高中数学-等比数列练习题(含答案)
高中数学等比数列专项训练题(含答案)

高中数学等比数列专项训练题(含答案)一、单选题1.设是等比数列,且。
则()A。
12 B。
24 C。
30 D。
322.记S_n为等比数列{a_n}的前n项和.若a_5–a_3=12,a_6–a_4=24,则A。
2n–1 B。
2–2^(1–n) C。
2–2n–1 D。
2^(1–n)–13.北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)()=()A。
3699块 B。
3474块 C。
3402块 D。
3339块4.在等差数列().A.有最大项,有最小项 B.有最大项,无最小项 C.无最大项,有最小项 D.无最大项,无最小项5.数列,则()中。
若,中。
.记,则数列A。
2 B。
3 C。
4 D。
56.设比()为等比数列的前___,已知。
则公A。
3 B。
4 C。
5 D。
67.在公比为2的等比数列{a_n}中,前n项和为S_n,且S_7–2S_6=1,则a_1+a_5=()A。
5 B。
9 C。
17 D。
338.已知正项等比数列,则n为()满足,若,A。
5 B。
6 C。
9 D。
109.已知数列成等差数列,则()1.缺少选项,无法回答。
2.缺少选项,无法回答。
3.答案为B。
根据等比数列的通项公式,第n项为$a_n=a_1q^{n-1}$,代入式中可得$\frac{a_1(q^n-1)}{q-1}=S_n$。
4.答案为D。
由于等比数列的公比为正数,所以只有选项D成立。
5.缺少选项,无法回答。
6.缺少选项,无法回答。
7.答案为A。
由于等比数列的通项公式为$a_n=a_1q^{n-1}$,所以$\frac{a_{n+1}}{a_n}=q$,即$a_{n+1}=a_nq$。
代入式中可得$\frac{a_1(q^{n+1}-1)}{q-1}=S_{n+1}$。
高考数学必考点专项第18练-等比数列(练习及答案)(全国通用)(新高考专用)

高考数学必考点专项第18练等比数列习题精选一、单选题1. 已知数列{}n a 的前 n 项和为n S ,11a =,12n n S a +=,则n S =( ) A. 12n -B.C.D.2. 记n S 为等比数列{}n a 的前n 项和.若5312a a -=,6424a a -=,则nnS a =( ) A. 21n -B. 122n --C. 122n --D. 121n --3. 已知等差数列的公差0d ≠,且1a ,3a ,9a 成等比数列,则1392410a a a a a a ++++的值为( )A.914B.1115C.1316D.15174. 一个等比数列{}n a 的前n 项和为48,前2n 项和为60,则前3n 项和为( ) A. 63B. 108C. 75D. 835. 记n S 为正项等比数列{}n a 的前n 项和,若21S =,45S =,则7S =( ) A. 710S =B. 723S =C. 7623S =D. 71273S =6. 已知等比数列中,234=1a a a ,678=64a a a ,则456=(a a a ) A. 8±B. 8-C. 8D. 167. 音乐与数学有着密切的联系,我国春秋时期有个著名的“三分损益法”:以“宫”为基本音,“宫”经过一次“损”,频率变为原来的32,得到“徵”;“徵”经过一{}n a {}n a次“益”,频率变为原来的34,得到“商”;…….依次损益交替变化,获得了“宫、徵、商、羽、角”五个音阶.据此可推得( )A. “宫、商、角”的频率成等比数列B. “宫、徵、商”的频率成等比数列C. “商、羽、角”的频率成等比数列D. “徵、商、羽”的频率成等比数列8. 数列{}n a 中,已知对任意*n N ∈,123a a a +++…31n n a +=-,则222123a a a +++ (2)n a +等于( )A. 2(31)n -B.1(91)2n- C. 91n -D.1(31)4n- 9. 记方程①:2110x a x ++=,方程②:2220x a x ++=,方程③:2340x a x ++=,其中1a ,2a ,3a 是正实数.当1a ,2a ,3a 成等比数列时,下列选项中,能推出方程③无实根的是( )A. 方程①有实根,且②有实根B. 方程①有实根,且②无实根C. 方程①无实根,且②有实根D. 方程①无实根,且②无实根10. 已知正项等比数列{}n a 的前n 项和为n S ,若22352628100a a a a ++=,4236S S -=,则2021S =( )A. 2021312020-B. 2020312-C. 2021312-D. 2021212020-11. 数列{}n a 中,12a =,.m n m n a a a +=若12k k a a ++++…1551022k a ++=-,则k =( )A. 2B. 3C. 4D. 5二、多选题12. 在“全面脱贫”行动中,贫困户小王2020年1月初向银行借了扶贫免息贷款10000元,用于自己开设的农产品土特产品加工厂的原材料进货,因产品质优价廉,上市后供不应求,据测算每月获得的利润是该月月初投入资金的20%,每月月底需缴纳房租600元和水电费400元,余款作为资金全部用于再进货,如此继续.设第n 月月底小王手中有现款为n a ,则下列论述正确的有( )(参考数据:111.27.5=,121.29)=A. 112000a =B. 1 1.21000n n a a +=-C. 2020年小王的年利润为40000元D. 两年后,小王手中现款达41万13. 已知n S 是数列{}n a 的前n 项和,且121a a ==,122(3)n n n a a a n --=+,则下列结论正确的是( )A. 数列1{}n n a a ++为等比数列B. 数列1{2}n n a a +-为等比数列C. 12(1)3n nn a ++-=D. 10202(41)3S =-三、填空题14. 等比数列{}n a 的各项均为实数,其前n 项和为n S ,已知374S =,6634S =,则8a =__________.15. 已知正项等比数列{}n a 的前n 项和为n S ,2122S a =+,534a a =,则数列{}n a 中不超过2021的所有项的和为__________.16. 已知数列{}n a 的前n 项和为n S ,且11a =,{lg }n S 是公差为lg 3的等筹数列,则24a a ++…2n a +=_______. 四、解答题17. 等比数列{}n a 的各项均为正数,52a ,4a ,64a 成等差数列,且满足243=4.a a (1)求数列{}n a 的通项公式; (2)设+1+1=(1)(1)n n n n a b a a --,*n N ∈,求数列{}n b 的前n 项和.n S18. 已知数列{}n a 满足12a =,且*1321().n n a a n n N +=+-∈(1)求证:数列{}n a n +为等比数列; (2)求数列{}n a 的通项公式;(3)求数列{}n a 的前n 项和.n S19. 已知数列{}n a 为正项等比数列,满足34a =,且5a ,43a ,6a 构成等差数列,数列{}n b 满足221log log .n n n b a a +=+()Ⅰ求数列{}n a ,{}n b 的通项公式;()Ⅱ若数列{}n b 的前n 项和为n S ,数列{}n c 满足141n n c S =-,求数列{}n c 的前n 项和.n T20. 已知数列的前n 项和为n S 满足:33.2n n S a n =+- {}n a(1)求证:数列是等比数列;(2)令,令1,nnd c =求数列的前n 项和.n T{1}n a -31323(1)(1)(1)nn c log a log a log a =-+-++-答案和解析1.【答案】B解:当1n =时,122S a =,又因111S a ==, 所以,.显然只有B 项符合.2.【答案】B解:设等比数列的公比为q ,5312a a -=, 6453()a a q a a ∴-=-, 2q ∴=,421112a q a q ∴-=,11212a ∴=,11a ∴=,122112nn n S -∴==--,12n n a -=,1121222n n n n n S a ---∴==-, 故选:.B3.【答案】C解:等差数列{}n a 中,312a a d =+,918a a d =+, 因为1a 、3a 、9a 恰好成等比数列,所以有2319a a a =,即,解得1d a =,所以该等差数列的通项为n a nd =, 则139********.241016a a a d d d a a a d d d ++++==++++故选:.C4.【答案】A解:由等比数列的性质可知等比数列中每k 项的和也成等比数列. 则等比数列的第一个n 项的和为48,第二个n 项的和为604812-=,∴第三个n 项的和为:212348=, ∴前3n 项的和为60363.+=故选.A5.【答案】D解:n S 为正项等比数列{}n a 的前n 项和,21S =,45S =,21410(1)11(1)51q a q qa q q ⎧⎪>⎪⎪-⎪∴=⎨-⎪⎪-=⎪-⎪⎩,解得113a =,2q =,771(12)1273.123S -∴==-故选:.D6.【答案】C解:依题意,323431a a a a ==,即31a =,同理3678764a a a a ==,即74a =,所以23754a a a ⋅==,又等比数列奇数项符号相同,所以52a =,所以345658.a a a a ==故选:.C7.【答案】A解:设“宫”的频率为a ,由题意经过一次“损”,可得“徵”的频率为32a ,“徵”经过一次“益”,可得“商”的频率为98a ,“商”经过一次“损”,可得“羽”频率为2716a ,最后“羽”经过一次“益”,可得“角”的频率是8164a , 由于a ,98a ,8164a 成等比数列,所以“宫、商、角”的频率成等比数列, 故选:.A8.【答案】B解:123a a a +++…31n n a +=-,①123a a a ∴+++…1131n n a +++=-,②②-①得:113323n n nn a ++=-=⨯,123(2).n n a n -∴=⨯当1n =时,11312a =-=,符合上式,123.n n a -∴=⨯2149n n a -∴=⨯,∴数列2{}na 是以4为首项,9为公比的等比数列, 2222123n a a a a ∴++++4(19)1(91).192n n⨯-==--故选.B9.【答案】B解:当方程①有实根,且②无实根时,21140a ∆=-,22280a ∆=-<,即214a ,228a <,1a ,2a ,3a 成等比数列,2213a a a ∴=,即2231a a a =,则242222232118()164a a a a a ==<=,则:方程③的判别式233160a ∆=-<,此时方程③无实根,同理可得其他三个选项不符合, 故选:.B10.【答案】C解:22352628100a a a a ++=,3526,a a a a =235()8100.a a ∴+=又0n a >,3590.a a ∴+= 设数列{}n a 的公比为(0)q q >,则解得,故2021202112021(1)31.12a q S q --==- 故选.C11.【答案】C解:由12a =,且m n m n a a a +=, 取1m =,得112n n n a a a a +==,12n na a +∴=, 则数列{}n a 是以2为首项,以2为公比的等比数列,则11222k k k a ++=⋅=,12k k a a ++∴++ (11011115510)2(12)222212k k k k a ++++-+==-=--,15k ∴+=,即 4.k =故选:.C12.【答案】BCD解:1(120%)10000100011000a =+⨯-=元,故A 错误; 由题意1 1.21000n n a a +=-,故B 正确;由1 1.21000n n a a +=-,得15000 1.2(5000)n n a a +-=-, 所以数列{5000}n a -是首项为6000,公比为1.2的等比数列, 111250006000 1.2a ∴-=⨯,即11126000 1.2500050000a =⨯+=, 2020年小王的年利润为500001000040000-=元,故C 正确;22324950006000 1.2500060004100001.2a =+⨯=+⨯=元,即41万,故D 正确. 故选.BCD13.【答案】ABD解:因为121a a ==,122(3)n n n a a a n --=+, 所以1112122()2n n n n n n n n a a a a a a a a ------++=+⇒=+, 因为121a a ==,所以31223a a a =+=,322142()a a a a +==+,所以是以2为首项,公比为2的等比数列,故A 正确;则112.n n n a a --+=,322321a a -=-=,212121a a -=-=-,所以是以1-为首项,公比为1-的等比数列,故B 正确;则112(1).n n n a a ---=-,故C 错误;201220S a a a =+++1234()()a a a a =++++…1920()a a ++ 135222=+++…192+19221102222222(41)1233-⋅-===--,故D 正确, 故选.ABD14.【答案】32解:设等比数列{}n a 的公比为q ,易得1q ≠, 374S =,6634S =, 31(1)714a q q -∴=-,61(1)6314a q q -=-, 解得114a =, 2.q = 则781232.4a =⨯= 故答案为:32.15.【答案】2046解:设{}n a 的公比为(0)q q >, 由已知得解得12a q ==,所以2n n a =,令2021n a <,则22021n <, 解得10n ,所以数列{}n a 中的前10项的和为10234102(12)222222046.12-+++++==- 故答案为2046.16.【答案】914n - 解:由111S a ==, 1lg 0S =,{lg }n S 是公差为lg 3的等筹数列, 所以所以13n n S -= 当2n ,213n n S --=,故12213323n n n n n n a S S ----=-=-=⨯,所以2a ,4a ,…2n a 是以22a =为首项,以9为公比的等比数列; 故24a a ++…故答案为914n - 17.【答案】解:(1)设等比数列的公比为0q >, 因为52a ,4a ,64a 成等差数列,0n a >,所以456224a a a =+,所以24422(2)a a q q =+,化为:2210q q +-=,0q >,解得1.2q =又满足2434a a = , 所以322114()a q a q =,化为:114a q =,解得112a =, {}n a所以1()2n n a =,*n N ∈; , 所以2231111111()()++()212121212121n n n S +=-+-------- 11121n +=--,*.n N ∈18.【答案】解:(1)证明:由1321n n a a n +=+-, 得, 113n n a n a n+++∴=+,又113a +=, 是首项为3,公比为3的等比数列.(2)由(1)得,1333n n n a n -+=⨯=, 3.n n a n ∴=-(3)由(2)得:133(1)132n n n +-+=-- 11233(1)33.222n n n n n n ++-+---=-=19.【答案】解:()Ⅰ设等比数列{}n a 的公比为(0)q q >,由题意,得256466a a a q q +=⇒+=,解得2q =或3(q =-舍),又3141a a =⇒=,所以 1112n n n a a q --==,221log log 121n n n b a a n n n +=+=-+=-; 21()[1(21)]()22n n n b b n n S n ++-===Ⅱ, 21111()4122121n c n n n ∴==---+, 111111[(1)()()].2335212121n n T n n n ∴=-+-++-=-++20.【答案】证明:(1)当1n =时, 111322S a a ==-,解得14a =, 当2n 时,由332n n S a n =+-得11342n n S a n --=+-, 两式相减,得1133122n n n n S S a a ---=-+,即132(2)n n a a n -=-, 则113(1)n n a a --=-,故数列{1}n a -是以113a -=为首项,公比为3的等比数列;(2)由(1)知13n n a -=,31323(1)(1)(1)n n c log a log a log a =-+-++- (1)122n n n +=+++=, 所以12112()(1)1n c n n n n ==-++, 则12111n nT c c c =+++ 111112[(1)()()]2231n n =-+-++-+ 122(1).11n n n =-=++。
等比数列练习题(有答案) 百度文库

一、等比数列选择题1.已知等比数列{a n }中a 1010=2,若数列{b n }满足b 1=14,且a n =1n n b b +,则b 2020=( )A .22017B .22018C .22019D .220202.已知各项均为正数的等比数列{}n a ,若543264328a a a a +--=,则7696a a +的最小值为( ) A .12B .18C .24D .323.在等比数列{}n a 中,24a =,532a =,则4a =( ) A .8B .8-C .16D .16-4.已知各项不为0的等差数列{}n a 满足26780a a a -+=,数列{}n b 是等比数列,且77b a =,则3810b b b =( )A .1B .8C .4D .25.已知等比数列{}n a 的各项均为正数,公比为q ,11a >,676712a a a a +>+>,记{}n a 的前n 项积为nT,则下列选项错误的是( ) A .01q << B .61a > C .121T > D .131T > 6.设{a n }是等比数列,若a 1 + a 2 + a 3 =1,a 2 + a 3 + a 4 =2,则 a 6 + a 7 + a 8 =( ) A .6B .16C .32D .647.已知等比数列{}n a 的前n 项和为S n ,则下列命题一定正确的是( ) A .若S 2021>0,则a 3+a 1>0 B .若S 2020>0,则a 3+a 1>0 C .若S 2021>0,则a 2+a 4>0D .若S 2020>0,则a 2+a 4>08.设n S 为等比数列{}n a 的前n 项和,若110,,22n n a a S >=<,则等比数列{}n a 的公比的取值范围是( ) A .30,4⎛⎤ ⎥⎝⎦B .20,3⎛⎤ ⎥⎝⎦C .30,4⎛⎫ ⎪⎝⎭D .20,3⎛⎫ ⎪⎝⎭9.已知正项等比数列{}n a 的公比不为1,n T 为其前n 项积,若20172021T T =,则20202021ln ln a a =( ) A .1:3B .3:1C .3:5D .5:310.已知等比数列{}n a 的前n 项和为n S ,若213a a =,且数列{}13n S a -也为等比数列,则n a 的表达式为( )A .12nn a ⎛⎫= ⎪⎝⎭B .112n n a +⎛⎫= ⎪⎝⎭C .23nn a ⎛⎫= ⎪⎝⎭D .123n n a +⎛⎫= ⎪⎝⎭11.等比数列{}n a 中各项均为正数,n S 是其前n 项和,且满足312283S a a =+,416a =,则6S =( )A .32B .63C .123D .12612.一个蜂巢有1只蜜蜂,第一天,它飞出去找回了5个伙伴;第二天,6只蜜蜂飞出去,各自找回了5个伙伴……如果这个找伙伴的过程继续下去,第六天所有的蜜蜂都归巢后,蜂巢中一共有( )只蜜蜂. A .55989B .46656C .216D .3613.在数列{}n a 中,32a =,12n n a a +=,则5a =( ) A .32B .16C .8D .414.已知等比数列{}n a 的前n 项和的乘积记为n T ,若29512T T ==,则n T 的最大值为( ) A .152B .142C .132D .12215.正项等比数列{}n a 满足2237610216a a a a a ++=,则28a a +=( ) A .1 B .2 C .4 D .816.已知1,a 1,a 2,9四个实数成等差数列,1,b 1,b 2,b 3,9五个数成等比数列,则b 2(a 2﹣a 1)等于( ) A .8B .﹣8C .±8D .9817.设数列{}n a ,下列判断一定正确的是( )A .若对任意正整数n ,都有24nn a =成立,则{}n a 为等比数列B .若对任意正整数n ,都有12n n n a a a ++=⋅成立,则{}n a 为等比数列C .若对任意正整数m ,n ,都有2m nm n a a +⋅=成立,则{}n a 为等比数列D .若对任意正整数n ,都有31211n n n n a a a a +++=⋅⋅成立,则{}n a 为等比数列18.数列{}n a 满足:点()1,n n a -(n N ∈,2n ≥)在函数()2x f x =的图像上,则{}n a 的前10项和为( ) A .4092B .2047C .2046D .102319.已知正项等比数列{}n a 满足7652a a a =+,若存在两项m a ,n a14a =,则14m n +的最小值为( ) A .53B .32C .43D .11620.已知等比数列{}n a 满足12234,12a a a a +=+=,则5S 等于( ) A .40B .81C .121D .242二、多选题21.在数列{}n a 中,如果对任意*n N ∈都有211n n n na a k a a +++-=-(k 为常数),则称{}n a 为等差比数列,k 称为公差比.下列说法正确的是( ) A .等差数列一定是等差比数列 B .等差比数列的公差比一定不为0C .若32nn a =-+,则数列{}n a 是等差比数列D .若等比数列是等差比数列,则其公比等于公差比 22.已知正项等比数列{}n a 的前n 项和为n S ,若31a =,135111214a a a ++=,则( ) A .{}n a 必是递减数列 B .5314S =C .公比4q =或14D .14a =或1423.已知数列是{}n a是正项等比数列,且3723a a +=,则5a 的值可能是( ) A .2B .4C .85D .8324.数列{}n a 对任意的正整数n 均有212n n n a a a ++=,若22a =,48a =,则10S 的可能值为( ) A .1023B .341C .1024D .34225.已知等比数列{}n a 中,满足11a =,2q ,n S 是{}n a 的前n 项和,则下列说法正确的是( )A .数列{}2n a 是等比数列B .数列1n a ⎧⎫⎨⎬⎩⎭是递增数列C .数列{}2log n a 是等差数列D .数列{}n a 中,10S ,20S ,30S 仍成等比数列26.已知数列{a n },11a =,25a =,在平面四边形ABCD 中,对角线AC 与BD 交于点E ,且2AE EC =,当n ≥2时,恒有()()1123n n n n BD a a BA a a BC -+=-+-,则( ) A .数列{a n }为等差数列 B .1233BE BA BC =+ C .数列{a n }为等比数列D .14nn n a a +-=27.已知数列{}n a 是等比数列,有下列四个命题,其中正确的命题有( ) A .数列{}n a 是等比数列 B .数列{}1n n a a +是等比数列C .数列{}2lg na是等比数列D .数列1n a ⎧⎫⎨⎬⎩⎭是等比数列28.在《增减算法统宗》中有这样一则故事:“三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关”.则下列说法正确的是( ) A .此人第六天只走了5里路B .此人第一天走的路程比后五天走的路程多6里C .此人第二天走的路程比全程的14还多1.5里 D .此人走的前三天路程之和是后三天路程之和的8倍29.记单调递增的等比数列{}n a 的前n 项和为n S ,若2410a a +=,23464a a a =,则( )A .112n n n S S ++-=B .12n naC .21nn S =- D .121n n S -=-30.已知等比数列{}n a 的公比为q ,前n 项和0n S >,设2132n n n b a a ++=-,记{}n b 的前n 项和为n T ,则下列判断正确的是( ) A .若1q =,则n n T S = B .若2q >,则n n T S > C .若14q =-,则n n T S > D .若34q =-,则n n T S > 31.已知数列{}n a 满足11a =,()*123nn na a n N a +=∈+,则下列结论正确的有( ) A .13n a ⎧⎫+⎨⎬⎩⎭为等比数列 B .{}n a 的通项公式为1123n n a +=-C .{}n a 为递增数列D .1n a ⎧⎫⎨⎬⎩⎭的前n 项和2234n n T n +=-- 32.已知数列{}n a 的前n 项和为S ,11a =,121n n n S S a +=++,数列12n n n a a +⎧⎫⎨⎬⋅⎩⎭的前n 项和为n T ,*n ∈N ,则下列选项正确的为( )A .数列{}1n a +是等差数列B .数列{}1n a +是等比数列C .数列{}n a 的通项公式为21nn a =-D .1n T <33.已知等比数列{a n }的公比23q =-,等差数列{b n }的首项b 1=12,若a 9>b 9且a 10>b 10,则以下结论正确的有( ) A .a 9•a 10<0B .a 9>a 10C .b 10>0D .b 9>b 1034.等比数列{}n a 中,公比为q ,其前n 项积为n T ,并且满足11a >.99100·10a a ->,99100101a a -<-,下列选项中,正确的结论有( ) A .01q << B .9910110a a -< C .100T 的值是n T 中最大的D .使1n T >成立的最大自然数n 等于19835.等差数列{}n a 的公差为d ,前n 项和为n S ,当首项1a 和d 变化时,3813++a a a 是一个定值,则下列各数也为定值的有( ) A .7aB .8aC .15SD .16S【参考答案】***试卷处理标记,请不要删除一、等比数列选择题 1.A 【分析】根据已知条件计算12320182019a a a a a ⋅⋅⋅⋅的结果为20201b b ,再根据等比数列下标和性质求解出2020b 的结果. 【详解】 因为1n n nb a b +=,所以32019202020202412320182019123201820191b b b b b b a a a a a b b b b b b ⋅⋅⋅⋅=⋅⋅⋅⋅⋅=, 因为数列{}n a 为等比数列,且10102a =, 所以()()()123201820191201922018100910111010a a a a a a a a a a a a ⋅⋅⋅=⋅⋅⋅⋅⋅⋅22220192019101010101010101010102a a a a a =⋅⋅⋅==所以2019202012b b =,又114b =,所以201720202b =, 故选:A. 【点睛】结论点睛:等差、等比数列的下标和性质:若()*2,,,,m n p q t m n p q t N +=+=∈,(1)当{}n a 为等差数列,则有2m n p q t a a a a a +=+=; (2)当{}n a 为等比数列,则有2m n p q t a a a a a ⋅=⋅=.2.C 【分析】将已知条件整理为()()22121328a q q q -+=,可得()22183221q q a q +=-,进而可得()4427612249633221q a a a q q q q +=+=-,分子分母同时除以4q ,利用二次函数的性质即可求出最值. 【详解】因为{}n a 是等比数列,543264328a a a a +--=,所以432111164328a q a q a q a q +--=,()()2221232328a q q q q q ⎡⎤+-+=⎣⎦, 即()()22121328a q q q -+=,所以()22183221q q a q +=-,()()465424761111221248242496963323212121q a a a q a q a q q q a q q a q q q +=+=+=⨯==---,令210t q =>,则()222421211t t t q q -=-=--+, 所以211t q==,即1q =时2421q q -最大为1,此时242421q q -最小为24, 所以7696a a +的最小值为24, 故选:C 【点睛】易错点睛:本题主要考查函数与数列的综合问题,属于难题.解决该问题应该注意的事项: (1)数列是一类特殊的函数,它的图象是一群孤立的点;(2)转化以函数为背景的条件时,应该注意题中的限制条件,如函数的定义域,这往往是很容易被忽视的问题;(3)利用函数的方法研究数列中的相关问题时,应准确构造相应的函数,注意数列中相关限制条件的转化. 3.C 【分析】根据条件计算出等比数列的公比,再根据等比数列通项公式的变形求解出4a 的值. 【详解】因为254,32a a ==,所以3528a q a ==,所以2q ,所以2424416a a q ==⨯=,故选:C. 4.B 【分析】根据等差数列的性质,由题中条件,求出72a =,再由等比数列的性质,即可求出结果. 【详解】因为各项不为0的等差数列{}n a 满足26780a a a -+=,所以27720a a -=,解得72a =或70a =(舍);又数列{}n b 是等比数列,且772b a ==,所以33810371178b b b b b b b ===.故选:B. 5.D 【分析】等比数列{}n a 的各项均为正数,11a >,676712a a a a +>+>,可得67(1)(1)0a a --<,因此61a >,71a <,01q <<.进而判断出结论. 【详解】 解:等比数列{}n a 的各项均为正数,11a >,676712a a a a +>+>,67(1)(1)0a a ∴--<,11a >,若61a <,则一定有71a <,不符合由题意得61a >,71a <,01q ∴<<,故A 、B 正确. 6712a a +>,671a a ∴>,6121231267()1T a a a a a a =⋯=>,故C 正确,131371T a =<,故D 错误,∴满足1n T >的最大正整数n 的值为12.故选:D . 6.C 【分析】根据等比数列的通项公式求出公比2q ,再根据等比数列的通项公式可求得结果.【详解】设等比数列{}n a 的公比为q ,则234123()2a a a a a a q ++=++=,又1231a a a ++=,所以2q,所以55678123()1232a a a a a a q ++=++⋅=⨯=.故选:C . 7.A 【分析】根据等比数列的求和公式及通项公式,可分析出答案. 【详解】等比数列{}n a 的前n 项和为n S ,当1q ≠时,202112021(1)01a q S q-=>-,因为20211q-与1q -同号,所以10a >,所以2131(1)0a a a q +=+>,当1q =时,2021120210S a =>,所以10a >,所以1311120a a a a a +=+=>, 综上,当20210S >时,130a a +>, 故选:A 【点睛】易错点点睛:利用等比数列求和公式时,一定要分析公比是否为1,否则容易引起错误,本题需要讨论两种情况. 8.A 【分析】设等比数列{}n a 的公比为q ,依题意可得1q ≠.即可得到不等式1102n q -⨯>,1(1)221n q q-<-,即可求出参数q 的取值范围;【详解】解:设等比数列{}n a 的公比为q ,依题意可得1q ≠. 110,2n a a >=,2n S <, ∴1102n q -⨯>,1(1)221n q q-<-, 10q ∴>>. 144q ∴-,解得34q. 综上可得:{}n a 的公比的取值范围是:30,4⎛⎤⎥⎝⎦.故选:A . 【点睛】等比数列基本量的求解是等比数列中的一类基本问题,解决这类问题的关键在于熟练掌握等比数列的有关公式并能灵活运用,尤其需要注意的是,在使用等比数列的前n 项和公式时,应该要分类讨论,有时还应善于运用整体代换思想简化运算过程. 9.A 【分析】由20172021T T =得20182019202020211a a a a =,由等比数列性质得20182021201920201a a a a ==,这样可把2020a 和2021a 用q 表示出来后,可求得20202021ln ln a a . 【详解】{}n a 是正项等比数列,0n a >,0n T ≠,*n N ∈,所以由2017202120172018201920202021T T T a a a a ==⋅,得20182019202020211a a a a =, 所以20182021201920201a a a a ==,设{}n a 公比为q ,1q ≠,22021201820213()1a a a q ==,2202020192020()1a a a q==,即322021a q =,122020a q =,所以1220203202121ln ln ln 123ln 3ln ln 2qa q a q q ===. 故选:A . 【点睛】本题考查等比数列的性质,解题关键是利用等比数列性质化简已知条件,然后用公比q 表示出相应的项后可得结论. 10.D 【分析】设等比数列{}n a 的公比为q ,当1q =时,111133(3)n S a na a n a -=-=-,该式可以为0,不是等比数列,当1q ≠时,11113311n n a aS a q a q q-=-⋅+---,若是等比数列,则11301a a q -=-,可得23q =,利用213a a =,可以求得1a 的值,进而可得n a 的表达式 【详解】设等比数列{}n a 的公比为q当1q =时,1n S na =,所以111133(3)n S a na a n a -=-=-, 当3n =时,上式为0,所以{}13n S a -不是等比数列. 当1q ≠时,()1111111n nn a q a aq S qq q-==-⋅+---,所以11113311n n a aS a q a q q-=-⋅+---, 要使数列{}13n S a -为等比数列,则需11301a a q -=-,解得23q =. 213a a =,2123a ⎛⎫∴= ⎪⎝⎭,故21111222333n n n n a a q -+-⎛⎫⎛⎫⎛⎫=⋅=⋅= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选:D. 【点睛】关键点点睛:本题的关键点是熟记等比数列的前n 项和公式,等比数列通项公式的一般形式,由此若11113311n n a a S a q a q q -=-⋅+---是等比数列,则11301aa q-=-,即可求得q 的值,通项即可求出. 11.D 【分析】根据等比数列的通项公式建立方程,求得数列的公比和首项,代入等比数列的求和公式可得选项. 【详解】设等比数列{}n a 的公比为(0)q q >.∵312283S a a =+, ∴123122()83a a a a a ++=+,即321260a a a --=. ∴2260q q --=,∴2q 或32q =-(舍去),∵416a =,∴4132a a q==, ∴6616(1)2(12)126112a q S q --===--, 故选:D. 12.B 【分析】第n 天蜂巢中的蜜蜂数量为n a ,则数列{}n a 成等比数列.根据等比数列的通项公式,可以算出第6天所有的蜜蜂都归巢后的蜜蜂数量. 【详解】设第n 天蜂巢中的蜜蜂数量为n a ,根据题意得 数列{}n a 成等比数列,它的首项为6,公比6q = 所以{}n a 的通项公式:1666n n n a -=⨯=到第6天,所有的蜜蜂都归巢后, 蜂巢中一共有66646656a =只蜜蜂. 故选:B . 13.C 【分析】根据12n n a a +=,得到数列{}n a 是公比为2的等比数列求解. 【详解】 因为12n n a a +=,所以12n na a +=, 所以数列{}n a 是公比为2的等比数列. 因为32a =,所以235328a a q ===. 故选:C 14.A 【分析】根据29T T =得到761a =,再由2121512a a a q ==,求得1,a q 即可.【详解】设等比数列{}n a 的公比为q ,由29T T =得:761a =, 故61a =,即511a q =. 又2121512a a a q ==,所以91512q =, 故12q =, 所以()()211122123411...2n n n n n n n T a a a a a a q--⎛⎫=== ⎪⎝⎭,所以n T 的最大值为15652T T ==.故选:A. 15.C 【分析】利用等比数列的性质运算求解即可. 【详解】根据题意,等比数列{}n a 满足2237610216a a a a a ++=,则有222288216a a a a ++=,即()22816a a +=, 又由数列{}n a 为正项等比数列,故284a a +=. 故选:C . 16.A 【分析】由已知条件求出公差和公比,即可由此求出结果. 【详解】设等差数列的公差为d ,等比数列的公比为q , 则有139d +=,419q ⋅=,解之可得83d =,23q =, ()22218183b a a q ∴-=⨯⨯=.故选:A. 17.C 【分析】根据等比数列的定义和判定方法逐一判断. 【详解】对于A ,若24nna =,则2nn a =±,+1+12n n a =±,则12n na a +=±,即后一项与前一项的比不一定是常数,故A 错误;对于B ,当0n a =时,满足12n n n a a a ++=⋅,但数列{}n a 不为等比数列,故B 错误; 对于C ,由2m nm n a a +⋅=可得0n a ≠,则+1+12m n m n a a +⋅=,所以1+1222n n m n m n a a +++==,故{}n a 为公比为2的等比数列,故C 正确;对于D ,由31211n n n n a a a a +++=⋅⋅可知0n a ≠,则312n n n n a a a a +++⋅=⋅,如1,2,6,12满足312n n n n a a a a +++⋅=⋅,但不是等比数列,故D 错误. 故选:C. 【点睛】方法点睛:证明或判断等比数列的方法, (1)定义法:对于数列{}n a ,若()10,0n n na q q a a +=≠≠,则数列{}n a 为等比数列; (2)等比中项法:对于数列{}n a ,若()2210n n n n a a a a ++=≠,则数列{}n a 为等比数列;(3)通项公式法:若n n a cq =(,c q 均是不为0的常数),则数列{}n a 为等比数列;(4)特殊值法:若是选择题、填空题可以用特殊值法判断,特别注意0n a =的判断. 18.A 【分析】根据题中条件,先得数列的通项,再由等比数列的求和公式,即可得出结果. 【详解】因为点()1,n n a -(n N ∈,2n ≥)在函数()2x f x =的图像上, 所以()12,2nn a n N n -=∈≥,因此()12n n a n N ++=∈,即数列{}n a 是以4为首项,以2为公比的等比数列, 所以{}n a 的前10项和为()10412409212-=-.故选:A. 19.B 【分析】设正项等比数列{}n a 的公比为0q >,由7652a a a =+,可得22q q =+,解得2q,根据存在两项m a 、n a14a =14a =,6m n +=.对m ,n 分类讨论即可得出. 【详解】解:设正项等比数列{}n a 的公比为0q >, 满足:7652a a a =+,22q q ∴=+,解得2q,存在两项m a 、n a14a =,∴14a =,6m n ∴+=,m ,n 的取值分别为(1,5),(2,4),(3,3),(4,2),(5,1),则14m n+的最小值为143242+=.故选:B . 20.C 【分析】根据已知条件先计算出等比数列的首项和公比,然后根据等比数列的前n 项和公式求解出5S 的结果.【详解】因为12234,12a a a a +=+=,所以23123a a q a a +==+,所以1134a a +=,所以11a =, 所以()5515113121113a q S q--===--, 故选:C.二、多选题21.BCD 【分析】考虑常数列可以判定A 错误,利用反证法判定B 正确,代入等差比数列公式判定CD 正确. 【详解】对于数列{}n a ,考虑121,1,1n n n a a a ++===,211n n n na a a a +++--无意义,所以A 选项错误;若等差比数列的公差比为0,212110,0n n n n n na a a a a a +++++---==,则1n n a a +-与题目矛盾,所以B 选项说法正确;若32nn a =-+,2113n n n na a a a +++-=-,数列{}n a 是等差比数列,所以C 选项正确; 若等比数列是等差比数列,则11,1n n q a a q -=≠,()()11211111111111n n nn n n n n n n a q q a a a q a q q a a a q a q a q q +++--+---===---,所以D 选项正确. 故选:BCD 【点睛】易错点睛:此题考查等差数列和等比数列相关的新定义问题.解决此类问题应该注意: (1)常数列作为特殊的等差数列公差为0; (2)非零常数列作为特殊等比数列公比为1. 22.BD 【分析】设设等比数列{}n a 的公比为q ,则0q >,由已知得1112114a a ++=,解方程计算即可得答案. 【详解】解:设等比数列{}n a 的公比为q ,则0q >,因为21531a a a ==,2311a a q == , 所以51115135151511111112111114a a a a a a a a a a a a a ++=++=++=+=+++=,解得1412a q =⎧⎪⎨=⎪⎩或1142.a q ⎧=⎪⎨⎪=⎩, 当14a =,12q =时,551413121412S ⎛⎫- ⎪⎝⎭==-,数列{}n a 是递减数列;当114a =,2q 时,5314S =,数列{}n a 是递增数列; 综上,5314S =. 故选:BD. 【点睛】本题考查数列的等比数列的性质,等比数列的基本量计算,考查运算能力.解题的关键在于结合等比数列的性质将已知条件转化为1112114a a ++=,进而解方程计算. 23.ABD 【分析】根据基本不等式的相关知识,结合等比数列中等比中项的性质,求出5a 的范围,即可得到所求. 【详解】解:依题意,数列是{}n a 是正项等比数列,30a ∴>,70a >,50a >,∴2373752323262a a a a a +=, 因为50a >,所以上式可化为52a ,当且仅当3a =,7a = 故选:ABD . 【点睛】本题考查了等比数列的性质,考查了基本不等式,考查分析和解决问题的能力,逻辑思维能力.属于中档题. 24.AB 【分析】首先可得数列{}n a 为等比数列,从而求出公比q 、1a ,再根据等比数列求和公式计算可得; 【详解】解:因为数列{}n a 对任意的正整数n 均有212n n n a a a ++=,所以数列{}n a 为等比数列,因为22a =,48a =,所以2424a q a ==,所以2q =±, 当2q时11a =,所以101012102312S -==-当2q =-时11a =-,所以()()()101011234112S -⨯--==--故选:AB 【点睛】本题考查等比数列的通项公式及求和公式的应用,属于基础题. 25.AC 【分析】 由已知得12n na 可得以2122n n a -=,可判断A ;又1111122n n n a --⎛⎫== ⎪⎝⎭,可判断B ;由122log log 21n n a n -==-,可判断C ;求得10S ,20S ,30S ,可判断D.【详解】等比数列{}n a 中,满足11a =,2q,所以12n n a ,所以2122n n a -=,所以数列{}2n a 是等比数列,故A 正确;又1111122n n n a --⎛⎫== ⎪⎝⎭,所以数列1n a ⎧⎫⎨⎬⎩⎭是递减数列,故B 不正确; 因为122log log 21n n a n -==-,所以{}2log n a 是等差数列,故C 正确;数列{}n a 中,101010111222S -==--,202021S =-,303021S =-,10S ,20S ,30S 不成等比数列,故D 不正确; 故选:AC . 【点睛】本题综合考查等差、等比数列的定义、通项公式、前n 项和公式,以及数列的单调性的判定,属于中档题. 26.BD 【分析】 证明1233BE BA BC =+,所以选项B 正确;设BD tBE =(0t >),易得()114n n n n a a a a +--=-,显然1n n a a --不是同一常数,所以选项A 错误;数列{1n n a a --}是以4为首项,4为公比的等比数列,所以14nn n a a +-=,所以选项D 正确,易得321a =,选项C 不正确.【详解】因为2AE EC =,所以23AE AC=, 所以2()3AB BE AB BC +=+, 所以1233BE BA BC =+,所以选项B 正确;设BD tBE =(0t >),则当n ≥2时,由()()1123n n n n BD tBE a a BA a a BC -+==-+-,所以()()111123n n n n BE a a BA a a BC t t-+=-+-, 所以()11123n n a a t --=,()11233n n a a t +-=, 所以()11322n n n n a a a a +--=-, 易得()114n n n n a a a a +--=-,显然1n n a a --不是同一常数,所以选项A 错误; 因为2a -1a =4,114n nn n a a a a +--=-,所以数列{1n n a a --}是以4为首项,4为公比的等比数列,所以14nn n a a +-=,所以选项D 正确,易得321a =,显然选项C 不正确. 故选:BD 【点睛】本题主要考查平面向量的线性运算,考查等比数列等差数列的判定,考查等比数列通项的求法,意在考查学生对这些知识的理解掌握水平. 27.ABD 【分析】分别按定义计算每个数列的后项与前项的比值,即可判断. 【详解】根据题意,数列{}n a 是等比数列,设其公比为q ,则1n na q a +=, 对于A ,对于数列{}n a ,则有1||n na q a ,{}n a 为等比数列,A 正确; 对于B ,对于数列{}1n n a a +,有211n n n na a q a a +-=,{}1n n a a +为等比数列,B 正确; 对于C ,对于数列{}2lg n a ,若1n a =,数列{}n a 是等比数列,但数列{}2lg n a 不是等比数列,C 错误;对于D ,对于数列1n a ⎧⎫⎨⎬⎩⎭,有11111n n n n a a a q a --==,1n a ⎧⎫⎨⎬⎩⎭为等比数列,D 正确. 故选:ABD . 【点睛】本题考查用定义判断一个数列是否是等比数列,属于基础题. 28.BCD 【分析】设此人第n 天走n a 里路,则{}n a 是首项为1a ,公比为12q = 的等比数列,由6=378S 求得首项,然后逐一分析四个选项得答案. 【详解】解:根据题意此人每天行走的路程成等比数列, 设此人第n 天走n a 里路,则{}n a 是首项为1a ,公比为12q =的等比数列. 所以661161[1()](1)2=3781112a a q S q --==--,解得1192a =. 选项A:5561119262a a q ⎛⎫==⨯= ⎪⎝⎭,故A 错误, 选项B:由1192a =,则61378192186S a -=-=,又1921866-=,故B 正确. 选项C:211192962a a q ==⨯=,而6194.54S =,9694.5 1.5-=,故C 正确.选项D:2123111(1)192(1)33624a a a a q q ++=++=⨯++=, 则后3天走的路程为378336=42-, 而且336428÷=,故D 正确. 故选:BCD【点睛】本题考查等比数列的性质,考查等比数列的前n 项和,是基础题. 29.BC 【分析】先求得3a ,然后求得q ,进而求得1a ,由此求得1,,n n n n a S S S +-,进而判断出正确选项. 【详解】由23464a a a =得3334a =,则34a =.设等比数列{}n a 的公比为()0q q ≠,由2410a a +=,得4410q q+=,即22520q q -+=,解得2q或12q =.又因为数列{}n a 单调递增,所以2q,所以112810a a +=,解得11a =.所以12n na ,()1122112n n n S ⨯-==--,所以()1121212n n nn n S S ++-=---=.故选:BC 【点睛】本题考查等比数列的通项公式、等比数列的性质及前n 项和,属于中档题.30.BD 【分析】先求得q 的取值范围,根据q 的取值范围进行分类讨论,利用差比较法比较出n T 和n S 的大小关系. 【详解】由于{}n a 是等比数列,0n S >,所以110,0a S q =>≠, 当1q =时,10n S na =>,符合题意; 当1q ≠时,()1101n n a q S q-=>-,即101nq q ->-,上式等价于1010n q q ⎧->⎨->⎩①或1010n q q ⎧-<⎨-<⎩②.解②得1q >.解①,由于n 可能是奇数,也可能是偶数,所以()()1,00,1q ∈-.综上所述,q 的取值范围是()()1,00,-+∞.2213322n n n n b a a a q q ++⎛⎫=-=- ⎪⎝⎭,所以232n n T q q S ⎛⎫=- ⎪⎝⎭,所以()2311222n n n n T S S q q S q q ⎛⎫⎛⎫-=⋅--=⋅+⋅- ⎪ ⎪⎝⎭⎝⎭,而0n S >,且()()1,00,q ∈-⋃+∞.所以,当112q -<<-,或2q >时,0n n T S ->,即n n T S >,故BD 选项正确,C 选项错误.当12(0)2q q -<<≠时,0n n T S -<,即n n T S <. 当12q =-或2q 时,0,n n n n T S T S -==,A 选项错误.综上所述,正确的选项为BD. 故选:BD 【点睛】本小题主要考查等比数列的前n 项和公式,考查差比较法比较大小,考查化归与转化的数学思想方法,考查分类讨论的数学思想方法,属于中档题. 31.ABD 【分析】 由()*123nn na a n N a +=∈+两边取倒数,可求出{}n a 的通项公式,再逐一对四个选项进行判断,即可得答案. 【详解】 因为112323n nn n a a a a ++==+,所以11132(3)n n a a ++=+,又11340a +=≠, 所以13n a ⎧⎫+⎨⎬⎩⎭是以4为首项,2位公比的等比数列,11342n n a -+=⨯即1123n n a +=-,故选项A 、B 正确. 由{}n a 的通项公式为1123n n a +=-知,{}n a 为递减数列,选项C 不正确.因为1231n na +=-,所以 1n a ⎧⎫⎨⎬⎩⎭的前n 项和23112(23)(23)(23)2(222)3n n n T n +=-+-++-=+++-22(12)2312234n n n n +-⨯-=⨯-=--.选项D 正确,故选:ABD 【点睛】本题考查由递推公式判断数列为等比数列,等比数列的通项公式及前n 项和,分组求和法,属于中档题. 32.BCD 【分析】由数列的递推式可得1121n n n n a S S a ++=-=+,两边加1后,运用等比数列的定义和通项公式可得n a ,1112211(21)(21)2121n n n n n n n n a a +++==-----,由数列的裂项相消求和可得n T . 【详解】解:由121n n n S S a +=++即为1121n n n n a S S a ++=-=+,可化为112(1)n n a a ++=+,由111S a ==,可得数列{1}n a +是首项为2,公比为2的等比数列,则12nn a +=,即21n n a =-,又1112211(21)(21)2121n n n n n n n n a a +++==-----,可得22311111111111212*********n n n n T ++=-+-+⋯+-=-<------, 故A 错误,B ,C ,D 正确. 故选:BCD . 【点睛】本题考查数列的递推式和等比数列的定义、通项公式,以及数列的裂项相消法求和,考查化简运算能力和推理能力,属于中档题. 33.AD 【分析】设等差数列的公差为d ,运用等差数列和等比数列的通项公式分析A 正确,B 与C 不正确,结合条件判断等差数列为递减数列,即可得到D 正确. 【详解】数列{a n }是公比q 为23-的等比数列,{b n }是首项为12,公差设为d 的等差数列, 则8912()3a a =-,91012()3a a =-, ∴a 9•a 1021712()3a =-<0,故A 正确; ∵a 1正负不确定,故B 错误;∵a 10正负不确定,∴由a 10>b 10,不能求得b 10的符号,故C 错误; 由a 9>b 9且a 10>b 10,则a 1(23-)8>12+8d ,a 1(23-)9>12+9d , 由于910,a a 异号,因此90a <或100a <故 90b <或100b <,且b 1=12可得等差数列{b n }一定是递减数列,即d <0, 即有a 9>b 9>b 10,故D 正确. 故选:AD 【点睛】本题考查了等差等比数列的综合应用,考查了等比数列的通项公式、求和公式和等差数列的单调性,考查了学生综合分析,转化划归,数学运算的能力,属于中档题. 34.ABD 【分析】由已知9910010a a ->,得0q >,再由99100101a a -<-得到1q <说明A 正确;再由等比数列的性质结合1001a <说明B 正确;由10099100·T T a =,而10001a <<,求得10099T T <,说明C 错误;分别求得1981T >,1991T <说明D 正确.【详解】 对于A ,9910010a a ->,21971·1a q ∴>,()2981··1a q q ∴>.11a >,0q ∴>.又99100101a a -<-,991a ∴>,且1001a <. 01q ∴<<,故A 正确;对于B ,299101100100·01a a a a ⎧=⎨<<⎩,991010?1a a ∴<<,即99101·10a a -<,故B 正确; 对于C ,由于10099100·T T a =,而10001a <<,故有10099T T <,故C 错误; 对于D ,()()()()19812198119821979910099100·····991T a a a a a a a a a a a =⋯=⋯=⨯>, ()()()199121991199219899101100·····1T a a a a a a a a a a =⋯=⋯<,故D 正确.∴不正确的是C .故选:ABD . 【点睛】本题考查等比数列的综合应用,考查逻辑思维能力和运算能力,属于常考题. 35.BC 【分析】根据等差中项的性质和等差数列的求和公式可得出结果. 【详解】由等差中项的性质可得381383a a a a ++=为定值,则8a 为定值,()11515815152a a S a +==为定值,但()()11616891682a a S a a +==+不是定值.故选:BC. 【点睛】本题考查等差中项的基本性质和等差数列求和公式的应用,考查计算能力,属于基础题.。
等比数列练习题(有答案) 百度文库

一、等比数列选择题1.一个蜂巢有1只蜜蜂,第一天,它飞出去找回了5个伙伴;第二天,6只蜜蜂飞出去,各自找回了5个伙伴……如果这个找伙伴的过程继续下去,第六天所有的蜜蜂都归巢后,蜂巢中一共有( )只蜜蜂. A .55989B .46656C .216D .362.已知正项等比数列{}n a 的公比不为1,n T 为其前n 项积,若20172021T T =,则20202021ln ln a a =( ) A .1:3B .3:1C .3:5D .5:33.已知各项均为正数的等比数列{}n a ,若543264328a a a a +--=,则7696a a +的最小值为( ) A .12B .18C .24D .324.已知正项等比数列{}n a 满足112a =,2432a a a =+,又n S 为数列{}n a 的前n 项和,则5S =( )A .312或112B .312 C .15D .65.已知数列{}n a 满足:11a =,*1()2nn n a a n N a +=∈+.则 10a =( ) A .11021B .11022 C .11023D .110246.已知等比数列{a n }的前n 项和为S n ,若S 3=7,S 6=63,则数列{na n }的前n 项和为( ) A .-3+(n +1)×2n B .3+(n +1)×2n C .1+(n +1)×2nD .1+(n -1)×2n7.等比数列{}n a 的前n 项积为n T ,且满足11a >,10210310a a ->,102103101aa -<-,则使得1n T >成立的最大自然数n 的值为( )A .102B .203C .204D .2058.已知各项均为正数的等比数列{}n a 的前4项和为30,且53134a a a =+,则3a =( ) A .2B .4C .8D .169.公比为(0)q q >的等比数列{}n a 中,1349,27a a a ==,则1a q +=( ) A .1B .2C .3D .410.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件11a >,667711,01a a a a -><-,则下列结论正确的是( ) A .681a a >B .01q <<C .n S 的最大值为7SD .n T 的最大值为7T11.已知等比数列的公比为2,其前n 项和为n S ,则33S a =( ) A .2B .4C .74 D .15812.设数列{}n a 的前n 项和为n S ,且()*2n n S a n n N =+∈,则3a=( )A .7-B .3-C .3D .713.已知等比数列{}n a 的前5项积为32,112a <<,则35124a a a ++的取值范围为( ) A .73,2⎡⎫⎪⎢⎣⎭B .()3,+∞C .73,2⎛⎫ ⎪⎝⎭D .[)3,+∞14.明代朱载堉创造了音乐学上极为重要的“等程律”.在创造律制的过程中,他不仅给出了求解三项等比数列的等比中项的方法,还给出了求解四项等比数列的中间两项的方法.比如,若已知黄钟、大吕、太簇、夹钟四个音律值成等比数列,则有大吕=大吕=太簇.据此,可得正项等比数列{}n a 中,k a =( )A.n -B.n -C. D. 15.正项等比数列{}n a 满足2237610216a a a a a ++=,则28a a +=( ) A .1 B .2 C .4 D .816.已知单调递增数列{}n a 的前n 项和n S 满足()()*21n n n S a a n =+∈N,且0nS>,记数列{}2nn a ⋅的前n 项和为n T ,则使得2020n T >成立的n 的最小值为( )A .7B .8C .10D .1117.数列{a n }满足211232222n n na a a a -+++⋯+=(n ∈N *),数列{a n }前n 和为S n ,则S 10等于( )A .5512⎛⎫ ⎪⎝⎭B .10112⎛⎫- ⎪⎝⎭C .9112⎛⎫- ⎪⎝⎭ D .6612⎛⎫ ⎪⎝⎭18.设等比数列{}n a 的前n 项和为n S ,若425S S =,则等比数列{}n a 的公比为( )A .2B .1或2C .-2或2D .-2或1或219.若数列{}n a 是等比数列,且17138a a a =,则311a a =( ) A .1B .2C .4D .820.已知等比数列{}n a 的前n 项和为n S ,且1352a a +=,2454a a +=,则n n S =a ( )A .14n -B .41n -C .12n -D .21n -二、多选题21.已知数列{}n a 是公比为q 的等比数列,4n n b a =+,若数列{}n b 有连续4项在集合{-50,-20,22,40,85}中,则公比q 的值可以是( ) A .34-B .23-C .43-D .32-22.计算机病毒危害很大,一直是计算机学家研究的对象.当计算机内某文件被病毒感染后,该病毒文件就不断地感染其他未被感染文件.计算机学家们研究的一个数字为计算机病毒传染指数0,C 即一个病毒文件在一分钟内平均所传染的文件数,某计算机病毒的传染指数02,C =若一台计算机有510个可能被感染的文件,如果该台计算机有一半以上文件被感染,则该计算机将处于瘫疾状态.该计算机现只有一个病毒文件,如果未经防毒和杀毒处理,则下列说法中正确的是( )A .在第3分钟内,该计算机新感染了18个文件B .经过5分钟,该计算机共有243个病毒文件C .10分钟后,该计算机处于瘫痪状态D .该计算机瘫痪前,每分钟内新被感染的文件数成公比为2的等比数列 23.在等比数列{a n }中,a 5=4,a 7=16,则a 6可以为( ) A .8 B .12 C .-8D .-1224.在公比为q 等比数列{}n a 中,n S 是数列{}n a 的前n 项和,若521127,==a a a ,则下列说法正确的是( ) A .3q = B .数列{}2n S +是等比数列 C .5121S =D .()222lg lg lg 3n n n a a a n -+=+≥25.设{}n a 是各项均为正数的数列,以n a ,1n a +为直角边长的直角三角形面积记为n S ()n *∈N ,则{}n S 为等比数列的充分条件是( )A .{}n a 是等比数列B .1a ,3a ,⋅⋅⋅ ,21n a -,⋅⋅⋅或 2a ,4a ,⋅⋅⋅ ,2n a ,⋅⋅⋅是等比数列C .1a ,3a ,⋅⋅⋅ ,21n a -,⋅⋅⋅和 2a ,4a ,⋅⋅⋅,2n a ,⋅⋅⋅均是等比数列D .1a ,3a ,⋅⋅⋅ ,21n a -,⋅⋅⋅和 2a ,4a ,⋅⋅⋅ ,2n a ,⋅⋅⋅均是等比数列,且公比相同26.在《增减算法统宗》中有这样一则故事:三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关.则下列说法正确的是( ) A .此人第三天走了二十四里路B .此人第一天走的路程比后五天走的路程多六里C .此人第二天走的路程占全程的14D .此人走的前三天路程之和是后三天路程之和的8倍27.已知数列{}n a 是等比数列,有下列四个命题,其中正确的命题有( ) A .数列{}n a 是等比数列 B .数列{}1n n a a +是等比数列 C .数列{}2lg n a 是等比数列D .数列1n a ⎧⎫⎨⎬⎩⎭是等比数列 28.已知数列{}n a 前n 项和为n S .且1a p =,122(2)n n S S p n --=≥(p 为非零常数)测下列结论中正确的是( ) A .数列{}n a 为等比数列 B .1p =时,41516S =C .当12p =时,()*,m n m n a a a m n N +⋅=∈ D .3856a a a a +=+ 29.设数列{}n a 满足*12335(21)2(),n a a a n a n n ++++-=∈N 记数列{}21na n +的前n 项和为,n S 则( ) A .12a =B .221n a n =- C .21n nS n =+ D .1n n S na +=30.数列{}n a 是首项为1的正项数列,123n n a a +=+,n S 是数列{}n a 的前n 项和,则下列结论正确的是( ) A .313a = B .数列{}3n a +是等比数列C .43n a n =-D .122n n S n +=--31.设数列{}n x ,若存在常数a ,对任意正数r ,总存在正整数N ,当n N ≥,有n x a r -<,则数列{}n x 为收敛数列.下列关于收敛数列正确的有( )A .等差数列不可能是收敛数列B .若等比数列{}n x 是收敛数列,则公比(]1,1q ∈-C .若数列{}n x 满足sin cos 22n x n n ππ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭,则{}n x 是收敛数列 D .设公差不为0的等差数列{}n x 的前n 项和为()0n n S S ≠,则数列1n S ⎧⎫⎨⎬⎩⎭一定是收敛数列32.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{}n a 称为“斐波那契数列”,记n S 为数列{}n a 的前n 项和,则下列结论正确的是( ) A .68a = B .954S =C .135********a a a a a ++++=D .22212201920202019a a a a a +++= 33.设{}n a 是无穷数列,若存在正整数k ,使得对任意n +∈N ,均有n k n a a +>,则称{}n a 是间隔递增数列,k 是{}n a 的间隔数,下列说法正确的是( )A .公比大于1的等比数列一定是间隔递增数列B .已知4n a n n=+,则{}n a 是间隔递增数列 C .已知()21nn a n =+-,则{}n a 是间隔递增数列且最小间隔数是2D .已知22020n a n tn =-+,若{}n a 是间隔递增数列且最小间隔数是3,则45t ≤<34.在公比q 为整数的等比数列{}n a 中,n S 是数列{}n a 的前n 项和,若 1418a a +=, 2312a a +=,则下列说法正确的是( )A .2qB .数列{}2n S +是等比数列C .8510S =D .数列{}lg n a 是公差为2的等差数列35.已知等比数列{a n }的公比23q =-,等差数列{b n }的首项b 1=12,若a 9>b 9且a 10>b 10,则以下结论正确的有( ) A .a 9•a 10<0B .a 9>a 10C .b 10>0D .b 9>b 10【参考答案】***试卷处理标记,请不要删除一、等比数列选择题 1.B 【分析】第n 天蜂巢中的蜜蜂数量为n a ,则数列{}n a 成等比数列.根据等比数列的通项公式,可以算出第6天所有的蜜蜂都归巢后的蜜蜂数量. 【详解】设第n 天蜂巢中的蜜蜂数量为n a ,根据题意得数列{}n a 成等比数列,它的首项为6,公比6q = 所以{}n a 的通项公式:1666n n n a -=⨯=到第6天,所有的蜜蜂都归巢后, 蜂巢中一共有66646656a =只蜜蜂. 故选:B . 2.A 【分析】由20172021T T =得20182019202020211a a a a =,由等比数列性质得20182021201920201a a a a ==,这样可把2020a 和2021a 用q 表示出来后,可求得20202021ln ln a a . 【详解】{}n a 是正项等比数列,0n a >,0n T ≠,*n N ∈,所以由2017202120172018201920202021T T T a a a a ==⋅,得20182019202020211a a a a =, 所以20182021201920201a a a a ==,设{}n a 公比为q ,1q ≠,22021201820213()1a a a q ==,2202020192020()1a a a q==,即322021a q =,122020a q =,所以1220203202121ln ln ln 123ln 3ln ln 2qa q a q q ===. 故选:A . 【点睛】本题考查等比数列的性质,解题关键是利用等比数列性质化简已知条件,然后用公比q 表示出相应的项后可得结论. 3.C 【分析】将已知条件整理为()()22121328a q q q -+=,可得()22183221q q a q +=-,进而可得()4427612249633221q a a a q q q q +=+=-,分子分母同时除以4q ,利用二次函数的性质即可求出最值. 【详解】因为{}n a 是等比数列,543264328a a a a +--=,所以432111164328a q a q a q a q +--=,()()2221232328a q q q q q ⎡⎤+-+=⎣⎦,即()()22121328a q q q -+=,所以()22183221q q a q +=-,()()465424761111221248242496963323212121q a a a q a q a q q q a q q a q q q +=+=+=⨯==---,令210t q =>,则()222421211t t t q q-=-=--+, 所以211t q==,即1q =时2421q q -最大为1,此时242421q q -最小为24, 所以7696a a +的最小值为24, 故选:C 【点睛】易错点睛:本题主要考查函数与数列的综合问题,属于难题.解决该问题应该注意的事项: (1)数列是一类特殊的函数,它的图象是一群孤立的点;(2)转化以函数为背景的条件时,应该注意题中的限制条件,如函数的定义域,这往往是很容易被忽视的问题;(3)利用函数的方法研究数列中的相关问题时,应准确构造相应的函数,注意数列中相关限制条件的转化. 4.B 【分析】由等比中项的性质可求出3a ,即可求出公比,代入等比数列求和公式即可求解. 【详解】正项等比数列{}n a 中,2432a a a =+,2332a a ∴=+,解得32a =或31a =-(舍去) 又112a =, 2314a q a ∴==, 解得2q,5151(132)(1)312112a q S q --∴===--,故选:B5.C 【分析】根据数列的递推关系,利用取倒数法进行转化得1121n na a +=+ ,构造11n a ⎧⎫+⎨⎬⎩⎭为等比数列,求解出通项,进而求出10a . 【详解】 因为12n n n a a a +=+,所以两边取倒数得12121n n n n a a a a ++==+,则111121n n a a +⎛⎫+=+ ⎪⎝⎭, 所以数列11n a ⎧⎫+⎨⎬⎩⎭为等比数列,则11111122n n n a a -⎛⎫+=+⋅= ⎪⎝⎭, 所以121n n a =-,故101011211023a ==-. 故选:C 【点睛】方法点睛:对于形如()11n n a pa q p +=+≠型,通常可构造等比数列{}n a x +(其中1qx p =-)来进行求解. 6.D 【分析】利用已知条件列出方程组求解即可得1,a q ,求出数列{a n }的通项公式,再利用错位相减法求和即可. 【详解】设等比数列{a n }的公比为q ,易知q ≠1,所以由题设得()()3136161711631a q S q a q S q ⎧-⎪==-⎪⎨-⎪==⎪-⎩, 两式相除得1+q 3=9,解得q =2, 进而可得a 1=1, 所以a n =a 1q n -1=2n -1, 所以na n =n ×2n -1.设数列{na n }的前n 项和为T n , 则T n =1×20+2×21+3×22+…+n ×2n -1, 2T n =1×21+2×22+3×23+…+n ×2n ,两式作差得-T n =1+2+22+…+2n -1-n ×2n=1212n---n ×2n =-1+(1-n )×2n ,故T n =1+(n -1)×2n . 故选:D. 【点睛】本题主要考查了求等比数列的通项公式问题以及利用错位相减法求和的问题.属于较易题. 7.C 【分析】由题意可得1021031a a >,1021031,1a a ><,利用等比数列的性质即可求解. 【详解】由10210310a a ->,即1021031a a >,则有21021a q ⨯>,即0q >。
等比数列习题及答案

等比数列习题及答案第一篇:等比数列习题及答案等比数列习题一.选择题。
设{an}是由正数组成的等比数列,且公比不为1,则a1+a8与a4+a5的大小关系为()A.a1+a8>a4+a5B.a1+a8<a4+a5C.a1+a8=a4+a5 D.与公比的值有关2.已知{an}是等比数列,且an>0,a2a4+2a3a5+a4a6=25,那么a3+a5=()A. 10B. 15C. 5D.63.设{an}是正数组成的等比数列,公比q=2,且a1a2a3Λa30=230,那么a3a6a9Λa30=()A. 210B. 220C. 216D.2 154.三个数成等比数列,其和为44,各数平方和为84,则这三个数为()A.2,4,8B.8,4,2C.2,4,8,或8,4,2D.142856,-, 3335.等比数列{an}的首项为1,公比为q,前n项的和为S,由原数列各项的倒数组成一个新数列{前n项的和是()11},由{}的anan 1A.51SqnB. nC.n-1D. qSqS6.若等比数列{an}的前项之和为Sn=3n+a,则a等于()A.3B.1C.07.一个直角三角形三边的长成等比数列,则()A.三边边长之比为3:4:5,D.-1 B.三边边长之比为,C,D,8.等比数列a1a2a3的和为定值m(m>0),且其公比为q<0,令t=a1a2a3,则t的取值范围是()A. [-m,0)B. [-m,+∞)C.(0,m]D.(-∞,m]9.已知Sn是数列{an}的前n项和Sn=P(P∈R,n∈N),那么{an}()A.是等比数列B.当时P≠0是等比数列C.当P≠0,P≠1时是等比数列D.不是等比数列10.认定:若等比数列{an}的公比q满足q<1,则它的所有项的和S=n+33331212a1,设S=+2+3+4+Λ。
则77771-qS=()A.4138B.C.D. 1516161511.若数列是等比数列,下列命题正确的个数是()①{an2},{a2n}是等比数列②{lgan}成等差数列③1,an成等比数列④{can},{an±k}(k≠0)成等比an数列。
等比数列练习题

等比数列练习题(含答案)一、选择题1.已知等比数列}{n a 的公比为正数,且3a ·9a =225a ,2a =1,则1a =A. 21B. 22C. 2D.22、如果1,,,,9a b c --成等比数列,那么( )A 、3,9b ac ==B 、3,9b ac =-=C 、3,9b ac ==-D 、3,9b ac =-=-3、若数列}{na 的通项公式是=+++-=1021),23()1(a a a n a n n则(A )15 (B )12 (C )-12 D )-15 4.设{n a }为等差数列,公差d = -2,n S 为其前n 项和.若1011S S =,则1a =( )A.18B.20C.22D.24 5.已知等比数列()n a 中21a =,则其前3项的和3S 的取值范围是()A.(],1-∞-B.()(),01,-∞+∞C.[)3,+∞D.(][),13,-∞-+∞6.设{a n }是公比为正数的等比数列,若n 1=7,a 5=16,则数列{a n }前7项的和为( )A.63B.64C.127D.128 7.在等比数列{a n }中,a 2=8,a 5=64,,则公比q 为( )A .2B .3C .4D .88.若等比数列{a n }满足a n a n +1=16n,则公比为 A .2 B .4 C .8 D .1610. 在等比数列{}n a (n ∈N *)中,若11a =,418a =,则该数列的前10项和为( )A .4122-B .2122-C .10122-D .11122-11.若互不相等的实数 成等差数列, 成等比数列,且310a b c ++=,则a = A .4 B .2 C .-2 D .-412.(2008浙江)已知{}n a 是等比数列,41252==a a ,,则13221++++n n a a a a a a =( )A.16(n --41)B.6(n --21)C.332(n --41)D.332(n--21),,a b c二、填空题:13.(2009浙江理)设等比数列{}n a 的公比12q =,前n 项和为n S ,则44S a = . 14.(2009全国卷Ⅱ文)设等比数列{n a }的前n 项和为n s 。
(完整版)等比数列练习题(含答案)

等比数列练习题(含答案)一、选择题1.(2009年广东卷文)已知等比数列}{n a 的公比为正数,且3a ·9a =225a ,2a =1,则1a =A. 21B. 22C. 2D.2【答案】B 【解析】设公比为q ,由已知得()22841112a q a q a q ⋅=,即22q =,又因为等比数列}{n a 的公比为正数,所以q =故212a a q ===,选B 2、如果1,,,,9a b c --成等比数列,那么( )A 、3,9b ac ==B 、3,9b ac =-=C 、3,9b ac ==-D 、3,9b ac =-=-3、若数列}{na 的通项公式是=+++-=1021),23()1(a a a n a n n则(A )15 (B )12 (C )-12 D )-15 答案:A4.设{na }为等差数列,公差d = -2,nS 为其前n 项和.若1011S S =,则1a =( )A.18B.20C.22D.24 答案:B 解析: 20,100,1111111110=∴+==∴=a d a a a S S5.(2008四川)已知等比数列()n a 中21a =,则其前3项的和3S 的取值范围是()A.(],1-∞-B.()(),01,-∞+∞ C.[)3,+∞D.(][),13,-∞-+∞答案 D6.(2008福建)设{a n }是公比为正数的等比数列,若n 1=7,a 5=16,则数列{a n }前7项的和为( ) A.63 B.64 C.127 D.128 答案 C7.(2007重庆)在等比数列{a n }中,a 2=8,a 5=64,,则公比q 为( ) A .2 B .3 C .4 D .8 答案 A8.若等比数列{a n }满足a n a n +1=16n,则公比为 A .2 B .4 C .8 D .16 答案:B9.数列{a n }的前n 项和为S n ,若a 1=1,a n +1 =3S n (n ≥1),则a 6=(A )3 × 44 (B )3 × 44+1 (C )44 (D )44+1 答案:A解析:由a n +1 =3S n ,得a n =3S n -1(n ≥ 2),相减得a n +1-a n =3(S n -S n -1)= 3a n ,则a n +1=4a n (n ≥ 2),a 1=1,a 2=3,则a 6= a 2·44=3×44,选A .10.(2007湖南) 在等比数列{}n a (n ∈N*)中,若11a =,418a =,则该数列的前10项和为( )A .4122-B .2122-C .10122-D .11122-答案 B11.(2006湖北)若互不相等的实数 成等差数列, 成等比数列,且310a b c ++=,则a = A .4 B .2 C .-2 D .-4答案 D解析 由互不相等的实数,,a b c 成等差数列可设a =b -d ,c =b +d ,由310a b c ++=可得b =2,所以a =2-d ,c =2+d ,又,,c a b 成等比数列可得d =6,所以a =-4,选D12.(2008浙江)已知{}n a 是等比数列,41252==a a ,,则13221++++n n a a a a a a =( )A.16(n--41) B.6(n--21)C.332(n --41)D.332(n--21)答案 C二、填空题:三、13.(2009浙江理)设等比数列{}n a 的公比12q =,前n 项和为n S ,则44S a = . 答案:15解析 对于4431444134(1)1,,151(1)a q s q s a a q q a q q --==∴==--14.(2009全国卷Ⅱ文)设等比数列{na }的前n 项和为ns 。
高三数学等比数列试题答案及解析

高三数学等比数列试题答案及解析1.设等不数列{an }的前n项和为Sn,若S2=3,S4=15,则S6=( )A. 31B.32C.63D. 64【答案】C【解析】由已知条件可得解得,所以,故选C. 【考点】等比数列的性质.2.公比为的等比数列的各项都是正数,且,则= ()A.B.C.D.【答案】(B)【解析】由等比数列的各项都是正数,且.所以.又公比为即.故选(B)【考点】1.等比数列的性质.2.等比数列的通项公式.3.已知等比数列{an }满足a1+a2=3,a2+a3=6,则a7=()A.64B.81C.128D.243【答案】A【解析】由a2+a3=q(a1+a2)=3q=6,∴q=2∴a1(1+q)=3,∴a1=1,∴a7=26=64故选A4.设正项等比数列的前项积为,若,则=__________.【答案】1【解析】设等比数列的通项公式为故答案为1【考点】等比数列的通项公式;等比数列的乘积运算.5.设正项等比数列的前项积为,若,则=__________.【答案】1【解析】正项等比数列的首项为与公比,由【考点】等比数列的通项公式;等比数列的乘积运算.6.函数图像上存在不同的三点到原点的距离构成等比数列,则以下不可能成为公比的数是()A.B.C.D.【答案】B【解析】函数图象上的点到原点的距离的最小值为1,最大值为3,故,即,而,因此选B.【考点】等比数列的性质.7.已知数列满足,,定义:使乘积为正整数的k叫做“简易数”.则在[3,2013]内所有“简易数”的和为 .【答案】2035【解析】∵,∴,则“简易数”为使为整数的整数,即满足,∴,则在区间内所有“简易数”的和为.【考点】1.新定义题;2.等比数列的前n项和公式.8.已知等比数列的前项和为,若,,则的值是 .【答案】-2【解析】由得,∴,∴,.【考点】等比数列的通项公式与前项和.9.已知等比数列中,=1,=2,则等于( ).A.2B.2C.4D.4【答案】C【解析】,,,可见,,依旧成等比数列,所以,解得.【考点】等比数列的性质10.已知正项数列,其前项和满足且是和的等比中项.(1)求数列的通项公式;(2) 符号表示不超过实数的最大整数,记,求.【答案】(1) 所以;(2) .【解析】(1) 由①知②通过①②得整理得,根据得到所以为公差为的等差数列,由求得或.验证舍去.(2) 由得,利用符号表示不超过实数的最大整数知,当时,,将转化成应用“错位相减法”求和.试题解析:(1) 由①知② 1分由①②得整理得 2分∵为正项数列∴,∴ 3分所以为公差为的等差数列,由得或 4分当时,,不满足是和的等比中项.当时,,满足是和的等比中项.所以. 6分(2) 由得, 7分由符号表示不超过实数的最大整数知,当时,, 8分所以令∴① 9分② 10分①②得即. 12分【考点】等差数列的通项公式,对数运算,“错位相减法”.11.在各项均为正数的等比数列{an }中,已知a2=2a1+3,且3a2,a4,5a3成等差数列.(1)求数列{an}的通项公式;(2)设bn =log3an,求数列{anbn}的前n项和Sn.【答案】(1)3n,n∈N(2)Sn=【解析】(1)设{an}公比为q,由题意得q>0,且解得 (舍),所以数列{an }的通项公式为an=3·3n-1=3n,n∈N.(2)由(1)可得bn =log3an=n,所以anbn=n·3n.所以Sn=1·3+2·32+3·33+…+n·3n,所以3Sn=1·32+2·33+3·34+…+n·3n+1,两式相减得,2Sn=-3-(32+33+…+3n)+n·3n+1=-(3+32+33+…+3n)+n·3n+1=-+n·3n+1=,所以数列{an bn}的前n项和Sn=.12.已知两个数k+9和6-k的等比中项是2k,则k=________.【答案】3【解析】由已知得(2k)2=(k+9)(6-k),k∈N*,∴k=3.13.已知等比数列{an }是递增数列,Sn是{an}的前n项和,若a1,a3是方程x2-5x+4=0的两个根,则S6=________.【答案】63【解析】因为等比数列{an }是递增数列,所以a1=1,a3=4,则q=2,故S6==63.14.已知数列{an }为等比数列,且a1a13+2=4π,则tan(a2a12)的值为()A.±B.-C.D.-【答案】C【解析】∵a1a13=,a2a12=,∴=,∴tan(a2a12)=tan=tan=,故选C.15.已知数列{an }是等差数列,a2=6,a5=12,数列{bn}的前n项和是Sn,且Sn+bn=1.(1)求数列{an}的通项公式.(2)求证:数列{bn}是等比数列.(3)记cn =,{cn}的前n项和为Tn,若Tn<对一切n∈N*都成立,求最小正整数m.【答案】(1) an=2n+2 (2)见解析 (3) 2012【解析】(1)设{an }的公差为d,则a2=a1+d,a5=a1+4d.∵a2=6,a5=12,∴解得:a1=4,d=2.∴an=4+2(n-1)=2n+2.(2)当n=1时,b1=S1,由S1+b1=1,得b1=.当n≥2时,∵Sn =1-bn,Sn-1=1-bn-1,∴Sn -Sn-1=(bn-1-bn),即bn=(bn-1-bn).∴bn =bn-1.∴{bn}是以为首项,为公比的等比数列.(3)由(2)可知:bn=·()n-1=2·()n.∴cn====-,∴Tn=(1-)+(-)+(-)+…+(-)=1-<1,由已知得≥1,∴m≥2012,∴最小正整数m=2012.16.一个由正数组成的等比数列,它的前4项和是前2项和的5倍,则此数列的公比为()A.1B.2C.3D.4【答案】B【解析】设此数列的公比为q,根据题意得q>0且q≠1,由,解得q=2.17.某住宅小区计划植树不少于100棵,若第一天植2棵,以后每天植树的棵数是前一天的2倍,则需要的最少天数n(n∈N*)等于________.【答案】6【解析】设每天植树的棵数组成的数列为{an},由题意可知它是等比数列,且首项为2,公比为2,所以由题意可得≥100,即2n≥51,而25=32,26=64,n∈N*,所以n≥6.18.在等比数列{an }中,a1+a2=20,a3+a4=40,则a5+a6等于________.【答案】80【解析】q2==2,a5+a6=(a3+a4)q2=40×2=80.19.Sn 是等比数列{an}的前n项和,a1=,9S3=S6,设Tn=a1a2a3…an,则使Tn取最小值的n值为________.【答案】5【解析】设等比数列的公比为q,故由9S3=S6,得9×,解得q=2,故=a n =×2n-1,易得当n≤5时,<1,即Tn<Tn-1;当n≥6时,Tn>Tn-1,据此数列单调性可得T5为最小值.20.已知等比数列{an }是递增数列,Sn是{an}的前n项和.若a1,a3是方程x2-5x+4=0的两个根,则S6=________.【答案】63【解析】∵a1,a3是方程x2-5x+4=0的两根,且q>1,∴a1=1,a3=4,则公比q=2,因此S6==63.21.已知公比为的等比数列的前项和为,则下列结论中:(1)成等比数列;(2);(3)正确的结论为()A.(1)(2).B.(1)(3).C.(2)(3).D.(1)(2)(3).【答案】C【解析】根据等比数列的性质,,则,,(2)(3)是正确的,但当时,(1)不正确,故选C.【考点】等比数列的前项和与等比数列的定义.22.在等比数列{an }中,a4=4,则a2·a6等于()A.4B.8C.16D.32【答案】C【解析】23.在等比数列{an }中,a1=2,前n项和为Sn,若数列{an+1}也是等比数列,则Sn等于().A.2n+1-2B.3n C.2n D.3n-1【答案】C【解析】∵数列{an }为等比数列,设公比为q,∴an=2q n-1,又∵{an+1}也是等比数列,则(an+1+1)2=(a n+1)·(a n+2+1)⇒+2a n+1=a n a n+2+a n+a n+2⇒a n+a n+2=2a n+1⇒a n(1+q2-2q)=0⇒q=1.即an =2,所以Sn=2n.24.在等比数列{an }中,2a3-a2a4=0,则a3=________;{bn}为等差数列,且b3=a3,则数列{bn}的前5项和等于________.【答案】210【解析】在等比数列中2a3-a2a4=2a3-=0,解得a3=2.在等差数列中b3=a3=2,所以S5==5b3=5×2=10.25.设等比数列{an }的公比q=2,前n项和为Sn,若S4=1,则S8= ().A.17B.C.5D.【答案】A【解析】由于S4=a1+a2+a3+a4=1,S8=S4+a5+a6+a7+a8=S4+S4·q4,又q=2.所以S8=1+24=17.故选A26.已知数列为等比数列,,,,则的取值范围是( ) A.B.C.D.【答案】D【解析】①,②,③,由①②③得,,故选D.【考点】1.等比数列的定义;2.不等式求范围.27.数列{}的前n项和为,.(Ⅰ)设,证明:数列是等比数列;(Ⅱ)求数列的前项和;(Ⅲ)若,.求不超过的最大整数的值.【答案】(Ⅰ)详见解析;(Ⅱ);(Ⅲ).【解析】(Ⅰ)由,令可求,时,利用可得与之间的递推关系,构造等可证等比数列;(Ⅱ)由(Ⅰ)可求,利用错位相减法可求数列的和;(Ⅲ)由(Ⅰ)可求,进而可求,代入P中利用裂项求和即可求解试题解析:解:(Ⅰ) 因为,所以①当时,,则, .(1分)②当时,, .(2分)所以,即,所以,而, .(3分)所以数列是首项为,公比为的等比数列,所以. .(4分)(Ⅱ)由(Ⅰ)得.所以①② .(6分)②-①得: .(7分)(8分)(Ⅲ)由(Ⅰ)知(9分)而,(11分)所以,故不超过的最大整数为.(14分) .【考点】1.递推关系;2.等比数列的概念;3.数列求和.28.正项递增等比数列{}中,,则该数列的通项公式为()A.B.C.D.【答案】B【解析】由得,或(舍).【考点】等比数列的运算性质.29.若等比数列的第项是二项式展开式的常数项,则 .【答案】【解析】展开式的通项公式为,其常数项为,所以.【考点】1、二项式定理;2、等比数列.30.设Sn 为等比数列{an}的前n项和,若,则()A.B.C.D.【答案】B【解析】∵,∴,∴,∴.【考点】1.等比数列的通项公式;2.等比数列的前n项和公式.31.在等比数列中,若,则 .【答案】.【解析】由于数列为公比数列,所以,由于,所以.【考点】等比数列的性质32.已知,数列是首项为,公比也为的等比数列,令(Ⅰ)求数列的前项和;(Ⅱ)当数列中的每一项总小于它后面的项时,求的取值范围.【答案】(1);(2).【解析】本题考查数列的通项公式和数列求和问题,考查学生的计算能力和分析问题解决问题的能力,考查分类讨论思想和转化思想.第一问,利用等比数列的通项公式先写出数列的通项公式,利用对数的性质得到的通项公式,从而列出,它符合错位相减法,利用错位相减法求和;第二问,有题意得,讨论的正负,转化为恒成立问题,求出.试题解析:(Ⅰ)由题意知,.∴..以上两式相减得.∵,∴.(Ⅱ)由.由题意知,而,∴. ①(1)若,则,,故时,不等式①成立;(2)若,则,不等式①成立恒成立.综合(1)、(2)得的取值范围为.【考点】1.等比数列的通项公式;2.等比数列的前n项和公式;3.错位相减法;4.恒成立问题.33.已知等比数列前项和为()A.10B.20C.30D.40【答案】C【解析】等比数列中,依次3项和依然成等比数列,即,,,成等比数列,其值分别为2,4,8,16,故.【考点】等比数列的性质.34.设等比数列满足公比,,且{}中的任意两项之积也是该数列中的一项,若,则的所有可能取值的集合为.【答案】【解析】任取数列中两项和,则也是数列中的项,又,,所以可能为,即的值可能为.【考点】等比数列的通项公式和性质.35.已知公差不为零的等差数列与公比为的等比数列有相同的首项,同时满足,,成等比,,,成等差,则( )A.B.C.D.【答案】C【解析】设数列的首项为,等差数列的公差为,,将,,代入得,化简得,解得,代入(1)式得.【考点】1、等差数列的通项公式;2、等比数列的性质.36.等比数列{}的前n项和为,已知对任意的,点,均在函数且均为常数)的图像上.(1)求r的值;(2)当b=2时,记求数列的前项和.【答案】(1);(2).【解析】(1)利用的关系求解;(2)由(1)和b=2求得,进而求得,利用错位相减法可得.试题解析:∵对任意的,点,均在函数且均为常数)的图像上. ∴得,当时,,当时,,又∵{}为等比数列,∴, 公比为, ∴.(2)当b=2时,,则相减,得=∴【考点】1.等比数列通项公式;2.数列求和;3.数列中的关系.37.在正项等比数列中,,则的值是( )A.10000B.1000C. 100D.10【答案】A【解析】因为,所以,所以,.【考点】1.对数的性质;2.等比数列的性质.38.若等比数列满足,,则公比__________;前项_____.【答案】2,【解析】,由,解得,故.考点定位:本题考查了等比数列的通项公式、前n项公式和数列的性质.39.已知各项均为正数的数列中,是数列的前项和,对任意,有.函数,数列的首项(Ⅰ)求数列的通项公式;(Ⅱ)令求证:是等比数列并求通项公式(Ⅲ)令,,求数列的前n项和.【答案】(Ⅰ);(Ⅱ) ;(Ⅲ).【解析】(Ⅰ)由①得② 1分由②—①,得即: 2分由于数列各项均为正数,3分即数列是首项为,公差为的等差数列,数列的通项公式是 4分(Ⅱ)由知,所以, 5分有,即, 6分而,故是以为首项,公比为2的等比数列. 7分所以 8分(Ⅲ), 9分所以数列的前n项和错位相减可得 12分【考点】等差数列、等比数列的通项公式,“错位相减法”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等比数列练习(含答案)一、选择题1.(广东卷文)已知等比数列}{n a 的公比为正数,且3a ·9a =225a ,2a =1,则1a = A.21B. 22C. 2D.2【答案】B 【解析】设公比为q ,由已知得()22841112a q a q a q ⋅=,即22q=,又因为等比数列}{n a 的公比为正数,所以q =故212a a q ===,选B 2、如果1,,,,9a b c --成等比数列,那么( )A 、3,9b ac ==B 、3,9b ac =-=C 、3,9b ac ==-D 、3,9b ac =-=-3、若数列}{n a 的通项公式是=+++-=1021),23()1(a a a n a nn 则(A )15 (B )12 (C )-12 D )-15 答案:A4.设{n a }为等差数列,公差d = -2,n S 为其前n 项和.若1011S S =,则1a =( ) A.18 B.20 C.22 D.24 答案:B 解析:20,100,1111111110=∴+==∴=a d a a a S S5.(四川)已知等比数列()n a 中21a =,则其前3项的和3S 的取值范围是() A.(],1-∞- B.()(),01,-∞+∞ C.[)3,+∞ D.(][),13,-∞-+∞答案 D6.(福建)设{a n }是公比为正数的等比数列,若n 1=7,a 5=16,则数列{a n }前7项的和为( ) A.63 B.64 C.127 D.128 答案 C7.(重庆)在等比数列{a n }中,a 2=8,a 5=64,,则公比q 为( ) A .2 B .3 C .4 D .8 答案 A8.若等比数列{a n }满足a n a n +1=16n ,则公比为 A .2 B .4 C .8 D .16 答案:B9.数列{a n }的前n 项和为S n ,若a 1=1,a n +1 =3S n (n ≥1),则a 6=(A )3 × 44 (B )3 × 44+1 (C )44 (D )44+1答案:A 解析:由a n +1 =3S n ,得a n =3S n -1(n ≥ 2),相减得a n +1-a n =3(S n -S n -1)= 3a n ,则a n +1=4a n (n ≥ 2),a 1=1,a 2=3,则a 6= a 2·44=3×44,选A .10.(湖南) 在等比数列{}n a (n ∈N*)中,若11a =,418a =,则该数列的前10项和为( ) A .4122- B .2122- C .10122- D .11122-答案 B11.(湖北)若互不相等的实数 成等差数列, 成等比数列,且310a b c ++=,则a = A .4 B .2 C .-2 D .-4 答案 D解析 由互不相等的实数,,a b c 成等差数列可设a =b -d ,c =b +d ,由310a b c ++=可得b =2,所以a =2-d ,c =2+d ,又,,c a b 成等比数列可得d =6,所以a =-4,选D12.(浙江)已知{}n a 是等比数列,41252==a a ,,则13221++++n n a a a a a a =( ) A.16(n --41) B.6(n--21),,a b c ,,c a bC.332(n --41) D.332(n --21) 答案 C二、填空题:三、13.(2009浙江理)设等比数列{}n a 的公比12q =,前n 项和为n S ,则44S a = .答案:15解析 对于4431444134(1)1,,151(1)a q s q s a a q q a q q --==∴==--14.(2009全国卷Ⅱ文)设等比数列{n a }的前n 项和为n s 。
若3614,1s s a ==,则4a =答案:3解析:本题考查等比数列的性质及求和运算,由3614,1s s a ==得q 3=3故a 4=a 1q 3=315.(全国I) 等比数列{}n a 的前n 项和为n S ,已知1S ,22S ,33S 成等差数列,则{}n a 的公比为 .答案1316.已知等差数列}{n a 的公差0≠d ,且931,,a a a 成等比数列,则1042931a a a a a a ++++的值为 .答案 1316三、解答题17.(本小题满分12分)已知等差数列{a n }中,a 1=1,a 3=-3. (I )求数列{a n }的通项公式;(II )若数列{a n }的前k 项和S k =-35,求k 的值.18:①已知等比数列{}n a ,1231237,8a a a a a a ++==,则n a = ②已知数列{}n a 是等比数列,且210,30m m S S ==,则3m S =③在等比数列{}n a 中,公比2q =,前99项的和9956S =,则36999a a a a +++⋅⋅⋅+= ④在等比数列{}n a 中,若394,1a a ==,则6a = ;若3114,1a a ==,则7a = ⑤在等比数列{}n a 中,()5615160,a a a a a a b +=≠+=,则2526a a +=解:①212328a a a a == ∴22a = ∴1311335144a a a a a a +==⎧⎧⇒⎨⎨⋅==⎩⎩ 或1341a a =⎧⎨=⎩ 当1231,2,4a a a ===时,12,2n n q a -==当1234,2,1a a a ===时,111,422n n q a -⎛⎫==⋅ ⎪⎝⎭②()()2232370m m m m m m S S S S S S -=⋅-⇒=③设114797225898336999b a a a a b a a a a b a a a a =+++⋅⋅⋅+=+++⋅⋅⋅+=+++⋅⋅⋅+ 则1223,b q b b q b ==,且12356b b b ++=∴()21156b q q=++= 即1568124b ==++ ∴23132b b q ==④2639a a a =⋅ 62a =± 27311a a a =⋅ 72a =(-2舍去)∵当72a =-时,447340a a q q ==>⑤1015162526561516a a a a q a a a a ++==++ ∴()221516252656a a b a a a a a++==+19.(本小题满分12分) 已知等比数列{}n a 中,113a =,公比13q =. (I )n S 为{}n a 的前n 项和,证明:12nn a S -=(II )设31323log log log n n b a a a =+++,求数列{}n b 的通项公式.20、某企业在第1年初购买一台价值为120万元的设备M ,M 的价值在使用过程中逐年减少,从第2年到第6年,每年初M 的价值比上年初减少10万元;从第7年开始,每年初M 的价值为上年初的75%. (I )求第n 年初M 的价值n a 的表达式; (II )设12,nn a a a A n+++=若n A 大于80万元,则M 继续使用,否则须在第n 年初对M 更新,证明:须在第9年初对M 更新. 解析:(I )当6n ≤时,数列{}n a 是首项为120,公差为10-的等差数列. 12010(1)13010;n a n n =--=- 当6n ≥时,数列{}n a 是以6a 为首项,公比为34为等比数列,又670a =,所以 6370();4n n a -=⨯因此,第n 年初,M 的价值n a 的表达式为612010(1)13010,6370(),74n n n n n n a a n ---=-≤⎧⎪=⎨=⨯≥⎪⎩ (II)设n S 表示数列{}n a 的前n 项和,由等差及等比数列的求和公式得当16n ≤≤时,1205(1),1205(1)1255;n n S n n n A n n =--=--=-当7n ≥时,666786333()570704[1()]780210()4443780210()4.n n n n n n S S a a a A n---=++++=+⨯⨯⨯-=-⨯-⨯=因为{}n a 是递减数列,所以{}n A 是递减数列,又86968933780210()780210()4779448280,7680,864996A A ---⨯-⨯==>==<21:①已知{}n a 等比数列,324202,3a a a =+=,求{}n a 的通项公式。
②设等比数列{}n a 的公比为()0q q >,它的前n 项和为40,前2n 项和为3280,且前n 项和中最大项为27,求数列的第2n 项。
③设等比数列{}n a 的公比1q <,前n 项和为n S ,已知3422,5a S S ==,求{}n a 的通项公式。
解:①13q =或3q = 323n n a -=⨯ 或 323n n a -=⨯ ②当1q =时 1214023280n nS na S na ==⎧⎨==⎩ 无解当1q ≠时 ()()12121401132801n n n n a q S q a q S q ⎧-⎪==-⎪⎨-⎪==⎪-⎩2182n n n S q S =+= ∴81nq = ∴1112a q =-- ∵0q > 即81nq =1> ∴1q > ∴10a > ∴数列{}n a 为递增数列∴1112781n n a a a q q -===⋅ 解方程组1113112a q a q⎧=⎪⎪⎨⎪=-⎪-⎩ 得113a q =⎧⎨=⎩ ∴2121213n n n a a q --==③由已知()1110,1nn a q a S q -≠=- 时 ()()214211211511a q a q a q q q ⎧=⎪--⎨=⨯⎪--⎩得()42151q q -=- ∵1q < ∴1q =- 或 2q =-当1q =-时,()112,21n n a a -==-当2q =-时,()()112111,21222n n n n a a ---==-=- 22.数列{}n a 为等差数列,n a 为正整数,其前n 项和为n S ,数列{}n b 为等比数列,且113,1a b ==,数列{}n a b 是公比为64的等比数列,2264b S =.(1)求,n n a b ;(2)求证1211134n S S S +++<. 解:(1)设{}n a 的公差为d ,{}n b 的公比为q ,则d 为正整数,3(1)n a n d =+-,1n n b q -=依题意有1363(1)22642(6)64n n nda d n d ab q q b q S b d q +++-⎧====⎪⎨⎪=+=⎩①由(6)64d q +=知q 为正有理数,故d 为6的因子1,2,3,6之一, 解①得2,8d q ==故132(1)21,8n n n a n n b -=+-=+=(2)35(21)(2)n S n n n =++++=+∴121111111132435(2)n S S S n n +++=++++⨯⨯⨯+11111111(1)2324352n n =-+-+-++-+ 11113(1)22124n n =+--<++。