2010年高中物理专题复习(9)——电磁感应
(完整)高中物理电磁感应讲义

高中物理电磁感应讲义一、电磁感应现象1、电磁感应现象与感应电流.(1)利用磁场产生电流的现象,叫做电磁感应现象。
(2)由电磁感应现象产生的电流,叫做感应电流。
二、产生感应电流的条件1、产生感应电流的条件:闭合电路.......。
....中磁通量发生变化2、产生感应电流的方法.(1)磁铁运动。
(2)闭合电路一部分运动。
(3)磁场强度B变化或有效面积S变化。
注:第(1)(2)种方法产生的电流叫“动生电流”,第(3)种方法产生的电流叫“感生电流”。
不管是动生电流还是感生电流,我们都统称为“感应电流”。
3、对“磁通量变化”需注意的两点.(1)磁通量有正负之分,求磁通量时要按代数和(标量计算法则)的方法求总的磁通量(穿过平面的磁感线的净条数)。
(2)“运动不一定切割,切割不一定生电”。
导体切割磁感线,不是在导体中产生感应电流的充要条件,归根结底还要看穿过闭合电路的磁通量是否发生变化。
4、分析是否产生感应电流的思路方法.(1)判断是否产生感应电流,关键是抓住两个条件:①回路是闭合导体回路。
②穿过闭合回路的磁通量发生变化。
注意:第②点强调的是磁通量“变化”,如果穿过闭合导体回路的磁通量很大但不变化,那么不论低通量有多大,也不会产生感应电流。
(2)分析磁通量是否变化时,既要弄清楚磁场的磁感线分布,又要注意引起磁通量变化的三种情况:①穿过闭合回路的磁场的磁感应强度B发生变化。
②闭合回路的面积S发生变化。
③磁感应强度B和面积S的夹角发生变化。
三、感应电流的方向1、楞次定律.(1)内容:感应电流具有这样的方向,即感应电流的磁场总是要阻碍引起感应电流的磁通量的变化。
①凡是由磁通量的增加引起的感应电流,它所激发的磁场阻碍原来磁通量的增加。
②凡是由磁通量的减少引起的感应电流,它所激发的磁场阻碍原来磁通量的减少。
(2)楞次定律的因果关系:闭合导体电路中磁通量的变化是产生感应电流的原因,而感应电流的磁场的出现是感应电流存在的结果,简要地说,只有当闭合电路中的磁通量发生变化时,才会有感应电流的磁场出现。
届高三物理二轮复习专题四:电磁感应

1.阻尼式单棒:
(1)电路特点: 导体棒相当于电源。
(2)安培力的特点:
安培力为阻力,并随速度减小而减小。
(3)加速度特点:
加速度随速度减小而减小
(4)运动特点:a减小的减速运动
(5)最终状态:静止
(6)三个规律:
①能量关系:
②动量关系:
③瞬时加速度:
2.电动式单棒
(1)电路特点:导体为电动边,运动后产生反电动势(等效于电机)。
②平动切割式:E = BLV ( V只能是相对于磁场的垂直切割速度,即垂直切割相对速度,不一定是对地的速度)
③转动切割式:E = BL2
4.线圈自感:
分析线圈自感现象,抓住三点就行:
①线圈中的电流不突变,包括其大小和方向均不突变;
②纯电阻元件如灯泡、定值电阻的电流可以突变;
③接通的瞬间,线圈相当于断开的开关;断开的瞬间,线圈相当于电源;电流稳定后,线圈相当于一根导线或一个定值电阻(线圈有电阻时)。
② 单棒模型
③双棒模型
(一)电磁感应中的电路问题:
这个问题与力学无关,它是电磁感应与电路的知识联系,是发电与用电之间的联系,联系桥梁是闭合电路欧姆定律。
(1)分析要点:
①切割磁感线的导体或磁通量发生变化的线圈是发电部分,是电源和内电路,找出电动势和内阻,闭合回路的其余部分是外电路,弄清外电路的总电阻。
②找准等效电源、画出等效电路图;
③根据电路的知识求电路的有关物理量(一般先由欧姆定律求出电流,后计算其它物理量)。
(二)电磁感应中的力学问题:
这个问题与电磁学问题(发电)、电学问题(用电电路)、力学问题(力和运动、动量、能量)都有关。是高中物理主要规律、重要规律“用武之处”。
2010届高考物理专题复习精品学案――电磁感应规律的综合应用(最新)

2010届高考物理专题复习精品学案――电磁感应规律的综合应用(最新)【命题趋向】电磁感应综合问题往往涉及力学知识(如牛顿运动定律、功、动能定理、能量守恒定律等)、电学知识(如电磁感应定律、楞次定律、直流电路知识、磁场知识等)等多个知识点,突出考查考生理解能力、分析综合能力,尤其从实际问题中抽象概括构建物理模型的创新能力。
在备考中应给予高度重视。
【考点透视】电磁感应是电磁学的重点,是高中物理中难度较大、综合性最强的部分。
这一章是高考必考内容之一。
如感应电流产生的条件、方向的判定、自感现象、电磁感应的图象问题,年年都有考题,且多为计算题,分值高,难度大,而感应电动势的计算、法拉第电磁感应定律,因与力学、电路、磁场、能量、动量等密切联系,涉及知识面广,综合性强,能力要求高,灵活运用相关知识综合解决实际问题,成为高考的重点。
因此,本专题是复习中应强化训练的重要内容。
【例题解析】一、电磁感应与电路题型特点:闭合电路中磁通量发生变化或有部分导体在做切割磁感线运动,在回路中将产生感应电动势,回路中将有感应电流。
从而讨论相关电流、电压、电功等问题。
其中包含电磁感应与力学问题、电磁感应与能量问题。
解题基本思路:1.产生感应电动势的导体相当于一个电源,感应电动势等效于电源电动势,产生感应电动势的导体的电阻等效于电源的内阻.2.电源内部电流的方向是从负极流向正极,即从低电势流向高电势.3.产生感应电动势的导体跟用电器连接,可以对用电器供电,由闭合电路欧姆定律求解各种问题.4.解决电磁感应中的电路问题,必须按题意画出等效电路,其余问题为电路分析和闭合电路欧姆定律的应用. 例1.如图所示,两个电阻的阻值分别为R和2R,其余电阻不计,电容器的电容量为C,匀强磁场的磁感应强度为B,方向垂直纸面向里,金属棒a b、cd 的长度均为l ,当棒a b以速度v向左切割磁感应线运动时,当棒cd以速度2v向右切割磁感应线运动时,电容C的电量为多大?哪一个极板带正电?解:画出等效电路如图所示:棒a b产生的感应电动势为:E1=Bl V棒a b产生的感应电动势为:E2=2Bl V电容器C充电后断路,U ef = - Bl v /3,U cd= E2=2Bl VU C= U ce=7 BL V /3Q=C U C=7 C Bl V /3右板带正电。
高中物理复习第09章第02节讲解

第九章 电磁感应
考点一 考点二 考点三
公式E=nΔΦ/Δt 的应用 公式E=Blv 的应用 自感现象的分析
栏目 导引
第九章 电磁感应
考点一 公式E=nΔΦ/Δt的应用
1.感应电动势大小的决定因素
(1)感应电动势的大小由穿过闭合电路的磁通量的变化
率ΔΦ和线圈的匝数共同决定,而与磁通量 Δt
栏目 导引
第九章 电磁感应
考点三 自感现象的分析 1.自感现象“阻碍”作用的理解 (1)流过线圈的电流增加时,线圈中产生的自感电动势与电流 方向相反,阻碍电流的增加,使其缓慢地增加. (2)流过线圈的电流减小时,线圈中产生的自感电动势与电流 方向相同,阻碍电流的减小,使其缓慢地减小.
栏目 导引
第九章 电磁感应
(1)通过电阻R1的电流大小和方向. (2)通过电阻R1的电荷量q及电阻R1上产生的热量.
栏目 导引
第九章 电磁感应
[解析] (1)穿过闭合线圈的磁场的面积为 S=πr22
由题图乙可知,磁感应强度
B
的变化率的大小为ΔB=B0,根 Δt t0
据法拉第电磁感应定律得:
E=nΔΔΦt =nSΔΔBt =nBt00πr22
栏目 导引
第九章 电磁感应
[解析] S1闭合、S2断开且电路稳定时,A、B两灯一样亮, 说明两个支路中的电流相等,这时线圈L没有自感作用,可 知线圈L的电阻也为R,在S2、S1都闭合且稳定时,IA=IB, 当S2闭合、S1突然断开时,由于线圈的自感作用,流过A灯的 电流方向变为b→a,但A灯不会出现比原来更亮一下再熄灭 的现象,故选项D正确,B错误;由于定值电阻R没有自感作 用,故断开S1时,B灯立即熄灭,选项A正确,C错误.
电磁感应专题复习

【本讲教育信息】一. 教学内容:电磁感应考点例析【典型例题】问题3:电磁感应中的“双杆问题”电磁感应中“双杆问题”是学科内部综合的问题,涉及到电磁感应、安培力、牛顿运动定律和动量定理、动量守恒定律及能量守恒定律等。
要求学生综合上述知识,认识题目所给的物理情景,找出物理量之间的关系,因此是较难的一类问题,也是近几年高考考察的热点。
下面对“双杆”类问题进行分类例析1.“双杆”向相反方向做匀速运动当两杆分别向相反方向运动时,相当于两个电池正向串联。
[例5]两根相距d=0.20m的平行金属长导轨固定在同一水平面内,并处于竖直方向的匀强磁场中,磁场的磁感应强度B=0.2T,导轨上面横放着两条金属细杆,构成矩形回路,每条金属细杆的电阻为r=0.25Q,回路中其余部分的电阻可不计。
已知两金属细杆在平行于导轨的拉力的作用下沿导轨朝相反方向匀速平移,速度大小都是v=5.0m/s,如图所示,不计导轨上的摩擦。
(1)求作用于每条金属细杆的拉力的大小。
(2)求两金属细杆在间距增加0.40m的滑动过程中共产生的热量。
解析:(1)当两金属杆都以速度v匀速滑动时,每条金属杆中产生的感应电动势分别为:E 1= E2=Bdv由闭合电路的欧姆定律,回路中的电流强度大小为:上尸因拉力与安培力平衡,作用于每根金属杆的拉力的大小为F 1=F2=IBd。
及二三二艺二二 3.2五由以上各式并代入数据得" N(2)设两金属杆之间增加的距离为△£,则两金属杆共产生的热量为如代入数据得Q =1.28X10-J。
2.“双杆”同向运动,但一杆加速另一杆减速当两杆分别沿相同方向运动时,相当于两个电池反向串联。
[例6]两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L。
导轨上面横放着两根导体棒ab和cd,构成矩形回路,如图所示。
两根导体棒的质量皆为m,电阻皆为H,回路中其余部分的电阻可不计。
在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B。
高中物理电磁感应相关知识教学探析

高中物理电磁感应相关知识教学探析电磁感应是高中物理中的一个重要部分,主要讲述电场和磁场的相互作用,以及与之相关的电磁感应现象,是学生理解许多现代技术和应用非常重要的基础。
本文将从电磁感应的基本原理、相关公式和实验教学等方面探析高中物理电磁感应的教学。
一、基本原理电磁感应的基本原理是“磁生电”或“电生磁”,这个原理可以简单地被表述为两个定律:法拉第电磁感应定律和楞次定律。
法拉第电磁感应定律指出,当导体通过磁场中时,会在其内部引起电场,导体两端产生感应电动势。
楞次定律则规定了感应电动势的方向,即感应电动势的方向总是阻碍感应电流变化的方向。
这两个定律构成了电磁感应的基本理论框架。
从这两个基本定律入手,可以让学生理解电磁感应现象的基本原理。
例如,通过介绍一些基本的电磁感应实验,比如电磁铁、变压器、感应电流等实验,可以帮助学生掌握这些原理,归纳总结时可以提供简单的图示和具体的实验数据,直接融入到教学内容当中会更好地帮助学生理解这些原理。
二、相关公式电磁感应相关的公式主要包括法拉第电磁感应定律和楞次定律公式,以及描述磁场和导体的物理性质的公式。
其中最常用的、最基础的公式是法拉第电磁感应定律公式:ε=-dΦ/dt其中,ε表示感应电动势,即感应电动势的大小与磁通量变化率成正比;Φ表示磁通量,它是磁场作用于匝数的积分。
学生在学习这个公式时应该掌握如何解析磁通量和时间的关系,帮助他们更好地理解它的物理意义。
楞次定律的公式如下:其中,L是自感系数,表示阻抗抵抗电流变化的能力;dI/dt表示电流变化率,也可以理解为感应电动势的方向。
这个公式与法拉第电磁感应定律非常相似,都涉及到物理量的变化率,但这个公式描述的是感应电动势对电流的影响。
这会让学生更好地理解电磁感应现象的本质。
三、实验教学在高中物理的电磁感应教学中,实验教学非常重要。
实验是帮助学生直观感受物理实验的重要途径,也可以让学生掌握实验的过程、方法和技术知识。
常用的电磁感应实验有电磁铁实验、变压器实验以及感应电流实验等。
高中物理电磁感应专题复习

高中物理电磁感应专题复习电磁感应专题复一电磁感应基础知识、自感和互感编写:XXX审核:XXX责编:XXX总体感知本专题是高考的重点,每年必考。
命题频率较高的知识点有:感应电流的产生条件、方向判断和感应电动势的计算;电磁感应现象与磁场、电路、力学、能量等知识相联系的综合题及感应电流(或感应电动势)的图象问题,在高考中时常出现。
知识网络电磁感应现象、磁通量、法拉第电磁感应定律、楞次定律、自感、涡流。
考纲要求I.掌握电磁感应现象、磁通量、法拉第电磁感应定律、楞次定律的基本概念和计算方法。
II.了解自感、涡流的基本概念和应用。
内容命题规律从近五年的高考试题可以看出,本专题内容是高考的重点,每年必考。
命题频率较高的知识点有:感应电流的产生条件、方向判断和感应电动势的计算;电磁感应现象与磁场、电路、力学、能量等知识相联系的综合题及感应电流(或感应电动势)的图象问题,在高考中时常出现。
本专题在高考试卷中涉及的试题题型全面,有选择题、填空题和计算题,选择题和填空题多为较简单的题目,计算题试题难度大,区分度高,能很好地考查学生的能力,备受的青睐。
今后高考对本专题内容的考查可能有如下倾向:①判断感应电流的有无、方向及感应电动势的大小计算仍是高考的重点,但题目可能会变得更加灵活。
②力学和电学知识相结合且涉及能量转化与守恒的电磁感应类考题将继续扮演具有选拔性功能的压轴题。
复策略1.左手定则与右手定则在使用时易相混,可采用“字形记忆法”:通电导线在磁场中受安培力的作用,“力”字的最后一撇向左,用左手定则;导体切割磁感线产生感应电流,“电”字最后一钩向右,用右手定则。
总之,可简记为力“左”电“右”。
2.矩形线框穿越有界匀强磁场问题,涉及楞次定律(或右手定则)、法拉第电磁感应定律、磁场对电路的作用力、含电源电路的计算等知识,综合性强,能力要求高,这也是命题热点。
3.电磁感应图象问题也是高考常见的题型之一;滑轨类问题是电磁感应中的典型综合性问题,涉及的知识多,与力学、静电场、电路、磁场及能量等知识综合,能很好的考察考生的综合分析能力。
完整word版,高考物理复习电磁感应专题

高考物理复习 电磁感应专题一、内容概要本章内容包括电磁感应现象、磁通量的变化率、感应电动势、自感现象等基本概念,法拉第电磁感应定律、楞次定律、等规律; 以及电磁感应的应用(自感,交流电 、 变压器等)。
重、二、基本方法本章涉及到的基本方法,要求能够从空间想象的角度理解法拉第电磁感应定律,用画图的方法将题目中所叙述的电磁感应现象表示出来。
能够将电磁感应现象的实际问题抽象成直流电路的问题;能够用牛顿定律、动量及能量转化和守恒的观点分析解决电磁感应问题;会用图象表示电磁感应的物理过程,也能够识别电磁感应问题的图象。
三 、电磁感应综合问题(一)、电磁感应与电路的综合在电磁感应中,切割磁感线的导体或磁通量发生变化的回路将产生感应电动势,该导体或回路就相当于电源。
解决电磁感应中的电路问题的基本思路是,首先要明确其等效电路,然后根据电磁感应定律和楞次定律求出感应电动势的大小和方向,再根据电路有关规律进行综合分析。
例1、 如图所示,直角三角形导线框abc 固定在匀强磁场中,ab 是一段长为l 、电阻为R 的均匀导线,ac 和bc 的电阻可不计,ac 的长度为2l 。
磁场的磁感应强度为B ,方向垂直于线框平面向里。
现有一段长度为2l 、电阻为2R 的均匀导体杆MN 架在导线框上,开始时紧靠ac ,然后沿ab 方向以恒定的速度v 向b 端滑动,滑动过程中始终与ac 平行并与导线框保持良好接触。
当MN 滑过的距离为3l 时,导线ac 中的电流是多大?方向如何?解、由等效电路图有 E=3Blv , R并=R 92, r=3R 由欧姆定律有MP中电流为I=并R r E + ac 中电流为I ac =I 32=RBlv 52 方向由a 流向c 。
(二)、电磁感应与牛顿第二定律、运动学相结合例2、 如图,不计电阻的U 形导轨水平放置,导轨宽l = 0.5 m ,左端连接阻值为0.4Ω的电阻R ,在导轨上垂直于导轨放一电阻为0.1Ω的导体棒MN ,并用水平轻绳通过定滑轮吊着质量m = 2.4 g 的重物,图中L = 0.8 m ,开始重物与水平地面接触并处于静止,整个装置处于竖直向上的匀强磁场中,此时磁感应强度B 0 = 0.5 T,并且以=∆∆tB 0.1 T/s 的变化率在增大,不计摩擦阻力,求至少经过多长时间才能将重物吊起? (g = 10 m/s 2)解:以MN 为研究对象,有BIl = T ;以重物为研究对象,有T + N = mg 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题(九) 电磁学与电磁感应综合一、大纲解读本专题涉及的考点有:电磁感应现象、磁通量、法拉第电磁感应定律、楞次定律、导体切割磁感线时的感应电动势、右手定则、自感现象、日光灯等.《大纲》对自感现象等考点为Ⅰ类要求,而对电磁感应现象、磁通量、法拉第电磁感应定律、楞次定律、导体切割磁感线时的感应电动势、右手定则等考点为Ⅱ类要求.电磁感应是每年高考考查的重点内容之一,电磁学与电磁感应的综合应用是高考热点之一,往往由于其综合性较强,在选择题与计算题都可能出现较为复杂的试题.电磁感应的综合应用主要体现在与电学知识的综合,以导轨+导体棒模型为主,充分利用电磁感应定律、楞次定律、安培力、直流电路知识、磁场知识等多个知识点,可能以图象的形式进行考查,也可能是求解有关电学的一些物理量(如电量、电功率或电热等).同时在求解过程中通常也会涉及力学知识,如物体的平衡条件(运动最大速度求解)、牛顿运动定律、动能定理、动量守恒定理(双导体棒)及能量守恒等知识点.电磁感应的综合应用突出考查了考生理解能力、分析综合能力,尤其是考查了从实际问题中抽象概括构建物理模型的创新能力.二、重点剖析电磁感应综合应用的中心是法拉第电磁感应定律,近年来的高考中,电磁感应的考查主要是通过法拉第电磁感应定律再综合力、热、静电场、直流电路、磁场等知识内容,有机地把力与电磁结合起来,具体反映在以下几个方面:1.以电磁感应现象为核心,综合应用力学各种不同的规律(如牛顿运动定律、动量守恒定律、动能定理)等内容形成的综合类问题.通常以导体棒或线圈为载体,分析导体棒在磁场中因电磁感应现象对运动情况的影响,解决此类问题的关键在于运动情况的分析,特别是最终稳定状态的确定,利用物体的平衡条件可求最大速度之类的问题,利用动量观点可分析双导体棒运动情况.2.电磁感应与电路的综合问题,关键在于电路结构的分析,能正确画出等效电路图,并结合电学知识进行分析、求解.求解过程中首先要注意电源的确定.通常将切割磁感线的导体或磁通量发生变化的回路作为等效电源.若产生感应电动势是由几个相互联系部分构成时,可视为电源的串联与并联.其次是要能正确区分内、外电路,通常把产生感应电动势那部分电路视为内电路.最后应用全电路欧姆定律及串并联电路的基本性质列方程求解.3.电磁感应中的能量转化问题电磁感应过程实质是不同形式的能量转化的过程,而能量的转化则是通过安培力做功的形式而实现的,安培力做功的过程,是电能转化为其他形式的能的过程,“外力”克服安培力做功,则是其他形式的能转化为电能的过程.求解过程中主要从以下三种思路进行分析:①利用安培力做功求解,电磁感应中产生的电能等于克服安培力所做的功.注意安培力应为恒力.②利用能量守恒求解,开始的机械能总和与最后的机械能总和之差等于产生的电能.适用于安培力为变力.③利用电路特征来求解,通过电路中所产生的电能来计算.4.电磁感应中的图象问题电磁感应的图象主要包括B-t图象、Φ-t图象、E-t图象和I-t图象,还可能涉及感应电动势E和感应电流I随线圈位移x变化的图象,即E-x图象和I-x图象.一般又可把图象问题分为两类:①由给定的电磁感应过程选出或画出正确的图象.②由给定的有关图象分析电磁感应过程,求解相应的物理量.解答电磁感应中的图象问题的基本方法是利用右手定则、楞次定律和法拉第电磁感应定律等规律分析解答.三、考点透视1.电磁感应中的力和运动例题1.(2008年天津理综25题)磁悬浮列车是一种高速低耗的新型交通工具。
它的驱动系统简化为如下模型,固定在列车下端的动力绕组可视为一个矩形纯电阻金属框,电阻为R ,金属框置于xOy 平面内,长边MN 长为l ,平行于y 轴,宽为d 的NP 边平行于x 轴,如图1所示。
列车轨道沿Ox 方向,轨道区域内存在垂直于金属框平面的磁场,磁感应强度B 沿Ox 方向按正弦规律分布,其空间周期为λ,最大值为B 0,如图2所示,金属框同一长边上各处的磁感应强度相同,整个磁场以速度v 0沿Ox 方向匀速平移。
设在短暂时间内,MN 、PQ 边所在位置的磁感应强度随时间的变化可以忽略,并忽略一切阻力。
列车在驱动系统作用下沿Ox 方向加速行驶,某时刻速度为v (v <v 0)。
(1)简要叙述列车运行中获得驱动力的原理;(2)为使列车获得最大驱动力,写出MN 、PQ 边应处于磁场中的什么位置及λ与d 之间应满足的关系式:(3)计算在满足第(2)问的条件下列车速度为v 时驱动力的大小。
【解析】 (1)由于列车速度与磁场平移速度方向相同,导致穿过金属框的磁通量发生变化,由于电磁感应,金属框中会产生感应电流,该电流受到安培力即为驱动力。
(2)为使列车获得最大驱动力,MM 、PQ 应位于磁场中磁感应强度同为最大值且反向的地方,这会使得金属框所围面积的磁通量变化率最大,导致线框中电流最强,也会使得金属框长边中电流收到的安培力最大,因此,d 应为2λ的奇数倍,即 2(21)()221d d k k N k λλ=+=∈+或① (3)由于满足(2)问条件,则MM 、PQ 边所在处的磁感应强度大小均为B 0且方向总相反,经短暂的时间Δt ,磁场沿Ox 方向平移的距离为v 0Δt ,同时,金属框沿Ox 方向移动的距离为v Δt 。
因为v 0>v ,所以在Δt 时间内MN 边扫过磁场的面积S=(v 0-v )l Δt在此Δt 时间内,MN 边左侧穿过S 的磁通量移进金属框而引起框内磁通量变化ΔΦMN = B 0l (v 0-v )Δt ②同理,该Δt 时间内,PQ 边左侧移出金属框的磁通引起框内磁通量变化ΔΦPQ = B 0l (v 0-v )Δt ③故在Δt 内金属框所围面积的磁通量变化ΔΦ = ΔΦMN +ΔΦPQ ④根据法拉第电磁感应定律,金属框中的感应电动势大小E t∆Φ=∆⑤ 根据闭合电路欧姆定律有 E I R =⑥ 根据安培力公式,MN 边所受的安培力xBF MN = B 0IlPQ 边所受的安培力F PQ = B 0Il根据左手定则,MM 、PQ 边所受的安培力方向相同,此时列车驱动力的大小F = F MN + F PQ = 2 B 0Il ⑦联立解得22004()B l v v F R-=⑧. 点拔:本题是联系实际的问题,能很好考查电磁感应和力学结合的试题,有一定的难度,复习时要注意各知识的灵活运用.2.电磁感应与电路的综合例题2.在磁感应强度为B =0.4 T 的匀强磁场中放一个半径r 0=50 cm 的圆形导轨,上面搁有互相垂直的两根导体棒,一起以角速度ω=103 rad /s 逆时针匀速转动.圆导轨边缘和两棒中央通过电刷与外电路连接,若每根导体棒的有效电阻为R 0=0.8 Ω,外接电阻R =3.9 Ω,如所示,求:(1)每半根导体棒产生的感应电动势.(2)当电键S 接通和断开时两电表示数(假定R V →∞,R A →0).解析:(1)每半根导体棒产生的感应电动势为E 1=Bl v =21Bl 2ω=21×0.4×103×(0.5)2 V =50 V . (2)两根棒一起转动时,每半根棒中产生的感应电动势大小相同、方向相同(从边缘指向中心),相当于四个电动势和内阻相同的电池并联,得总的电动势和内电阻为E =E 1=50 V ,r =2141⨯R 0=0.1 Ω 当电键S 断开时,外电路开路,电流表示数为零,电压表示数等于电源电动势,为50 V. 当电键S ′接通时,全电路总电阻为:R ′=r +R =(0.1+3.9)Ω=4Ω.由全电路欧姆定律得电流强度(即电流表示数)为:I =450='+R r E A=12.5 A. 此时电压表示数即路端电压为:U =E -Ir =50-12.5×0.1 V =48.75 V (电压表示数)或U =IR =12.5×3.9 V =48.75 V.点拨:本题是电磁感应图象问题,主要考查法拉第电磁感应定律、闭合电路欧姆定律,解题的关键是画出等效电路,知道电路的连接方式,根据规律去解决问题。
3.电磁感应中的图象问题例题(2008年全国I )矩形导线框abcd 固定在匀强磁场中,磁感线的方向与导线框所在平面垂直,规定磁场的正方向垂直低面向里,磁感应强度B 随时间变化的规律如图所示。
若规定顺时针方向为感应电流I 的正方向,下列各图中正确的是( )解析:0-1s 内B 垂直纸面向里均匀增大,则由楞次定律及法拉第电磁感应定律可得线圈中产生恒定的感应电流,方向为逆时针方向,排除A 、C 选项;2s-3s 内,B 垂直纸面向外均匀增大,同理可得线圈中产生的感应电流方向为顺时针方向,排除B 选项,D 正确。
点拨:电磁感应图象问题是近几年高考的热点,特别是电流随时间变化和电压随时间变化的最多,复习时要加强这方面的训练。
4.电磁感应中的能量转化例题3.(07江苏物理卷18题)如图所示,空间等间距分布着水平方向的条形匀强磁场,竖直方向磁场区域足够长,磁感应强度B =1T ,每一条形磁场区域的宽度及相邻条形磁场区域的间距均为d =0.5m ,现有一边长l =0.2m 、质量m =0.1kg 、电阻R =0.1Ω的正方形线框MNOP 以v 0=7m/s 的初速从左侧磁场边缘水平进入磁场,求(1)线框MN 边刚进入磁场时受到安培力的大小F .(2)线框从开始进入磁场到竖直下落的过程中产生的焦耳热Q .(3)线框能穿过的完整条形磁场区域的个数n .解析:(1)线框MN 边刚开始进入磁场区域时,感应电动势0BLv E =,感应电流 RE I =,安培力 BlIF =,联立解得 8.2=F N . (2)设线框竖直下落时,线框下落了H ,速度为H v ,根据能量守恒定律有: 2202121H mv Q mv mgH +=+,根据自由落体规律有:gH v H 22=,解得45.22120==mv Q J . (3)只有在线框进入和穿出条形磁场区域时,才产生感应电动势.线框部分进入磁场区域x 时,感应电动势Blv E =,感应电流R E I =,安培力BlI F =,解得v Rl B F 22=.在t t t ∆+→时间内由动量定理得v m t F ∆=∆-,求和02222mv x R l B t v R l B =∆=∆∑∑,解得 022mv x R l B =,穿过条形磁场区域的个数为lx n 2=,解得4.4≈n .可穿过4个完整条形磁场区域. 答案:(1)8.2=F N (2)2.45J (3)4个点拔:在电磁感应中应用动量定理时,若安培力为变力作用,则可以利用平均值的方法分析求解,也可以应用数学知识中的求和进行求解.对于电磁感应中能量的转化问题,则通常采用能量.四、热点分析例题4.如图所示,MN 、PQ 为平行光滑导轨,其电阻忽略不计,与地面成30°角固定.N 、Q 间接一电阻R ′=10Ω,M 、P 端与电池组和开关组成回路,电动势E =6V ,内阻r=1.0Ω,导轨区域加有与两导轨所在平面垂直的匀强磁场.现将一条质量m=10g ,电阻R=10 Ω的金属导线置于导轨上,并保持导线ab 水平.已知导轨间距L =0.1m ,当开关S 接通后导线ab 恰静止不动.(1)试计算磁感应强度的大小.(2)若某时刻将电键S 断开,求导线ab 能达到的最大速度.(设导轨足够长)本题简介:本题是一道电磁感应综合题,涉及直流电路的分析与计算,安培力、平衡条件,牛顿运动定律等较多知识点,全面考查考生的分析综合能力.试题情景较复杂,能力要求较高,在近年来高考中出现的频率较高.解析:(1)导线ab 两端电压 6155⨯+=+=E r R R U 并并V=5V ,导线ab 中的电流5.0==RU I A ,导线ab 受力如图所示,由平衡条件得 ︒=30sin mg BIL ,解得IL mg B ︒=30sin ,代入数值得B =1T . (2)电键S 断开后,导线ab 开始加速下滑,当速度为v 时,产生的感应电动势为BLv E =',导线ab 中的感应电流R R E I '+'='A ,导线ab 受的安培阻力R R v L B L I B F '+='='22.当导线ab 达到最大速度时,R R v L B m '+22︒=30sin mg ,代入数值解得100=m v m/s . 答案:(1)B =1T (2)100=m v m/s反思:解决本题的关键是,将电磁感应问题与电路的分析与计算问题结合起来,先弄清电路结构,由导线ab 平衡,求出磁感应强度B ,再对电键断开后ab 导线做动态分析,由平衡条件求出最终的速度.例题5.如图所示,(a )是某人设计的一种振动发电装置,它的结构是一个半径为r =0.1 m 的有20匝的线圈套在辐向形永久磁铁槽中,磁场的磁感线均沿半径方向均匀分布[其右视图如图(b )].在线圈所在位置磁感应强度B 的大小均为0.2 T .线圈的电阻为2Ω,它的引出线接有8Ω的电珠L ,外力推动线圈的P 端,作往复运动,便有电流通过电珠.当线圈向右的位移随时间变化的规律如图所示时(x 取向右为正):(1)试画出感应电流随时间变化的图象(取逆时针电流为正).(2)求每一次推动线圈运动过程中的作用力.(3)求该发电机的功率.(摩擦等损耗不计)本题简介:本题以实际问题为背景,考查考生分析综合能力、还原物理图象、应用数学知识解决物理问题等多项能力.涉及的考点有:法拉第电磁感应定律、右手定则、运动学规律、安培力、功功率等.情景比较复杂,难度较大,是区分考生能力的良好载体.近年来高考总要设置一定数量的实际应用题,借以考查考生理论联系实际的能力,电磁感应则是一个很好的切入点.解析:(1)从图可以看出,线圈往返的每次运动都是匀速直线运动,其速度为m /s 8.0m /s 1.008.0==∆∆=t x v ,线圈做切割磁感线运动产生的感应电动势V2V 8.02.01.014.32202=⨯⨯⨯⨯⨯==rBv n E π,感应电流 A 2.0A 28221=+=+=R R E I .由右手定则可得,当线圈沿x 正方向运动时,产生的感应电流在图(a )中是向下经过电珠L 的.故可得到如图所示的电流随时间变化的图象. (2)由于线圈每次运动都是匀速直线运动,所以每次运动过程中推力必须等于安培力. N)(5.02.01.014.322.020)2(=⨯⨯⨯⨯⨯====B r nI nILB F F π安推.(3)发电机的输出功率即灯的电功率,所以W 32.0W 8)2.0(222=⨯==R I P .答案:(1)图见解答 (2)0.5N (3)0.32W .反思:电磁感应问题一般会涉及立体空间图的分析,要求考生空间立体感到强,并能正确转化为平面图.解决本题的关键是,分析出线圈往返的每次运动都是匀速直线运动,先求出其切割磁感线运动的速度,进而求出感应电动势和感应电流.例题:将一个矩形金属线框折成直角框架abcdefa ,置于倾角为α=37°的斜面上,ab 边与斜面的底线MN 平行,如图所示.2.0=====fa ef cd bc ab m ,线框总电阻为R =0.02Ω,ab 边的质量为m= 0.01 kg ,其余各边的质量均忽略不计,框架可绕过c 、f 点的固定轴自由转动,现从t=0时刻开始沿斜面向上加一随时间均匀增加的、范围足够大的匀强磁场,磁感应强度与时间的关系为B= 0.5t T ,磁场方向与cdef 面垂直.(cos37°=0.8,sin37°=0.6)(1)求线框中感应电流的大小,并在ab 段导线上画出感应电流的方向;(2)t 为何值时框架的ab 边对斜面的压力为零?本题简介:本题涉及到法拉第电磁感应定律、楞次定律、安培力、左手定则平衡条件等较多知识,是一道综合性题.解析: 该题是一个在三维空间展开的电磁感应综合问题,因此空间的几何关系分析是解决这类问题的关键.(1)由题设条件可得:02.0=⋅∆∆=∆∆=de cd t B t E φV ,所以感应电流0.1==RE I A ,根据楞次定律可判断,感应电流的方向从a →b .(2)ab 边所受的安培力为t ab BI F B 1.0=⋅=,方向垂直于斜面向上,当框架的ab 边对斜面的压力为零时,由平衡条件得︒=37cos mg F B ,由以上各式并代入数据得:t=0.8s .答案:t=0.8s反思:本题情景比较复杂,考查考生物理学科知识的同时,考查考生空间想象能力和应用数学知识解决问题的能力.涉及到空间几何关系的这类具有典型空间特征的电磁感应综合问题,应引起同学们足够的重视.五、能力突破例题1:曾经流行过一种自行车车头灯供电小型交流发电机,下图其结构示意图.图中N 、S 是一对固定的磁极,abcd 为固定在转轴上的矩形线框,转轴过bc 边中点,与ab 边平行,它的一端有一半径r o =1.0cm 的摩擦小轮,小轮与自行车车轮的边缘相接触,如图所示.当车轮转动时,因摩擦而带动小轮转动,从而使线圈在磁极间转动.设线框由N=800匝导线圈组成,每匝线圈的面积S=20cm 2.磁极间的磁场可视作匀强磁场,磁感强度B=0.010T,自行车车轮的半径R 1=35cm ,小齿轮的半径R 2=4.0cm ,大齿轮的半径R 3=10.0cm .现从静止开始使大齿轮加速转动,问大齿轮的角速度为多大才能使发电机输出电压的有效值U=32V?(假设摩擦小轮与自行车轮之间无相对滑动)解析:当自行车车轮转动时,通过摩擦小轮使发电机的线框在匀强磁场内转动,线框中产生一正弦交流电动势,其最大值:εm =NBS 0 ,式中ω0为线框转动的角速度,即摩擦轮转动的角速度.发电机两端电压的有效值:U=22εm 设自行车车轮的角速度为ω1,由于自行车车轮摩擦小轮之间无相对滑动,有:R 1ω1=R 0ω0 ,小齿轮转动的角速度与自行车转动的角速度相同,也为ω1.设大齿轮的角速度为ω,有:R 3ω=r ω1由以上各式得:ω=13022R R r R NBS U ⋅ 代入数据得:ω=3.2rad/s反思:本题是联系实际的STS 问题,解答本题的关键:一是关于小型交流发电机的工作情况,另一是传动装置的作用,自行车车轮带动发电机转动、小齿轮与自行车车轮一起转动、大齿轮带动小齿轮转动。