人教版八年级数学上册 11.1.2 三角的高、中线与角平分线 同步练习

合集下载

人教版数学八年级上册 第11章 三角形 11.1.2 三角形的高、中线和角平分线 同步练习

人教版数学八年级上册 第11章 三角形  11.1.2 三角形的高、中线和角平分线    同步练习

人教版八年级上册第11章三角形11.1.2三角形的高、中线与角平分线同步检测一.选择题(共10小题,3*10=30)1. 如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是( )2.下列说法正确的是( )A.三角形的三条高都在三角形内B.直角三角形只有一条高C.锐角三角形的三条高都在三角形内D.以上都不对3. 如图,在△ABC中有四条线段DE,BE,EF,FG,其中有一条线段是△ABC的中线,则该线段是( ) A.线段DEB.线段BEC.线段EFD.线段FG4.三角形一边上的中线把原三角形分成两个( )A.形状相同的三角形B.面积相等的三角形C.直角三角形D.周长相等的三角形5. 如图,∠1=∠2,∠3=∠4,下列结论中错误的是( )A.BD是△ABC的角平分线B.CE是△BCD的角平分线C.∠ACB=2∠3D.CE是△ABC的角平分线6. 下列图形具有稳定性的是( )7.如图,在△ABC中,CD是△ABC的角平分线,DE∥BC,交AC于点E,若∠ACB=60°,则∠EDC的度数是( )A.15°B.30°C.45°D.60°8.如图,△ABC中,点E是BC上的一点,EC=2BE,BD是边AC上的中线,若S△ABC=12,则S△ADF-S△BEF=()A.1B.2C.3D.49. 如图,在△ABC中,∠1=∠2,G为AD的中点,延长BG交AC于E.F为AB上一点,CF⊥AD于H,下面判断正确的有()①AD是△ABE的角平分线;②BE是△ABD边AD上的中线;③CH是△ACD边AD上的高;④AH是△ACF的角平分线和高.A. 1个B. 2个C. 3个D. 4个10. 如图,AD是△ABC的角平分线,点O在AD上,且OE⊥BC于点E,∠BAC=60∘,∠C=80∘,则∠EOD的度数为()A. 20∘B. 30∘C. 10∘D. 15∘二.填空题(共8小题,3*8=24)11.如图,在△ABC中,∠AEB=90°,则以AE为高的三角形是_______________________________.12.空调外机安装在墙壁上时,一般都会按如图所示的方法固定在墙壁上,这种方法应用的数学知识是三角形的.13. 已知BD是△ABC的中线,AB=5,BC=3,则△ABD和△BCD的周长的差是____.14.如图,AD是△ABC的角平分线,AE是△ABD的角平分线,若∠BAC=80°,则∠EAD=_____.15. 下列说法:①自行车的三脚架;②三角形房架;③照相机的三角架;④门框的长方形架.其中利用三角形稳定性的有__________.(填序号)16. 如图,在△ABC中,D,E分别是BC,AC边上的中点,已知△ADE的面积为1,则△ABC的面积是_______.17.如果等腰三角形的周长是25 cm,一腰上的中线把三角形分成周长差是4 cm的两个三角形,则这个等腰三角形的腰长为_________.18. 如图,在△ABC中,AD是△ABC边BC上的中线,CE是△ACD边AD上的中线,F是EC的中点.若S△BFC=1,则S△ABC=.三.解答题(共7小题,46分)19. (6分)画出下列三角形三边上的高.20. (6分)如图,D是△ABC中BC边上的一点,DE∥AC交AB于点E.若∠EDA=∠EAD,试说明AD是△ABC的角平分线.21.(6分)如图,在△ABC中,∠ACB=90°,CD是AB边上的高,AB=13,BC=12,AC=5.(1)求△ABC的面积;(2)求CD的长.22.(6分)如图,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且S△ABC=8 cm2,求阴影部分的面积.23. (6分)如图,在△ABC中,AB=AC,AC边上的中线把三角形的周长分为24和30两部分,求△ABC各边的长.24.(6分)如图△ABC中,∠A=20∘,CD是∠BCA的平分线,△CDA中,DE是CA边上的高,又有∠EDA=∠CDB,求∠B的大小.25. (8分)如图,已知AD、AE分别是△ABC的高和中线,AB=9 cm,AC=12 cm,BC=15 cm,∠BAC=90°.试求:(1)△ABE的面积;(2)AD的长度;(3)△ACE与△ABE的周长的差.参考答案:1-5 ACBBD6-10 ABBBA11. △ABE ,△ABC ,△AED ,△AEC ,△ADC12. 稳定性13. 214. 20°15. ①②③16. 417. 7或29318. 419.解:20. 解:∵DE ∥AC ,∴∠EDA =∠CAD ,∵∠EDA =∠EAD ,∴∠CAD =∠EAD ,∴AD 是△ABC 的角平分线21. 解:(1)S △ABC =12AC·BC =30 (2)∵S △ABC =12AB·CD ,∴CD =2S △ABC AB =601322. 解:∵D 是BC 的中点,∴S △ABD =S △ACD =12S △ABC =4 cm 2. ∵E 是AD 的中点,∴S △BED =12S △ABD =2 cm 2,S △DCE =12S △ACD =2 cm 2, ∴S △BCE =S △BED +S △DCE =4 cm 2.∵F 是CE 的中点,∴S 阴影=12S △BCE =2 cm 2 23. 解:设AB =x ,BC =y ,由题意知,分两种情况讨论,即⎩⎨⎧32x =24,12x +y =30或⎩⎨⎧32x =30,12x +y =24,解得⎩⎪⎨⎪⎧x =16,y =22或⎩⎪⎨⎪⎧x =20,y =14, ∴AB =AC =16,BC =22或AB =AC =20,BC =1424. 解:∵DE 是CA 边上的高,∴∠DEA =∠DEC =90∘,∵∠A =20∘,∴∠EDA =90∘−20∘=70∘,∵∠EDA =∠CDB ,∴∠CDE =180∘−70∘×2=40∘,在Rt △CDE 中,∠DCE =90∘−40∘=50∘,∵CD 是∠BCA 的平分线,∴∠BCA =2∠DCE =2×50∘=100∘,在△ABC 中,∠B =180∘−∠BCA −∠A =180∘−100∘−20∘=60∘.故答案为:60∘.25. 解: (1)∵△ABC 是直角三角形,∠BAC=90°,AB=9 cm,AC=12 cm,∴S △ABC =12AB·AC=12×9×12=54(cm 2).∵AE 是边BC 上的中线,∴BE=EC, ∴12BE·AD=12EC·AD,即S △ABE =S △AEC ,∴S △ABE =12S △ABC =27 cm 2.∴△ABE 的面积是27 cm 2. (2)∵∠BAC=90°,AD 是边BC 上的高,∴12AB·AC=12BC·AD,∴AD=AB·AC BC =9×1215=365 (cm),即AD 的长度为365cm. (3)∵AE 为BC 边上的中线,∴BE=CE,∴△ACE 的周长-△ABE 的周长=AC+AE+CE -(AB+BE+AE)=AC -AB=12-9=3(cm),即△ACE 与△ABE 的周长的差是3 cm.。

人教版八年级上册数学三角形的高、中线与角平分线同步训练

人教版八年级上册数学三角形的高、中线与角平分线同步训练

人教版八年级上册数学11.1.2三角形的高、中线与角平分线同步练习一、填空题1.如图,AE是△ABC的中线,BF是△ABE的中线,若△ABC的面积是20cm2,则S△ABF =_____cm2.2.如图,在△ABC中,点D,E,F分别为BC,AD,CE的中点,且S△BEF=2cm2,则S△ABC=__________.3.如图,在ABC中,点D、E分别是边BC、AB的中点.若ABC的面积等于8,则BDE的面积等于______.4.如图,ABC中,D是BC边上的一点(不与B,C重合),点E,F是线段AD的三等分点,记BDF的面积为1S,ACE的面积为2S,若123+=,则ABC的面积为__.S S5.如图,若AD 是ABC 的角平分线,则BAD ∠________12CAD ∠=________或2BAC ∠=________2=________.6.如图,ABC 中,CD AB ⊥于D ,BE AC ⊥于E ,若2AC AB =,4BE =,则CD =______.7.如图,BD 、CE 是ABC 的高,若AB =4,AC =6,CE =5,则BD 的长度是_________.8.如图,直角三角形ABC 中,△ABC =90°,BD △AC 于点D ,AB =3,AD =1.8,BD =2.4,DC =3.2,BC =4,则点A 到BD 的距离是______.二、单选题1.如图,BE 是某个三角形的高,则这个三角形是( )A .ABE △B .ABD △C .CBE △D .ABC2.如图,在△ABC中,已知点D、E、F分别是BC、AD、BE上的中点,且△ABC的面积为8cm2,则△BCF的面积为()A.0.5cm2B.1cm2C.2cm2D.4cm23.如图,AD是ABC的中线,已知ABD的周长为28cm,AB比AC长6cm,则ACD 的周长为()A.31cm B.25cm C.22cm D.19cm4.下列说法正确的是()△三角形的角平分线是射线;△三角形的三条角平分线都在三角形内部;△三角形的一条中线把该三角形分成面积相等的两部分;△三角形的三条高都在三角形内部.A.△△B.△△C.△△D.△△S 5.如图,在ABC中,AD是BC边上的中线,BE是ABD中AD边上的中线,若ABC =24,则ABE的面积是()A.4B.12C.6D.86.如图,在ABC中,AB边上的高是()A .CDB .CEC .BFD .BG7.如图,在ABC 中,AD ,AE 分别是边CB 上的中线和高,6cm AE =,212cm ABD S =△,则BC 的长是( )A .4cmB .6cmC .8cmD .10cm 8.如图,AC △BC ,CD △AB ,DE △AC ,垂足分别为C ,D ,E ,则下列说法正确的是( )A .BC 是△BCD 的高B .DE =12BC C .△CEB =△ABCD .DE 是△ACD 的高 三、解答题 1.如图,在△ABC 中,AD 是BC 边上的中线,△ADC 的周长比△ABD 的周长多3cm ,AB 与AC 的长度和为11cm ,求AC 的长.2.如图,AD 是△ABC 的中线,E 是AD 的中点,连接EB ,EC ,CF △BE 于点F .若BE =9,CF=8,求△ACE的面积.3.如图,AD为ABC中线,AB=12cm,AC=9cm,ACD的周长为27cm,求ABD的周长.4.如图,在三角形ABC中,AB=10cm,AC=6cm,D是BC的中点,E点在边AB上.(1)若三角形BDE的周长与四边形ACDE的周长相等,求线段AE的长.(2)若三角形ABC的周长被DE分成的两部分的差是2,求线段AE的长.。

人教版八年级数学上册 11.1.2三角形的高、中线与角平分线 同步训练

人教版八年级数学上册    11.1.2三角形的高、中线与角平分线    同步训练

人教版八年级数学上册11.1.2三角形的高、中线与角平分线同步训练一、选择题(共10小题,3*10=30)1.过△ABC的顶点A,作BC边上的高,以下作法正确的是()2.下列说法中正确的是()A.三角形的三条高都在三角形内B.直角三角形只有一条高C.锐角三角形的三条高都在三角形内D.三角形每一边上的高都小于其他两边3.如图,在△ABC中有四条线段DE,BE,EF,FG,其中有一条线段是△ABC的中线,则该线段是()A.线段DE B.线段BE C.线段EF D.线段FG4.若AD是△ABC的中线,下列结论错误的是()A.AB=BC B.BD=DCC.AD平分BC D.BC=2DC5.如图,已知P是△ABC的重心,连接AP并延长交BC于点D,若△ABC的面积为20,则△ADC 的面积为()A.10 B.8 C.6 D.56. 如图,D ,E 分别是△ABC 的边AC ,BC 的中点,那么下列说法中不正确的是( )A .DE 是△BCD 的中线B .BD 是△ABC 的中线C .AD =DC ,BE =ECD .AD =EC ,DC =BE7.如图,CD ,CE ,CF 分别是△ABC 的高、角平分线、中线,则下列各式中错误的是( )A .AB =2BF B .∠ACE =12∠ACB C .AE =BE D .CD ⊥BE8.如图,AD ,BE ,CF 依次是△ABC 的高、中线和角平分线,下列表达式中错误的是( )A .AE =CEB .∠ADC =90°C .∠CAD =∠CBED .∠ACB =2∠ACF9.三角形一边上的中线一定可以把原三角形分成两个( )A .形状相同的三角形B .面积相等的三角形C .直角三角形D .周长相等的三角形10.如图,在△ABC 中,CD 平分∠ACB 交AB 于点D ,过点D 作DE ∥BC 交AC 于点E.若∠A =54°,∠B =48°,则∠CDE 的大小为( )A .44°B .40°C .39°D .38°二.填空题(共8小题,3*8=24)11.如图,线段AD 叫做△ABC 的边BC 上的_______,则∠ADB =∠ADC =________.12. 如图,以CF 为高的三角形是_______________________________.13.如图,在△ABC 中,AD ⊥BC ,垂足为D.若BC =5,AD =2,则△ABC 的面积为________.14.如图,AD ,BE ,CF 是△ABC 的三条中线,则AB =2________,BD =________,AE =12________.15.如图②,AE 平分∠BAC ,交BC 于点E.若∠BAE =50°,则∠CAE =________,∠CAB =________.16.如图,AD ⊥BC 于点D ,那么图中以AD 为高的三角形有________个.17.如图,在△ABC 中,∠1=∠2,点G 为AD 的中点,延长BG 交AC 于点E ,F 为AB 上一点,且CF⊥AD于点H,下列说法正确的有________个.①AD是△ABE的角平分线;②BE是△ABD的边AD上的中线;③CH是△ACD的边AD上的高.18.如图,在△ABC中,CD是△ABC的角平分线,DE∥BC,交AC于点E,若∠ACB=60°,则∠EDC=__________.三.解答题(共7小题,46分)19.(6分) 在△ABC中,∠ACB是钝角,AD是BC边上的高.若AD=2,BD=3,CD=1,求△ABC 的面积.20.(6分)如图所示,已知AD是△ABC的边BC上的中线.(1)作出△ABD的边BD上的高.(2)若△ABD的面积为6,且BD边上的高为3,求BC的长21.(6分) 如图,已知△ABC.(1)画中线AD;(2)画△ABD的高BE及△ACD的高CF.22.(6分) 如图,AD是∠CAB的平分线,DE∥AB,DF∥AC,EF交AD于点O. DO是∠EDF的平分线吗?如果是,请给予证明;如果不是,请说明理由.23.(6分)如图,D是△ABC中BC边上一点,DE∥AC交AB于点E,若∠EDA=∠EAD,试说明AD是△ABC的角平分线.24.(8分)如图,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且S△ABC=8 cm2,求阴影部分的面积S阴影.25.(8分) 在等腰三角形ABC中,一腰AC上的中线BD将该三角形的周长分成9cm和15cm两部分,求这个三角形的腰长和底边长.参考答案1-5ACBAA 6-10DCCBC11. 高,90°12. △ABC,△BCF和△AFC13. 514. AF(BF),CD,AC15. 50°,100°16. 617. 118. 30°19. 解:∵BD=3,CD=1,∴BC=3-1=2.∴S△ABC=12BC·AD=12×2×2=2.20. 解:(1)如图所示.AM为△ABD的边BD上的高.(2)∵AD是△ABC的边BC上的中线,△ABD的面积为6,∴△ABC的面积为12.∵BD边上的高AM为3,∴BC=12×2÷3=8.21. 解:(1)中线AD如图.(2)△ABD的高BE及△ACD的高CF如图.22. 解:DO是∠EDF的平分线.证明:∵AD是∠CAB的平分线,∴∠EAD=∠FAD.∵DE∥AB,DF∥AC,∴∠EDA=∠FAD,∠FDA=∠EAD.∴∠EDA=∠FDA.∴DO是∠EDF的平分线.23. 解:∵DE∥AC,∴∠EDA=∠CAD.∵∠EDA=∠EAD,∴∠CAD=∠EAD,∴AD是△ABC的角平分线.24. 解:∵D是边BC的中点,∴S△ABD=S△ACD=12S△ABC=12×8=4(cm2),∵E是AD的中点,∴S△BDE=12S△ABD=2 cm2,S△CDE=12S△ACD=2 cm2,∴S△BEC=S△BDE+S△CDE=4 cm2,又∵F 是CE 的中点,∴S 阴影=12S △BEC =2 cm 2 25. 解:设腰长为x cm.①当腰长与腰长的一半是9 cm 时,x +12x =9, 解得x =6.∴底边长为15-12×6=12(cm). ∵6+6=12,∴6 cm ,6 cm ,12 cm 不能组成三角形.②当腰长与腰长的一半是15 cm 时,x +12x =15, 解得x =10.∴底边长为9-12×10=4(cm). ∵10+4>10,∴10 cm ,10 cm ,4cm 能组成三角形. 综上所述,三角形的腰长为10 cm ,底边长为4 cm.。

新人教版数学八年级上册第十一章三角形11.1.2三角形的高、中线

新人教版数学八年级上册第十一章三角形11.1.2三角形的高、中线

初中数学试卷灿若寒星整理制作新人教版数学八年级上册第十一章三角形11.1.2三角形的高、中线与角平分线一、选择题(共15题)1.以下说法错误的是()A.三角形的三条高所在的直线一定在三角形内部交于一点B.三角形的三条中线一定在三角形内部交于一点C.三角形的三条角平分线一定在三角形内部交于一点D.三角形的三条高所在的直线可能相交于外部一点答案:A知识点:三角形的角平分线、中线和高解析:解答:锐角三角形的三条高在三角形内部交于一点,直角三角形的三条高交于直角顶点,钝角三角形的三条高所在的直线在三角形外部交于一点.分析:此题考查三角形的三条角平分线的交点、中线的交点和高的交点位置.2.如果一个三角形的三条高的交点恰好是这个三角形的一个顶点,那么这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定答案:B知识点:三角形的角平分线、中线和高解析:解答:锐角三角形的三条高在三角形内部交于一点,直角三角形的三条高交于直角顶点,钝角三角形的三条高在三角形外部交于一点.分析:此题考查三角形的三条高的交点位置.3.能把一个三角形的面积一分为二的线段是()A.高B.中线C.角平分线D.外角平分线答案:B知识点:三角形的角平分线、中线和高;三角形的面积解析:解答:因为三角形的中线把三角形分成的两个三角形,底边相等,高是同一条高,所以,分成的两三角形的面积相等.分析:本题考查了等底等高的两个三角形的面积相等的性质,根据此性质,可以解决很多利用三角形的面积进行计算的题目,需熟练掌握并灵活运用.4.下列说法不正确的是()A.△ABC的中线AD平分边BCB.△ABC的角平分线BE平分∠ABCC.△ABC的高CF垂直ABD.直角△ABC只有一条高答案:D知识点:三角形的角平分线、中线和高解析:解答:根据三角形的角平分线、中线和高的概念可知A,B,C项都正确;D项,直角△ABC 有三条高,且三条高的交点在直角的顶角上,故D错.分析:本题考查了三角形的角平分线、中线和高的概念,理解它们的概念是解题的关键. 5.画△ABC的边AB上的高,下列画法中,正确的是()A.B.C.D.答案:D知识点:三角形的角平分线、中线和高解析:解答:过点C作边AB的垂线段,即画AB边上的高CD,所以画法正确的是D.分析:三角形的高即从三角形的顶点向对边引垂线,顶点和垂足间的线段;应熟练掌握三角形的三条高的画法.6.如图,AD⊥BC,GC⊥BC,CF⊥AB,垂足分别是D、C、F,下列说法中,错误的是()A.△ABC中,AD是边BC上的高B.△ABC中,GC是边BC上的高C.△GBC中,GC是边BC上的高D.△GBC中,CF是边BG上的高答案:B知识点:三角形的角平分线、中线和高解析:解答:A项,∵AD⊥BC,∴△ABC中,AD是边BC上的高正确,故本选项错误;B项,AD是△ABC的边BC上的高,GC不是,故本选项正确;C项,∵GC⊥BC,∴在△GBC中,GC是边BC上的高正确,故本选项错误;D项,∵CF⊥AB,∴△GBC中,CF是边BG上的高正确,故本选项错误.分析:本题考查了三角形的高,是基础题,熟记概念并准确识图是解题的关键.7.三角形的三条中线的交点的位置为()A.一定在三角形内B.一定在三角形外C.可能在三角形内,也可能在三角形外D.可能与三角形一条边重合答案:A知识点:三角形的角平分线、中线和高解析:解答:三角形的三条中线都在三角形的内部,所以它们的交点的也一定在三角形内.分析:本题考查了三角形的角平分线、中线、高线,熟记概念是解题的关键.8.三角形的三条高在()A.三角形的内部B.三角形的外部C.三角形的边上D.三角形的内部、外部或与边重合答案:D知识点:三角形的角平分线、中线和高解析:解答:①锐角三角形的三条高,都在三角形内部;②直角三角形的三条高,有两条高与两条直角边重合,有一条高在三角形的内部;③钝角三角形的三条高,有两条在三角形的外部,有一条高在三角形的内部.分析:此题考查三角形的三条高的交点,应熟练掌握锐角三角形、直角三角形和钝角三角形的高的画法.9.如图,CD,CE,CF分别是△ABC的高、角平分线、中线,则下列各式中错误的是()A.AB=2BF B.∠ACE=12∠ACBC.AE=BE D.CD⊥BE答案:C知识点:三角形的角平分线、中线和高解析:解答:∵CD,CE,CF分别是△ABC的高、角平分线、中线,∴CD⊥BE,∠ACE=12∠ACB,AB=2BF,无法确定AE=BE.分析:考查了三角形的角平分线、中线和高,根据是熟悉它们的定义和性质.10.如图所示,∠1=∠2,∠3=∠4,则下列结论正确的有()①AD平分∠BAF;②AF平分∠BAC;③AE平分∠DAF;④AF平分∠DAC;⑤AE平分∠BAC.A.4个B.3个C.2个D.1个答案:B知识点:三角形的角平分线、中线和高解析:解答:∵∠1=∠2,∴AE平分∠DAF,故③正确;又∵∠3=∠4,∴∠1+∠3=∠2+∠4,即∠BAE=∠EAC,∴AE平分∠BAC,故⑤正确.故选C.分析:由∠1=∠2,根据三角形的角平分线的定义得出AE平分∠DAF;又∠3=∠4,利用等式的性质得到∠1+∠3=∠2+∠4,即∠BAE=∠EAC,那么AE平分∠BAC.11.下列说法不正确的是()A.三角形的重心是其三条中线的交点B.三角形的三条角平分线一定交于一点C.三角形的三条高线一定交于一点D.三角形中,任何两边的和大于第三边答案:C知识点:三角形的角平分线、中线和高解析:解答:A项,三角形的重心是其三条中线的交点,正确;B项,三角形的三条角平分线一定交于一点,正确;C项,①锐角三角形的三条高线交于一点;②直角三角形的三条高线的交点在直角的顶点上;③钝角三角形的三条高线有两条高线在三角形的外面,三条高线没有交点,但它们所在的直线有一个交点;所以,C项错误;D项,三角形的三边关系,正确.故选C.分析:根据三角形的重心的定义判断A;根据三角形的角平分线的定义判断B;根据三角形的高的定义于性质判断C;根据三角形的三边关系判断D.12.给出下列说法:①三条线段组成的图形叫三角形;②三角形的角平分线是射线;③三角形的高所在的直线交于一点,这一点不在三角形内就在三角形外;④任何一个三角形都有三条高、三条中线、三条角平分线;⑤三角形的三条角平分线交于一点,且这点在三角形内.正确的说法有()A.1个B.2个C.3个D.4个答案:B知识点:三角形的角平分线、中线和高解析:解答:由不在同一条直线上的三条线段首位顺次连接作出的图形叫三角形,故①错误;三角形的角平分线是线段,故②错误;直角三角形的三条高的交点是三角形的直角顶点,故③错误;任何一个三角形都有三条高、三条中线、三条角平分线,故④正确;三角形的三条角平分线都在三角形内部且交于一点,这点也在三角形内,故⑤正确;正确的有2个.分析:本题主要考查对三角形定义,三角形的角平分线、中线、高等知识点的理解和掌握,能熟练地运用定义进行说理是解此题的关键.13.一定在△ABC内部的线段是()A.锐角三角形的三条高、三条角平分线、三条中线B.钝角三角形的三条高、三条中线、一条角平分线C.任意三角形的一条中线、二条角平分线、三条高D.直角三角形的三条高、三条角平分线、三条中线答案:A知识点:三角形的角平分线、中线和高解析:解答:A项,锐角三角形的三条高、三条角平分线、三条中线一定在△ABC内部,故本选项正确;B项,钝角三角形的三条高有两条在三角形的外部,故本选项错误;C项,任意三角形的一条中线、二条角平分线都在三角形内部,但三条高不一定在三角形内部,故本选项错误;D项,直角三角形的三条高有两条是直角边,不在三角形内部,故本选项错误.分析:本题考查了三角形的角平分线、中线、高,是基础题,熟记概念是解题的关键.14.下如果AD是△ABC的中线,那么下列结论一定成立的有()①BD=CD;②AB=AC;③S△ABD=12S△ABC.A.3个B.2个C.1个D.0个答案:C知识点:三角形的角平分线、中线和高;三角形的面积解析:解答:∵AD是△ABC的中线,∴BD=CD=12BC,故①正确;∵AD与BC不一定互相垂直,∴AB与AC不一定相等,故②错误;设△ABC中BC边上的高为h,则S△ABD=12•BD•h=12•12BC•h=12S△ABC,故③正确..分析:此题考查了三角形中线的定义:三角形一边的中点与此边所对顶点的连线叫做三角形的中线,三角形的中线将三角形的面积平分,熟练掌握中线的性质是解题关键.15.如图,在△ABC中,已知点E、F分别是AD、CE边上的中点,且S△BEF=4cm2,则S△ABC的值为()A.1cm2B.2cm2C.8cm2D.16cm2答案:D知识点:三角形的角平分线、中线和高;三角形的面积解析:解答:∵由于D、E、F分别为BC、AD、CE的中点,∴△ABE、△DBE、△DCE、△AEC的面积相等,∴S△BEC=2S△BEF=8(cm2),∴S△ABC=2S△BEC=16(cm2).分析:由于D、E、F分别为BC、AD、CE的中点,可判断出AD、BE、CE、BF为△ABC、△ABD、△ACD、△BEC的中线,根据中线的性质可知将相应三角形分成面积相等的两部分,据此即可解答此题考查了三角形的面积,根据三角形中线将三角形的面积分成相等的两部分是解题的关键.二、填空题(共5题)16.如图,AD⊥BC于D,那么图中以AD为高的三角形有个.答案:6知识点:三角形的角平分线、中线和高解析:解答:∵AD⊥BC于D,而图中有一边在直线CB上,且以A为顶点的三角形有6个,∴以AD为高的三角形有6个:△ABC,△ABE,△ABD,△ADE,△ACE,△ACD.分析:此题主要考查了三角形的高,三角形的高可以在三角形外,也可以在三角形内,所以确定三角形的高比较灵活.17.如图,在△ABC中,BD=CD,∠ABE=∠CBE,BE交AD于点F.(1)是△ABC的角平分线;(2)是△BCE的中线;(3)是△ABD的角平分线答案:(1)BE (2)DE (3)BF知识点:三角形的角平分线、中线和高解析:解答:∵BD=CD,∴D是边BC上的中点,即AD,DE分别是△ABC和△BCE的中线.∵∠ABE=∠CBE,∴BE平分∠ABC,∴BE是△ABC的角平分线.又∵F在BE上,∴BF是△ABD的角平分线.分析:本题考查了三角形角平分线、中线、高线,熟记定义并准确识图是解题的关键.18.AD是△ABC的边BC上的中线,已知AB=5cm,AC=3cm,△ABD与△ACD的周长之差为.答案:2cm知识点:三角形的角平分线、中线和高解析:解答:∵AD是边BC上的中线,∴BD=CD.∵△ABD的周长为:AB+BD+AD,△ACD的周长为:AC+CD+AD,∴△ABD与△ACD的周长之差为:(AB+BD+AD)-(AC+CD+AD)=AB-AC,又∵AB=5cm,AC=3cm,∴AB-AC=2(cm).即△ABD与△ACD的周长之差为2cm.分析:此题考查三角形的中位线的性质.此题的关键是将求△ABD与△ACD的周长之差,转化为求AB与AC的差.19.在△ABC中,∠B,∠C的平分线交于点O,若∠BOC=132°,则∠A=_______度.答案:84知识点:三角形的角平分线、中线和高;三角形内角和定理解析:解答:∵BO,CO分别是∠B,∠C的平分线,∴∠CBO=12∠ABC,∠BCO=12∠ACB.在△BCO中,∠CBO+∠BCO+∠BOC=180°,∴∠CBO+∠BCO=180°-∠BOC =180°-132°=48°,∴2(∠CBO+∠BCO)=∠ABC+∠ACB =2×48°=96°.∴∠A=180°-(∠ABC+∠ACB)=180°-96°=84°.分析:此题考查的是三角形的角平线的性质和三角形内角和定理.要求∠A,根据三角形内角和定理,可知需要求出∠ABC,∠ACB或者只求出∠ABC+∠ACB即可;再根据三角形的角平线的性质,可知∠CBO=12∠ABC,∠BCO=12∠ACB,即∠CBO+∠BCO=12(∠ABC+∠ACB),从而只要求出∠CBO+∠BCO即可.20.如图所示,在△ABC中,∠1=∠2,G是AD的中点,延长BG交AC于点E,F为AB 上一点,CF⊥AD交AD于点H.①AD是△ABE的角平分线;②BE是△ABD的边AD上的中线;③CH为△ACD的边AD上的高;④AH是△ACF的角平分线和高线,其中判断正确的有.答案:③④知识点:三角形的角平分线、中线和高解析:解答:①根据三角形的角平分线的概念,知AD是△ABC的角平分线,故此说法不正确;②根据三角形的中线的概念,知BG是△ABD的边AD上的中线,故此说法不正确;③根据三角形的高的概念,知CH为△ACD的边AD上的高,故此说法正确;④根据三角形的角平分线和高的概念,知AH是△ACF的角平分线和高线,故此说法正确.分析:本题考查了三角形的角平分线、三角形的中线、三角形的高的概念,注意:三角形的角平分线、中线、高都是线段,且都是顶点和三角形的某条边相交的交点之间的线段.透彻理解定义是解题的关键.三、解答题(共5题)21.已知:△ABC中,AB=AC,BD是AC边上的中线,如果D点把三角形ABC的周长分为12cm和15cm两部分,求此三角形各边的长.答案:8厘米,8厘米,11厘米或10厘米,10厘米,7厘米知识点:三角形的角平分线、中线和高解析:解答:∵AB=AC,BD是AC边上的中线,∴AB=2AD=2CD,∴AB+AD=3AD.①当AB与AD的和是12厘米时,AD=12÷3=4(厘米),所以AB=AC=2×4=8(厘米),BC=12+15-8×2=12+15-16=11(厘米);②当AB与AD的和是15厘米时,AD=15÷3=5(厘米),所以AB=AC=2×5=10(厘米),BC=12+15-10×2=12+15-20=7(厘米).分析:本题D点把三角形ABC的周长分成两部分(AB+AD)和(BC+CD),题中未说明12cm和15cm分别是哪一部分,因此要分类讨论.22.如图,AD为△ABC的中线,BE为△ABD的中线.若△ABC的面积为40,BD=5,则△BDE中BD边上的高为多少?答案:4知识点:三角形的角平分线、中线和高;三角形的面积解析:解答:∵AD为△ABC的中线,BE为△ABD的中线,∴S△ABD=12S△ABC,S△BDE=12S△ABD,∴S△BDE=12×12S△ABC=14S△ABC,∵△ABC的面积为40,∴S△BDE=14×40=10,设△BDE中BD边上的高为x,∵BD=5,∴12×5•x=10,解得x=4.分析:根据等底等高的三角形的面积相等可知三角形的中线把三角形分成两个面积相等的三角形,求出△BDE的面积为10,再根据三角形的面积公式列式计算即可得解.23.如图,∠BAD=∠CAD,则AD是△ABC的角平分线,对吗?说明理由.答案:错误.因为AD虽然是线段,但不符合三角形角平分线定义,这里射线AD是∠BAC的平分线.知识点:三角形的角平分线、中线和高解析:解答:根据三角形的角平分线的定义,可知:①平分三角形的一个内角;②是一条线段,一个端点是三角形的顶点,另一点在这个顶点的对边上.而此题中AD满足①,但点D不在BC边上,故不满足②.所以,AD不是△ABC的角平分线.分析:考查了三角形的角平分线的定义,三角形一个内角的平分线与这个内角的对边交于一点,则这个内角的顶点与所交的点间的线段叫做三角形的角平分线.24.如图.AD是△ABC的角平分线,点P为AD上一点,PM∥AC交AB于M,PN∥AB 交AC于N,求证:PA平分∠MPN.答案:见解答知识点:三角形的角平分线、中线和高;平行线的性质解析:解答:证明:∵AD是△ABC的角平分线,∴∠BAD=∠CAD,∵PM∥AC,PN∥AB∴∠APM=∠PAN,∠APN=∠PAM,∴∠APM=∠APN,∴PA平分∠MPN.分析:先根据角平分线的定义得到∠BAD=∠CAD,由PM∥AC,PN∥AB,根据两直线平行,内错角相等得到∠APM=∠PAN,∠APN=∠PAM,然后经过等量代换即可得到∠APM= ∠APN.25.如图,△ABC是某村一遍若干亩土地的示意图,在党的“十六大”精神的指导下,为进一步加大农村经济结构调整的力度,某村决定把这块土地平均分给四位“花农”种植,请你帮他们分一分,提供两种分法.要求:画出图形,并简要说明分法.答案:知识点:三角形的角平分线、中线和高;三角形的面积解析:解答:第一种分法:取各边的中点,分别取AB,BC,AC的中点D,E,Y,连接DE,EY 和AE,所形成的四个三角形面积相等.第二种分法:在BC边上取BC的中点E,再分别取BE,CE的中点D,F,分别连接AD,AE,AF,所形成的四个三角形面积相等.分析:此题考查三角形的中线的性质,关键是运用“三角形的中线将三角形分成两个面积相等的三角形”的知识去分.。

八年级上册11.1三角形的中线、高线、角平分线同步测试(人教版含答案解析)

八年级上册11.1三角形的中线、高线、角平分线同步测试(人教版含答案解析)

八年级上册11.1三角形的中线、高线、角平分线同步测试(人教版含答案解析)三角形的中线、高线、角平分线时间:60分钟总分: 100 题号一二三四总分得分一、选择题(本大题共10小题,共30.0分)下列说法错误的是( )A. 三角形三条高交于三角形内一点B. 三角形三条中线交于三角形内一点 C. 三角形三条角平分线交于三角形内一点 D. 三角形的中线、角平分线、高都是线段下面四个图形中,线段BD是△ABC的高的是( ) A. B. C. D. 如图,在△ABC中,若AD⊥BC,点E是BC 边上一点,且不与点B、C、D重合,则AD是几个三角形的高线( ) A. 4个 B. 5个 C. 6个 D. 8个如图,AD⊥BE于D,以AD为高的三角形有( )个. A. 3 B. 4 C. 5 D. 6如图,在△ABC中,∠1=∠2,G为AD的中点,延长BG交AC于E.F为AB上一点,CF⊥AD于H,下面判断正确的有( ) ①AD是△ABE 的角平分线;②BE是△ABD边AD上的中线;③CH是△ACD边AD上的高;④AH是△ACF的角平分线和高.A. 1个B. 2个C. 3个D. 4个如图,兔子的三个洞口A、B、C构成△ABC,猎狗想捕捉兔子,必须到三个洞口的距离都相等,则猎狗应蹲守在( )A. 三条边的垂直平分线的交点B. 三个角的角平分线的交点C. 三角形三条高的交点 D. 三角形三条中线的交点如图,AD是△ABC的中线,DE是△ADC的高线,AB=3,AC=5,DE=2,那么点D到AB的距离是( )A. 10/3B. 5/3C. 6/5D. 2 已知:三角形的两边长分别为3和7,则第三边的中线长x的取值范围是( ) A. 2<x<5 B. 4<x<10 C.3<x<7 D. 无法确定如图,AD是△ABC的角平分线,点O在AD上,且OE⊥BC于点E,∠BAC=〖60〗^∘,∠C=〖80〗^∘,则∠EOD的度数为( )A. 〖20〗^∘B. 〖30〗^∘C. 〖10〗^∘D. 〖15〗^∘一个钝角三角形的三条角平分线所在的直线一定交于一点,这交点一定在( ) A.三角形内部 B. 三角形的一边上 C. 三角形外部 D. 三角形的某个顶点上二、填空题(本大题共10小题,共30.0分)如图,DB是△ABC的高,AE是角平分线,∠BAE=〖26〗^∘,则∠BFE=______.平行四边形ABCD中,∠ABC的角平分线BE将边AD分成长度为5cm和6cm的两部分,则平行四边形ABCD的周长为______cm.如图,在△ABC中,∠B和∠C的平分线交于点O,若∠A=〖50〗^∘,则∠BOC= ______ .如图所示,D是BC的中点,E是AC的中点,若S_(△ADE)=1,则S_(△ABC)= ______ .如图,已知AE是△ABC的边BC上的中线,若AB=8cm,△ACE的周长比△AEB的周长多2cm,则AC=______cm.在画三角形的三条重要线段(角平分线、中线和高线)时,不一定画在三角形内部的是______ .如图,已知△ABC中,∠B=〖65〗^∘,∠C=〖45〗^∘,AD是∠ABC的高线,AE是∠BAC的平分线,则∠DAE= ______ .如图,在△ABC中,∠A=α.∠ABC与∠ACD的平分线交于点A_1,得∠A_1;∠A_1 BC与∠A_1 CD的平分线相交于点A_2,得∠A_2;…;∠A_2011 BC与∠A_2011 CD的平分线相交于点A_2012,得∠A_2012,则∠A_2012= ______ .如图,在△ABC中,AB=13,AC=10,AD为中线,则△ABD与△ACD的周长之差= ______ .如图,在△ABC中,AD是高,AE,BF是角平分线,它们相交于点G,AD与BF相交于点H,∠BAC=〖50〗^∘,∠C=〖70〗^∘,则∠AHB= ______ .三、计算题(本大题共4小题,共24.0分)如图,△ABC中,AD⊥BC,AE平分∠BAC,∠B=〖40〗^∘,∠C=〖60〗^∘,求∠DAE的度数.如图所示,在△ABC中,AB=5,AC=13,BC边上的中线AD=6,求BC的长.如图所示:△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠BAC=〖60〗^∘,∠C=〖70〗^∘,求∠CAD,∠BOA的度数是多少?如图△ABC中,∠A=〖20〗^∘,CD是∠BCA的平分线,△CDA中,DE 是CA边上的高,又有∠EDA=∠CDB,求∠B的大小.四、解答题(本大题共2小题,共16.0分)如图,在△ABC中,AE是中线,AD是角平分线,AF是高,则:(1)∵AE是△ABC的中线,∴BE= ______ =1/2 ______ ;(2)∵AD是△ABC的角平分线,∴∠BAD= ______ =1/2 ______ ;(3)∵AF是△ABC的高,∴∠AFB= ______ =〖90〗^∘;(4)∵AE是△ABC的中线,∴BE=CE,又∵S_(△ABE)=1/2 ______ ,S_(△AEC)=1/2 ______ ,∴S_(△ABE)=S_(△ACE)=1/2 ______ .已知,如图,AE是∠BAC的平分线,∠1=∠D.求证:∠1=∠2.答案和解析【答案】 1. A 2. A 3. C 4. D 5. B 6. A 7. A 8.A 9. A 10. A 11. 〖64〗^∘ 12. 32或34 13. 〖115〗^∘ 14. 4 15.10 16. 高线 17. 〖10〗^∘ 18. α/2^2012 19. 3 20. 〖120〗^∘ 21. 解:∵∠B=〖40〗^∘,∠C=〖60〗^∘,∴∠BAC=〖180〗^∘-∠B-∠C=〖80〗^∘,∵AE平分∠BAC,∴∠BAE=1/2∠BAC=〖40〗^∘,∴∠AEC=∠B+∠BAE=〖80〗^∘,∵AD⊥BC,∴∠ADE=〖90〗^∘,∴∠DAE=〖180〗^∘-∠ADE-∠AED=〖10〗^∘.答:∠DAE的度数是〖10〗^∘. 22. 解:延长AD到E使AD=DE,连接CE,在△ABD和△ECD中{■(AD=DE@∠ADB=∠EDC@BD=DC)┤,∴△ABD≌△ECD,∴AB=CE=5,AD=DE=6,AE=12,在△AEC中,AC=13,AE=12,CE=5,∴AC^2=AE^2+CE^2,∴∠E=〖90〗^∘,由勾股定理得:CD=√(DE^2+CE^2 )=√61,∴BC=2CD=2√61,答:BC的长是2√61. 23. 解:∵AD⊥BC,∴∠ADC=〖90〗^∘,∵∠C=〖70〗^∘,∴∠CAD=〖180〗^∘-〖90〗^∘-〖70〗^∘=〖20〗^∘;∵∠BAC=〖60〗^∘,∠C=〖70〗^∘,∴∠BAO=〖30〗^∘,∠ABC=〖50〗^∘,∵BF 是∠ABC的角平分线,∴∠ABO=〖25〗^∘,∴∠BOA=〖180〗^∘-∠BAO-∠ABO=〖180〗^∘-〖30〗^∘-〖25〗^∘=〖125〗^∘.故∠CAD,∠BOA的度数分别是〖20〗^∘,〖125〗^∘. 24. 解:∵DE是CA边上的高,∴∠DEA=∠DEC=〖90〗^∘,∵∠A=〖20〗^∘,∴∠EDA=〖90〗^∘-〖20〗^∘=〖70〗^∘,∵∠EDA=∠CDB,∴∠CDE=〖180〗^∘-〖70〗^∘×2=〖40〗^∘,在Rt△CDE中,∠DCE=〖90〗^∘-〖40〗^∘=〖50〗^∘,∵CD是∠BCA的平分线,∴∠BCA=2∠DCE=2×〖50〗^∘=〖100〗^∘,在△ABC中,∠B=〖180〗^∘-∠BCA-∠A=〖180〗^∘-〖100〗^∘-〖20〗^∘=〖60〗^∘.故答案为:〖60〗^∘. 25. CE;BC;∠CAD;∠BAC;∠AFC;S_(△ABC);S_(△ABC);S_(△ABC) 26. 证明:∵∠1=∠D,∴AE//DC(同位角相等,两直线平行),∴∠EAC=∠2(两直线平行,内错角相等),∵AE是∠BAC的平分线,∴∠1=∠EAC,∴∠1=∠2.【解析】 1. 【分析】本题考查了三角形的角平分线、中线、高线以及三角形的面积和外角性质,熟记概念与性质是解题的关键.根据三角形的高线、外角的性质、角平分线、中线的定义对各选项分析判断后利用排除法求解.【解答】解:A.三角形的三条高所在的直线交于一点,三条高不一定相交,故本选项说法不正确; B.三角形的三条中线交于三角形内一点,故本选项说法正确; C.三角形的三条角平分线交于一点,是三角形的内心,故本选项说法正确;D.三角形的中线,角平分线,高都是线段,因为它们都有两个端点,故本选项说法正确.故选A. 2. 解:线段BD是△ABC的高,则过点B作对边AC的垂线,则垂线段BD为△ABC的高.故选A.根据三角形高的定义进行判断.本题考查了三角形的角平分线、中线和高:三角形有三条中线,有三条高线,有三条角平分线,它们都是线段.锐角三角形的三条高在三角形内部,相交于三角形内一点,直角三角形有两条高与直角边重合,另一条高在三角形内部,它们的交点是直角顶点;钝角三角形有两条高在三角形外部,一条高在三角形内部,三条高所在直线相交于三角形外一点. 3. 解:∵在△ABC中,AD⊥BC,点E是BC边上一点,且不与点B、C、D重合,∴AD是△ABD,△ABE,△ABC,△ADE,△ADC,△AEC的高.故选C.根据三角形高的定义可知,三角形的高可以在三角形内部,可以是三角形的边,还可以在三角形外部,结合图形即可求解.本题考查了三角形的高的定义:从三角形的一个顶点向它的对边作垂线,垂足与顶点之间的线段叫做三角形的高.注意:锐角三角形的三条高在三角形内部,相交于三角形内一点;直角三角形有两条高与直角边重合,另一条高在三角形内部,它们的交点是直角顶点;钝角三角形有两条高在三角形外部,一条高在三角形内部,三条高所在直线相交于三角形外一点. 4. 解:∵AD⊥BC于D,而图中有一边在直线CB上,且以A为顶点的三角形有6个,∴以AD为高的三角形有6个.故选:D.由于AD⊥BC 于D,图中共有6个三角形,它们都有一边在直线CB上,由此即可确定以AD为高的三角形的个数.此题主要考查了三角形的高,三角形的高可以在三角形外,也可以在三角形内,所以确定三角形的高比较灵活. 5. 解:①根据三角形的角平分线的概念,知AG是△ABE的角平分线,故此说法错误;②根据三角形的中线的概念,知BG是△ABD的边AD上的中线,故此说法错误;③根据三角形的高的概念,知CH为△ACD的边AD上的高,故此说法正确;④根据三角形的角平分线和高的概念,知AH是△ACF的角平分线和高线,故此说法正确.故选B.根据三角形的角平分线、三角形的中线、三角形的高的概念进行判断.连接三角形的顶点和对边中点的线段即为三角形的中线;三角形的一个角的角平分线和对边相交,顶点和交点间的线段叫三角形的角平分线;从三角形的一个顶点向对边引垂线,顶点和垂足间的线段叫三角形的高.本题考查了三角形的角平分线、三角形的中线、三角形的高的概念,注意:三角形的角平分线、中线、高都是线段,且都是顶点和三角形的某条边相交的交点之间的线段.透彻理解定义是解题的关键. 6. 解:猎狗到△ABC三个顶点的距离相等,则猎狗应蹲守在△ABC的三条(边垂直平分线)的交点.故选:A.用线段垂直平分线性质判断即可.此题考查了线段垂直平分线的性质,以及三角形的角平分线、中线和高,熟练掌握性质是解本题的关键. 7. 解:∵AC=5,DE=2,∴△ADC的面积为1/2×5×2=5,∵AD是△ABC的中线,∴△ABD的面积为5,∴点D到AB的距离是2×5÷3=10/3.故选A.根据三角形的面积得出△ADC的面积为5,再利用中线的性质得出△ABD的面积为5,进而解答即可.此题考查三角形的面积问题,关键是根据三角形的面积得出△ADC的面积为5. 8. 解:7-3<2x<7+3,即2<x<5.故选A.根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边.倍长中线,构造一个新的三角形.根据三角形的三边关系就可以求解.本题主要考查了三角形的三边关系,注意此题构造了一条常见的辅助线:倍长中线. 9. 解:∵∠BAC=〖60〗^∘,∠C=〖80〗^∘,∴∠B=〖40〗^∘.又∵AD 是∠BAC的角平分线,∴∠BAD=1/2∠BAC=〖30〗^∘,∴∠ADE=〖70〗^∘,又∵OE⊥BC,∴∠EOD=〖20〗^∘.故选A.首先根据三角形的内角和定理求得∠B,再根据角平分线的定义求得∠BAD,再根据三角形的一个外角等于和它不相邻的两个内角和求得∠ADC,最后根据直角三角形的两个锐角互余即可求解.此类题要首先明确思路,考查了三角形的内角和定理及其推论、角平分线的定义. 10. 解:一个钝角三角形的三条角平分线所在的直线一定交于一点,这交点一定在三角形的内部.故选A.根据三角形的高的性质即可判断.本题考查了三角形的高线,锐角三角形的三高线交于三角形内部一点,直角三角形三高线的交点是直角三角形的直角顶点,钝角的三条高所在的直线一定交于一点,这交点一定在三角形的内部. 11. 【分析】本题主要考查了三角形内角和定理以及三角形的高以及角平分线的定义的运用,解决问题的关键是利用角平分线的定义和直角三角形的性质求解.由角平分线的定义可得,∠FAD=∠BAE=〖26〗^∘,而∠AFD 与∠FAD互余,与∠BFE是对顶角,故可求得∠BFE的度数.【解答】解:∵AE是角平分线,∠BAE=〖26〗^∘,∴∠FAD=∠BAE=〖26〗^∘,∵DB是△ABC的高,∴∠AFD=〖90〗^∘-∠FAD=〖90〗^∘-〖26〗^∘=〖64〗^∘,∴∠BFE=∠AFD=〖64〗^∘.故答案为〖64〗^∘. 12. 解:∵四边形ABCD是平行四边形,∴AD=BC,AB=CD,AD//BC,∴∠AEB=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABE=∠AEB,∴AB=AE, (1)当AE=5时,AB=5,平行四边形ABCD的周长是2×(5+5+6)=32; (2)当AE=6时,AB=6,平行四边形ABCD的周长是2×(5+6+6)=34;故答案为:32或34.由平行四边形ABCD推出∠AEB=∠CBE,由已知得到∠ABE=∠CBE,推出AB=AE,分两种情况(1)当AE=5时,求出AB的长;(2)当AE=6时,求出AB的长,进一步求出平行四边形的周长.本题主要考查了平行四边形的性质,等腰三角形的判定,三角形的角平分线等知识点,解此题的关键是求出AE=AB.用的数学思想是分类讨论思想. 13. 解;∵∠A=〖50〗^∘,∴∠ABC+∠ACB=〖180〗^∘-〖50〗^∘=〖130〗^∘,∵∠B和∠C的平分线交于点O,∴∠OBC=1/2∠ABC,∠OCB=1/2∠ACB,∴∠OBC+∠OCB=1/2×(∠ABC+∠ACB)=1/2×〖130〗^∘=〖65〗^∘,∴∠BOC=〖180〗^∘-(∠OBC+∠OCB)=〖115〗^∘,故答案为:〖115〗^∘.求出∠ABC+∠ACB=〖130〗^∘,根据角平分线定义得出∠OBC=1/2∠ABC,∠OCB=1/2∠ACB,求出∠OBC+∠OCB=1/2×(∠ABC+∠ACB)=〖65〗^∘,根据三角形的内角和定理得出∠BOC=〖180〗^∘-(∠OBC+∠OCB),代入求出即可.本题考查了三角形的内角和定理和三角形的角平分线等知识点,关键是求出∠OBC+∠OCB的度数. 14. 解:∵D是BC的中点,E是AC的中点,∴△ADC的面积等于△ABC的面积的一半,△ADE的面积等于△ACD的面积的一半,∴△ADE的面积等于△ABC的面积的四分之一,又∵S_(△ADE)=1,∴S_(△ABC)=4.故答案为:4.先根据D是BC的中点,E是AC的中点,得出△ADE的面积等于△ABC的面积的四分之一,再根据S_(△ADE)=1,得到S_(△ABC)=4.本题主要考查了三角形的面积,解决问题的关键是掌握三角形的中线将三角形分成面积相等的两部分. 15. 解:∵AE是△ABC的边BC上的中线,∴CE=BE,又∵AE=AE,△ACE的周长比△AEB的周长多2cm,∴AC-AB=2cm,即AC-8=2cm,∴AC=10cm,故答案为:10;依据AE是△ABC的边BC上的中线,可得CE=BE,再根据AE=AE,△ACE的周长比△AEB的周长多2cm,即可得到AC的长.本题考查了三角形的角平分线、中线和高,求出两个三角形的周长的差等于两边的差是解题的关键. 16. 解:三角形的角平分线和中线都在三角形内部,而锐角三角形的三条高在三角形内部,直角三角形有两条高与直角边重合,另一条高在三角形内部,钝角三角形有两条高在三角形外部,一条高在三角形内部.故答案为:高线.根据三角形的角平分线、中线和高的定义求解.考查了三角形的角平分线、中线和高:三角形有三条中线,有三条高线,有三条角平分线,它们都是线段.锐角三角形的三条高在三角形内部,相交于三角形内一点,直角三角形有两条高与直角边重合,另一条高在三角形内部,它们的交点是直角顶点;钝角三角形有两条高在三角形外部,一条高在三角形内部,三条高所在直线相交于三角形外一点. 17. 解:在△ABC中,∵∠BAC=〖180〗^∘-∠B-∠C=〖70〗^∘,∵AE是∠BAC的平分线,∴∠BAE=∠CAE=〖35〗^∘.又∵AD是BC边上的高,∴∠ADB=〖90〗^∘,∵在△ABD中∠BAD=〖90〗^∘-∠B=〖25〗^∘,∴∠DAE=∠BAE-∠BAD=〖10〗^∘.由三角形的内角和定理,可求∠BAC=〖70〗^∘,又由AE是∠BAC的平分线,可求∠BAE=〖35〗^∘,再由AD是BC边上的高,可知∠ADB=〖90〗^∘,可求∠BAD=〖25〗^∘,所以∠DAE=∠BAE-∠BAD=〖10〗^∘.本题考查三角形的内角和定理及角平分线的性质,高线的性质,熟知三角形的内角和定理是解答此题的关键. 18. 解:∵∠ABC与∠ACD的平分线交于点A_1,∴∠A_1 BC=1/2∠ABC,∠A_1 CD=1/2∠ACD,根据三角形的外角性质,∠A+∠ABC=∠ACD,∠A_1+∠A_1 BC=∠A_1 CD,∴∠A_1+∠A_1 BC=∠A_1+1/2∠ABC=1/2(∠A+∠ABC),整理得,∠A_1=1/2∠A=α/2,同理可得,∠A_2=1/2∠A_1=1/2×α/2=α/2^2 ,…,∠A_2012=α/2^2012 .故答案为:α/2^2012 .根据角平分线的定义可得∠A_1 BC=1/2∠ABC,∠A_1 CD=1/2∠ACD,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠A+∠ABC=∠ACD,∠A_1+∠A_1 BC=∠A_1 CD,然后整理即可得到∠A_1与∠A的关系,同理得到∠A_2与∠A_1的关系并依次找出变化规律,从而得解.本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,求出后一个角是前一个角的一半是解题的关键. 19. 解:∵AD是△ABC中BC边上的中线,∴BD=DC=1/2 BC,∴△ABD与△ACD的周长之差 =(AB+BD+AD)-(AC+DC+AD) =AB-AC =13-10=3.则△ABD与△ACD的周长之差=3.故答案为3.根据三角形的周长的计算方法得到△ABD的周长和△ADC的周长的差就是AB与AC的差.本题考查三角形的中线的定义:三角形一边的中点与此边所对顶点的连线叫做三角形的中线,同时考查了三角形周长的计算方法. 20. 解:∵在△ABC中,∠BAC=〖50〗^∘,∠C=〖70〗^∘,∴∠ABC=〖60〗^∘,∵在△AB C中,AD是高,AE,BF是角平线,∴∠EAD=〖90〗^∘-(〖25〗^∘+〖60〗^∘)=5^∘,∴∠AGH=〖25〗^∘+〖30〗^∘=〖55〗^∘,∴∠AHB=〖180〗^∘-〖55〗^∘-5^∘=〖120〗^∘.故答案为:〖120〗^∘.根据三角形的内角和得出∠ABC=〖60〗^∘,再利用角平分线的定义和高的定义解答即可.此题考查三角形的内角和问题,关键是根据三角形的内角和得出∠ABC=〖60〗^∘. 21. 根据三角形的内角和定理求出∠BAC的度数,根据角平分线的定义求出∠BAE的度数,根据三角形的外角性质得到∠AEC的度数,再根据三角形的内角和定理即可求出答案.本题主要考查了三角形的内角和定理,三角形的外角性质,三角形的角平分线,垂直的定义等知识点,能熟练地运用这些性质进行计算是解此题的关键. 22. 延长AD到E 使AD=DE,连接CE,证△ABD≌△ECD,求出AE和CE的长,根据勾股定理的逆定理求出∠E=〖90〗^∘,根据勾股定理求出CD即可.本题综合考查了勾股定理、勾股定理的逆定理、全等三角形的性质和判定、三角形的中线等知识点的应用,关键是正确地作辅助线,把已知条件转化成一个直角三角形,题型较好. 23. 因为AD是高,所以∠ADC=〖90〗^∘,又因为∠C=〖70〗^∘,所以∠CAD度数可求;因为∠BAC=〖60〗^∘,∠C=〖70〗^∘,所以∠BAO=〖30〗^∘,∠ABC=〖50〗^∘,BF是∠ABC的角平分线,则∠ABO=〖25〗^∘,故∠BOA的度数可求.本题考查了三角形内角和定理、角平分线定义.关键是利用角平分线的性质解出∠ABO、∠BAO,再运用三角形内角和定理求出∠AOB. 24. 根据直角三角形两锐角互余求出∠EDA的度数,再根据平角的定义求出∠CDE的度数,再次利用直角三角形两锐角互余求出∠DCE的度数,从而得到∠BCA的度数,最后利用三角形内角和等于〖180〗^∘计算即可.本题考查了三角形的角平分线的定义,三角形的高以及三角形的内角和定理,稍微复杂,但仔细分析图形也不难解决. 25. 解:(1)根据AE是△ABC的中线,可得BE=CE=1/2 BC; (2)根据AD是△ABC 的角平分线,可得∠BAD=∠CAD=1/2∠BAC; (3)根据AF是△ABC的高,可得∠AFB=∠AFC=〖90〗^∘; (4)根据AE是△ABC的中线,可得BE=CE,所以S_(△ABE)=1/2 S_(△ABC),S_(△AEC)=1/2 S_(△ABC),即S_(△ABE)=S_(△ACE)=1/2 S_(△ABC).故答案为:(1)CE,BC;(2)∠CAD,∠BAC;(3)∠AFC;(4)S_(△ABC),S_(△ABC),S_(△ABC). (1)三角形一边的中点与此边所对顶点的连线叫做三角形的中线; (2)三角形一个内角的平分线与这个内角的对边交于一点,则这个内角的顶点与所交的点间的线段叫做三角形的角平分线; (3)从三角形的一个顶点向底边作垂线,垂足与顶点之间的线段叫做三角形的高; (4)三角形的中线将三角形分成面积相等的两部分.本题主要考查了三角形的中线、高线以及角平分线的概念的运用,解题时注意:三角形有三条中线,有三条高线,有三条角平分线,它们都是线段,三角形的中线将三角形分成面积相等的两部分. 26. 由∠1=∠D,根据同位角相等,两直线平行可证AE//DC,根据两直线平行,内错角相等可证∠EAC=∠2,再根据角平分线的性质即可求解.本题考查了平行线的判定与性质和三角形的角平分线的性质,有一定的综合性,但难度不大.。

人教版_部编版八年级数学上册第十一章第一节三角形的高、中线与角平分线试题(含答案) (19)

人教版_部编版八年级数学上册第十一章第一节三角形的高、中线与角平分线试题(含答案) (19)

人教版_部编版八年级数学上册第十一章第一节三角形的高、中线与角平分线试题(含答案)如图,已知ABC 的面积是24,点D 是BC 的中点,:1:2AE EC =,则CDE △的面积是_____【答案】8.【解析】【分析】先根据三角形中线分得的两部分三角形面积相等得出CDA ∆的面积,再根据等高的三角形面积之比等于底边之比即可得出CDE △面积.【详解】∵ABC ∆的面积是24,点D 是BC 的中点 ∴1122CDA ABC S S ∆∆== ∵:1:2AE EC =∴:3:2AC EC =∵当CDE ∆与CDA ∆分别以EC 和AC 为底边时同高∴:3:2CDA CDE S S ∆∆=∴8CDE S ∆=故答案为:8.【点睛】本题考查与中线有关的三角形面积问题,抓住等高三角形面积之比等于底边之比是解题关键.82.在ABC 中,AD 是BC 边上的中线,已知7AB cm =,5AC cm =.则ABD △与ACD 的周长差为____.【答案】2cm【解析】【分析】先根据三角形中线定义得到BD =CD ,然后根据三角形周长定义求△ABD 与△ACD 的周长差即可.【详解】∵AD 是BC 边上的中线,∴BD =CD ,∴△ABD 和△ACD 的周长差=AB +AD +BD ﹣AC ﹣AD ﹣CD =AB ﹣AC =7﹣5=2(cm ).故答案为:2cm .【点睛】本题考查了三角形的角平分线、中线和高.掌握三角形中线的定义是解答本题的关键.83.在ABC 中,14AB =,12AC =,AD 为中线,则ABD △与ACD 的周长之差________.【答案】2【解析】【分析】根据三角形中线的概念得到BD=DC ,△ABD 的周长等于AB+AD+BD ,△ACD 的周长等于AD+DC+AC ,把两个周长作差即可得出结果.【详解】解:如图所示∵AD 是△ABC 的中线∴BD=DC∵ABD CAB AD BD =++,ADC C AC AD DC =++ ∴14122ABD ADC C C AB AC -=-=-=故答案为:2.【点睛】本题主要考查的是三角形的中线性质,掌握三角形一边的中点与此边所对顶点的连线叫做三角形的中线是解题的关键.84.(1)如图,在ABC 中,,,D E F 分别为,,BC AD CE 的中点,且24ABC S cm =,则S =阴影______2cm .(2)如图,在ABC 中,AD 为中线,DE AC ⊥于点E ,DF AB ⊥于点F ,AB=6,AC=8,DF=3,则DE =________.【答案】194【解析】【分析】 (1)根据三角形的面积公式,知△BCE 的面积是△ABC 的面积的一半,进一步求得阴影部分的面积是△BEC 的面积的一半;(2)根据中线的性质得到△ABD 和△ADC 的面积相等,然后根据三角形面积公式列方程计算即可.【详解】(1)∵点E 是AD 的中点,∴△BDE 的面积是△ABD 的面积的一半,△CDE 的面积是△ACD 的面积的一半.则△BCE 的面积是△ABC 的面积的一半,即为2cm 2.∵点F 是CE 的中点,∴阴影部分的面积是△BCE 的面积的一半,即为1cm 2.(2)∵AD 是中线,∴ABD ACD S S ∆∆=, ∴12AB •DF =12AC •DE , ∴AB •DF =AC •DE ,∴6×3=8×DE ,∴DE =94. 故答案为:1,94. 【点睛】本题考查了三角形中线的性质和三角形的面积公式,掌握三角形的中线把三角形的面积分成相等的两部分的性质是解答本题的关键.85.如图,在ABC ∆的中线AD 、CE 相交于点F ,若四边形BDFE 的面积是2,则ACF ∆的面积是__________.【答案】2【解析】【分析】根据三角形的中线将三角形分成面积相等的两部分即可得出结论【详解】解: ∵AD 和CE 是△ABC 的两条中线,12∴====ABD ACD BCE ACE ABC S S S S S ∴=ABD ACE S S 四边形BD +=ABD AFE FE S SS +=AEC AFE AFC SS S 2四边形BD ==AFC FE S S故答案为:2【点睛】本题主要考查了三角形的面积,解题的关键是利用三角形中线的性质找出三角形面积关系.86.如图,已知D E 、分别为ABC 的边AC BC 、的中点,AF 为ABD △的中线,连接EF ,若四边形AFEC 的面积为10,则ABC 的面积为______.【答案】16【解析】【分析】连接DE ,设DEF S x ∆=,根据等底同高的三角形的面积相等即可得到结论. 【详解】解:连接DE ,设DEF S x ∆=,∵D 、E 分别为△ABC 的边AC 、BC 的中点,AF 为△ABD 的中线, ∴BEF DEF S S x ∆∆==,∴BDE DEF S 2S 2x ∆∆==,∴CDE BDE S S 2x ∆∆==,∴ABD BCD S S 4x ∆∆==,∴ADF S 2x ∆=,∴四边形AFEC 的面积=2x+3x=5x=10,∴x=2,∴△ABC 的面积为:8x=16,故答案为:16.【点睛】本题主要考查了三角形的中线与三角形的面积,掌握三角形的中线平分三角形的面积是解题的关键.87.如果一个梯形的上底长为a ,下底长为b (a<b ),那么它的一条对角线把它分成的两部分的面积比为__________.【答案】a :b【解析】【分析】根据三角形面积公式求解即可.【详解】设梯形的高为h 一部分的面积12ah = 另一部分的面积12bh = ∴它的一条对角线把它分成的两部分的面积比为a :b故答案为:a :b .【点睛】本题考查了梯形的面积问题,掌握三角形面积公式是解题的关键.88.如图,ABC 中,D 为BC 上一点,且212ABC S cm =△,12BD BC =,则BC 边上的中线为________,ABD S =△_______2cm .【答案】AD 6【解析】【分析】根据三角形的中线的定义和性质,即可求解.【详解】∵ABC 中,D 为BC 上一点,12BD BC =, ∴点D 是BC 的中点,即:AD 是BC 边上的中线,∵∆ABD 与∆ABC 的高相同,12BD BC =, ∴ABD S =△122211262ABC S cm cm ⨯==△. 故答案是:AD ;6.89.如图,ABC ∆的面积是10,D 是AB 边上任意一点,E 是CD 中点,F 是BE 中点,ABF ∆的面积是__________.【答案】2.5【解析】【分析】连接AE ,根据中点平分三角形的面积即可求出ABF ∆的面积.【详解】连接AE∵E 是CD 中点 ∴1122ADE ACD BDE BCD S S S S ==△△△△, ∴1115222ADE BDE ACD BCD ABC S S S S S +=+==△△△△△ ∴5ABE S =△∵F 是BE 中点 ∴1 2.52ABF ABE S S ==△△ 故答案为:2.5.【点睛】本题考查了三角形的面积问题,掌握中点平分三角形的面积是解题的关键.90.如图,已知ABC 的面积是60,若CD BE 、分别是ABC 的边AB AC 、上的中线,则四边形ADOE 的面积为___________.【答案】20【解析】【分析】根据三角形的中线能把三角形的面积平分,设BOD OEC ∆∆、的面积分别为x 、y ,列二元一次方程即可.【详解】连接OA ,设BOD OEC ∆∆、的面积分别为x 、y.∵CD BE 、分别是ABC ∆的边AB AC 、上的中线,∴30,30S ABE S BEC S ADC S BDC ∆∆∆∆====且=S AOD=x S BOD OEC S AOE y ∆∆∆∆==、S故可列方程230230x y x y +=⎧⎨+=⎩,解得10x y ==, ∴四边形ADOE 的面积为x+y=20, 故答案为:20.【点睛】此题考查三角形的中线,解题关键在于建立相应的二元一次方程组.。

人教版八年级上数学第十一章 11.1.2三角形的高、中线与角平分线同步练习

人教版八年级上数学第十一章 11.1.2三角形的高、中线与角平分线同步练习

11.1.2三角形的高、中线与角平分线同步练习(时间120分钟,满分150分)一、选择题:本大题共12个小题,每小题4分,共48分. 1.三角形的角平分线、中线、高线都是( )A.线段B.射线C.直线D.以上都有可能 2. 下列说法正确的是( )A .三角形三条高都在三角形内B .三角形三条中线相交于一点C .三角形的三条角平分线可能在三角形内,也可能在三角形外D .三角形的角平分线是射线 3.至少有两条高在三角形内部的三角形是( )A. 锐角三角形B. 钝角三角形C. 直角三角形D.都有可能 4.不一定在三角形内部的线段是( )(A )三角形的角平分线 (B )三角形的中线 (C )三角形的高 (D )三角形的中位线 5.可以把一个三角形分成面积相等的两部分的线段是( )A .三角形的高B .三角形的角平分线C .三角形的中线D .无法确定 7.在三角形中,交点一定在三角形内部的有( )①三角形的三条高线 ②三角形的三条中线 ③三角形的三条角平分线 ④三角形的外角平分线.A .①②③④B .①②③C .①④D .②③8.如果一个三角形三条高的交点恰是三角形的一个顶点,那么这个三角形是 ( ) A. 锐角三角形 B. 直角三角形 C.钝角三角形 D.不能确定 9.画△ABC 中AB 边上的高,下列画法中正确的是( )A B C D10. 如图,D,E 分别是△ABC 的边AC,BC 的中点,则下列说法不正确的是( )A.DE 是△BCD 的中线B.BD 是△ABC 的中线C.AD=DC,BD=ECD.∠C 的对边是DE11.如图3所示,在△ABC 中,已知点D, E,F 分别为边BC,AD,CE 的中点, 且S △ABC =4cm 2,则S 阴影等于( )A.2cm 2B.1cm 2C.12cm 2 D.14cm 212.在△ABC 中,D 是BC 上的点,且BD:CD=2:1,S △ACD =12,那么S △ABC 等于( )A. 30B. 36C. 72D.24二、填空题:本大题共6小题,每小题4分,共24分.13. 照相机的支架是三条腿,这是利用了三角形的_________. 14.如图,在△ABC 中,BC 边上的高是 ,在△AEC 中,AE 边上的高是 ,EC 边上的高是 . 15.如图所示,CD 是△ABC 的中线,AC =9cm ,BC =3cm ,那么△ACD 和△BCD 的周长差是___________cm . 16.在ABC ∆中,2,3AC cm BC cm ==,则ABC ∆的高AD 与BE 的比是FE(第11题) D CBA(第10题)17.如图所示:(1)在△ABC 中,BC 边上的高是_____(2)在△AEC 中,AE 边上的高是_____. 18.如图所示,在△ABC 中,AD ⊥BC ,BE ⊥AC ,BC=12,AC=8,AD=6,则BE的长 .三、解答题:本大题共2个小题,每小题7分,共14分. 19.如图,在⊿ABC 中画出高线AD 、中线BE 、角平分线CF .20.在△ABC 中,AB=AC,AD 是中线,△ABC 的周长为34cm,△ABD 的周长为30cm, 求AD 的长.四、解答题:本大题共4个小题,每小题10分,共40分21.如图,已知:在三角形ABC 中,∠C=90º,CD 是斜边AB 上的高,AB=5,BC=4,AC=3,求高CD 的长度.22.在等腰三角形ABC 中,AB=AC ,一腰上的中线BD 将这个等腰三角形的周长分为15和6两部分,求该等腰三角形的腰长及底边长.ABC(第17题) (第15题) E FDCBA(第14题) (第18题)23.(1)如图,在△ABC中,D、E分别是BC、AD的中点,S△ABC=4cm2,求S△ABE.(2)如图,S△ABC=1,且D是BC的中点,AE:EB=1:2,求△ADE的面积.EDCBA24.如图,在直角三角形ABC中,∠ACB=90°,CD是AB边上的高,AB=13cm,BC=12cm,AC=5cm,求:(1)△ABC的面积;(2)CD的长;(3)作出△ABC的边AC上的中线BE,并求出△ABE的面积;(4)作出△BCD的边BC边上的高DF,当BD=11cm 时,试求出DF的长。

八年级上册数学人教版三角形的高、中线与角平分线 课时练 试题试卷 含答案解析(5)

八年级上册数学人教版三角形的高、中线与角平分线 课时练 试题试卷 含答案解析(5)

11.1.2三角形的高、中线与角平分线一、选择题1.下列结论正确的有()①两条直线相交,所得的四个角中有一个角是90°,这两条直线一定互相垂直②三角形的三条角平分线交于一点,这点称为三角形的重心③直线AB⊥CD,也可以说成直线CD⊥AB④直线外一点与直线上各点连接的所有线段中,垂线段最短A.1个B.2个C.3个D.4个2.三角形一边上的中线把原三角形分成两个()A.形状相同的三角形B.面积相等的三角形C.直角三角形D.周长相等的三角形3.若线段CM、CH是△ABC的中线和高线,则()A.CM>CH B.CM≥CH C.CM<CH D.CM≤CH4.下列命题正确的是()A.三角形的三条边上的高交于三角形内部一点,到三个顶点的距离相等B.三角形的三条中线交于三角形内部一点,到三个顶点距离相等C.三角形的三条角平分线交于三角形内部一点,到三边的距离相等D.三角形的三边中垂线交于三角形内部一点,到三边的距离相等5.下列说法正确的个数有()①三角形的高、中线、角平分线都是线段;②三角形的三条角平分线都在三角形内部,且交于同一点;③三角形的三条高都在三角形内部;④三角形的一条中线把该三角形分成面积相等的两部分.A.1个B.2个C.3个D.4个6.如图,是ABC的中线,AB比AC长3cm,若ABD△的周长为25cm,则△ACD的周长为()A.28cm B.25cm C.22cm D.19cm7.如图,若CD是△ABC的中线,AB=10,则AD=()A .5B .6C .8D .48.如图,△ABF 的面积是2,D 是AB 边上任意一点,E 是CD 中点,F 是BE 中点,△ABC 的面积是()A .4B .6C .8D .169.如图,D 、E 分别在∆ABC 的边BC 、AC 上,13CD BC =,13CE AC =,CD =1,CE =1,AC ,AD 与BE 交于点O ,已知∆ABC 的面积为12,则∆ABO 的面积为()A .4B .5C .6D .710.如图,在三角形ABC 中,∠1=∠2,G 为AD 的中点,延长BG 交AC 于E .F 为AB 上的一点,CF ⊥AD 于H .下列判断正确的有().(1)AD 是三角形ABE 的角平分线.(2)BE 是三角形ABD 边AD 上的中线.(3)CH 为三角形ACD 边AD 上的高.A .1个B .2个C .3个D .0个二、填空题11.如图,在三角形ABC 中,AB AC ^,AD BC ^,垂足为D ,3AB =,4AC =,5BC =,则AD =______.12.设E 、F 是ABC 边AB 、AC 上的点,线段BE 、CF 交于D ,已知BDF ,BCD △,CDE △的面积分别为5,9,9,则四边形AEDF 的面积为___________.13.如图,在△ABC 中,AD 是BC 边上的中线,点E 在线段AC 上且EC =2AE ,线段AD 与线段BE 交于点F ,若△ABC 的面积为6,则四边形EFDC 的面积为________.14.如图,点G 是ABC 的重心,点D ,E 分别是边AB ,BC 的中点,连接,GD GE ,若ABC 的面积为6,则GDE △的面积为_________.15.如图,在ABC 中,D 是AB 的中点,E 是BC 上的一点,且5BE EC =,CD 与AE 相交于点F ,若CEF △的面积为1,则ABC 的面积为______.三、解答题16.如图,在ABC 中,AB =AC ,AC 边上的中线BD 把ABC 的周长分成12cm 和15cm 两部分,求ABC 各边的长.17.如图,AD 为△ABC 的中线,BE 为△ABD 的中线.若△ABC 的面积为40,BD=5,则△BDE 中BD 边上的高为多少?18.已知,如图,在△ABC 中,,,6,5,4AD BC CE AB AB AD BC ^^===,求CE 的长.19.如图,在ABC 中AD 、AE 、AF 分别为△ABC 的高、角平分线和中线,已知AFC 的面积为10,AD =4,∠DAE =20°,∠C =30°.(1)求BC 的长度;(2)求∠B 的度数.20.在Rt △ABC 中,∠ACB=90°,CD 是AB 边上的高,AB=10cm ,BC=8cm ,AC=6cm ,(1)求CD 的长;(2)若AE 是BC 边上的中线,求△ABE 的面积.21.如图,在△ABC 中,AE 为边BC 上的高,点D 为边BC 上的一点,连接AD .(1)当AD 为边BC 上的中线时.若AE =4,△ABC 的面积为24,求CD 的长;(2)当AD 为∠BAC 的角平分线时.①若∠C =65°,∠B =35°,求∠DAE 的度数;②若∠C-∠B =20°,则∠DAE =°.22.如图所示,已知AD ,AE 分别是△ADC 和△ABC 的高和中线,AB=6cm ,AC=8cm ,BC=10cm ,∠CAB=90°.试求:(1)AD的长;(2)△ABE的面积;(3)△ACE和△ABE的周长的差.23.操作与探究探索:在如图1至图3中,△ABC的面积为a.(1)如图1,延长△ABC的边BC到点D,使CD=BC,连结DA.若△ACD的面积为S1,则S1=________(用含a的代数式表示);(2)如图2,延长△ABC的边BC到点D,延长边CA到点E,使CD=BC,AE=CA,连结DE.若△DEC的面积为S2,则S2=(用含a的代数式表示);(3)在图2的基础上延长AB到点F,使BF=AB,连结FD,FE,得到△DEF(如图3).若阴影部分的面积为S3,则S3=__________(用含a的代数式表示).发现:像上面那样,将△ABC各边均顺次延长一倍,连结所得端点,得到△DEF(如图3),此时,我们称△ABC向外扩展了一次.可以发现,扩展一次后得到的△DEF的面积是原来△ABC面积的_____倍.【参考答案】1.C2.B3.B4.C5.C6.C7.A8.C9.C10.A 11.2.412.4013.5 214.1215.4216.AB=AC=8cm,BC=11cm或AB=AC=10cm,BC=7cm 17.418.10 319.(1)10;(2)70°20.(1)4.8;(2)12cm2 21.(1)6;(2)①15°;②10.22.⑴4.8cm;⑵12cm²;⑶2cm. 23.(1)a;(2)2a;(3)6a;7。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

11.1.2 三角形的高、中线与角平分线
一.选择题:
1.△ABC 中,AB=AC=4,BC=a,则a 的取值范围是( )
A.a >0
B.0<a <4
C.4<a <8
D.0<a <8
2.△ABC 中,CA=CB ,D 为BA 中点,P 为直线CD 上的任一点,那么PA 与PB 的大小关系是( )
A.PA >PB
B.PA <PB
C.PA=PB
D.不能确定
3.△ABC 中,AB=7,AC=5,则中线AD 之长的范围是( )
A.5<AD <7
B.1<AD <6
C.2<AD <12
D.2<AD <5
4.△ABC 中,AB=13,BC=10,BC 边上中线AP=12,则AB ,AC 关系为( )
A.AB >AC
B.AB=AC
C.AB <AC
D.无法确定
5.三条线段a,b,c 长度均为整数且a=3,b=5.则以a,b,c 为边的三角形共有( ) A.4个B.5个C.6个D.7个
6.一个三角形中,下列说法正确的是( )A.至少有一个内角不小于90°B.至少一个内角不大于30°C. 至少一个内角不小于60°D. 至少一个内角不大于45°
7.△ABC 中,∠A=40°,高BD 和CE 交于O ,则∠COD 为( )
A.40°或140°
B. 50°或130°
C. 40°
D. 50°
8.已知,如图1,△ABC 中,∠B =∠DAC ,则∠BAC 和∠ADC 的关系是( )
A.∠BAC <∠ADC
B.∠BAC =∠ADC
C.∠BAC >∠ADC
D.不能确定
9.在△ABC 中,已知∠A +∠C =2∠B ,∠C -∠A =80°,则∠C 的度数是( )
A.60°
B.80°
C.100°
D.120°
10.如图2,∠B =∠C ,则∠ADC 与∠AEB 的关系是( )
A.∠ADC >∠AEB
B.∠ADC =∠AEB
C.∠ADC <∠AEB
D.不能确定
二、填空题:
1.△ABC 中,∠A-∠B=10°,2∠C-3∠B=25°,则∠A= .
2.等腰三角形周长为21cm,一中线将周长分成的两部分差为3cm,则这个三角形三边长为________.
3.点A 、B 关于直线l 对称,点C 、D 也关于l 对称,AC 、BD 交于O ,则O 点在 上.
4.△ABC 周长为36,AB=AC,AD ⊥BC 于D ,△ABD 周长为30cm,则AD= .
5.等腰三角形一腰上的高与另一腰夹角为45°,则顶角为
.
6.三角形三边的长为15、20、25,则三条高的比为 .
7.若三角形三边长为3、2a-1、8,则a 的取值范围是 .
8.如果等腰三角形两外角比为1∶4则顶角为 .
9.等腰三角形两边比为1∶2,周长为50,则腰长为 .
10.等腰三角形底边长为20,腰上的高为16.则腰长为 .
三、解答题:
1.△ABC 中AB=AC ,D 在AC 上,且AD=BD=BC.求△ABC 的三内角度数.
2.如图,AC=BD ,AD ⊥AC ,BD ⊥BC ,求证AD=BC.
3.CD 为Rt △ABC 斜边的中线 ,DE ⊥AC 于E ,BC=1,AC=3.求△CED 的周长.
4.如图,AD 为△ABC 的中线,∠ADB 的平分线交AB 于E ,∠ADC 的平分线交AC 于E,求证BE+CF >EF.
5.△ABC中,AD⊥BC交边BC于D.(1)若∠A=90°求证:AD+BC>AB+AC
(2)若∠A>90°,(1)中的结论仍然成立吗?若不成立,请举反例,若成立,请给出证明
6.如图,将一张长方形纸片沿EF折叠后,点D、C分别落在点D′、C′的位置,ED′
的延长线与BC交于点G,若∠EFG=50°,求∠1、∠2的度数.
答案
一、选择:DCBBB CABCB 二、填空:(1).55° (2).(8,8,5)或(6,6,9) (3).l (4).12
(5).45°或135° (6).20∶15∶12 (7).3<a <6 (8).140° (9).20 (10).3
50 三.解答:1.设∠A=x AD=DB=BC AB=AC ∴∠ABD=x ∠BDC=2x ∠ABC=∠C=2x ∠DBC=x ∴5x=180° x=36° ∴∠A=36°∠C=72° ∠ABC=72°
2.连DC ,∠DAC=∠DBC=90° AC=BD DC=DC ∴Rt △DAC ≌△CBD (HL) ∴AD=BC.
3.∵∠ACB=90° BC=1 AC=3 ∴AB=2 ∠A=∠ACD=30°CD=1 DE=21 CE=2
3 周长为2
33 4.延长ED 至G ,使ED=DG ,连GC ,GF DE 平分∠BDA ,DF 平分∠ADC ∴∠EDF=90°,ED=DG ∴EF=FG ,△BED ≌△CGD ∴BE=GC ;GC+CF >GF.∴BE+CF >EF.
5.(1)∵∠A=90°∴AB 2+AC 2=BC 2
AB ·AC=AD ·BC.(AB+AC)2=AB 2+AC 2+2AB ·AC=BC 2+2AD ·BC <BC 2+2AD ·BC+AD 2=(BC+AD)2∴AD+BC >AB+AC.
(2)若∠A >90°,上述结论仍成立.证∵∠A >90°,作AE ⊥AB 交BC 于E ,则AD 为Rt △BAE 斜边上的高 由(1)∴AD+BE >AB+AE ① 在△AE C 中 AE+EC >AC ②;①+② AD+BE+EC+AE >AB+AC+AE ∴AD+BC >AB+AC 6、80°,100°。

相关文档
最新文档