第五章接口与系统扩展
第五章 5.7节 模拟电路接口技术ADC0809

2、主要性能指标 (1)、分辨率
分辨率反映A/D 转换器对输入微小变化响应的能力,通常用数字输
出最低位(LSB)所对应的模拟输入的电平值表示。n 位A/D 能反应 1/2^n 满量程的模拟输入电平。
由于分辨率直接与转换器的位数有关,所以一般也可简单地用数字
量的位数来表示分辨率,即n 位二进制数,最低位所具有的权值,就 是它的分辨率。
值得注意的是,分辨率与精度是两个不同的概念,不要把两者相混
淆。即使分辨率很高,也可能由于温度漂移、线性度等原因,而使其 精度不够高。
例如,ADC输出为八位二进制数, 输入信号最大值为 5V,其分辨率为: U m 19 .61mV 8
2 1
(2)、转换时间
转换时间是指完成一次A/D 转换所需的时间,即由发出启动转换
/**********(C) ADC0809.C**************/ #include <reg51.h> #include "1602.h" #define uchar unsigned char #define uint unsigned int sbit ADC_START=P2^0; //四个控制引脚的定义 sbit ADC_ALE =P2^1; sbit ADC_EOC =P2^2; sbit ADC_OE =P2^3; sbit D0=P0^0; //八盏灯的定义 sbit D1=P0^1; sbit D2=P0^2; sbit D3=P0^3; sbit D4=P0^4; sbit D5=P0^5; sbit D6=P0^6; sbit D7=P0^7;
AD转换速度: 500K频率:130us 640K频率:100us 分辨率:8位
4、ADC0809接口电路
操作系统第五章答案

第五章设备管理1、试说明设备控制器的组成。
P163答:设备控制器的组成由设置控制器与处理机的接口;设备控制器与设备的接口;I/O 逻辑。
2、为了实现CPU与设备控制器间的通信,设备控制器应具备哪些功能?P162-P163 答:基本功能:接收和识别命令;数据交换;标识和报告设备的状态;地址识别;数据缓冲;差错控制。
3、什么是字节多路通道?什么是数组选择通道和数组多路通道?P164-P165 答:1、字节多路通道:这是一种按字节交叉方式工作的通道。
它通常都含有许多非分配型子通道,其数量可从几十到数百个,每个子通道连接一台I/O 设备,并控制该设备的I/O 操作。
这些子通道按时间片轮转方式共享主通道。
只要字节多路通道扫描每个子通道的速率足够快,而连接到子通道上的设备的速率不是太高时,便不致丢失信息。
2、数组选择通道:字节多路通道不适于连接高速设备,这推动了按数组方式进行数据传送的数组选择通道的形成。
3、数组多路通道:数组选择通道虽有很高的传输速率,但它却每次只允许一个设备数据。
数组多路通道是将数组选择通道传输速率高和字节多路通道能使各子通道(设备)分时并行操作的优点相结合而形成的一种新通道。
它含有多个非分配型子通道,因而这种通道既具有很多高的数据传输速率,又能获得令人满意的通道利用率。
4、如何解决因通道不足而产生的瓶颈问题?P166答:解决“瓶颈”问题的最有效的方法,便是增加设备到主机间的通路而不增加通道,就是把一个设备连接到多个控制器上,而一个控制器又连接到多个通道上。
多通路方式不仅解决了“瓶颈”问题。
而且提高了系统的可靠性,因为个别通道或控制器的故障不会使设备和存储器之间没有通路。
5、试对VESA及PCI两种总线进行比较。
P167答:1、VESA 该总线的设计思想是以低价位迅速点领市场。
VESA 总线的带宽为32 位,最高传输速率为132Mb/s。
VESA 总线仍存在较严重的缺点,它所能连接的设备数仅为2—4 台,在控制器中无缓冲,故难于适应处理器速度的不断提高,也不能支持后来出现的Pentium 微机。
TMS320F281XDSP原理及应用技术考试部分答案

第一章4)CPU 32位定点CPU 主频高达150MHz 增强型哈佛总线结构支持JTAG仿真接口2)存储器4MB的程序/数据寻址空间(片外1MB)片上高达128KX16位FLASH存储器18KX16位单周期访问片内RAM3)两个事件管理器EVM 每个EVM模块包括:8通道16位PWM 死区产生和配置单元外部可屏蔽功率或驱动保护中断正交脉冲编码接口(QEP)三个捕捉单元,捕捉外部时间特别适合于电机控制4)串行通信外设一个高速同步串行外设接口(SPI)两个UART接口模块(SCI)增强的CAN2.0B接口模块多通道缓冲串口(McBSP)5)ADC模块12位,2X8通道(两个S/H),A/D转换周期200ns,输入电压0~3V。
6)其它外设:锁相环(PLL)控制的时钟倍频系数看门狗定时模块三个外部中断3个32位CPU定时器128位保护密码高达56个通用I/O引脚支持IDLE,STANDBY,HALT等省电模式F2812和F2810的区别F2812有外部存储器接口TMS320F2810没有TMS320F2812有128K的Flash TMS320F2810仅64K。
5.可达1M的存储器空间可编程的等待状态可编程的读/写选通定时三个独立的片选思考题 TMS320F28x系列中的F2810、F2811、 F2812间有何区别?TMS320F2812有外部存储器接口,而TMS320F2811和TMS320F2810没有。
TMS320F2812和TMS320F2811有128K的Flash,而TMS320F2810仅64K。
与单片机相比,DSP有何特点?DSP器件具有较高的集成度。
DSP具有更快的CPU,更大容量的存储器,内置有波特率发生器和FIFO缓冲器。
提供高速、同步串口和标准异步串口。
有的片内集成了A/D和采样/保持电路,可提供PWM输出。
DSP器件采用改进的哈佛结构,具有独立的程序和数据空间,允许同时存取程序和数据。
微机原理与接口技术课程标准

微机原理与接口技术课程标准《微机原理与接口技术》课程标准课程编码:适用专业:电气自动化技术学时:56一、课程详述(一)课程性质和作用《微机原理与接口技术》就是自动化类各专业学生掌控微型计算机展开工业掌控技能的一门必修课。
通过本课程自学,使学生介绍微型计算机的基本共同组成与工作原理,并使学生逐步掌控微型机从硬件共同组成至软件编程的基本知识,掌控微机共同组成原理和微机USB控制技术,为自学时程有关课程和专门从事专业技术工作奠定一定的基础,同时并使学生提升分析问题解决问题的能力。
(二)课程基本理念1、注重素质教育,著重能力培育2、注重培养和激发学生学习的积极性和自信心3、著重提供更多切合现场实际,能够充分反映新技术的课程资源。
4、改变传统教学方式,运用现代教学技术(三)课程标准设计思路及依据教学以“少而精”为原则,优选教学内容,尽量结合实际。
在教学过程中还要展开适度的实验,以增进对有关内容的掌控,同时引导学生自学、精心安排对自学内容的回答及探讨,调动学生自学的积极性和能动性。
在具体实施过程中,根据课程特点和学院自身条件,以本校专业教师的教学和学生实验居多,通过教学的合作和互动,保证学生达至既定的技能目标。
二、课程目标本课程的培养目标本课程著重自学和动手能力的培育,着重于培育学生对计算机USB的基本应用领域能力和基本技能。
课程教学主要以课堂讲授和实验检验居多,并配上一定的课堂教学项目,进一步增强学生的动手能力和培育学生勤于思考的习惯。
(一)知识性目标学生通过本课程的自学,掌控微型计算机系统的基本共同组成及各个部件功能;掌控微处理器的内部编程结构、工作模式、插槽信号和cpu在总线上的操作方式时序;掌控cpu与外设传输的三种信息的内容和传输方法、cpu与外设传输数据的四种方式;掌控以太网、循序通信的基本详述、基本原理及应用领域;掌控中断控制器、计数器/定时器和dma控制器的工作原理及编程与应用领域;掌控a/d和d/a切换原理,a/d和d/a在系统中的相连接,编程和应用领域。
第5章 输入、输出接口P0~P3--1讲解

武汉科技大学
电信系
2. P1口 字节地址90H,位地址90H—97H
P1.0—P1.7: 准双向I/O口 输出时一切照常,输入时要先对其写“1”
读锁存器
内部 总线
写锁 存器
2
DQ CK /Q
1
读引脚
单片机及接口技术
Vcc 内部上拉电阻
引脚P1.X
17
第五章 输入、输出接口P0~P3
武汉科技大学
电信系
P1口
输入数据时,要先对其写“1”
读锁存器
Vcc 内部上拉电阻
内部 总线 1
写锁 存器
2
DQ
1
CK /Q
0
截 引脚P1.X 止
1
读引脚 =1
18
单片机及接口技术
第五章 输入、输出接口P0~P3
武汉科技大学
电信系
P1口
读锁存器
输出数据 1 时
内部 总线 1
写锁 存器
2
DQ
1
CK /Q
0
1
Vcc 内部上拉电阻
1
读引脚 =0
控制=1时,此脚作通用输出口: 输出=1时
23
单片机及接口技术
第五章 输入、输出接口P0~P3
武汉科技大学
电信系
P2口
读锁存器
内部 总线 0
写锁 存器
2
DQ CK /Q
地址高8位 控制 =1
Vcc 内部上拉电阻
0
1
3
=0
导 引脚P2.X 通
1 读引脚 =0
单片机及接口技术
控制=1 时,此脚作通用输出口: 输出=0 时
例5-1.设计一电路,监视某开关K,用发光二极 管LED显示开关状态,如果开关合上,LED亮、 开关打开,LED熄灭
《微机原理与接口技术》教案

《微机原理与接口技术》教案第一章:微机系统概述1.1 教学目标1. 了解微机系统的概念和发展历程。
2. 掌握微机系统的组成和各部分功能。
3. 理解微机系统的工作原理。
1.2 教学内容1. 微机系统的概念和发展历程。
2. 微机系统的组成:微处理器、存储器、输入输出接口等。
3. 微机系统的工作原理:指令执行过程、数据传输等。
1.3 教学方法1. 采用讲授法,讲解微机系统的概念和发展历程。
2. 采用案例分析法,分析微机系统的组成和各部分功能。
3. 采用实验演示法,展示微机系统的工作原理。
1.4 教学评价1. 课堂问答:了解学生对微机系统概念的掌握情况。
2. 课后作业:巩固学生对微机系统组成的理解。
3. 实验报告:评估学生对微机系统工作原理的掌握程度。
第二章:微处理器2.1 教学目标1. 了解微处理器的概念和结构。
2. 掌握微处理器的性能指标。
3. 理解微处理器的工作原理。
2.2 教学内容1. 微处理器的概念和结构:CPU、寄存器、运算器等。
2. 微处理器的性能指标:主频、缓存、指令集等。
3. 微处理器的工作原理:指令执行过程、数据运算等。
2.3 教学方法1. 采用讲授法,讲解微处理器的概念和结构。
2. 采用案例分析法,分析微处理器的性能指标。
3. 采用实验演示法,展示微处理器的工作原理。
2.4 教学评价1. 课堂问答:了解学生对微处理器概念的掌握情况。
2. 课后作业:巩固学生对微处理器性能指标的理解。
3. 实验报告:评估学生对微处理器工作原理的掌握程度。
第三章:存储器3.1 教学目标1. 了解存储器的概念和分类。
2. 掌握存储器的性能指标。
3. 理解存储器的工作原理。
3.2 教学内容1. 存储器的概念和分类:随机存储器、只读存储器等。
2. 存储器的性能指标:容量、速度、功耗等。
3. 存储器的工作原理:数据读写过程、存储器组织结构等。
3.3 教学方法1. 采用讲授法,讲解存储器的概念和分类。
2. 采用案例分析法,分析存储器的性能指标。
目录 单片机原理与应用

2N3702
1k
R3
Q3
2N3702
1k
R4
Q4
2N3702
1k
VCC
第八章 数模与模数转换电路STC8 9 C52 RC
39 38 37 36 35 34 33 32
P00 P01 P02 P03 P04 P05 P06 P07
P10 P11 P12 P13 P14 P15 P16 P17
1 2 3 4 5 6 7 8
P20 P21 P22 P23 P24 P25 P26 P27
INT1 INT0
13 12
T1 T0
15 14
EA/VP
31
X1 X2
19 18
10 11 30 29
RXD TXD ALE/ P P SEN
R ESET
9
RD WR
17 16
8 05 1
(晶振电路、电源电路省略)
跳线帽 2 .5 4 跳线
5 C2-
R1 ou t 1 2
6 V-
T1in 1 1
7 T2o u t
T2in 1 0
8 R2 in
R2 ou t 9
MAX2 32 CPE
P C-RXD 系统板端子
1 2 3
串口通讯电缆线
P C-TXD
1 04
独石电容
P 3.1 5 1-TXD P 3.0 5 1-RXD
串口通讯电缆线PC端子
第三章 指令系统与程序设计
第四章 MCS—51定时计数器及其应 用
第五章 串行接口
VCC
1 04
独石电容
1 04
独石电容
1 04
独石电容
1 04
《微机原理与接口技术》课程总结

《微机原理与接口技术》课程总结本学期我们学习了《微型计算机原理与接口技术》,总的来说,我掌握的知识点可以说是少之又少,我感觉这门课的内容对我来说是比较难理解的。
这门课围绕微型计算机原理和应用主题,以Intel8086CPU为主线,系统介绍了微型计算机的基本知识、基本组成、体系结构、工作模式,介绍了8086CPU的指令系统、汇编语言及程序设计方法和技巧,存储器的组成和I/O接口扩展方法,微机的中断结构、工作过程,并系统介绍了微机中的常用接口原理和应用技术,包括七大接口芯片:并行接口8255A、串行接口8251A、计数器/定时器8253、中断控制器8259A、A/D(ADC0809)、D/A (DAC0832)、DMA(8237)、人机接口(键盘与显示器接口)的结构原理与应用。
在此基础上,对现代微机系统中涉及的总线技术、高速缓存技术、数据传输方法、高性能计算机的体系结构和主要技术作了简要介绍。
第一章:微型计算机概论(1)超、大、中、小型计算机阶段(1946年-1980年)采用计算机来代替人的脑力劳动,提高了工作效率,能够解决较复杂的数学计算和数据处理(2)微型计算机阶段(1981年-1990年)微型计算机大量普及,几乎应用于所有领域,对世界科技和经济的发展起到了重要的推动作用。
(3)计算机网络阶段(1991年至今)。
计算机的数值表示方法:二进制,八进制,十进制,十六进制。
要会各个进制之间的数制转换。
计算机网络为人类实现资源共享提供了有力的帮助,从而促进了信息化社会的到来,实现了遍及全球的信息资源共享。
第二章:80X86微处理器结构本章讲述了80X86微处理器的内部结构及他们的引脚信号和工作方式,重点讲述了8086微处理器的相关知识,从而为8086微处理器同存储器以及I/O设备的接口设计做了准备。
本章内容是本课程的重点部分。
第三章:80X86指令系统和汇编语言本章讲述了80X86微处理器指令的多种寻址方式,讲述了80X86指令系统中各指令的书写方式、指令含义及编程应用;讲述了汇编语言伪指令的书写格式和含义、汇编语言中语句的书写格式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
27256
Vcc A14 A13 A8 A9 A11 OE A10 CE D7 D6 D5 D4 D3 14
程序存储器 2764 的扩展:
D0-D7
P0.0-P0.7
ALE EA PSEN P2.0-P2.4
8D
G OE
8Q
A0-A7
OE A8-A12
CE
单片机
锁存器 74LS373
EPROM 2764
2
接口与端口
本课程中讲到的接口可以是→器件 →功能模块 →电路板卡→设备/装臵→ …… 口地址 → 可寻址的寄存器/端口
☞地址线条数n决定:寻址范围 = 2n MCS-51寻址范围 = 216 = 6址:设计过程
编址方式:
对I/O与存储器编址通常有两种方式: ☞ 独立编址方式: I/O与存储器分别编址 (例如IBM-PC) ☞ 统一编址方式: I/O与存储器合在一起编址(单片机应用系统)
26
三、LED显示器的扩展(软件译码)
LED数码管的译码:软件译码
AT89C51
P1.0 P1.1 P1.2 P1.3 P1.4 P1.5 P1.6 P1.7
+5V
f e
a g
d
共阳LED
b c
h
软件译码特点: 不用专用的译码/驱动器件,驱动功率较小;不增 加硬件的开销;软件编程较复杂;字型灵活(比如: 有八段,可译多种字符,字型好看……)。
2764
Vcc PGM NC A8 A9 A11 OE A10 CE D7 D6 D5 D4 D3
Vpp A12 A7 A6 A5 A4 A3 A2 A1 A0 D0 D1 D2 GND
27128
Vcc PGM A13 A8 A9 A11 OE A10 CE D7 D6 D5 D4 D3
Vpp A12 A7 A6 A5 A4 A3 A2 A1 A0 D0 D1 D2 GND
7
☞ 译码寻址:通过译码电路对单片机可利用的高位 地址线进行译码,以得到较多的片选信号。
对于一些要求外部RAM容量较大,外扩芯片数量
较多的应用系统;(P.138) 地址较连续,重叠现象相对少; 硬件电路复杂。 全译码与部分译码: ——全译码:低位地址线用做片内译码,剩余的 全部地址线作片选译码(没有地址重叠); ——部分译码:低位地址线用做片内译码,剩余 的地址线部分用作片选译码(有地址重叠)。
23
显示器接口扩展
24
三、LED显示器的扩展(结构)
LED数码管的结构:①共阳与共阴
公共阳极 接高电平
h g f e d c b a
P.173
高电平点亮 h g f …… a
f e
a g d
b
c h
h g f …… a 低电平点亮
f e
a g d
b
c h
接地
h g f e d c b a
公共阴极
P2口是高8位地址口。
P2.7 A15 P2.6 A14 P2.5 A13 P2.4 A12 P2.3 A11 P2.2 A10 P2.1 A9 P2.0 A8
线选寻址与译码寻址
(P.138)
5
☞ 线选寻址:通常用单片机的高8位地址线A8-A15 中的一条或几条地址线与外部接口芯片的片选相连, 以实现寻址。
A0-A7
ALE
G
OE A8-A12 CE2 CE1 OE WE SRAM6264
锁存器 74LS373
51单片机能提供16条地址线,可扩展64K字节 的RAM。可以用一片芯片,也可以用多片RAM
17
三、串行存储器E2PROM的扩展
串行E2PROM的扩展: 有时需要扩展串行E2PROM来存储少量重要数据(如: 校正因子、曲线或其他关键数据,其优点是掉电不 丢失数据,还能随时改写。
74LS164
h g f e d c b a
74LS164
89C51 单片机
共阳LED 数码管
+5V
有几个LED就要几个74LS164,但只要数据不变, 送一次就保持住了,且不闪烁,编程十分简单。 例子参见P176,该静态显示利用串行口完成
30
LED数码管动态显示举例
工作原理:从P0口送段代码,P1口送位选信号。段码虽同时 到达 6个LED,但一次仅一个LED被选中。利用“视觉暂 留”,每送一个字符并选中相应位线,延时一会儿,再送/ 选下一个……循环扫描即可。
如:24c01(1Kbit)/24c02(2Kbit)/24c04(4Kbit)……
A0 A1 A2 Vss
24cxx
Vcc WP SCL SDA
18
I2C总线
——同步串行总线,传输速率为100kbps-400kbps; ——器件地址由7位组成:
D7 D6 D5 D4 A2 A1 A0 R/W
I2C总线时序:
如:6116(2K)/6264(8K)/62128(16K)/628128(128K) ……
Vpp A12 A7 A6 A5 A4 A3 A2 A1 A0 D0 D1 D2 GND Vcc WE CE2 A8 A9 A11 OE A10 CE1 D7 D6 D5 D4 D3 Vpp A12 A7 A6 A5 A4 A3 A2 A1 A0 D0 D1 D2 GND Vcc WE A13 A8 A9 A11 OE A10 CE D7 D6 D5 D4 D3 16
27
LED数码管的软件译码
公共阳极
接高电平
h g f e d c b a
高电平点亮 h g f …… a
f e
a g d
b c h
h g f …… a 低电平点亮
f e
a g d
b c h
接地
h g f e d c b a
公共阴极
八段LED数码管段代码编码表(连线不同可有多种表):
字形 共阴 0 3F 1 0F9 06 2 0A4 5B 3 0B0 4F 4 99 66 5 92 6D 6 82 7D 7 0F8 07 8 80 7F 9 90 6F 黑 0FF 00
第五讲:接口与系统扩展
本讲重点:
接口概念,单片机的编址与译码方法;
片外RAM与片外ROM扩展(参考范例应用);
LED显示接口(动态与静态,硬件译码与
软件译码,电路与编程应用) ; 键盘接口(键盘种类,矩阵键盘和独立键盘的 编程)
1
I/O接口的作用/功能/定义 计算机/单片机与外设之间起桥梁作用的 电路或部件——接口(interface)。 协调两者间的差异。 速度不一致 所需功率/电平不匹配 信号形式不同 数据格式不一致
动态显示特点:
用元器件少,占I/O线少,有闪烁,必须扫描,花费CPU时间, 编程复杂(有多个LED时尤为突出),功耗低。
29
LED数码管静态显示举例
+5V VCC TxD RxD
A B CLK A B CLK A B CLK
CLR
CLR
CLR
h g f e d c b a
74LS164
h g f e d c b a
单片机内部没有ROM,或虽有ROM但容量太小时, 必须扩展外部程序存储器方能工作。最常用的 ROM器件是EPROM。 如: 2764(8K)/27128(16K) /27256(32K)/27040(512K)……
Vpp A12 A7 A6 A5 A4 A3 A2 A1 A0 D0 D1 D2 GND
段 代 码
P0.7 P0.6 P0.5 P0.4 P0.3 P0.2 P0.1 P0.0
7406 OC门 X 3
+5V 上拉 电阻 ×14
AT89C51
共阴 数码管
位 选 线
P1.5 P1.4 P1.3 P1.2 P1.2 P1.0 31
要求:此处为共阴数码管,P0口送段代码,P1口送位选信号。 通过查表实现动态显示。 条件:待显数据(00H—09H)已放在: 7FH—7AH单元中(分别 对应十万位~个位) 说明:由于用了反相驱动器7406,要用共阳译码表。 段 代 码
@ 单片机系统扩展LED数码管时多用共阳LED: 共阳数码管每个段笔画是用低电平(“0”)点亮的,要求驱动 功率很小;而共阴数码管段笔画是用高电平(“0”)点亮的, 要求驱动功率较大。 @ 通常每个段笔画要串一个数百欧姆的降压电阻。
25
三、LED显示器的扩展(结构)
LED数码管的译码:②硬件译码与软件译码
线选法一般用于扩展少量的片外存储器和I/O接口
芯片; 优点:硬件电路简单,不需要译码电路。 缺点:整个地址空间不连续,各个接口电路的地 址空间有可能是重叠的。
6
☞ 线选寻址:
MCS-51单片机
P2.5 P0口 P2.2-2.0
/CE AD7-0 A10 A9 A8 RAM (2K)
P2.5 做 RAM 片选线 (0000H—07FFH) P2.2,P2.1,P2.0与P0口共同寻址 2K字节存储单元 地址范围: XX0X X000 0000 0000 XX0X X111 1111 1111
AT89C51
P1.3 P1.2 P1.1 P1.0
CD4511
D C B A
共阴LED
g f e d c b a
f e
a g d
b c h
74LS48/CD4511是“BCD码→七段共阴译码/驱 动”IC; 74LS47是“BCD码→七段共阳译码/驱 动”IC 硬件译码特点:采用专用的译码/驱动器件,驱动功 率较大;增加了硬件的开销;软件编程简单;字型固 定(比如:只有七段,只可译数字,字型不好看…)。
——起始信号; ——停止信号; ——应答信号; ——数据信号。
19
Vcc 4.7~10k