Boring split links

合集下载

lesson 13 英译汉口译笔记 课堂版

lesson 13 英译汉口译笔记 课堂版

• Split attention • Noting too much, irrelevant things • Confusing notation (illegible) • Missing links • Reading back • Comments on student practice • By Shi Xiaojing
• 第一句 和 最后一句 • 第一句: 没有上下文的依托,但第一句往往又是主题句,只管重

• 最后一句:译员听完讲话后几秒钟内就要开始口译,即使很短暂 •
的沉默都可以导致冷场,所以往往顾不上记完笔记马上就回到笔 记的开头开始翻译了 一般的听众往往对最后一句记忆最深刻,也往往用最有一句的翻 译来衡量译员的好坏,更不用说在访谈类的口译中,最后一句往 往是用来提问或者转换话题的,不译出来则可能是访谈无法持续 下去。
• By Shi Xiaojing
• How do students’ and professors’ notes differ? Students tend to write A LOT, which usually
for “now”, maybe unrecognizable later
By Shi Xiaojing , 2009
•课堂笔记一般是有充足的时间用一种
语言记录完整的内容以供课后复习参 考,而口译笔记则是快速地用多种语 言、符号、缩略形式记录部分信息, 以便即时将内容译出。
•速记,是用特别简单的记音符号和词语缩写符号迅速记 •
•首先,请允许我代表企业员工对法
国代表团表示热烈
保持9%左右的速度增长,令世人 瞩目
• 首先,请允许我代表企业员工对法国代表团表示热烈欢迎
欢迎

英语小词break的超级详细地用法

英语小词break的超级详细地用法

break1使破裂,使破碎;使断裂I had to break a window to get into the house. 我只得打破一扇窗户进屋。

break sth in half/two :He broke the biscuit in half and handed one piece to me. 他把饼干掰成两半,递了一块给我。

He kept pulling at the rope until it broke. 他一直拉到绳子,直到把它拉断。

The frames are made of plastic and they tend to break quite easily. 这些框架是塑料做的,很容易碎裂。

2.bones 骨头使骨折She fell downstairs and broke her hip. 她从楼梯上摔下来,髋部骨折。

3.machines 机器弄坏,损坏〔机器〕〔机器〕损坏,失灵Don’t mess about with my camera –you’ll break it. 别乱动我的照相机,你会把它弄坏的。

The washing machi ne’s broken again. 洗衣机又坏了。

4.rules/laws 规定/法律不遵守,违犯•If you break the rules , you will be punished. 违反规定要受到惩罚。

5.promise/agreement 诺言/协议违反,违背〔诺言或协议〕•I never break my promises . 我从不食言。

•You betrayed me. You broke your word . 你出卖了我,你说话不算数。

He was worried that he might be breaking his contract. 他担心自己可能会违约。

6.stop/rest 停下来/休息*+ for+•Shall we break for lunch now? 我们现在停下来吃午饭好吗?7.end sth 结束某事物打断,中断•We need to break the cycle of poverty and crime in the inner cities. 我们需要打破旧城区里贫困和犯罪的恶性循环。

(完整)民航英语词汇

(完整)民航英语词汇

(完整)民航英语词汇民航英语词汇Air Conditioning SysTEM(空调系统)PACK空调主件HOT BLEED AIR热引气OUTLET DUCT外流管BYPASS VALVE旁通活门RAM AIR冲压空气INLET SCOOP进气口(完整)民航英语词汇TRIM AIR VALVE调节空气PACK FLOW SWITCH空调主件流量EXTRACTOR FAN排气风扇GUARDED FLAP有保护盖的导片ISOLATION VALVE隔离活门“LIGHT OUT”AUTO POSITION“灯灭”自动状态BLOWER鼓风机EXTRCTOR排风扇OVERBOARD机外ONBOARD机上OPEN-CIRCUIT开路CLOSED-CIRCUIT闭路CONFIGURATION形态PASSENGER LOAD乘客载荷DOWNSTREAM下游STANDING WATER积水ATLN(ALTERNATE)备份CHANNEL通道PNEUMATIC气源DUAL双的SWITCH OVER交换PRE-COOLER预冷机COOLANT冷却剂AMBER琥珀色VENTILATION通风CIRCUIT BREAKER跳开关PRESSURIZATION(增压)FLAPPER VALVES瓣状活门PROFILE剖面TOGGLE扳钮开关VACUUM真空ISAO BARIC等压BAROMETRIC气压PRESSURE DIFFERENTIALS压差ANEROID SWITCH膜盒气压STBY(STANDBY)备份DC DIRECT CURRENCY直流电PSI(POUND PER SQUARE INCH)磅/平方英尺DITCH水上迫降SUPERCHARGER增压器INADVERTENT偶然的LEAKAGE漏、渗APRON停机坪CEILING顶板FREIGHT货机ACCESSORY副件THROTTLE LEVER油门杆CRUISE巡航NEGATIVE RELIEF VALVE负压释放活门POSITIVE PRESSURE正压AIRPORT ELEVATION机场标高AUTOPILOT(自动驾驶)MOMENTUM动量MIMICKING模仿(完整)民航英语词汇GLARE—SHIELD遮光板ACTUATORS制动器SURVEILLANCE监视TRAJECTORY轨迹QUADRANT油门操纵杆FLEX(FLEXIBLE)灵活的MCT(MAXIMUM CONTINUE THRUST)最大连续推力ELEVATORS升降舵AILERON副翼NAVAID助航SID(STANDARD INSTRUMENT DEPARTURE)标准仪表离场STAR(STANDARD TERMINAL ARRIVAL ROUTE)标准进场程序MISSED APPROACH(GO AROUND)复飞DYNAMIC动力的AUGMENTATION增加、增益FLIGHT ENVELOPE飞行包线CDU(CONTOL DISPLAY UNIT)控制显示组件FMA(FLIGHT MODE ANNUNCIATOR)飞行方式显示器ADIRS(AIR DATA AND INERTIAL REFERENCE SYSTEM)大气数据及惯性基准系统MCP(MODE CONTROL PANEL)方式控制面板GPS(GLOBAL POSIITON SYSTEM)全球定位系统FLARE平飘TOUCHDOWN接地点FLY—BY-WIRE电传操纵ACCELALIGNMENT对准、校准SERVOMOTOR伺服马达GYROSCOPE陀螺THRUST REDUCTION ALT减推力高度REVERSE反推ARM预位FPA(FLIGHT PATH ANGLE)飞行航径角LOCALIZER航向道IDLE慢车DETENT卡位FPV(FLIGHT PATH VECTOR)飞行航径矢量CRM(COCKPIT RESOURCE MANAGEMENT)驾驶舱资源管理PF(PILOT-FLIGHT)把杆飞行员PFD(PRIMARY FLIGHT DISPLAY)主飞行显示PULLEY滑轮ROLL滑跑SCROLL翻动、卷起SLEW上下选页VELOCITY速度DATA BASE LOADER数据库装载机ALPHA/NUMERIC KEY BOARD字母/数字键盘SCRATCH PAD草稿栏DYNAMIC AND BACKGROUD DATA动态和背景数据TROPOPAUSE对流层顶CYAN深蓝色COST INDEX成本指数ALIGNMENT校准PROMPT提示符EFOB(ESTIMATED FUEL ON BOARD)预计机上燃油MAGENTA品红色、洋红色EAT(ESTIMATED TIME OF ARRIVING)预计到达时间ADC(AIR DATA COMPUTER)大气数据计算机CRT(CATHODE RAY TUBE)阴极射线管BITE(BUILD-IN TEST EQUIPMENT)内装测试设备DEFAULT缺席LSK(LINE SELECT KAY)行选键ASYMMETRIC不对称TERMINAL AREA终端区域COORDINATE经纬度RNVA AREA NAVIGATION区域导航EN-ROUTE在航路上CFDS(CENTRALIZED FAULT DISPLAY SYSTEM)集中显示系统COMMUNICATION(通讯)VIBRATIONS振动IMPULSES脉冲ANTENNA大线MEGAHERTZ兆赫兹CURVATURE弯曲曲度IONOSPHERE电离层TRANSCEIVER无线电收发机RACK设备架SQUELCH静噪、噪声控制PASSENGER ADDRESS旅客广播CABIN INTEROHONE客舱内话INTERPHONE内话机EVACUATION疏散ROTARY旋转的KNOB旋钮DEDICATED专用的BUZZER蜂鸣声BOOM SET吊杆耳机HEAD SET耳机SELCAL选择呼叫ACTIVE正在使用HOT MIKEPRESS TO TALK(PTT)按下发话LATCHED锁住PREEMPT优先占有STUCK阻塞PLUG插入STRAIN滤网SHIELD过滤ROCK SWITCH摇式电门FLIGHT CONTROL SYSTEM(I)(飞行控制(一))REJECTED T/O中断起飞CONVENTIONAL通用的WHEEL驾驶盘COLUMN驾驶杆PEDAL脚蹬SURFACE舵面RUDDER方向舵SPEED-BRAKE减速板FLAP襟翼STAB TRIM调整片OVERRIDE SWITCH超控电门YAW DAMPER偏航阻尼器CENTERING MECHANISM定中机械SWEEP BACK后掠SPOILER扰流板JAM卡阻ROLL滚转(横滚)PITCH俯仰STABILIZER安定面YAW偏航YAW DAMPER RATE GYRO偏航率陀螺仪LONGITUDINAL AXIS纵轴LATERAL AXIS横轴ACTUATING CYLINDER作动筒FAIRED POSITION中立位FALL INTO SPIN进入螺旋AIRFOIL翼部面FLIGHT CONTROL SYSTEM(II)(飞行控制(二))SECONDARY FLIGHT CONTROL辅助飞行操纵TRAILING EDGE(TE)后缘LEADING EDGE(LE)前缘POWER TRANSFER UNIT(PTU)动力传输装置STALL失速MANEUVER机动飞行INBOARD内侧OURBOARD外侧SLOTTED开缝的DRAG阻力COMPARATOR比较仪ROLL RATE滚转率MIXER混合器DEFLECTION偏转AERODYNAMIC MEAN CHORD平均空气动力弦TORQUE扭力JACK千斤顶(防火(一))FIRE PROTECTION防火OVERHEAT超温FIRE DETECTION探火FIRE DETECTION LOOP探火环FIRE ALERT火警戒FAULT MONITORING CIRCUIT失效监控电路WARNING BELL火警铃ENGINE INDICATING AND CREW ALERTING SYSTEM(EICAS)发动机指示和机组警戒系统CATHODE—RAY-TUBE阴极射线管ENGINE NACELLE发动机舱CARGO COMPARTMENT货舱THERMAL SWITCH热电门CONTINUOUS—LOOP连续环路BIMETALLIC双金属的CERAMIC CORE陶瓷芯INCONEL TUBE因康镍合金管CERAMIC BEAD陶瓷珠EUTECTIC SALT易熔盐MALFUNCTION失效SMOKE DETECTION烟雾探测SQUIB爆炸帽(防火(二))LOCK DOWN下锁INADVERTENT疏忽大意SHUTDOWN关车UNLOCK开锁TRIP跳开关THRUST REVERSER反推INERT COLD GAS AGENTS惰冷气灭火剂OXIDIZER氧化剂CARBON DIOXIDE(CO2)二氧化碳NITROGEN(N1)氮INERT GAS惰气TOXICITY毒性FREON氟利昂SOLVENT溶剂COMPATIBLE与……相溶CARTRIDGE燃爆筒LAGGING绝缘材料SOAK浸、泡RESIDUE滤渣、残余物EXTINGUISHING AGENT灭火剂PRESSURE GAUGE压力表MANIFOLD管道RUPTURE破裂UPHOLSTERY饰面材料NOXIOUS GAS毒气ELECTRICAL SYSTEM(I)(电子系统(一))GENERATE发电DISTRIBUTE配电ESSENTIAL POWER重要设备电源VOLTAGE电压PHASE相TRANSFORMER RECTIFIER UNIT(TRU)变压整流器BUS汇流条LIGHTING CIRCUIT照明电路EMERGENCY POWER应急电源STANDBY POWER备用电源ONBOARD机载STATIC INVERTER静变流机BATTERY电瓶RAM AIR—DRIVER GENERATOR冲压空气驱动发电机NICKEL CADMIUM BATTERY镍镉电池CONSTANT SPEED DRIVE(CSD)恒速驱动FREQUENCY电频INTEGRATED DRIVE GENERATOR(IDG)综合驱动发电机ENGINE-DRIVEN GENERATOR发动机驱动的发电机BATTERY CHARGER电瓶充电器SWITCHED HOT BATTERY BUS转换热电瓶汇流条ELECTRICAL LOAD电载荷ELECTRICAL SYSTEM(II)(电子系统(二))TRANSFER BUS转换汇流条TRANSFER RELAY转换继电器RESPECTIVE各自的MOMENTARILY瞬间的ONSIDE本侧LOAD载荷、电荷TRIP OFF跳开CHARGE充电SERVICE BUS勤务汇流条SPLIT BUS分裂汇流条BUS TIE BREAKER(BTB)汇流条连接断路器GENERATOR CONTROL UNIT(GCU)发动机控制组件(完整)民航英语词汇MONITOR监控DIVISION分配DIFFERENTIAL PROTECTION CURRENT TRANSFORMERS(DPCTs)压差保护电流变压器OPEN断开SHORT短路SYNCHRONOUS BUS同步汇流条FUEL(燃油)INNER FUEL TANK内侧燃油箱WING/FUSELAGE STRUCTURE机翼/机身结构WING TIP翼尖FUEL NOZZLE燃油喷嘴CIRCULATE循环VENT SURGE TANK通风(防震动)油箱SPILLAGE溢出CROSS-LINE横条线DIVERT转向REFUEL ACCESS DOOR加油板的盖板REFUEL COUPLING DOOR加油口盖SHROUD DRAIN MAST排放管罩E/WD ENGINE AND WARNING DISPLAY发动机警告指示SPOUT喷射INJECT喷射CROSS FEED VALVE交输供油活门SUCTION VALVE虹吸活门SEDIMENT沉积物RUPTURE破裂OVERFLOW DRAIN溢流口REPLENISH加油REFUEL PANEL ACCESS DOOR加油面板盖板SINGLE REFILLING POINT单点加油口REFUEL COUPLING DOOR加油连接口盖SURGE TANK通风油箱FLUSH齐平DRAIN VALVE排放活门、排水活门MAINTENANCE维护、维修FLOAT VALVE浮子活门FILLER CAP漏斗口DUMP/JETTISON放油HYDRAULIC SYSTEM(液压系统)RESERVOIR液压油箱、水库ACCUMULATOR储压器、储蓄器EXPEL排出、赶出PISTON活塞CHARGE释放、放出WHEEL BRAKE机轮刹车装置NOSE WHEEL STEERING前轮转向操纵PRESSURE REGULATOR调压器EMERGENCY PUMP应急泵CHECK VALVE单向活门SELECTOR VALVE选择活门ACTUATING VALVE卸荷活门PREDETERMINED VALVE预定值BALL VALVE球形活门RETURN LINE回油管路SPRING PRESSURE弹簧压力STANDPIPE竖管ICE AND RAIN(冰和雨)REPELLENT防护剂SPRAY喷、向……喷射PERFORATE穿孔于THERMAL ANTI-ICING SYSTEM热防冰系统POTABLE WATER LINES饮用水线WINDSHIELD风挡ENGINE COWL发动机整流罩WIPER刮水器STATIC PORT静压口AOA(THE ANGLE OF ATTTACK)迎角TAT(TOTAL AIR TEMPERATURE)全温SAT(STATIC AIR TEMPERATURE)静温VINYL CORE乙烯树脂内芯GLASS PANE玻璃窗格BIRD-STRIKE鸟击CONDUCTIVE COATING导电涂层ACRYLIC PANE丙烯酸树脂ANGLE AIRFLOW SENSOR气流角度传感器DALAY CIRCUIT延迟电路SOLENOID VALVE电磁活门SIGHR GAGE目视测量表ATTENTION GATTER提醒灯CHRONOGRAPH记时器ELAPSED TIME已飞时间PARAMETER参数CHECKLIST检查单DISPENSE WITH省略UN—CLUTTER混乱UTC(COORDINATED UNIVERSAL TIME)协调世界时SCHEMATIC图解形式EADI电子姿态指示器EHSI水平状态指示器SYMBOL GENEERATOR符号发生器ARC MODE弧型模式ROSE MODE罗盘模式BEARING POINTER方位指针DECISION HEIGHT决断高度ADF(AUTOMATIC DIRECTION FINDER)自动定向机GLIDE-SLOPE下滑道DEVIATION偏差SIDE SLIP侧滑INTERFACE界面、接口、连接ANALOG模拟DFDR(DIGITAL FLIGHT DATA RECORDER)数字式飞行数据记录器AN UNDERWATER LOCATOR BEACON水下信标机DISCRETE SIGNAL离散信号SLIP BALL球形侧滑仪CROSS BAR十字指令杆STOP-WATCH WAY秒表(跑表)记时方式ROLL INDEX横滚标志SUPERIMPOSE重叠REFERENCE LINE参考线SPEED TREND ARROW速度趋势箭头TRUE NORTH真北RAW DATA原始数据LUBBER LINE航向标线DEVIATION BAR偏离杆COURSE POINTER航道指针GRADUATION刻度REMOTE分装A DOUBLE LINED ARROW双线箭头指针(双针)A GRAY ANALOG ALTITUDE TAPE灰色模拟高度标尺带FRONT COOURSE DAGGER向台航道箭形符号AIDS飞机集成数据系统ECAM(ELECTRONIC CENTRALIZED AIRCRAFT MONITOR)电子飞机集中监控SYNOPISIS概要ORIENTATION定向INDENT缩进DISCRATE INPUT SIGNALS离散的输入信号MINIMUM EQUIPMENT LIST(MEL)最低设备清单LANDING GEAR(起落架)GROUND LOOP打地转NOSE OVER拿大顶MARGIN斜度CHOCK轮挡BUNGEE CORD弹簧索(减震支柱)。

针法解释

针法解释

平缝线迹----PLAIN STITCH ,FLAT STITCH 疏缝线迹----BASTING STITCH ,TACKING STITCH 绷缝线迹----COVERING STITCH ,FLAT -LOCK STITCH 绗缝线迹----QUILTED STITCH 嵌缝线迹----CORD STITCH 面缝线迹----TOP STITCH,OVER STITCH 暗缝线迹----INVISIBLE STITCH ,BLIND STITCH 缲缝线迹----SLIP STITCH 折缝线迹----FELL STITCH 倒缝线迹----REVERSIBLE STITCH , BACKWARD STITCH 包缝线迹----OVERLOCK STITCH ,OVERCASTING STITCH ,OVEREDGE 锁式线迹----LOCK STITCH ,LOCKSTITCH 链式线迹----CHAIN STITCH 联式线迹----CHAINLOCK STITCH 人字线迹----HERRINGBONE STITCH 羽状线迹----FEATHER STITCH 珠式线迹----PEARL STITCH Z形线迹----CATCH STITCH,ZIGZAG STITCH 角形线迹----ANGLE STITCH 弓形线迹----ARCHED STITCH 锯齿形状线迹----PICOT STITCH ,ZIGZAG STITCH 贝壳形状线迹----SHELL STITCH 网眼形状线迹----BASKET STITCH 蜂窝形状线迹----HONEYCOMB STITCH 直形线迹----STRAIGHT STITCH 双十字形状线迹---DOUBLE STITCH 交叉线迹,十字线迹---CROSS STITCH 圆形线迹----ROUND STITCH 廓形线迹----OUTLINE STITCH 曲折形线迹---ZIGZAG SITITCH 变形线迹---CHANGE STITCH 钩编线迹---CROCHET STITCH 织补线迹---DARNING STITCH 刺绣线迹---EMBROIDERY STITCH,CREWEL STITCH 装饰线迹---ORNAMENTAL STITCH,DECORATIVE STITCH 花式线迹---FANCY STITCH 点划线迹---DOT DASH STITCH 对称线迹---COUNTER STITCH 比翼线迹---FLY STITCH 特殊线迹---SPECIAL STITCH 复合线迹---COMBINATION STITCH, SPLIT STITCH 复式线迹---DOUBLE ACTION STITCH 双针线迹---TWICE STITCH 双重线迹---TWICE STITCH 三重线迹---TRIPLE STITCH 缝式线迹---SEAM STITCH 加固线迹---FASTENING STITCH ,TACKING STITCH 打结线迹---KNOTTING STITCH 扎缚线迹---PADDING STITCH 袖褶线迹---SHIRRING STITCH 伸缩线迹---STRETCH STITCH,ELASIC STITCH 滚边线迹---BINDING STITCH 卷边线迹---HEMMING STITCH 暗卷缝线迹---BLINDING HEMMING STITCH 拼合线迹---ABUTTING STITCH 间断线迹---BROKEN STITCH 跳针线迹---SKIPPING STITCH 安全线迹---SAFETY STITCH 手针缝法 缭针法----SLIP STITCH 拱针法----PRICK STITCH 明缲针法---FELL STITCH 暗缲针法---BLING HEMMING STITCH 环针法----CATCH STITCH 叠针法----FASTENING STITCH 扎针法----PAD STITCH 扳针法----DIAGONAL BASTING 绗针法----QUILTING STITCH 锁针法----LOCK STITCH 倒针法----BARTACK STITCH ,BACK STITCH 三角针法---HERRINGBONE STITCH 杨树花针法--FEATHER STITCH 花针法----ZIGZAG STITCH 跳针法----SKIPPING STITCH针织针法全国各地的不同叫法 单面=单边=纬平针四平=双边=满针罗纹正针=前板=面针=表目反针=后板=底针=里目1行=1目=半专添纱=盖毛=双梭=坎毛=拉架套针=拷针=平收元筒=空气层=空转罗纹空气层=四平空转=打鸡提花=拨花=jacquard工艺=吓数作程序=制版集圈=吊目=打花=tuck密度=字码=度目=拉力拉字码=拉目=拉密牵拉梳=起底板嵌花=引塔夏=挂毛=intarsia绞花=扭绳=麻花=拧麻花=绞八结鸟眼=芝麻底=bird eye=芝麻点提花空气层双面提花=圆筒拨花横条提花=三平提花抽条=坑条=正反针=正反组织=表里目=令士 links 下摆=罗纹=下栏贴=贴边=门襟=附件纱嘴=梭子头=喂纱器=导纱器=yarn feeder滑块=梭箱(纱嘴上面与轨道摩擦的那块塑料)波纹=扳花纱罗=挑花滑针=架空编织单面有虚线提花=拨花单面无虚线=挂毛。

CommScope High Speed Migration平台说明书

CommScope High Speed Migration平台说明书

Your challengeThe future—with hyperspeed links, razor-thin latency demands and a steady stream of disruptive technologies—is here, demanding your undivided attention. So what’s your migration strategy? How do you keep your infrastructure agile, flexible, high density, easy to manage and scalable—no matter how things change?Your strategyWith our High Speed Migration platform, CommScope provides a smart and solid, end-to-end channel approach to infrastructure evolution. Modular fiber connectivity building blocks, infrastructure intelligence and network planning tools work together, enabling your infrastructure to adapt, evolve and scale—now and down the road. Visit our website or contact your local CommScope representative for more information. © 2017 CommScope, Inc. All rights reserved. CO-111622.2-EN 10/2017Your toolsFiber panels High-density (HD) and ultra high-density (UD) panels provide up to 72 duplex LC or 48 MPO ports per RU—singlemode or multimode—to enable today’s leaf-and-spine networks. With up to 72 LC or MPO connections per RU, our enhanced high-density (EHD) panels deliver outstanding density in tight spaces. Innovative sliding-tray (EHD) or sliding split-tray (UD/HD) design provides open access to all fibers while protecting active links during modifications. A full line of fiber modules and adapter packs supports multiple shelf platforms for more agility.Preterminated cabling A complete portfolio of fiber trunks, arrays and patch cables, including OM5 Wideband multimode, enables shortwave division multiplexing, so you can use low-power, low-cost VCSEL technology to quadruple MMF fiber capacity. Ultra low-loss, preterminated components, for singlemode and multimode enable longer link spans and support for attenuation-sensitive applicationssuch as new short-reach singlemodedata center optics. G.657.A2-compliant singlemode fibers maximize optical performance andprovide lowest bend losses.ModulesThe High Speed Migration platformincludes 8-, 12- and 24-fiber MPOs supporting a variety of networktopologies. Singlemode or multimode 8-fiber MPOs are compatible with QSFP transceivers and easily enable1:4 breakouts. MPO12 seamlessly supports legacy singlemode and multimode network expansion while MPO24 provides higher trunking densities and lower capital costs for multimode networks.IntelligenceCommScope’s imVision ® automated infrastructure management solution, available with HD and UD panels,enables you to monitor and manageyour infrastructure at port level and in real time. imVision automates the process of planning, implementing and documenting moves/add/ changes, accelerates mean time to repair and alerts you to unplanned or unauthorized changes in your physical work planning tools CommScope’s Application Performance Specification and Link Loss Calculatormake it easy to determine link support for new applications. The Application Performance Specification calculates the maximum supportable distance for any link design while the Link Loss Calculator provides the exact target performance for the link.For all compliant links—targeted versus measured performance—CommScope enhances support for applications running within the maximum reach.¹ HD, UD and EHD fiber panels help reduce the risk associated with change while keeping operational cost as low as possible. Preterminated connectivity and plug-and-play installation help you lower deployment time and cost and accelerate ROI.CommScope’s ULL fiber solutionsprovide the most extensive application support over longer spans and more connections than any other system on the market. So you can takeadvantage of emerging multimode and singlemode duplex fiber applications to dramatically reduce your fiber counts and increase capacity.Yo ur trusted migratio n partner More than innovative infrastructure solutions, the High Speed Migration platform is a long-term strategy that can take you from where you are to where you need to go. And there’s no better partner than CommScope. We’re out front: monitoring the trends, helping define the standards, working to keep you ahead of the industry. Together, we’ll take on tomorrow.1See CommScope Network Infrastructure System 25-year Extended Warranty and Application Assurance for important details and conditions.。

服装工艺英语

服装工艺英语

服装工艺英语_汉语对照平缝线迹----PLAIN STITCH ,FLAT STITCH疏缝线迹----BASTING STITCH ,TACKING STITCH绷缝线迹----COVERING STITCH ,FLAT -LOCK STITCH绗缝线迹----QUILTED STITCH嵌缝线迹----CORD STITCH面缝线迹----TOP STITCH,OVER STITCH暗缝线迹----INVISIBLE STITCH ,BLIND STITCH缲缝线迹----SLIP STITCH折缝线迹----FELL STITCH倒缝线迹----REVERSIBLE STITCH , BACKWARD STITCH包缝线迹----OVERLOCK STITCH ,OVERCASTING STITCH ,OVEREDGE 锁式线迹----LOCK STITCH ,LOCKSTITCH链式线迹----CHAIN STITCH联式线迹----CHAINLOCK STITCH人字线迹----HERRINGBONE STITCH羽状线迹----FEATHER STITCH珠式线迹----PEARL STITCHZ形线迹----CATCH STITCH,ZIGZAG STITCH角形线迹----ANGLE STITCH弓形线迹----ARCHED STITCH锯齿形状线迹----PICOT STITCH ,ZIGZAG STITCH贝壳形状线迹----SHELL STITCH网眼形状线迹----BASKET STITCH蜂窝形状线迹----HONEYCOMB STITCH直形线迹----STRAIGHT STITCH双十字形状线迹---DOUBLE STITCH交叉线迹,十字线迹---CROSS STITCH圆形线迹----ROUND STITCH廓形线迹----OUTLINE STITCH曲折形线迹---ZIGZAG SITITCH变形线迹---CHANGE STITCH钩编线迹---CROCHET STITCH织补线迹---DARNING STITCH刺绣线迹---EMBROIDERY STITCH,CREWEL STITCH装饰线迹---ORNAMENTAL STITCH,DECORATIVE STITCH 花式线迹---FANCY STITCH点划线迹---DOT DASH STITCH对称线迹---COUNTER STITCH比翼线迹---FLY STITCH特殊线迹---SPECIAL STITCH复合线迹---COMBINATION STITCH, SPLIT STITCH复式线迹---DOUBLE ACTION STITCH双针线迹---TWICE STITCH双重线迹---TWICE STITCH三重线迹---TRIPLE STITCH缝式线迹---SEAM STITCH加固线迹---FASTENING STITCH ,TACKING STITCH 打结线迹---KNOTTING STITCH扎缚线迹---PADDING STITCH袖褶线迹---SHIRRING STITCH伸缩线迹---STRETCH STITCH,ELASIC STITCH滚边线迹---BINDING STITCH卷边线迹---HEMMING STITCH暗卷缝线迹---BLINDING HEMMING STITCH拼合线迹---ABUTTING STITCH间断线迹---BROKEN STITCH跳针线迹---SKIPPING STITCH安全线迹---SAFETY STITCH手针缝法缭针法----SLIP STITCH拱针法----PRICK STITCH明缲针法---FELL STITCH暗缲针法---BLING HEMMING STITCH环针法----CATCH STITCH叠针法----FASTENING STITCH扎针法----PAD STITCH扳针法----DIAGONAL BASTING绗针法----QUILTING STITCH锁针法----LOCK STITCH倒针法----BARTACK STITCH ,BACK STITCH 三角针法---HERRINGBONE STITCH杨树花针法--FEATHER STITCH花针法----ZIGZAG STITCH跳针法----SKIPPING STITCHC:Cotton 棉W:Wool 羊毛M:Mohair 马海毛RH:Rabbit hair 兔毛AL:Alpaca 羊驼毛S:Silk真丝J:Jute 黄麻L:linen 亚麻Ts:Tussah silk 柞蚕丝YH:Yark hair 牦牛毛Ly:lycra莱卡Ram:Ramine 苎麻Hem:Hemp 大麻T:Polyester 涤纶WS:Cashmere 羊绒N:Nylon 锦纶(尼龙)A:Acrylic 腈纶Tel:Tencel 天丝,是Lyocell莱赛尔纤维的商品名La:Lambswool 羊羔毛Md:Model 莫代尔CH:Camel hair 驼毛CVC:chief value of cotton涤棉倒比(涤含量低于60%以下)Ms:Mulberry silk 桑蚕丝R:Rayon 粘胶纤维缩写代号纤维名称缩写代号天然纤维丝S麻L人造纤维粘胶纤维R醋酯纤维CA三醋酯纤维CTA铜氨纤维CVP富强纤维Polynosic蛋白纤维PROT纽富纤维Newcell 合成纤维碳纤维CF聚苯硫醚纤维PPS聚缩醛纤维POM酚醛纤维PHE弹性纤维PEA聚醚酮纤维PEEK预氧化腈纶PANOF改性腈纶MAC维纶PVAL聚乙烯醇缩乙醛纤维PVB氨纶PU硼纤维EF含氯纤维CL高压型阳离子可染聚酯纤维CDP常压沸染阳离子可染纤维ECDP聚乳酸纤维PLA聚对苯二甲酸丙二醇酯纤维PTT聚对苯二甲酸丁二醇酯纤维PBT聚萘二甲酸乙二醇酯纤维PEN聚乙烯、聚丙烯共混纤维ES氯纶Pvo聚对本二氧杂环已酮纤维PDS弹性二烯纤维ED同位芳香族聚酰胺纤维PPT对位芳香族聚酰胺纤维PPTA芳砜纶PDSTA聚酰亚胺纤维Pi超高强高模聚乙烯纤维CHMW-PE 其他金属纤维TF玻璃纤维GE车缝车间单针平车 1-NEEDLE LOCKSTITCH M/C单针链缝平车 1-NEEDLE CHAINSTITCH M/C人字平车 ZIG-ZAG STITCHES M/C双针车 TWIN-NEEDLE M/C钮门车 BUTTONHOLE M/C钉钮车 BUTTON ATTACHING M/C打枣车 BARTACK M/C埋夹车 CHAIN STITCH FEED-OFF ARM M/C切刀车 LOCKSTITCH TRIMMING M/C五线及骨车 5-THREAD SAFTY STITCHES M/C三线及骨车 3-THREAD OVERLOCKING M/C拉筒车 MUTI-NEEDLE CHAINSTITCH M/C耳仔机 LOOPER SEWING M/C辘脚车 SPECIAL STREAMLINED LOCKSTITCH三针网车 3-NEEDLE INTERLOCK M/C四针虾苏网车 4-NEEDLE INTERLOCK M/C四针拼缝车 FEED-OFF-THE-ARM,4 NEEDLE BOTH CUT FLAT SEAMER 挑脚车 CHAIN-BLINDSTITCH M/C凤眼车 EYELET END M/C开袋机 POCKET M/C切耳仔机 LOOPER CUTTING MACHINE粘合机 FUSING M/C啤钮机 SNAP FIXING M/C切领机 COLLAR CUTTING M/C切筒车 CUTING PLACKET MACHINE拉布机 SPREADER直送捆条机 BALER大型翻线机(8个头) CROSSING THREAD M/C反领机 COLLAR TURNING MACHINE自动反介英机 AUTO CUFF TURNING M/C点领机 HEAT NOTCHING M/C切领机 COLLARTRIMMING M/C切筒机 PLACKET TRIMMING M/C裁床裁床 CUTTING BED绣花机 EMBROIDERING M/C直刀电剪 STRAIGHT KNIFE M/C切布机 CLOTH CUTTING M/C一字镭射灯 "一" LASER LIGHT十字定位灯 CROSS LASER LIGHT切朴机 INTERLINNING CUTTING M/C 卷朴机 WINDING INTERLINNING M/C 钻孔机 HOLER M/C自动裁割机 AUTOMATIC CUTTING M/C 啤机 HYDRAULIC CUTTING PRESSER 拉布机 SPREADER印花厂自动印花机 AUTO-PRINTING M/C印花烘干机 DRYER手动印花机 MANUAL PRINTING M/C 洗网机 NET WASHER MACHINE晒网机 BLUE PRINT MACHINE干网机 NET DRYER MACHINE刨刮机 SQUEEGE SHARPENER熨画机 IRONING DRAWING洗水厂工业洗衣机 INDUSTRY WASHER工业脱水机 INDUSTRY SPIN-DRYER工业染色办机 INDUSTRY COLORING M/C震动机 SHAKING M/C大货洗衣机 BULK WASHER缝纫机中英文对照机型Bed type平板式 / Flat bed平台式 / Raised flat-bed箱体式 / Box type立柱式 / Post-bed悬筒式 / Cylinder type旋梭Hook卧式标准旋梭 / Horizontal hook (standard) 卧式双倍旋梭 / Horizontal hook (large) 立式标准旋梭 / Vertical hook (standard) 立式双倍旋梭 / Vertical hook (large)摆梭 / Shuttle hook使用线数No. of threads线数 / No. of threads针迹Size of stitch(mm)机针 / Needle针间距 / Needle gauge针迹长度 / Stitch length线迹长度 / Stitch length线迹宽度 / Stitch width送料方式Feeding modes下送料 / Bottom feed差动送料 / Differential feed针送料 / Needle feed上下送料 / Top and bottom feed 综合送料 / Compound feed滚轮送料 / Wheel feed针数No. of needles针数 / No. of needles缝纫速度Sewing speed(S.P.M.)缝纫速度 / Sewing speed缝纫速度(带速度控制器) / Sewing speed(with controller)送布差动量Feed amount主运动量 / Main feed amount差动主运动量 / Differential feed amount差动比 / Differential ratio缝纫布料Sewing materials薄料 / Light-weight materials中厚料 / Medium-weight materials厚料 / Heavy-weight materials极厚料 / Extra heavy-weight materials机能Functions离合式针杆 / Split needle bar针杆行程 / Needle stroke压脚提升量 / Height of presser foot滚轮压脚 / Roller presser foot加固缝 / Straight line bartacking挡线 / Thread wiper切线 / Thread trimmer倒回缝 / Reverse stitching交替幅度 / Alternation range弯针 / Looper模式 / Sewing mode布切刀 / Cloth cutting knife衣前身 front body/front裁片/片料 cutted pieces/cut衣大身 bodice/body大身衣片 body piece前身里子 front lining全/半衬里 full/half lining活动里 detachable lining拉练脱卸里 zip-out lining防缩衬里 shrink-proof lining衣肩 shoulder腰节 waistline前过肩 front yoke领嘴 notch胸部 chest/breast/bosom硬衬胸 front stiff前襟/前片/前幅 forepart/front panel 开襟 opening/placket/cardigan front长开襟 deep placket半开襟 placket front/neckline placket对襟 front opening偏襟 slanting front/side opening曲襟 crank opening门襟 top/front fly明门襟 front strap/band//top center贴门襟 facing strap暗门襟French front/plain front//wrap over front/ button panel/cover placket假门襟 mock fly门襟里打袢 fly tongue里襟 under/right fly挂面 front facing前搭门 front overlap门襟止口 front edge腰身 waist下摆/衣裾 bottom/hem/lap平下摆square-cut hem/plain hem/flat hem斜下摆 slant-cut bottom弧形下摆 curve bottom圆下摆 round bottom罗纹下摆 rib bottom底边/折边 hem反折边 turnup hem贴边 facing/welt滚边 piped/welted edge滚条 welt嵌条 panel包边 covered edge假封边 tack edge毛边 fringe皱襞 jabot领串口 gorge line领驳口 fold line for lapel扣眼/钮孔 buttonhole圆头钮孔/凤眼 eyelet buttonhole平头钮孔/直扣眼 straight/flat buttonhole 花式扣眼 fancy buttonhole假扣眼 mock/decoration buttonhole滚边扣眼/滚眼 welt buttonhole扣位button stand扣眼位buttonhole position扣眼档 buttonhole distance省 dart前肩省 front shoulder dart前腰省 front waist dart驳口省 lapel dart肋省 underarm/side dart肚省 stomach dart曲线省/刀背缝 French dart衣后身 back body后片/后幅 back panel后身里 back lining后身半衬里 half back lining 总肩 across back shoulders小肩 shoulder line后过肩 back yoke后开襟 back opening后搭门 back overlap后半腰带 half back belt后摆 tail/sweep/coattail后摆省 back waist dart后肩省 back shoulder dart衩 vent/slit/slash/umanoir(F)背衩 back vent单衩 center vent明单衩 hook vent阴衩/暗衩 inverted vent边衩/双开衩 side vent/split钩形衩 hook vent关于针织品的名词术语1.1 针织物1.1.1 纬编针织物 weft-knitted fabric用纬编针织机编织,将纱线由纬向喂入针织机的工作针上,使纱线顺序地弯曲成圈,并相互穿套而形成的圆筒形或平幅形针织物。

上海的交通信号控制与scats系统20101208

上海的交通信号控制与scats系统20101208

交通信号控制
SCATS组成结构——路口控制器
SCATS路口控制器(ECLIPSE)
• RTA授权认证产品 • 针对路口特征的软件定义 • 多相位控制 • 特殊控制 • 高可靠性 • 高可维护性
2024/1/3
18
国家精品课程:交通控制与管理
交通信号控制
SCATS组成结构——路口控制器
SCATS 区域控制器
SCATS 中央管理
PC
其它 ITS 设备
解调器 & RAS connection
2024/1/3
LAN or WAN 遥远终端
11
SCATS 操作台 (PC’s) 国家精品课程:交通控制与管理
交通信号控制
SCATS系统结构纲要
▪ SCATS中央管理控制级 ▪ SCATS区域管理控制级 ▪ SCATS系统工作站 ▪ SCATS系统的路口控制器-Eclipse ▪ SCATS系统的通讯
✓每个城市应用后,系统都得到快速的扩展。
2024/1/3
9
国家精品课程:交通控制与管理
交通信号控制
结构
SCATS系统
2024/1/3
10
国家精品课程:交通控制与管理
交通信号控制
SCATS系统结构示意图
PSC
Video Wall
PSC
SCATS
PC 区域 1
SCATS
PC 区域 2
SCATS
PC 区域 3
SCATS系统基本原理
高效的“集装箱运输”原理: 1、交通信号最佳工作条件是把交通车流分配为一个个车队(集装箱式)
的通行
2、“红灯”可以起到“整理车流”的作用 3、“车间距”控制原理,与车型无关 4、协调功能

菜单栏的英文翻译

菜单栏的英文翻译

菜单栏的英文翻译Premiere 5.0/5 .5菜单详解·File文件菜单【New】新建Protect 项目设计Library 库Title 标题【Open】打开【Close】关闭【Save】保存【Save As】另存为【Save a Copy】另存一份副本【Revert】还原【Capture】捕获Batch Capture 批捕获Movie Capture 视频捕获Stop Motion 捕获当前帧Audio Capture 音频捕获【Get Properties for】得到相应属性File文件Selection选择【Interpret Footage】计算长度【Import】引入File 文件Folder 片段目录Project 设计【Export】导出Movie 电影Frame 帧Print to Video 展示电影Export to Tape 输出到录音带File List 文件列表Fast Start Movie 快速启动电影CMX3 400 EDL 输出设备CMX3 600 EDL 输出设备Generic EDL输出设备Grass Valley EDL输出设备Sony BVE 9 000 EDL 输出设备Sony BVE 9 100 EDL 输出设备【Utilities】工具Batch Processing 批处理Project Trimmer 整理设计【Page Setup】页面设置【Print】打印【preferences】参数设置General/Still Image 常规图/静态图Auto Save/Undo 自动保存/取消自动保存Scratch Disks/Device Control 搜索可用空间/指定磁盘【Adobe Online】Adobe在线【Exit】退出·Edit编辑菜单【Undo】撤消【Redo】恢复【Cut】剪切【Copy】复制【Paste】粘贴【Clear】清除1【Select All】选择全部【Break Link】中断链接【Paste to File】粘贴到文件【Paste Custom】自定义粘贴‘【Paste Custom Again】重复自定义粘贴【Insert at Edit Line】在编辑行插入【Overlay at Edit Line】覆盖编辑行【Razor at Edit Line】在编辑线处剪断【Ripple Delete】删除纹波【Apply】应用【Add Default Transition】增加默认过渡·Project设计菜单【Preview】预览【Render Selection】指定选择【Render Audio】指定音频【Settings】设置General 常规Video 视频Audio音频Key frame and Rendering 关键帧Capture捕获【Create】创建Bin库Sub clip子剪辑Universal Counting Leader 通用计数片头Color Matte调色板Offline File脱机文件【Add This Clip】增加片段【Remove Unused】删除未被使用的【Replace Files】替换文件【Clean Up】全部删除【Search】查找·Clip片段菜单【Enabled】有效的【Locked】锁定【Alias】别名【Time Code】时间代码【Video】视频Maintain Aspect Ratio 锁定长宽比率Aspect Color边框颜色Transparency透明性Motion动作Frame Hold停顿帧Field Options 域选项【Audio】音频Gain增加Take Left左声道Take Right右声道【Filters】过滤器【Transition Settings】过渡设置【Duration】持续时间【Speed】速度【Locate Clip】定位片段【Open Clip】打开片段【Open Master Clip】打开主片段【Replace with Source】替换源【Cot Marker】转到标记处In开始Out结束Next下一个Previous 上一个0 道1 道2 道(以次类推)【Set Marker】设置标记In开始Out结束Unnumbered未编号0 道1 道2 道(以次类推)【Clear Marker】删除标记【Clear A11 Markers】删除所有标.Window窗口菜单【Timeline Window Options】监视口选项【Timeline】时序窗口【Monitor】监视器【Show /Hide Info】显示或隐藏兰息【Hide/Show Navigator】隐藏或显示【Hide/Show Transitions】隐藏或显示【Show/Hide Commands】显示或隐藏命令·Help帮助菜单【Contents】目录【Search】搜索【Keyboard】快捷键【How to Use Help】如何使用帮助【About Premiere】关于Premiere ·Transitions所有的过渡命令【Additive Dissolve】添加溶解【Band Slide】束缚滑动【Band Wipe】束缚擦拭【Bam Doors】谷仓门【Cross Stretch】交叉延伸【Cross Zoom】交叉放大【Cube Spin】立体旋转【Curtain】开窗帘式【Direct】直接变换【Displace】移置【Dither Dissolve】拌动溶解【Doors】关闭式【Flip Over】翻转【Fold Up】向上折叠【Funnel】漏斗【Gradient Wipe】倾斜擦拭【Image Mask】图像掩饰【Inset】嵌入【Iris Cross】交叉散【Iris Diamond】菱形扩散【Iris Points】点扩散【Iris Shapes】锐角形扩散【Iris Square】方形扩散【Iris Star】星形扩散【Luminance Map】高度映射【Motion】运动【Multi—spin】复合旋转【Non—additive Dissolve】无添加溶解【Page Peel】页剥落【Page Turn】翻页【Paint Splatter】泼油漆【Peel Back】四面剥落【Pinwheel】转轮焰火【Push】推【Radil Wipe】射线擦拭【Random Blocks】随机块【Random Wipe】随机擦拭【Roil Away】流动离去【Slide】滑动【Sliding Bands】波段滑动【Sliding Boxes】盒状滑动【Spin】旋转【Spin Away】旋转离去【Spiral Boxes】盒状螺旋【Split】分裂【Stretch】伸延【Stretch in】内伸延Authorware 5.5菜单详解·File文件菜单【New】新建File文件【Stretch Over】伸延覆盖【Swap】交换【Swing in】内摆【Swing out】外摆【Swirl】涡状【Take】变换【Textures】织纹式【Three-D】3D效果【Translation Factory】跳变【Tumble Away】翻转离去【Venetian Blinds】渐失明【Wedge Wipe】楔进擦拭【Wipe】从左到右擦拭【Zigzag Blocks】弯曲状【Zoom】放大【Zoom Boxes】盒状放大【Zoom Trails】跟踪放大Library库【Open】打开File文件Library库【Close】关闭Window窗口A1l所有窗口【Save】保存【Save As】另存为【Save And Compact】压缩保存(可以优化数据)【Save All】保存全部【Import】导入【Package】打包【Preferences】参数设置【Page Setup】页面设置【Print】打印【Send ail】发送邮件【Exit】退出·Edit编辑菜单【Undo】撤消【Cut】剪切【Copy】复制【Paste】粘贴【Paste Special】指定粘贴【Clear】删除【Select All】选择全部【Find】查看【Find Again】再次查找【OLE Object Links】OLE对象链【OLE Object】OLE对象Attributes属性Convert格式转换Make Static转为静态【Open Icon】打开图标【Add to Display】增力Ⅱ显示·View查看菜单【Current Icon】当前图标【Menu Bar】菜单栏【Toolbar】工具栏【Floating Panels】浮动面板开关【Grid】网格【Snap To Grid】按网格定位·Insert插入菜单【Create Model】建立模块【Load Model】装载模块【Unload Model】删除模块【Paste Model】粘贴模块【Image】图片【OLE Object】OLE对象【Control】外部控件ActiveX Microsoft ActiveX控件·Modify修改菜单【Image Properties】图片属性【Icon】图标Properties属性Decision Path分支设置Response交互设置Calculation计算Transition过渡效果Keywords关键字Connections查看连接Library Links 库连接【File】文件Properties属性Font Mapping字体映射Palette调色板Navigation Setup【Align】排列对象【Group】组合导航设置【Ungroup】取消组合【Bring to Front】对象置前【Send to Back】对象置后·Text文本【Font】字体【Size】大小Other其他Size up增大Size Down减小【Style】风格Plain普通Bold加粗Italic斜体Underline 下划线Superscript 上标Subscript下标【Alignment】对齐Left左齐Center居中Right右齐Justify两端对齐【Scrolling Text】滚动文本【Preserve Line Breaks】断行保护【Number Format】数字格式【Navigation】导航【Apply Styles】使用自定义风格【Define Styles】自定义风格·Control控制菜单【Restart】重新开始【Play】执行程序【Reset】清除跟踪【Step Into】单步进入【Step Over】单步跳跃【Restart from Flag】从旗标处开始执行程序【Reset to Flag】清除到开始旗标处·Xtras特殊效果【Library】库连接【Spelling】拼写检查【Other】其他Convert WAV to SW A 将W A V 【Inspectors】对象设置Lines线型窗口Fills填充窗口Modes显示方式窗口Colors调色板窗口【Presentation】展示窗口【Design】设计窗口【Library】库【Calculation】计算窗口【Functions】函数窗口【Variables】变量窗口【Buttons】按钮窗口【Cursors】光标窗口【Externl Media Browser】外部媒体窗口·Help帮助菜单【Authorware Help]帮助主题【Help Pointer] 帮助指针【Index]索引帮助【Reference] 参考帮助【Scripting]变量、函数帮助【How To】如何操作【Overview】回顾以前的版本【Troubleshooting】疑难解答【Show Me】举例【Web Links】网页连接【Templates】模板帮助【About Authorware】关于Authorware。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a rXiv:079.451v3[mat h.G T]1J un28BORING SPLIT LINKSSCOTT A TAYLOR A BSTRACT .Boring is an operation which converts a knot or two-com-ponent link in a 3–manifold into another knot or two-component link.It generalizes rational tangle replacement and can be described as a type of 2–handle attachment.Sutured manifold theory is used to study the ex-istence of essential spheres and planar surfaces in the exteriors of knots and links obtained by boring a split link.It is shown,for example,that if the boring operation is complicated enough,a split link or unknot cannot be obtained by boring a split link.Particular attention is paid to rational tangle replacement.If a knot is obtained by rational tangle replacement on a split link,and a few minor conditions are satisfied,the number of boundary components of a meridional planar surface is bounded below by a number depending on the distance of the rational tangle replace-ment.This result is used to give new proofs of two results of Eudave-Mu˜n oz and Scharlemann’s band sum theorem.1.I NTRODUCTION 1.1.Refilling and Boring.Given a genus two handlebody W embedded in a 3–manifold M ,a knot or two-component link can be created by choosing an essential disc α⊂W and boundary-reducing W along α.Then W −˚η(α)is the regular neighborhood of a knot or link L α.We say that the exterior M [α]of this regular neighborhood is obtained by refilling the meridian disc α.Similarly,given a knot or link L α⊂M we can obtain another knot or link L βby the following process:(1)Attach an arc to L αforming a graph(2)Thicken the graph to form a genus two handlebody W(3)Choose a meridian βfor W and refill β.Refilling the meridian αof the attached arc returns L α.Any two knots in S 3can be related by such a move if we allow αand βto be disjoint:just let W be a neighborhood of the wedge of the two knots.We’ll restrict attention,therefore,to meridians of W which cannot be isotoped to be disjoint.If aBORING SPLIT LINKS2 knot or link Lβcan be obtained from Lαby this operation say that Lβis obtained by boring Lα.Since the relation is symmetric we may also say that Lαand Lβare related by boring.Boring generalizes several well-known operations in knot theory.Band sums,crossing changes,generalized crossing changes,and,more gener-ally,rational tangle replacement can all be realized as boring.The band move from the Kirby calculus[FR,K]is also a type of boring.If W is the standard genus2handlebody in S3and Lαis the unlink of two components then all tunnel number1knots can be obtained by boring Lαusing W.If Lαand Lβare related by boring,it is natural to ask under what circum-stances both links can be split,both the unknot,both composite,etc.Many of these questions have been effectively addressed for special types of bor-ing,such as rational tangle replacement[EM1].Following[S4],this paper will focus on the exteriors M[α]and M[β]of the knots Lαand Lβ,respec-tively.In that paper,Scharlemann conjectured that,with certain restrictions (discussed in Section6),if M[α]and M[β]were both reducible or boundary-reducible then either W is an unknotted handlebody in S3orαandβare positioned in a particularly nice way in W.He was able to prove his con-jecture(with slightly varying hypotheses and conclusions)when M−˚W is boundary-reducible,when|α∩β|≤2,or when one of the discs is separat-ing.This paper looks again at these questions and completes,under stronger hypotheses,the proof of Scharlemann’s conjecture except when M=S3and M[α]and M[β]are solid tori.With these stronger hypotheses,however,we reach conclusions which are stronger than those obtained in[S4].Even in the one situation which is not completed,we do gain significant insight. The remaining case isfinally completed in[T].Here is a simplified version of one of the main theorems:Simplified Theorem6.1.Suppose that M is S3or the exterior of a link in S3 and that M−˚W is irreducible and boundary-irreducible.Ifαandβcannot be isotoped to be disjoint,then at least one of M[α]or M[β]is irreducible. Furthermore,if one is boundary-reducible(e.g.a solid torus)then the other is not reducible.The conclusions of Theorem6.1are an“arc-version”of the conclusions of the main theorem of[S3]which considers surgeries on knots producing reducible3–manifolds.The methods of this paper are similar in outline to those of[S3]but differ in detail.BORING SPLIT LINKS3 Perhaps the most interesting application of these techniques to rational tan-gle replacement is the following theorem,which generalizes some results of Eudave-Mu˜n oz and Scharlemann:Theorem7.3.Suppose that Lβis a knot or link in S3and that B′⊂S3is a 3–ball intersecting Lβso that(B′,B′∩Lβ)is a rational tangle.Let(B′,rα) be another rational tangle of distance d≥1from rβ=B′∩Lβand let Lαbe the knot obtained by replacing rβwith rα.Let(B,τ)=(S3−˚B′,Lβ−˚B′). Suppose that Lαis a split link and that(B,τ)is prime.Then Lβis not a split link or unknot.Furthermore,if Lβhas an essential properly embedded meridional planar surface with m boundary components,it contains such a surface Q|≤m such that eitherQ∩∂B|(d−1)≤|∂BORING SPLIT LINKS4 by refilling meridians and for studying non-separating surfaces which are not homologous to a surface with interior disjoint from W.The approach of [T]is more effective for the study of essential discs and separating surfaces.1.2.Notation.We work in the PL or smooth categories.All manifolds and surfaces will be compact and orientable,except where indicated.|A| denotes the number of components of A.If A and B are embedded curves on a surface,|A∩B|will generally be assumed to be minimal among all curves isotopic to A and B.For a subcomplex B⊂A,η(B)denotes a closed regular neighborhood of B in A.˚B and int B both denote the interior of B and cl(B)denotes the closure of B.∂B denotes the boundary of B.All homology groups have Z(integer)coefficients.1.3.Acknowledgements.The work in this paper is part of my Ph.D.dis-sertation at the University of California,Santa Barbara.I am grateful to my advisor,Martin Scharlemann,for suggesting I learn sutured manifold the-ory and for many helpful conversations.This paper benefited greatly from his comments on early drafts.I am also grateful to Ryan Blair and Robin Wilson for our conversations and to Stephanie Taylor for suggesting the “boring”terminology.Portions of this paper were written at Westmont Col-lege and the research was partially supported by a grant from the National Science Foundation.2.S UTURED M ANIFOLD T HEORYWe begin by reviewing a few relevant concepts from combinatorial sutured manifold theory[S2].2.1.Definitions.A sutured manifold is a triple(N,γ,ψ)where N is a compact,orientable3–manifold,γis a collection of oriented simple closed curves on∂N,andψis a properly embedded1–complex.T(γ)denotes a collection of torus components of∂N.The curvesγdivide∂N−T(γ)into two surfaces which intersect alongγ.Removing˚η(γ)from these surfaces creates the surfaces R+(γ)and R−(γ).For an orientable,connected surface S⊂N in general position with respect toψ,we defineχψ(S)=max{0,|S∩ψ|−χ(S)}.If S is disconnected,χψ(S)is the sum ofχψ(S i)for each component S i. For a class[S]∈H2(N,X),χψ([S])is defined to be the minimum ofχψ(S) over all embedded surfaces S representing[S].Ifψ=∅,thenχψ(·)is the Thurston norm.BORING SPLIT LINKS5Of utmost importance is the notion ofψ–tautness for both surfaces in a sutured manifold(N,γ,ψ)and for a sutured manifold itself.Let S be a properly embedded surface in N.•S isψ–minimizing in H2(N,∂S)ifχψ(S)=χψ[S,∂S].•S isψ–incompressible if S−ψis incompressible in N−ψ.•S isψ–taut if it isψ–incompressible,ψ–minimizing in H2(N,∂S)and each edge ofψintersects S with the same sign.Ifψ=∅thenwe say either that S is∅–taut or that S is taut in the Thurston norm.A sutured manifold(N,γ,ψ)isψ–taut if•∂ψ(i.e.valence one vertices)is disjoint from A(γ)∪T(γ)•T(γ),R+(γ),and R−(γ)are allψ–taut.•N−ψis irreducible.Thefinal notion that is important for this paper is the concept of a con-ditioned surface.A conditioned surface S⊂N is an oriented properly embedded surface such that:•If T is a component of T(γ)then∂S∩T consists of coherently ori-ented parallel circles.•If A is a component of A(γ)=η(γ)then S∩A consists of eithercircles parallel toγand oriented the same direction asγor arcs alloriented in the same direction.•No collection of simple closed curves of∂S∩R(γ)is trivial inH1(R(γ),∂R(γ)).•Each edge ofψwhich intersects S∪R(γ)does so always with thesame sign.Conditioned surfaces,along with product discs and annuli,are the surfaces along which a taut sutured manifold is decomposed to form a taut sutured manifold hierarchy.A hierarchy can be taken to be“adapted”to a param-eterizing surface,that is,a surface Q⊂N−˚η(ψ)no component of which is a disc disjoint fromγ∪η(ψ).The“index”of a parameterizing surface is a certain number associated to Q which does not decrease as Q is modified during the hierarchy.2.2.Satellite knots have Property P.It will be helpful to review the es-sentials of the proof of[S2,Theorem9.1],where it is shown that satellite knots have property P.In that theorem,a3–manifold N with∂N a torus is considered.It is assumed that H1(N)is torsion-free and that k⊂N is a knot in N such that(N,∅)is aBORING SPLIT LINKS6 k–taut sutured manifold.Suppose that some non-trivial surgery on k creates a manifold which has a boundary-reducing discQ−˚η(k)acts as a parameterizing surface for a k–taut sutured manifold hierarchy of N.At the end of the hierarchy,there is at least one component containing pieces of k.A combinatorial argument using the assumption that H1(N)is torsion-free shows that,in fact,the last stage of the hierarchy is ∅–taut.Sutured manifold theory then shows that the original manifold N is ∅–taut,as desired.This argument is extended in[S3]to study surgeries on knots in3–manifolds which produce reducible3–manifolds.In that paper, the surfaceα⊂M[α]in place of the knot k⊂N.Second,we develop criteria which allow the surfaceQ.Section4discusses the placement of sutures on∂M[α].This allows theorems about sutured manifolds to be phrased without reference to sutured manifold terminology.Section6applies the sutured manifold results in order to(partially)answer Scharlemann’s conjecture about refill-ing meridians of genus two handlebodies.Section7uses the technology to reprove three classical theorems about rational tangle replacement and prove a new theorem about essential meridional surfaces in the exterior of a knot or link obtained by boring a split link.Finally,Section8shows how the sutured manifold theory results of this paper can significantly simplify certain combinatorial arguments.3.A TTACHING A2–HANDLELet N be a compact orientable3–manifold containing a component F⊂∂N of genus at least two.Let a⊂F be an essential closed curve and let B={b1,...,b|B|}be a collection of disjoint,pairwise non-parallel essen-tial closed curves in F isotoped so as to intersect a minimally.Suppose thatγ⊂∂N is a collection of simple closed curves,disjoint from a,such that(N,γ∪a)is a taut sutured manifold andγintersects the curves of B minimally.Let∆i=|b i∩a|andνi=|b i∩γ|.Suppose that Q⊂N is a surface with q i boundary components parallel to the curve b i,for each1≤i≤|B|.Let∂0Q be the components of∂Q which are not parallel to any b i.Assume that∂Q intersectsγ∪a minimally. Define∆∂=|∂0Q∩a|andν∂=|∂0Q∩γ|.We need two definitions.TheBORING SPLIT LINKS7first defines a specific type of boundary compression and the second(as we shall see)is related to the notion of“Scharlemann cycle”.Definition.An a–boundary compressing disc for Q is a boundary com-pressing disc D for which∂D∩F is a subarc of some essential circle in η(a).Definition.An a–torsion2g–gon is a disc D⊂N with∂D⊂F∪Q consist-ing of2g arcs labelled around∂D asδ1,ε1,...,δg,εg.The labels are chosen so that∂D∩Q=∪δi and∂D∩F=∪εi.We require that eachεi arc is a subarc of some essential simple closed curve inη(a)and that theεi arcs are all mutually parallel as oriented arcs in F−∂Q.Furthermore we require that attaching to Q a rectangle in F−∂Q containing all theεi arcs produces an orientable surface.Example.Figure1shows a hypothetical example.The surface outlined with dashed lines is Q.It has boundary components on F.There are two such boundary components pictured.The curve running through Q and F could be the boundary of an a–torsion4–gon.Notice that the arcsε1and ε2are parallel and oriented in the same direction.Attaching the rectangle containing those arcs as two of its edges to Q produces an orientable surface.F IGURE1.The boundary of an a–torsion4–gon. Remark.Notice that an a–torsion2–gon is an a–boundary compressing disc.BORING SPLIT LINKS8 If2–handles are attached to each curve b i for1≤i≤|B|,a3–manifold N[B]is obtained.Each component of∂Q−∂0Q bounds a disc in N[B].LetQ=∂0Q.We will usually also attach3–balls to spherical components of ∂N[B].Remark.The term“a–torsion2g–gon”is chosen because in certain cases (but not all)the presence of an a–torsion2g–gon with g≥2guarantees that N[B]has torsion in itsfirst homology.DefineK(αdenote the arc which is the cocore of the2–handleα×I.We can now state our main sutured manifold theory result.It is an adapta-tion of Theorem9.1of[S2].Main Theorem(cf.[S2,Theorem9.1]and[S3,Proposition4.1]).Sup-pose that(N[a],γ)isα–taut surface S⊂N[a]which is not∅–taut.•N[a]is homeomorphic to a solid torus S1×D2andQ)≥K(αcan be isotoped to be monotonic in the solid torus N[a]then it is,informally,a“braided arc”.The contrapositive of this aspect of the theorem is similar to the conclusion in[G2]and[S3]that if a non-trivial surgery on a knot with non-zero wrapping number in a solid torus produces a solid torus then the knot is a0or1–bridge braid.The remainder of this section proves the theorem.Following[S3],define a Gabai disc for Q to be an embedded disc D⊂N[a]such thatBORING SPLIT LINKS9•|α∩D.The latter are called the interior vertices ofΛ.The edges ofΛare the arcs Q∩D.A loop is an edge inΛwith initial and terminal points at the same vertex.A loop is trivial if it bounds a disc in D with interior disjoint fromΛ.To show that there is an a–torsion2g–gon for Q,we will show that the graphΛcontains a“Scharlemann cycle”of length g.The interior of the Scharlemann cycle will be the a–torsion2g–gon.In our situation,Scharle-mann cycles will arise from a labelling ofΛwhich is slightly non-standard. Traditionally,whenα∩D|≥2. Recall that the arcQ andBORING SPLIT LINKS10 that since the orientations of˚D∩∂W in A are all the same,an arc intersects each component of˚D∩∂W with the same algebraic sign.Call an edge ofΛwith at least one endpoint on∂D a boundary edge and call all other edges interior edges.As each edge ofΛis an arc and as all vertices ofΛare parallel oriented curves on∂W,an edge ofΛmust have endpoints on arcs of C={c1,...,cµ}which are antiparallel.We call this the parity principle(as in[CGLS]).Label each endpoint of an edge inΛwith the arc in C on which the endpoint lies.We will occasionally orient an edge e ofΛ;in which case,let∂−e be the tail and∂+e the head.A cycle inΛis a subgraph homeomorphic to a circle.An x–cycle is a cycle which,when each edge e in the cycle is given a consistent orientation,has∂−e labelled with x∈C.LetΛ′be a subgraph ofΛand let x be a label in C.We say thatΛ′satisfies condition P(x)if:P(x):For each vertex v ofΛ′there exists an edge ofΛ′incident to v with label x connecting v to an interior vertex.Lemma3.2([CGLS,Lemma2.6.1]).Suppose thatΛ′satisfies P(x).Then each component ofΛcontains an x–cycle.Proof.The proof is the same as in[CGLS].A Scharlemann cycle is an x–cycleσwhere the interior of the disc in D bounded byσis disjoint fromΛ.See Figure2.Since each intersection point of D∩BORING SPLIT LINKS 11x δ1xδ2xδ3xδ4E F IGURE 2.A Scharlemann cycle of length 4bounding ana –torsion 8-gon.Proof.As ∂D contains fewer than |∂Q ∩A |endpoints of boundary-edges in Λthere is some x ∈C which does not appear as a label on a boundary edge.As every interior vertex of Λcontains an edge with label x at that vertex,none of those edges can be a boundary edge.Consequently,Λsatisfies P (x ).Hence,by Lemmas 3.2and 3.3,Λcontains a Scharlemann cycle of length g (for some g ).F IGURE 3.The rectangle R .In A there is a rectangle R with boundary consisting of the arcs x and y and subarcs of ∂A .See Figure 3.BecauseBORING SPLIT LINKS12 same sign,∂D always crosses R in the same direction.This shows that the arcsεi are all mutually parallel in F.The arcs x and y are antiparallel,so attaching R to Q produces an orientable surface.Hence,the interior of the Scharlemann cycle is an a–torsion2g–gon.We now proceed with proving the contrapositive of the theorem.Suppose that none of the three possible conclusions of the theorem hold.The surface Q is a parameterizing surface for theα–taut sutured manifold hierarchy for(N[a],γ)which is adapted to Q.The surface S1may be obtained from the surface S by performing the double-curve sum of S with k copies of R+and l copies of R−(Theorem 2.6of[S2]).The index I(Q i)is defined to beI(Q i)=|∂Q i∩∂η(αi is the remnant ofQ)<K(α.When N[a]is a solid torus the only∅–taut conditioned surfaces are unions of discs.If S is chosen to be a single disc then S1is isotopic to S.To see this,notice that R±is an annulus and so the double-curve sum of S with R±is isotopic to S.Hence,the hierarchy has length one and the cancelling and(non-self)amalgamating discs show thatBORING SPLIT LINKS 13Remark.The proof proves more than the theorem states.It is actually shown that at the end of the hierarchy,α–taut.With our ap-plications in mind,we restrict our attention to the situation when the bound-ary component F containing a has genus 2.Define ∂1N [a ]=∂N −F and ∂0N [a ]=∂N [a ]−∂1N [a ].For the moment,we consider only the choice of sutures ˆγon ∂0N [a ].If a is separating,so that ∂0N [a ]consists of two tori joined by the arcα.(Figure 4.B.)F IGURE 4.Choosing ˆγ.BORING SPLIT LINKS14 If we are in the special situation of“refilling meridians”,we will want to choose the curvesˆγmore carefully.Recall that in this case N⊂M and F bounds a genus2handlebody W⊂(M−˚N).The curves a and b bound in W discsαandβrespectively.Assuming that the discsβandαhave been isotoped to intersect minimally and non-trivially,the intersectionα∩βis a collection of arcs.An arc of α∩βwhich is outermost onβcobounds with a subarcψof b a disc with interior disjoint fromα.This disc is a meridional disc of a(solid torus) component of∂W−˚η(α).The arcψhas both endpoints on the same com-ponent of∂η(a)⊂F.We,therefore,define a meridional arc of b−a to be any arc of b−˚η(a)which together with an arc in∂η(α)∩˚W bounds a meridional disc of W−˚η(α).If a is non-separating,then the existence of meridional arcs shows that every arc of b−˚η(a)with endpoints on the same component of∂η(a)⊂F is a meridional arc of b−a.An easy counting argument shows that if a is non-separating then there are equal numbers of meridional arcs of b−a based at each component of∂η(a)⊂F.Hence, when a is non-separating,the number of meridional arcs of b−a,denoted M a(b)is even.Some meridional arcs are depicted in Figure5.F IGURE5.Some meridional arcs on∂WReturning to the definition of the suturesˆγ,we insist that when“refilling meridians”and whenαis non-separating,the curvesˆγbe meridional curves of the solid torus W−˚η(α)which separate the endpoints ofBORING SPLIT LINKS15 onˆγ∪a.Then γcan be chosen so that(N,γ∪a)is∅–taut and so that (N[a],γ)isBORING SPLIT LINKS16Γcut∂N into tori,once-punctured tori,and thrice-punctured spheres.Fur-thermore,if c∪a∪ˆγis pantsless,then so isΓ∪a∪ˆγ.An examination of Scharlemann’s construction shows that all curves ofΓ−c may be taken to be non-separating.Thus,the number of once-punctured tori in∂N with boundary on some component ofΓ∪a is stillτ.IfΓcannot be taken to be a collection of sutures on∂N,then,by construction,|c|=2,one curve of c bounds a once-punctured torus in∂N containing the other curve of c. The component of c in the once-punctured torus is“redundant”(in Scharle-mann’s terminology).If no curve of c is redundant,let γ=Γ;otherwise, form γby removing the redundant curve fromΓ.Letγ′= γ∪a∪ˆγ.We now have a sutured manifold(N,γ′).Notice that the number of once-punctured torus components of∂N−γ′is equal toτ.We now desire to show that(N,γ′)is∅–taut.If it is not taut,then R±(γ) is not norm-minimizing in H2(N,η(∂R±)).Let J be an essential surface in N with∂J=∂R±=γ′.Notice thatχ∅(R±)=−χ(∂N)/2and that|γ′|=−3χ(∂N)/2−τ.Recall that eitherτ≤2orγ′is pantsless.Suppose,first,thatτ≤2.Since no component of J can be an essential annulus,by the arguments of Scharle-mann and Lackenby,χ∅(J)≥|∂J|/3=|γ′|/3.Hence,χ∅(J)≥−χ(∂N)/2−τ/3.Sinceτ≤2and sinceχ∅(J)and−χ(∂N)/2are both integers,χ∅(J)≥|∂N|/2=χ∅(R±).Thus,whenτ≤2,(N,γ′)is a∅–taut sutured manifold. Suppose,therefore thatγ′is pantsless.Recall thatτ≤4.Wefirst examine the case when each component of J has its boundary contained on a single component of∂M.Let J0be all the components of J with boundary on a single component T of∂N.Letτ0be the number of once-punctured torus components of T−γ′.Notice thatτ0≤2.The proof for the case when τ≤2,shows thatχ∅(J0)≥χ∅(R±∩T).Summing over all component of ∂N shows thatχ∅(J)≥χ∅(R±),as desired.We may,therefore,assume that some component J0of J has boundary on at least two components of∂N.Sinceγ′is pantsless,χ∅(J0)≥(|∂J0|+2)/3. For the other components of J we have,χ∅(J−J0)≥|∂(J−J0)|/3.Thus,χ∅(J)≥|γ′|+22+2−τBORING SPLIT LINKS17 We will be interested in when a component of∂N−F becomes compress-ible upon attaching a2–handle to a⊂F and also becomes compressible upon attaching a2–handle to b⊂F.If such occurs,the curves c of the previous lemma will be the boundaries of the compressing discs for that component of∂N.Obviously,in order to apply the lemma we will need to make assumptions on how that component compresses.5.C ONSTRUCTING QThe typical way in which we will apply the main theorem is as follows. Suppose that a and b are simple closed curves on a genus two component F⊂∂N and that there is an“interesting”surfaceR)≥K(R∩N may have a–boundary compressing discs or a–torsion2g–gons.The purpose of this section is to show how,given the surface Q which will,hopefully,have similar properties to Q∩N does not have a–boundary compressing discs or a–torsion2g–gons.This goal will not be entirely achievable,but Theorem5.1shows how close we can come.Throughout we assume that N is a compact,orientable,irreducible3–manifold with F⊂∂N a component having genus equal to2.Let a and b be two essential simple closed curves on F so that a and b intersect minimally and non-trivially.As before,let∂1N=∂1N[b]=∂N−∂F and let∂0N[b]=∂N[b]−∂1N[b].Let T0and T1be the components of∂0N[b].If b is non-separating,then T0=T1. Before stating the theorem,we make some important observations about N[b]and surfaces in N[b].If b is non-separating,there are multiple ways to obtain a manifold homeomorphic to N[b].Certainly,attaching a2–handle to b is one such way.If b∗is any curve in F which cobounds in F with∂η(b)a thrice-punctured sphere,then attaching2–handles to both b∗and b creates a manifold with a spherical boundary component.Filling in that sphere with a3–ball creates a manifold homeomorphic to N[b].We will often think of N[b]as obtained in the fashion.Say that a surfaceQ is a curve parallel to b or to some b∗.We denote the number of components of∂Q−∂Q)and the number parallel to b∗by q∗=q∗(Q)=(∆−ν−2)q+(∆∗−ν∗−2)q∗+∆∂−ν∂.Define a slope on a component of∂N[b]to be an isotopy class of pairwise disjoint,pairwise non-parallel curves on that component.The set of curvesBORING SPLIT LINKS18 is allowed to be the empty set.Place a partial order on the set of slopes on a component of∂N[b]by declaring r≤s if there is some set of curves representing r which is contained in a set of curves representing s.Notice that∅≤r for every slope r.Say that a surfaceQ is disjoint from that component.Say that a surfaceR on that component is contained in some representative of r and every curve of a representative of r is isotopic to some component of∂R⊂N[b]and gives as output a surface Q∩N can(in many circumstances)be effectively used as a parameterizing surface.The remainder of the section will be spent proving it.Theorem5.1.Suppose thatR is a collection of essential spheres and discs,or(II)N[b]contains no essential sphere or disc.Then there is a suitably embedded incompressible and boundary-incom-pressible surfaceQ is no more complicated thanQ), q(R), q(Q is no bigger than the sum of the genera of components ofQ andR is separating and if q=0then there is no a–torsion2g–gon for Q.(D3)IfBORING SPLIT LINKS19 (D4)IfQ produces a3–manifold with a lens space connected summand.•The boundaries are not unrelated:(*B1)Suppose that(II)holds,that we are refilling meridians,that no component of R has exactly one non-meridional component on each component of∂0N[b].ThenR∩∂0N[b].(B2)If∂Q ona component of∂1N[b]is less than or equal to the boundaryslope ofR on a com-ponent of∂0N[b]is non-empty then the boundary slope ofR.Property(B1),which is the most unpleasant to achieve,is present to guar-antee that if Q(possibly after discarding components)is a Seifert surface for Lβ.This is not used subsequently in this paper,but future work is planned which will make use of it.However, achieving property(D2)which is used here,requires similar considerations. In this paper,we will often want to achieve(D2)which is incompatible with (B3).The paper[T],however,does not need(D2)and so we state the theo-rem in a fairly general form.The only difficulty in proving the theorem is keeping track of the listed properties of R.Eliminating a–boundary compressions is psycholog-ically easier than eliminating a–torsion2g–gons,so wefirst go through the argument that a surfaceR is considered to be a sphere or essential disc.The proof is based on similar work in[S4], which restrictsQ described below terminates.We will show that if q(R∩N then there is a sequence of operations onR).If(I)holds,the complexity is simply q.If(II) holds,the complexity is(−χ(R))(with lexicographic ordering).IfBORING SPLIT LINKS20 (II)holds,it is clear that−χ(β)−intβ)are discs β1,...,βq,each parallel toβ,the core of the2–handle attached to b.Each 1-handle W j lies betweenβj andβj+1.The torus T0is incident toβ1and the torus T1is incident toβq.See Figure6.F IGURE6.The tori and1-handles W jThe interior of the arcε⊂F is disjoint from∂R.Consider the options for howεcould be positioned on W:Case1.1:εlies in∂W j∩F for some1≤j≤q−1.In this case,εmust span the annulus∂W j∩F.The1-handle W j can be viewed as a regular neigh-borhood of the arcε.The disc D can then be used to isotope W j through ∂D∩R reducing|β|by2.See Figure7.This maneuver decreases q(R to a surfaceQ satisfies the(C)and(B)properties.BORING SPLIT LINKS21F IGURE7.The disc D describes an isotopy ofR.This is impossible sinceR. The disc D guides a proper isotopy of Q in N[b]which reduces q.See Figure8.∂R.Case1.4:εlies in T0and has endpoints on∂β1.Boundary-compressingJ with two new boundary components on T0, both of which are essential curves.They are oppositely oriented and bound an annulus containingβ1.If∂R,showing that property(B4)is satisfied.It is easy to check thatχ(R)and that q(R)−1,so that(C1)is satisfied.Clearly,(C2),(C3),and(B3)are also satisfied.。

相关文档
最新文档