土壤中重金属的测定

合集下载

土壤重金属测定ICPMS实验操作步骤

土壤重金属测定ICPMS实验操作步骤

土壤重金属测定ICPMS实验操作步骤土壤重金属是指土壤中含有的对生态环境和人体健康有潜在危害的金属元素,如铅、镉、汞等。

ICPMS(Inductively Coupled Plasma Mass Spectrometry,电感耦合等离子体质谱法)是利用电感耦合等离子体对样品原子化,并通过质谱仪对原子化后的物质进行检测和分析的技术手段,其具有灵敏度高、准确性好等优点,因此被广泛应用于土壤中重金属的测定。

下面是ICPMS实验操作步骤的详细介绍:1.样品准备:- 将土壤样品通过经过筛网的1mm筛分,去除大颗粒杂质。

-取适量的土壤样品,经过粉碎和搅拌均匀。

-将样品称取到称量皿中,用电子天平称量精确的样品质量。

2.样品前处理:-对于含有有机质的土壤样品,可以采用溶解或提取的方式,将有机质溶解或提取出来,一般使用酸或溶剂进行处理。

-如果土壤样品中含有不溶于水的金属元素,可以采用酸溶解或者熔融法进行处理。

-如果需要对土壤样品中的表面附着金属进行分析,可以采用表面洗涤法进行处理。

3.样品稀释:-将前处理后的土壤样品溶液用去离子水进行稀释,将浓度调至合适的范围,以便仪器能够正确测定。

4.仪器准备:-打开ICPMS仪器,并进行预热和漂移校正。

-根据所测定的金属元素种类和浓度范围,选择合适的质谱仪检测模式,并设置参数。

5.样品测量:-采用称取或吸取样品量的方式将处理后的土壤样品溶液加入进样器中。

-调整进样速度和仪器参数,确保进样量和仪器测定范围相适应。

-重复测量多个样品,以确保结果的准确性和可靠性。

6.数据处理:-仪器测得的信号经过质谱仪进行信号转换,得到质谱图。

-根据样品预处理和仪器响应因子,将质谱图中峰面积或峰高与所测金属元素的浓度进行定量计算。

-对得到的数据进行校正和标准化,以得到准确的分析结果。

-分析所得数据可以使用专业的数据处理软件进行处理和统计分析,得到最终的结果。

土壤中重金属的测定

土壤中重金属的测定

实验题目土壤中Cu的污染分析实验一、实验目的与要求一、实验目的与要求(1)了解重金属Cu对生物的危害及其迁移影响因素。

(2)了解重金属Cu的污染及迁移影响因素。

(3)掌握土壤消解及其前处理技术。

(4)掌握原子吸收分析土壤中金属元素的方法。

(5)掌握土壤中Cu污染评价方法。

二、实验方案1.仪器原子吸收分光光度计电热板量筒100mL烧杯(聚四氟乙烯)吸量管、50mL比色管、电子天秤2.试剂浓硝酸GR、浓盐酸GR、氢氟酸GR、浓高氯酸GRCu标准储备液、Cu的使用液3.实验步骤(1)三份待测土样,约0.5g分别置于3个聚四氟乙烯烧杯;(2)向烧杯加入2ml蒸馏水湿润土样后,再加入10ml HCl并在电热板上加热至近干;(3)往烧杯中加入10ml HNO3,置于电热板上加热至近干;(4)往烧杯中加入5mlHF,置于电热板上加热至近干;(5)往烧杯中加入5mLHClO4,于电热板上加热至冒白烟时取下冷却;(6)取3支50ml具塞比色管,分别向管中加入2mlHNO3,分别对应加入冷却好的消解土样后,再加水稀释至刻度线;(7)如果溶液比较混浊,则要过滤再进行测定。

(8) AAS测定。

三、实验结果与数据处理Cu标准溶液曲线各个区域土壤中Cu的含量 mg/kg教学区1 2 3 4 5 6 7 8 实(1-2)2 实(1-2)4 实(2-3)1 工(3-4)3 教1 教2 教5 图117.83 13.01 24.78 8.56 16.76 6.30 12.49 7.09生活区1 2 3 4 5 6 东1 东2 东12 东14 二饭教寓5.49 19.27 6.20 2.11 13.70 16.18其他区1 2 3 4 5 6 7 8行山3 行山4 行山5 体1 体4 南商1 南商4 中心湖1 15.96 7.75 9.93 9.65 8.46 16.80 9.47 9.30外环区1 2 3 4 5 6 7 8外1 外2 外6 外4 公4 公10 农田2 农田414.80 14.13 15.53 12.41 59.07 10.88 10.46 24.24四、结论1.数据可靠性评价由图可知标准曲线的相关系数均为R2=0.9995,可知在数据处理的过程中,由标准溶液产生的误差是可忽略不计的。

测土壤重金属的方法

测土壤重金属的方法

测土壤重金属的方法测定土壤中重金属含量的方法有多种,根据实际需求和具体情况选择合适的方法进行分析。

下面将介绍几种常用的测定土壤重金属的方法。

1. 原子吸收光谱法(AAS)原子吸收光谱法是一种常用的测定土壤重金属含量的方法。

该方法基于原子在特定波长下对特定元素的吸收特性,利用光吸收的量与物质浓度成正比的原理,通过测量样品光吸收的强度来计算物质的浓度。

该方法精度高、准确性好,但是需要昂贵的设备和专业技术。

2. 原子荧光光谱法(AFS)原子荧光光谱法是一种高灵敏度的测定土壤重金属含量的方法。

该方法利用物质在光激发下发出的荧光光谱,通过测量荧光光谱强度来计算元素的浓度。

原子荧光光谱法准确性高,方法快速,适用于多种元素的测定。

3. 水浸提取法水浸提取法是一种常用的测定土壤重金属含量的方法。

该方法通过用水溶液将土壤中的重金属释放出来,再用合适的分析方法测定水中重金属的浓度,从而计算土壤中重金属元素的含量。

水浸提取法操作简单,成本较低,适用于大量样品的快速分析。

4. 酸溶提取法酸溶提取法是一种常用的测定土壤重金属含量的方法。

该方法通过用酸溶液将土壤中的重金属元素溶解出来,再用合适的分析方法测定酸溶液中重金属的浓度,从而计算土壤中重金属元素的含量。

酸溶提取法适用于多种重金属元素的测定,但是需要注意酸溶过程中可能会带来样品破坏和丢失。

5. 土壤重金属整体提取法土壤重金属整体提取法是一种全面测定土壤中重金属含量的方法。

该方法将土壤样品与一种强酸或混合酸进行提取,将土壤中的重金属元素完全溶解,再用适当的分析方法测定溶液中的重金属含量。

该方法适用于测定土壤中的各种重金属元素含量,但是操作较为复杂,需要一定的实验技术。

总结而言,测定土壤重金属含量的方法多种多样,根据具体需求选择合适的方法进行分析。

前述方法中,原子吸收光谱法和原子荧光光谱法精确性高,适用于单一元素的快速测定;水浸提取法和酸溶提取法操作相对简单,适用于多种元素的测定;土壤重金属整体提取法可用于全面测定土壤中重金属元素含量。

土壤中重金属检测方法

土壤中重金属检测方法

土壤中重金属检测方法土壤中重金属是指地壳中含有一定量的稀有金属元素,具有较高的密度和相对较高的毒性。

由于人类活动的不当和工业排放等原因,土壤中重金属污染已成为全球环境问题之一。

为了保护土壤质量和人类健康,需要进行重金属的检测。

下面将介绍几种常见的土壤中重金属检测方法。

1. 原子吸收光谱法(AAS)原子吸收光谱法是一种常用的重金属检测方法。

该方法通过测量样品中重金属元素的吸光度,来分析重金属元素的含量。

首先,将土壤样品化学分解,提取重金属元素,然后将提取液用比色皿放入原子吸收光谱仪中进行测量。

该方法对于多种重金属元素的检测都具有较高的灵敏度和准确性。

2. X射线荧光光谱法(XRF)X射线荧光光谱法是一种无损检测方法,不需要样品的前处理,可以直接对土壤样品进行分析。

该方法通过射线照射样品,激发样品中的原子,使其发射特定的荧光光谱。

通过测量荧光光谱的强度和能量,可以确定样品中的重金属元素含量。

X射线荧光光谱法具有快速、准确和非破坏性等优点。

3. 电感耦合等离子体质谱法(ICP-MS)电感耦合等离子体质谱法是一种高灵敏度、高分辨率的分析方法。

它通过将土壤样品中的重金属元素离子化,然后通过质谱仪进行离子计数,从而确定重金属元素的含量。

ICP-MS可以同时测定多种元素,具有较高的灵敏度和准确性。

该方法适用于多元素分析,对于研究土壤中不同重金属元素的迁移和积累具有重要意义。

4. 石墨炉原子吸收光谱法(GFAAS)石墨炉原子吸收光谱法是一种分析重金属元素含量的常见方法。

该方法通过将土壤样品化学分解后进样到石墨炉中,然后加热石墨炉,使样品中的重金属元素蒸发和原子化,进而进行光谱测量。

石墨炉原子吸收光谱法具有较高的灵敏度和准确性,特别适用于低浓度、微量重金属元素的测定。

以上是几种常见的土壤中重金属检测方法,它们在实际应用中可以互相结合,以提高分析结果的准确性和可靠性。

在进行土壤重金属检测时,应根据具体情况选择适当的方法,并在实验过程中注意标准操作规程和安全措施,以保障检测结果的准确性和人员安全。

土壤中重金属元素含量的检测方法

土壤中重金属元素含量的检测方法

土壤中重金属元素含量的检测方法一、原子吸收光谱法原子吸收光谱法是目前应用最广泛的土壤重金属元素分析方法之一、该方法主要包括火焰原子吸收光谱法(FAAS)和石墨炉原子吸收光谱法(GFAAS)。

FAAS方法采用火焰原子吸收光谱仪,通过样品在火焰中产生金属蒸气,进而吸收特定波长的光线来测定金属元素的浓度。

GFAAS方法则利用石墨炉对样品进行加热,将金属转化为原子状态,然后通过测量吸收特定波长的光线来定量分析。

二、电感耦合等离子体发射光谱法电感耦合等离子体发射光谱法(ICP-OES)是一种高灵敏度、高选择性和多元素分析的方法。

该方法通过将样品转化为高温等离子体,利用原子、离子和分子之间的相互作用,通过测量元素发射的特定光谱线来分析元素浓度。

三、X射线荧光光谱法X射线荧光光谱法(XRF)是一种无损的、快速、多元素分析的方法。

该方法通过样品受到X射线照射后,样品中的元素会发射特定能量的荧光X射线,通过测量荧光X射线的能谱来定量分析元素的含量。

四、原子荧光光谱法原子荧光光谱法(AFS)是一种高灵敏度和高选择性的方法。

该方法通过激发样品中的金属元素,使其转化为原子状态,然后测量元素发射的荧光光强度来分析元素浓度。

五、电感耦合等离子体质谱法电感耦合等离子体质谱法(ICP-MS)是一种高精密度和高灵敏度的分析方法。

该方法通过样品在高温等离子体中产生离子状态的金属,然后通过质谱仪对离子进行分析,从而得出元素的含量。

这些方法各有优劣,可以根据具体需求和实验条件选择适合的方法进行土壤中重金属元素含量的检测。

相对而言,原子吸收光谱法简单易行、成本低,适合于常规的土壤样品分析。

而ICP-OES、XRF、AFS和ICP-MS 等方法则具有更高的精密度和灵敏度,适合于研究和高精密度分析。

总体而言,选用合适且准确的检测方法是确保土壤中重金属元素含量的准确性和可靠性的关键。

土壤重金属的测试标准

土壤重金属的测试标准

土壤重金属的测试标准
土壤重金属的测试标准通常由国家或国际标准化组织(如ISO)制定。

这些标准旨在规定土壤中重金属含量的测定方法,以评估土壤的环境质量和可能的影响。

以下是一些常见的土壤重金属测试标准:
1.国际标准:
•ISO 11466:2011 - 土壤质地分级系统中土壤中重金属的测定- 氢氧化铵提取法
•ISO 10381-4:2003 - 土壤质地分级系统中土壤中重金属的测定- 水溶液提取法
•ISO 11272:2017 - 土壤中铅、镉、锰、锌的测定- 火花原子吸收光谱法
2.中国国家标准:
•GB/T 17149-2017 土壤中砷、汞、镉、铬和镍的原子荧光光谱法
•GB/T 17151-2017 土壤中铅的原子吸收光谱法
3.美国环境保护署(EPA)标准:
•EPA Method 3050B - 酸性消解,使用微波能加热
•EPA Method 6020A - 电感耦合等离子体质谱法
4.欧洲标准:
•EN 13650:2001 - 土壤中重金属的测定- 原子吸收光谱法
这些标准通常规定了样品的采集方法、试验室分析方法、仪器设备的规格和校准、质量保证和控制等方面的要求。

在进行土壤重金属测试时,应当参考适用的国家或地区的相关标准以确保测试的准确性和可比性。

用ICP-MS测定土壤重金属的注意事项

用ICP-MS测定土壤重金属的注意事项

用ICP-MS测定土壤重金属的注意事项ICP-MS是现代化学分析技术中的一种重要手段,它提供了一种快速、准确、灵敏的方法来测定土壤中的重金属元素含量。

由于土壤中存在着各种重金属元素,而这些元素对环境和人类健康都具有一定的风险,因此进行土壤重金属的准确测定对于环境保护和农产品安全至关重要。

ICP-MS测定土壤重金属也需要一些注意事项,以保证测定结果的准确性和可靠性。

本文将对用ICP-MS测定土壤重金属的注意事项进行详细介绍。

一、样品的采集和处理1. 样品的采集应当遵循一定的原则,以确保样品的代表性。

通常情况下,需要在土壤表层上采集样品,并避免石块、植物残渣等杂质的混入。

2. 为了避免土壤样品中重金属元素的污染,采集和处理样品的工具(如铲子、袋子等)应当是干净的,并在采集和处理过程中应尽量避免与金属接触,以防止金属离子的污染。

3. 样品在采集后应尽快送至实验室进行处理,以避免样品老化、分解或者外界污染的影响。

二、前处理工作1. 样品在送至实验室后,需要进行一系列的前处理工作,以提取土壤中的重金属元素。

需要将土壤样品进行干燥和研磨,然后采用酸溶解的方法将土壤中的金属元素溶解到溶液中。

2. 酸溶解的过程中需要注意使用高纯度的酸,并避免使用含有目标元素的酸溶液。

对于一些难溶解的元素如硅、铁等,需要采用氢氟酸、过氧化氢等特殊的酸溶解方法。

三、仪器操作1. 在进行ICP-MS测定前,需要进行仪器的预处理和校准工作。

需要进行仪器的清洗和去污操作,以避免前一个样品的残留物对后续样品的干扰。

需要进行标准曲线的制备和校准,以确保仪器的准确性和灵敏度。

2. 在进行样品测定时,需要注意仪器的设置和操作参数。

需要选择适当的离子源条件、离子透镜条件和质谱条件,以提高分析准确性和灵敏度。

3. 在进行样品测定时,需要保持仪器的稳定性和精准度,避免在测定过程中发生仪器漂移、故障等问题。

四、数据处理1. 在进行ICP-MS测定后,需要对获得的数据进行统计分析和处理。

土壤中重金属监测分析方法-原子吸收光谱法AAS

土壤中重金属监测分析方法-原子吸收光谱法AAS
通过比较不同时间或地点的监测数据,评估土壤重金属污染的变化趋势和 来源分析。
根据监测目的和要求,确定合适的评价标准和方法,对土壤重金属污染程 度进行评价,为环境管理和决策提供依据。
04 原子吸收光谱法在土壤重 金属监测中的应用
应用实例
土壤中重金属如铜、铅、锌、镉等含量的测定
原子吸收光谱法可以准确测定土壤中重金属元素的含量,为土壤污染评估和治理提供依据 。
优点与局限性
• 准确度高:AAS的准确度高,能够提供较为准确的测量结 果。
优点与局限性
1 2
1. 样品前处理要求高
AAS对样品的前处理要求较高,需要去除干扰物 质,以确保测量结果的准确性。
2. 仪器成本高
AAS需要使用高精度的仪器,因此仪器成本较高。
3
3. 需要标准品
AAS需要使用标准品进行校准,以获得准确的测 量结果。
2
与其他方法相比,原子吸收光谱法的操作相对简 单,所需样品量较少,适用于各类土壤样品的分 析。
3
虽然原子吸收光谱法的设备成本较高,但其长期 运行成本较低,且维护方便,能够为土壤重金属 监测提供可靠的保障。
未来发展方向
01
随着技术的不断进步,原子吸收光谱法的应用将更加广泛,其在土壤重金属监 测领域的应用将得到进一步拓展。
准确性高
原子吸收光谱法能够准确测定土壤中重金属 的含量,误差较小。
灵敏度高
该方法具有较高的灵敏度,能够检测出较低 浓度的重金属元素。
适用范围广
原子吸收光谱法适用于多种重金属元素的监 测,如铜、铅、锌、镉等。
操作简便
该方法操作简便,易于实现自动化,可快速 处理大量样品。
对环境保护的意义
预警作用
通过对土壤中重金属的监测,可以及时 发现污染源,为环境保护提供预警。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验题目土壤中Cu的污染分析实验一、实验目的与要求一、实验目的与要求(1)了解重金属Cu对生物的危害及其迁移影响因素。

(2)了解重金属Cu的污染及迁移影响因素。

(3)掌握土壤消解及其前处理技术。

(4)掌握原子吸收分析土壤中金属元素的方法。

(5)掌握土壤中Cu污染评价方法。

二、实验方案1.仪器原子吸收分光光度计电热板量筒100mL烧杯(聚四氟乙烯)吸量管、50mL比色管、电子天秤2.试剂浓硝酸GR、浓盐酸GR、氢氟酸GR、浓高氯酸GRCu标准储备液、Cu的使用液3.实验步骤(1)三份待测土样,约0.5g分别置于3个聚四氟乙烯烧杯;(2)向烧杯加入2ml蒸馏水湿润土样后,再加入10ml HCl并在电热板上加热至近干;(3)往烧杯中加入10ml HNO3,置于电热板上加热至近干;(4)往烧杯中加入5mlHF,置于电热板上加热至近干;(5)往烧杯中加入5mLHClO4,于电热板上加热至冒白烟时取下冷却;(6)取3支50ml具塞比色管,分别向管中加入2mlHNO3,分别对应加入冷却好的消解土样后,再加水稀释至刻度线;(7)如果溶液比较混浊,则要过滤再进行测定。

(8) AAS测定。

三、实验结果与数据处理Cu标准溶液曲线各个区域土壤中Cu的含量 mg/kg教学区1 2 3 4 5 6 7 8 实(1-2)2 实(1-2)4 实(2-3)1 工(3-4)3 教1 教2 教5 图117.83 13.01 24.78 8.56 16.76 6.30 12.49 7.09生活区1 2 3 4 5 6 东1 东2 东12 东14 二饭教寓5.49 19.27 6.20 2.11 13.70 16.18其他区1 2 3 4 5 6 7 8行山3 行山4 行山5 体1 体4 南商1 南商4 中心湖1 15.96 7.75 9.93 9.65 8.46 16.80 9.47 9.30外环区1 2 3 4 5 6 7 8外1 外2 外6 外4 公4 公10 农田2 农田414.80 14.13 15.53 12.41 59.07 10.88 10.46 24.24四、结论1.数据可靠性评价由图可知标准曲线的相关系数均为R2=0.9995,可知在数据处理的过程中,由标准溶液产生的误差是可忽略不计的。

但是本次实验,人为的误差相当大,在整个实验过程中发现,有好几个组的几个样品都已经蒸干了,这已经对样品造成了很大的误差,而且由此本次实验消解后的样品都普遍比较混浊,所以都要过滤。

在过滤过程中不断地转移样品,会不断稀释样品的浓度,所以造成了本次实验的样品含量普遍偏低。

2.土壤重金属的污染分析与评价根据《土壤环境质量标准》(GB15618-1995),对土壤中Cu的环境质量指标和相关规定。

则根据此标准,可得出各采样点的土壤重金属项目的等级评价由于本次实验没有测试土壤的pH值,则查找相关资料可知广州市的土壤均偏酸性,且平均pH值为5.78,根据此土壤pH值进行环境质量评价。

主要评价参数为土壤单项污染指数和土壤综合污染指数。

结果见下表。

依据土壤污染分级标准,则可得出如下结论。

土壤质量评价结果表项目Cu平均土壤单项污染指数0.39土壤综合污染指数 1.02污染等级警戒限污染水平尚清洁从土壤中重金属质量评价结果来看,对于各采样点的土壤中铜质量指标绝大多数都能达到自然背景下的一级标准,所以从单项污染指数分析,铜的污染水平虽然尚属清洁,但土壤综合指数已达到1.02,已有轻微污染问题,但由数据分析可知,单项指数是比较低的,但综合污染指数却很高,由综合污染指数的公式可知,在此起关键作用的是污染最高值,在所有数据中“公4”这一组的数据要远远大于其他的组的,所以如果排除其影响,综合污染指数将会是比较低的。

下面对实验所测土壤的采样点进行分区,分为教学区、生活区、外环区、其他区,4个区域,并作比较。

各分区的重金属含量柱形图如下:从上图可以看出,在教学区,土壤中的铜含量较高,且主要出现在实验楼和靠近实验楼的采样点,从柱形图上也可以看出其数值都超过10mg/Kg,但教5是此区域外最高的,有12.9 mg/Kg,如果不是实验过程或采样的人为误差,则是所采样的地方受到铜的一定污染。

在生活区内,土壤中铜的含量都不是很高,最高含量都不超过20mg/Kg,平均值也只有10.49mg/Kg。

这证明东区的在重金属铜污染方面还是清洁的。

其他区,这区的采样点分别由行政楼后山、体育馆、南区商业中心和中心湖四个部分组成,对这四个区域的数据分析发现,其铜污染程度都很小,基本和生活区一致,所以从里对比教学区的教5样品,可以得知,教5的样品明显都比周围的样品点都要高一点,应该是实验过程中存在人为误差。

外环区,从图中可得知,外环路上的四个样品和农田的两个样品点的数值都比其余区要高,除了公4和农田4两个数据,其余六个数据都相差不大,证明有一定的可靠性,而公4这个数据比所有数据都要高很多,所以可以得出结论就是,不是人为的误差就是采样点受到了污染。

综上所述,在所分的4个区域中,外环、农田区的土壤中铜含量最高,已属于轻污染范畴。

其他区域的土壤中重金属铜的含量分布都较为低和平均,土壤质量尚属清洁,不存在污染问题。

3.处理方案因土壤重金属污染具有污染范围广、持续时间长、污染隐蔽性、无法被生物降解等主要特点,土壤重金属污染的治理一直是个难以解决的难题。

目前虽有一些可行的治理方法及理论,但都未能真正解决土壤的重金属污染问题,对于一些污染程度非常高的土壤治理,大多只能选用固化剂将土壤中重金属固定下来以防止其迁移、转化。

下面介绍一些目前常用的土壤重金属污染处理方法。

常用治理方法主要包括工程治理、生物治理、化学治理及农业治理方法。

工程治理效果彻底、稳定,但实施复杂、治理费用高、易引起土壤肥力下降;生物治理实施简便、投资少,对环境破坏小。

生物法一般有植物修复和微生物修复等。

植物修复通过超积累植物吸收土壤中的重金属,比较安全但是修复周期长;微生物修复通过土壤中微生物降解重金属,但是影响修复效果的因素较多,且治理效果不理想,目前应用较少;化学方法治理效果和费用都适中,但容易再度活化;农业治理方法易操作、费用低,但是周期长、效果不显著。

综上,根据不同的污染项目特点及对治理效果、周期及经费要求,应选择最适宜的治理方法。

五、问题与讨论1.假如对大学城广工校区土壤表层Pb进行污染调查,请画图说明如何布点?采样需要那些工具?需要注意那些方面?(1)对于采样布点,因是进行污染调查,所以首先按广工校区的监测范围将其合理地划分采样单元,即根据校园内的不同功能区来划分,再在各个划分区域内于现有的或可能的污染点内布点,同时在不受污染影响的地方选择对照采样单元,每个采样单元最少采3个采样点,而且要根据具体的采样地点地形的不同选择不同的采样点布设方法。

需要用到的工具主要有土壤采集器,收集袋以及土样后期处理需要用到的筛子等。

(2)分划出的采样区域大致如下图所示:布点平面图其具体的采样点可以参照下表:2.利用原子吸收测定土壤中重金属的消解方法有那些?请简要说明。

酸分解法:酸分解法也称消解法,是测定土壤中重金属常选用的方法。

将土壤样品加入PVC烧杯中加上水和盐酸放在电热板上加热至近干,再加入浓硝酸继续加热至近干,加入HF加热至近干,加入HClO4加热至白烟没了,然后移至比塞管定容,如果混浊则过滤,然后分析。

碱熔分解法:将土壤样品与碱混合,加入适量熔剂(用碳酸钠熔融时应先在坩埚底垫上少量碳酸钠或氢氧化钠)充分混合,移入马弗炉中高温熔融,熔融后待冷后却移至烧杯中,放在电热板上加水和(1+1)盐酸加热浸取和中和、酸化熔融物,待大量盐类溶解后,滤去不溶物,滤液定容然后分析。

高压釜密闭分解法:将用水润湿,加入混合酸并摇匀的土样放入能严格密封的聚四氯乙烯坩埚内,置于耐压的不锈钢套筒中,放在烘箱内加热分解。

微波炉加热分解法:将土壤样品和混合酸放入聚四氯乙烯容器中,置于微波炉内加热使土壤分解。

3.土壤中重金属污染的评价方法有那些?各自的缺点是什么?(1)单因子指数法。

因子指数法是国内通用的一种土壤重金属污染评价方法,是国内评价土壤、水、大气和河流积物重金属污染的常用方法,该模型只能反映各个污染物的污染程度,不能综合、全面地反应土壤的污染程度。

(2)内梅罗综合指数法。

将单因子污染指数按一定方法综合起来进行评价的方法。

能反映各种污染物对土壤环境的作用,没有考虑到土壤中各种污染物对作物的毒害的差别,只能反映污染的程度而难于反映污染的质变特征。

(3)几何均值综合评价模式。

可以体现出较大数值污染因子在综合污染指数中的作用,但是在某些情况下会反复提升或降低其作用,使结果失真。

(4)污染负荷指数法。

污染负荷指数法是从重金属污染水平的分级研究中提出来的一种评价方法,被广泛应用于土壤和河流沉积物重金属污染的评价。

不能反映重金属的化学活性和生物可利用性,且没有考虑不同污染源所引起的背景作用。

(5)地积累指数法。

其侧重单一金属,没有考虑各生物有效性、各因子的不同污染程度贡献及地理空间差异(6)沉积物富集系数法。

考虑到沉积物中重金属的背景值,能反映重金属污染的来源、化学活性,但只侧重单一金属,不能反映整体污染水平。

(7)潜在生态危害指数法。

潜在生态危害指数法一套应用沉积学原理评价重金属污染及生态危害的方法,是结合环境化学、生物毒理学、生态学等方面的内容,以定量的方法划分出重金属潜在危害的程度。

这种方法的加权带有主观性。

(8)模型指数法:模糊数学模型、灰色聚类模型、层次分析法。

难以确定各指标的权重,而这个恰是效果好坏的关键。

(9)基于GIS的地统计学评价法。

如果变异函数和相关性分析的结果表明区域化变量的空间相关性不存在,则不适用(10)健康风险评价方法。

这方法还没有公认的可广泛接受的模型或方法,因而在实际运用中,应结合评价矿区土壤重金属含量、生物中重金属含量、评价的目的以及可参考值,来选择适当的评价方法。

(6)环境风险指数法。

该方法规定了相应的环境风险划分标准,可定量地度量重金属污染的土壤或沉积物中样品的环境风险程度。

但不能反映出重金属在这个时间和空间的变化特征。

11。

相关文档
最新文档