应边垂直;(4)内心—三条内角平分线的交点(内切圆的圆心):角平分线上的任意点到角两边的距离相等.工具:O 为ABC △内一点,则有:0=⋅+⋅+⋅∆∆∆OC S OB S OA S OAB OCA OBC 证明:延长AO 交BC 于D ,如图必有:||||OA OD S S S OAB OCA OBC =+∆∆∆,||||BC BD S S S OAB OCA OAB =+∆∆∆,||||BC CD S S S OAB OCA OCA =+∆∆∆; ---(*)由D O A ,,共线,得:0||||=+OD ODOA OA进而得:0||||=+⋅OD OA OA OD ----------------① 由C D B ,,共线,得:OC BC BD OB BC CD OD ⋅+⋅=|||||||| ----------② 由①②得:OA OA OD ⋅||||0||||||||=⋅+⋅+OC BC BD OB BC CD 代入(*)结论 得+⋅+∆∆∆OA S S S OAB OCA OBC +⋅+∆∆∆OB S S S OAB OCA OCA 0=⋅+∆∆∆OC S S S OABOCA OAB消去分母得:0=⋅+⋅+⋅∆∆∆OC S OB S OA S OAB OCA OBC 证毕.另证:作AC OG AB OH //,//,如图:AGOH 为平行四边形;由OC S OB S OA S OAB OCA OBC ⋅+⋅+⋅∆∆∆)()(AC OA S AB OA S OA S OAB OCA OBC +⋅++⋅+⋅=∆∆∆ AC S AB S OA S OAB OCA ABC ⋅+⋅+⋅=∆∆∆)(AC S SAB S S OA S ABCOAB ABC OCA ABC ⋅+⋅+=∆∆∆∆∆ )(AC ACAHAB AB AG OA S ABC ⋅+⋅+=∆ )(AH AG OA S ABC ++=∆ 0)(=+=∆AO OA S ABC .AB CODAB CODHFEG反方向思考:设O 在ABC ∆的内部,若有正实数321,,λλλ满足:0321=⋅+⋅+⋅OC OB OA λλλ, 必有:AOB COA BOC S S S ∆∆∆=::::321λλλ.证明:作:OA OA ⋅=1'λ,OB OB ⋅=2'λ,OC OC ⋅=3'λ 则+'OA +'OB 0'=OC ,则O 为'''C B A ∆的重心,则:''''''OB A OA C OC B S S S ∆∆∆==.设为S又⎪⎩⎪⎨⎧=⋅==⋅==⋅=∆∆∆∆∆∆SS S S S S S S S AOB OB A COA OA C BOC OC B 2!''13''32''λλλλλλ 从而得:AOB COA BOC S S S S S S ∆∆∆==::::::211332321λλλλλλλλλ. 验证式思考:先证引理:若b a ,不共线,对p ,有0=⋅p a 且0=⋅p b ,必有.0=p证明:若.0≠p 必有p a ⊥且p b ⊥,得b a //,与题设矛盾,故必有.0=p 再证:设α=∠BOC ,β=∠COA ,则βαπ--=∠2AOB ; 由)(OC S OB S OA S OA OAB OCA OBC ⋅+⋅+⋅∆∆∆OC OA S OB OA S OA S OAB OCA OBC ⋅+⋅+⋅=∆∆∆2ββαπβαπβαcos )2sin(21)2cos(sin 21sin 212⋅⋅⋅--⋅⋅+--⋅⋅⋅⋅⋅+⋅⋅⋅=OC OA OB OA OB OA OA OC OA OC OB ]cos )sin()cos(sin [sin 212ββαβαβα+-++⋅⋅=OC OB OA )]}(sin[{sin 212βαβα+-+⋅⋅=OC OB OA 0)]sin([sin 212=-+⋅⋅=ααOC OB OA ; 有对称性知:0)(=⋅+⋅+⋅∆∆∆OC S OB S OA S OB OAB OCA OBC ,又OA ,OB 不共线, 故:必有0=⋅+⋅+⋅∆∆∆OC S OB S OA S OAB OCA OBC 成立. 一、三角形的重心的向量表示及应用知识:G 是ABC △的重心⇔)(31AC AB AG +=⇔0=++GC GB GA ⇔)(31OC OB OA OG ++= (O 为该平面上任意一点)略证:1:1:1::=∆∆∆GAB GCA GBC S S S ,得:0=++GC GB GA .变式:已知D E F ,,分别为ABC △的边BC AC AB ,,的中点.则0=++CF BE AD . 二、三角形的外心的向量表示及应用知识:O 是ABC △的外心⇔222||||||OC OB OA OC OB OA ==⇔=='A 'B 'C OABCABCO02sin 2sin 2sin =⋅+⋅+⋅⇔OC C OB B OA A略证:C B A S S S OAB OCA OBC 2sin :2sin :2sin ::=∆∆∆,得:02sin 2sin 2sin =⋅+⋅+⋅OC C OB B OA A常用结论:O 是ABC △的外心⇒.2|| ;2||22AC AO AC AB AO AB =⋅=⋅ 三、三角形的垂心的向量表示及应用知识:H 是ABC △的垂心⇔HA HC HC HB HB HA ⋅=⋅=⋅⇔222222||||||||||||AB HC CA HB BC HA +=+=+0tan tan tan =⋅+⋅+⋅⇔HC C HB B HA A略证:C B A S S S HAB HCA HBC tan :tan :tan ::=∆∆∆,得:0tan tan tan =⋅+⋅+⋅HC C HB B HA A 扩展:若O 是ABC △的外心,点H 满足:OC OB OA OH ++=,则H 是ABC △的垂心. 证明:如图:BE 为直径,H 为垂心,O 为外心,D 为BC 中点;有:为平行四边形AHCE EA CH AB EA AB CH EC AH BC EC BC AH ⇒⎪⎪⎭⎪⎪⎬⎫⇒⎭⎬⎫⊥⊥⇒⎭⎬⎫⊥⊥////进而得到:,//EC AH 且EC AH =,即:EC AH =; 又易知:OC OB OD EC +==2;故:OA OH OC OB AH -=+=,即:OC OB OA OH ++=. 又:OG OC OB OA ⋅=++3(G 为重心),故:OG OH ⋅=3;故:得到欧拉线:ABC △的外心O ,重心G ,垂心H 三点共线(欧拉线),且GH OG 21=.证毕. 四、三角形的内心的向量表示及应用知识:I 是ABC △的内心⇔⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=⎪⎪⎭⎫ ⎝⎛-⋅=⎪⎪⎭⎫ ⎝⎛-⋅=⎪⎪⎭⎫ ⎝⎛-⋅0||||0||||0||||CB CB CA CA CI BC BC BA BA BI AC AC AB AB AI ⇔⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=⎪⎪⎭⎫ ⎝⎛+⋅=⎪⎪⎭⎫ ⎝⎛+⋅=⎪⎪⎭⎫ ⎝⎛+⋅0||||0||||0||||CA CA BC BC CI BA BA CB CB BI AC AC BA BA AI 0=⋅+⋅+⋅⇔IC c IB b IA a cb a OCc OB b OA a OI ++⋅+⋅+⋅=⇔0sin sin sin =⋅+⋅+⋅⇔IC C IB B IA A 注:式子中|||,||,|AB c CA b BC a ===,O 为任一点.ABDOHCE略证:C B A c b a S S S IAB ICA IBC sin :sin :sin ::::==∆∆∆,得之. 五.欧拉线:ABC △的外心O ,重心G ,垂心H 三点共线(欧拉线),且GH OG 21=.(前已证) 测试题一.选择题1.O 是ABC ∆所在平面上一定点,动点P 满足)(AC AB OA OP ++=λ,[)+∞∈,0λ , 则点P 的轨迹一定通过ABC ∆的( )A .外心B .内心C .重心D .垂心 2.(03全国理4)O 是ABC ∆所在平面上一定点,动点P 满足)(ACAC ABAB OA OP ++=λ,[)+∞∈,0λ ,则点P 的轨迹一定通过ABC ∆的( )A .外心B .内心C .重心D .垂心 3.O 是ABC ∆所在平面上一定点,动点P 满足)cos cos (CAC AC BAB AB OA OP ++=λ,R ∈λ ,则点P 的轨迹一定通过ABC ∆的( )A .外心B .内心C .重心D .垂心 4.O 是ABC ∆所在平面上一定点,动点P 满足)sin sin (CAC AC BAB AB OA OP ++=λ,[)+∞∈,0λ ,则点P 的轨迹一定通过ABC ∆的( )A .外心B .内心C .重心D .垂心5.O 是ABC ∆所在平面上一定点,动点P 满足2cos cos OB OC AB AC OP AB B AC C λ⎛⎫+ ⎪=++ ⎪⎝⎭u u u r u u u r u u u r u u u r u u u r u u u r u u u r,R ∈λ, 则点P 的轨迹一定通过ABC △的( ).A .外心B .内心C .重心D .垂心6.O 是ABC ∆所在平面上一定点,动点P 满足])21()1()1[(31OC OB OA OP λλλ++-+-=,*R ∈λ , 则点P 的轨迹一定通过ABC △的( ).A .内心B .垂心C .重心D .AB 边的中点 7.已知O 是ABC ∆的重心,动点P 满足)22121(31OC OB OA OP ++=,则点P 一定为ABC △的( ) A .AB 边中线的中点 B .AB 边中线的三等分点(非重心)C .重心D .AB 边的中点8.在ABC △中,动点P 满足:CP AB CB CA ⋅-=222,则P 点轨迹一定通过△ABC 的( )A.外心 B.内心 C .重心 D .垂心9.已知ABC ∆三个顶点C B A 、、及平面内一点P ,满足0=++PC PB PA ,若实数λ满足:AP AC AB λ=+,则λ的值为( ) A .2 B .23C .3D .6 10.设点P 是ABC ∆内一点,用ABC S ∆表示ABC ∆的面积,令ABC PBC S S ∆∆=1λ,ABCPCA S S ∆∆=2λ,ABC PAB S S∆∆=3λ.BCA M N G定义),,()(321λλλ=P f ,若)61,31,21()(),31,31,31()(==Q f G f 则( )A .点Q 在ABG ∆内B .点Q 在BCG ∆内C .点Q 在CAG ∆内D .以上皆不对11.若ABC ∆的外接圆的圆心为O ,半径为1,0=++OC OB OA ,则=⋅OB OA ( )A .21 B .0 C .1 D .21- 12.O 是平面上一定点,C B A 、、是平面上不共线的三个点,若222OB BC OA =+222AB OC CA +=+,则O 是ABC ∆的( )A .外心B .内心C .重心D .垂心 13.(06陕西)已知非零向量AB 与AC 满足0||||=⋅⎪⎪⎭⎫⎝⎛+BC AC AC AB AB 且21||||=⋅AC AC AB AB , 则△ABC 为( ) A .三边均不相等的三角形 B .直角三角形 C .等腰非等边三角形 D .等边三角形 14.已知ABC ∆三个顶点C B A 、、,若CA BC CB AB AC AB AB ⋅+⋅+⋅=2,则ABC ∆为( ) A .等腰三角形 B .等腰直角三角形 C .直角三角形 D .既非等腰又非直角三角形二.填空题15.ABC ∆的外接圆的圆心为O ,两条边上的高的交点为H ,)(OC OB OA m OH ++=,则实数m = 1 . 16.ABC ∆中,7,3,1===BC AC AB ,O 为重心,则=⋅AC AO27. 17.点O 在ABC ∆内部且满足032=++OC OB OA ,则:ABC S ∆=∆AOC S 3 . 18.点O 在ABC ∆内部且满足AC AB AO 5152+=,则:ABC S ∆=∆AOB S 4 . 19.已知ABC ∆中,6,5===BC AC AB ,I 为ABC ∆的内心,且BC AB AI μλ+=,则=+μλ1615. 20.已知ABC ∆中,1,1,2-=⋅==AC AB AC AB ,O 为ABC ∆的外心,且BC y AB x AO +=,则=+y x 27. 21.已知O 为锐角ABC ∆的外心,︒=∠30A ,若AO m B C AC C B AB 2sin cos sin cos =⋅+⋅,则=m 21. 22.在ABC ∆中,1,3,==⊥AD BD BC AB AD ,则=⋅AD AC3 .三.解答题23. 如图,已知点G 是ABC ∆的重心,过G 作直线与AC AB ,两边分别交于N M ,两点,且AM xAB =u u u u v u u u v ,AN y AC =u u u v u u u v ,求证:113x y+=.解:由N G M ,,三点共线,得:AN t AM t AG ⋅+⋅-=)1(AC ty AB x t ⋅+⋅-=)1(--------①又G 是ABC ∆的重心得:AC AB AG ⋅+⋅=3131 ---------② 由①②得:⎪⎪⎩⎪⎪⎨⎧==-3131)1(ty x t ,消去t 得:113x y +=.24.设O 在ABC ∆的内部,若有正实数321,,λλλ满足:0321=⋅+⋅+⋅OC OB OA λλλ, 求证:AOB COA BOC S S S ∆∆∆=::::321λλλ.证明:作:OA OA ⋅=1'λ,OB OB ⋅=2'λ,OC OC ⋅=3'λ 则+'OA +'OB 0'=OC ,则O 为'''C B A ∆的重心,则:''''''OB A OA C OC B S S S ∆∆∆==.设为S又⎪⎩⎪⎨⎧=⋅==⋅==⋅=∆∆∆∆∆∆SS SS S S S S S AOB OB A COA OA C BOC OC B 2!''13''32''λλλλλλ 从而得:AOB COA BOC S S S SSS∆∆∆==::::::211332321λλλλλλλλλ25.已知向量1OP ,2OP ,3OP 满足条件1OP +2OP +3OP =0,|1OP |=|2OP |=|3OP |=1,求证:321P P P ∆为正三角形. 证明:由1OP +2OP +3OP =0⇒1OP +2OP =3OP -平方得:1212112121-=⋅⇒=⋅++OP OP OP OP从而得:3211)(||2121222121=⋅-+=-==OP OP OP OP P P P P 同理可得:3||||1332==P P P P ,即321P P P∆为正三角形. 26.在ABC ∆中,︒===60,5,2A AC AB ,求从顶点B A ,出发的两条中线BE AD ,的夹角的余弦值. 解:设b AB a AC ==,,则,560cos 25,4,2522=︒⨯⨯=⋅==b a b a且b a BE b a AD -=+=21),(21; 则,3)8525(41)2(41)21()(2122=--=-⋅-=-⋅+=⋅b b a a b a b a BE AD2394102521221|)(|21||22=++=+⋅+=+=b b a a b a AD221162025214421|)2(|21||22=+-=+⋅-=-=b b a a b a BE 故:.919149142212393||||,cos ==⋅=⋅>=<BE AD BEAD BE AD'A 'B 'C OABCA BED C27.已知H 是ABC △的垂心,且||||BC AH =,试求∠A 的度数.解:设ABC △的外接圆半径为R ,点O 是ABC △的外心。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角形“四心”的向量性质及其应用
一、三角形的重心的向量表示及应用
命题一 已知A B C ,,是不共线的三点,G 是ABC △内一点,若GA GB GC ++=0.则G 是ABC △的重心.
证明:如图1所示,因为GA GB GC ++=0,所以 ()GA GB GC =-+.以GB ,
GC 为邻边作平行四边形BGCD ,
则有GD GB GC =+,所以GD GA =-.
又因为在平行四边形BGCD 中,BC 交GD 于点E ,
所以BE EC =,GE ED =.所以AE 是ABC △的边BC 的中线. 故G 是ABC △的重心.
点评:①解此题要联系重心的定义和向量加法的意义;②把平面几何知识和向量知识结合起来解决问题是解此类问题的常用方法.
例1 如图2所示,ABC △的重心为G O ,为坐标原点,OA =a ,=OB b ,=OC c ,试用a b c ,,表示OG .
解:设AG 交BC 于点M ,则M 是BC 的中点,
⎪⎩

⎨⎧=-=-=-GC OG c GB OG b GA OG a GC
GB GA OG c b a ++=-++∴
而03=-++∴OG c b a 3
c
b a OG ++=
∴ 点评:重心问题是三角形的一个重要知识点,充分利用重心性质及向量加、减运算的几何意义是解决此类题的关键.
变式:已知D E F ,,分别为ABC △的边BC AC AB ,,的中点.则AD BE CF ++=0. 证明:如图的所示,
⎪⎪⎪


⎪⎪⎨⎧
-=-=-=GC
CF GB
BE GA AD 232323 )(2
3
GC GB GA CF BE AD ++-=++∴
图3
图2
B
C
H
A
图6
0=++GC GB GA AD BE CF ∴++=0..
变式引申:如图4,平行四边形ABCD 的中心为O ,P 为该平面上任意一点,
则1
()4PO PA PB PC PD =+++.
证明:
1()2PO PA PC =+,1
()2
PO PB PD =+,
1
()4
PO PA PB PC PD ∴=+++.
点评:(1)证法运用了向量加法的三角形法则,证法2运用了向量加
法的平行四边形法则.(2)若P 与O 重合,则上式变为OA OB OC OD +++=0.
二、三角形的外心的向量表示及应用
命题二:已知G 是ABC △内一点,满足MC MB MA ==,则点M 为△ABC 的外心。

三、三角形的垂心的向量表示及应用
命题三:已知G 是ABC △内一点,满足GC GB GC GA GB GA ⋅=⋅=⋅,则点G 为垂心。

证明:由0=⋅-⋅⋅=⋅PC PB PB PA PC PB PB PA 得. 即0,0)(=⋅=-⋅CA PB PC PA PB 即
则AB PC BC PA CA PB ⊥⊥⊥,,同理
所以P 为ABC ∆的垂心.
点评:本题将平面向量有关运算、“数量积为零,则两向量所在直线垂直”、三角形垂心定义等相关知识巧妙结合。

变式:若H 为△ABC 所在平面内一点,且2
22222AB HC CA HB BC HA +=+=+ 则点H 是△ABC 的垂心 证明: 2
22
2
BC CA HB
HA -=-
BA CB CA BA HB HA •+=•+∴)()( =•--+BA CB CA HB HA )(得0
即=•+BA HC HC )(0HC AB ⊥∴
同理HB AC ⊥,HA BC ⊥故H 是△ABC 的垂心
四、三角形的内心的向量表示及应用 命题四:O 是内心ABC ∆的充要条件是
|
CB ||
CA |OC |
BC ||
BA |(
OB AC
|
AB |OA =-
⋅=-
⋅=-

变式1:如果记CA ,BC ,AB 的单位向量为321e ,e ,e ,则O 是ABC ∆内心的充要条件是
0)e e (OC )e e (OB )e e (OA 322131=+⋅=+⋅=+⋅
变式2:如果记CA ,BC ,AB 的单位向量为321e ,e ,e ,则O 是ABC ∆内心的充要条件也可以是
0OC c OB b OA a =++。

例4(2003江苏)已知O 是平面上一定点,A 、B 、C 是平面上不共线的三个点,满

AC AB OA OP +
+=λ,[)+∞∈,0λ,则P 的轨迹一定通过△ABC 的内心 。

解: 如图AP OA OP +=由已知
AC AB OA OP +
+=λ,
AC AB AP +
=λ ,[)+∞∈,0λ
∴[)+∞∈,0λ
设AD AB =λ
,AE AC =λ
,∴D 、E
在射线AB 和AC 上。

∴AE AD AP += ∴AP 是平行四边行的对角线。


= ,
∴ADPE 是菱形。

∴点P 在EAD ∠ 即CAD ∠ 的平分线上。

故P 点的轨迹一定通过△ABC 的内心。

相关文档
最新文档