(完整)初二数学上三角形(题目有分类)

合集下载

八年级上册《数学》三角形专项练习题(含答案)

八年级上册《数学》三角形专项练习题(含答案)

八年级上册《数学》三角形专项练习题11.1.1三角形的边一、能力提升1.如图,在图形中,三角形有()A.4个B.5个C.6个D.7个2.已知三角形三边长分别为2,x,13,若x为正整数,则这样的三角形个数为()A.2B.3C.5D.133.若一个三角形的两条边长分别为3和8,而第三条边长为奇数,则第三条边长为()A.5或7B.7C.9D.7或94.在△ABC中,若三条边长均为整数,周长为11,且有一条边长为4,则这个三角形最长边可能取值的最大值是()A.7B.6C.5D.45.若有一条公共边的两个三角形称为一对“共边三角形”,则图中以BC 为公共边的“共边三角形”有对.6.若等腰三角形的腰长为6,则它的底边长a的取值范围是.7.用7根相同的火柴棒首尾顺次连接摆成一个三角形,能摆成的不同的三角形的个数为.8.已知等腰三角形的两边长分别为3cm和7cm,求这个三角形的周长.9.已知等腰三角形的周长是16cm.(1)若其中一边的长为4cm,求另外两边的长;(2)若其中一边的长为6cm,求另外两边的长.10.若a,b,c是△ABC的三边长,请化简|a-b-c|+|b-c-a|+|c-a-b|.11.已知等腰三角形的周长为20cm,设腰长为xcm.(1)用含x的式子表示底边长.(2)腰长x能否为5cm,为什么?(3)求x的取值范围.二、创新应用12.在平面内,分别用3根、5根、6根、…小棒首尾依次相接,能搭成什么形状的三角形?通过尝试,形状如表所示.小棒数目3 5 6 ……示意图……形状等边三角形等腰三角形等边三角形……(1)4根小棒能搭成三角形吗?(2)8根、12根小棒能搭成几种不同形状的三角形?并画出它们的示意图.答案一、能力提升1.B2.B;由题意知2+x>13,且x<13+2,解得11<x<15,因为x为正整数,所以x 可以是12,13,14.故选B.3.D;由题意知第三条边长大于5小于11.因为第三条边长为奇数,所以它的大小为7或9.4.C由题意知三角形的三条边长分别为2,4,5或3,4,4,所以最长边可能取值的最大值为5.5.3;△BDC与△BEC,△BDC与△BAC,△BEC与△BAC,共3对.6.0<a<12.7.2.8.解:若腰长为3cm,则三边长分别为3cm,3cm,7cm,而3+3<7,此时不能构成三角形;若腰长为7cm,则三边长分别为3cm,7cm,7cm.此时能构成三角形,其周长为3+7+7=17(cm).故这个三角形的周长为17cm. 9.解:(1)若腰长为4cm,则底边长为16-4-4=8(cm).三边长分别为4cm,4cm,8cm,不符合三角形的三边关系,所以应该是底边长为4cm.所以腰长为(16-4)÷2=6(cm).三边长分别为4cm,6cm,6cm,符合三角形的三边关系.所以另外两边的长都为6cm.(2)若腰长为6cm,则底边长为16-6-6=4(cm).三边长分别为4cm,6cm,6cm,符合三角形的三边关系.所以另外两边的长分别为6cm 和4cm.若底边长为6cm,则腰长为(16-6)÷2=5(cm).三边长分别为6cm,5cm,5cm,符合三角形的三边关系.所以另外两边的长都为5cm.10.解:因为a,b,c是△ABC的三边长,所以a<b+c,b<c+a,c<a+b,即a-b-c<0,b-c-a<0,c-a-b<0.所以|a-b-c|+|b-c-a|+|c-a-b|=-(a-b-c)-(b-c-a)-(c-a-b)=a+b+c.11.解:(1)底边长为(20-2x)cm.(2)不能.理由如下:若腰长为5cm,则底边长为20-2×5=10(cm).因为5+5=10,不满足三角形的三边关系.所以腰长不能为5cm.(3)根据题意,得解得0<x<10.由三角形的三边关系,得x+x>20-2x,解得x>5.综上所述,x的取值范围是5<x<10.二、创新应用12.解:(1)4根小棒不能搭成三角形.(2)8根小棒能搭成一种三角形,示意图如图甲;12根小棒能搭成三种不同形状的三角形,示意图如图乙.11.1.2三角形的高、中线与角平分线一、能力提升1.若一个三角形中仅有一条高在三角形的内部,则该三角形是()A.锐角三角形B.钝角三角形C.直角三角形D.直角三角形或钝角三角形2.如图,AE⊥BC于点E,BF⊥AC于点F,CD⊥AB于点D.在△ABC中,边AC上的高是线段()A.AEB.CDC.BFD.AF3.如图,线段AE是△ABC的中线,已知EC=6,DE=2,则线段BD的长为()A.2B.3C.4D.64.如图,在△ABC中,∠C=90°,D,E为AC上的两点,且AE=DE,BD平分∠EBC,则下列说法不正确的是()A.线段BC是△ABE的高B.线段BE是△ABD的中线C.线段BD是△EBC的角平分线D.∠ABE=∠EBD=∠DBC5.如图,在△ABC中,E,F分别是AB,AC的中点,△CEF的面积为2.5,则△ABC的面积为()A.6B.7C.8D.106.如图,BD和CE是△ABC的两条角平分线,且∠DBC=∠ECB=31°,则∠ABC=度,∠ACB=度.7.如图,线段AD,CE分别是△ABC中边BC,AB上的高.若AD=10,CE=9,AB=12,则BC的长是.8.如图,在△ABC中,AB=AC,线段AD是△ABC的中线,△ABC的周长为34cm,△ABD的周长为30cm,求AD的长.9.已知在等腰三角形ABC中,AB=AC,若腰AC上的中线BD将等腰三角形ABC的周长分成15和6两部分,求三角形ABC的腰长及底边长.10.如图,AD是△CAB的角平分线,DE∥AB,DF∥AC,EF交AD于点O.请问:DO是△EDF的角平分线吗?如果是,请给予证明;如果不是,请说明理由.二、创新应用11.有一块三角形优良品种试验基地,如图,由于引进四个优良品种进行对比试验,需将这块土地分成面积相等的四块,请你制定出两种以上的划分方案供选择.(画图即可)答案一、能力提升1.D;直角三角形和钝角三角形都只有一条高在三角形的内部.2.C3.C4.D5.D;∵F为AC的中点,∴线段EF为△AEC的中线,∴S△AEC=2S△CEF=5.∵E为AB的中点,∴线段CE为△ABC的中线,∴S△ABC=2S△AEC=10.6.62;62.7.10.8;S△ABC=BC·AD=AB·CE,则BC===10.8.8.解:∵线段AD是△ABC的中线,∴BC=2BD.∵AB=AC,△ABC的周长为34cm,∴2AB+2BD=34cm,即AB+BD=17cm.又△ABD的周长为30cm,即AB+BD+AD=30cm,∴AD=13cm.9.解:设AB=AC=2x,则AD=CD=x.当AB+AD=15,BC+CD=6时,有2x+x=15,所以x=5,AB=AC=2x=10,BC=6-5=1.当BC+CD=15,AB+AD=6时,有2x+x=6,所以x=2,AB=AC=2x=4,BC=13.因为4+4<13,所以不能组成三角形.故三角形ABC的腰长为10,底边长为1.10.解:DO是△EDF的角平分线.证明如下:∵AD是△CAB的角平分线,∴∠EAD=∠FAD.∵DE∥AB,DF∥AC,∴∠EDA=∠FAD,∠FDA=∠EAD.∴∠EDA=∠FDA,即DO是△EDF的角平分线.二、创新应用11.解:如图(答案不唯一).11.1.3三角形的稳定性一、能力提升1.如图,桥梁的斜拉钢索是三角形的结构,主要是为了()A.节省材料,节约成本B.保持对称C.利用三角形的稳定性D.美观漂亮2.下列不是利用三角形稳定性的是()A.伸缩晾衣架B.三角形房架C.自行车的三角形车架D.矩形门框的斜拉条3.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短4.王师傅用四根木条钉成一个四边形木架.如图,要使这个木架不变形,他至少还要再钉上()根木条.A.0B.1C.2D.35.如图,要使四边形木条框架ABCD变“活”(具有不稳定性),应将木条拆除.6.伸缩铁门能自由伸缩,主要是应用了四边形的.7.我们所用的课桌和所坐的凳子,时间长了总是摇摇晃晃的,这是什么原因?要使自己用的桌凳不晃动应该怎么办?如图,如果有六边形木框,要使它不变形,应该怎么办?二、创新应用8.如图,我们知道要使四边形木架不变形,至少要钉一根木条.那么要使五边形木架不变形,至少要钉几根木条?要使七边形木架不变形,至少要钉几根木条?要使n边形木架不变形,又至少要钉多少根木条呢?答案一、能力提升1.C.2.A.3.A;打开的那一扇窗户下边的一部分OB、窗户框下边的一部分OA 及AB组成一个三角形,根据三角形的稳定性,知可用AB固定窗户.4.B.5.AC.6.不稳定性.7.解:这是因为课桌和凳子的四个侧面都是四边形木架,当交接处松动后就具有不稳定性.解决这类问题的方法是在每个侧面加上一根木条(或木板),使之成为三角形.要使六边形木框不变形,至少应加3根木条使其划分为三角形.二、创新应用8.解:要使五边形木架不变形,至少要钉2根木条;要使七边形木架不变形,至少要钉4根木条;要使n边形木架不变形,至少要钉(n-3)根木条.11.2.1三角形的内角一、能力提升1.在△ABC中,∠A=55°,∠B比∠C大25°,则∠B的度数为()A.50°B.75°C.100°D.125°2.如图,CD∥AB,∠1=120°,∠2=80°,则∠E等于()A.40°B.60°C.80°D.120°3.(2020·辽宁锦州中考)如图,在△ABC中,∠A=30°,∠B=50°,CD平分∠ACB,则∠ADC的度数是()A.80°B.90°C.100°D.110°4.在△ABC中,若∠A=∠B+∠C,则∠A的度数是.5.如图,点B,C,D在同一条直线上,CE∥AB,∠ACB=90°.如果∠ECD=36°,那么∠A的度数是.6.如图,一个直角三角形纸片,剪去直角后,得到一个四边形,则∠1+∠2的度数是.7.在△ABC中,若最大角∠A等于最小角∠C的两倍,最大角又比另一个角大20°,则△ABC的三个角的度数分别是多少?8.如图,E是△ABC中边AC上的一点,过点E作ED⊥AB,垂足为D.若∠1=∠2,则△ABC是直角三角形吗?为什么?9.如图,在△ABC中,D是BC上一点,F是BA延长线上一点,连接DF交AC于点E,且∠B=42°,∠C=59°,∠DEC=47°,求∠F的度数.二、创新应用10.如图,在△ABC中,∠ABC,∠ACB的平分线相交于点D.(1)若∠ABC+∠ACB=110°,则∠BDC=;(2)若∠A=100°,则∠BDC=;(3)若∠A=n°,求∠BDC的度数.答案一、能力提升1.B;设∠C的度数为x°,则∠B的度数为x°+25°,则55°+x°+x°+25°=180°,解得x=50,则∠B=75°.2.A;∵CD∥AB,∠1=120°,∴∠CDB=∠1=120°,∴∠EDC=60°.∵∠2=80°,∴∠E=180°-80°-60°=40°.3.C∵∠A=30°,∠B=50°,∴∠ACB=180°-∠A-∠B=100°.又CD平分∠ACB,∴∠ACD=∠ACB=50°.∴∠ADC=180°-∠A-∠ACD=100°.4.90°.5.54°.6.270°.由三角形三内角之间的关系,得∠3+∠4=90°,所以∠1+∠2=(180°-∠3)+(180°-∠4)=2×180°-(∠3+∠4)=360°-90°=270°.7.解:设∠C=x°,则∠A=2x°,∠B=2x°-20°,根据三角形的内角和定理,有2x+(2x-20)+x=180,解得x=40,即∠C=40°.所以2x=80,∠A=80°,2x-20=60,∠B=60°.故△ABC的三个角的度数分别为∠A=80°,∠B=60°,∠C=40°.8.解:△ABC是直角三角形.理由如下:∵ED⊥AB,∴∠ADE=90°,∴∠1+∠A=90°.又∠1=∠2,∴∠2+∠A=90°.∴△ABC是直角三角形.9.解:在△EDC中,∠EDC=180°-(∠C+∠DEC)=180°-(59°+47°)=74°.∴∠FDB=180°-∠EDC=180°-74°=106°.在△BDF中,∠F=180°-(∠B+∠FDB)=180°-(42°+106°)=32°.二、创新应用10.解:(1)125°.(2)140°.(3)∵∠A=n°,∴∠ABC+∠ACB=180°-n°.∵BD平分∠ABC,CD平分∠ACB,∴∠DBC+∠DCB=∠ABC+∠ACB=(∠ABC+∠ACB)=×(180°-n°)=90°-.∴∠BDC=180°-(∠DBC+∠DCB)=180°-=90°+.11.2.2三角形的外角一、能力提升1.一副三角尺有两个直角三角形,如图叠放在一起,则∠α的度数是()A.165°B.120°C.150°D.135°2.如图,在△ABC中,AD为边BC上的中线,在△ABD中,AE为边BD上的中线,在△ACD中,AF为边DC上的中线,则下列结论错误的是()A.∠1>∠2>∠3>∠CB.BE=ED=DF=FCC.∠1>∠4>∠5>∠CD.∠1=∠3+∠4+∠53.如图,若∠A=32°,∠B=45°,∠C=38°,则∠DFE等于()A.120°B.115°C.110°D.105°4.(2020·湖北中考)将一副三角尺按如图摆放,点E在AC上,点D在BC 的延长线上,EF∥BC,∠B=∠EDF=90°,∠A=45°,∠F=60°,则∠CED的度数是()A.15°B.20°C.25°D.30°5.如图,∠ABC的平分线与∠ACD的平分线相交于点P.若∠A=60°,则∠P等于()A.30°B.40°C.50°D.60°6.(2020·湖北黄冈中考)如图,AB∥EF,∠ABC=75°,∠CDF=135°,则∠BCD=.7.如图,已知在△ABC中,D是AB上一点,E是AC上一点,BE与CD相交于点F,∠A=62°,∠ACD=35°,∠ABE=20°,则∠BDC=,∠BFC=.8.如图,D,E,F分别是△ABC三边延长线上的点,求∠D+∠E+∠F+∠1+∠2+∠3的度数.9.如图,在△ABC中,E是AC延长线上的一点,D是BC上的一点.求证:(1)∠BDE=∠E+∠A+∠B.(2)∠BDE>∠A.10.如图,在△ABC中,D是边BC上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC的度数.二、创新应用11.如图①,有一个五角形图案ABCDE,你能说明∠A+∠DBE+∠C+∠D+∠E=180°吗?如果点B向下移动到AC上(如图②)或AC的另一侧(如图③),上述结论是否依然成立?请说明理由.答案一、能力提升1.A如图,∵∠2=90°-45°=45°,∴∠1=∠2-30°=15°.∴∠α=180°-∠1=165°.2.C由三角形的一个外角大于与它不相邻的内角,知∠1>∠2>∠3>∠C,故选项A正确;根据三角形中线的定义,知BE=ED=DF=FC,故选项B正确;∠4与∠5的大小不能判定,故选项C错误;根据三角形的一个外角等于与它不相邻两个内角的和,知∠1=∠2+∠4,∠2=∠3+∠5,所以∠1=∠3+∠4+∠5,故选项D正确.3.B4.A5.A利用三角形的外角性质,得∠P=∠PCD-∠PBD=(∠ACD-∠ABC)=∠A=30°.6.30°.7.97°;117°.8.解:∵∠D+∠3=∠CAB,∠E+∠1=∠ABC,∠F+∠2=∠ACB,∴∠D+∠E+∠F+∠1+∠2+∠3=∠CAB+∠ABC+∠ACB=180°.9.证明:(1)∵∠BDE,∠DCE分别是△CDE,△ABC的一个外角,∴∠BDE=∠E+∠DCE,∠DCE=∠A+∠B,∴∠BDE=∠E+∠A+∠B.(2)由(1)得∠BDE=∠E+∠A+∠B,∴∠BDE>∠A.10.解:∵∠3是△ABD的外角,∴∠3=∠1+∠2.∵∠1=∠2,∠3=∠4,∴∠4=2∠2.在△ABC中,∵∠2+∠4=180°-∠BAC=180°-63°=117°,∴∠1=∠2=117°÷(1+2)=39°.∴∠DAC=∠BAC-∠1=63°-39°=24°.二、创新应用11.解:在题图①中,∠A+∠C=∠DNM, ①∠DBE+∠E=∠DMN, ②①+②,得∠A+∠DBE+∠C+∠E=∠DNM+∠DMN.∵∠D+∠DNM+∠DMN=180°,∴∠A+∠DBE+∠C+∠D+∠E=180°.在题图②、题图③中,上述结论仍然成立,理由与题图①完全相同.11.3.1多边形一、能力提升1.在下列关于正多边形的特征说法中,错误的是()A.每一条边都相等B.每一个内角都相等C.每一个外角都相等D.所有对角线都相等2.过多边形的一个顶点可以引2017条对角线,则这个多边形的边数是()A.2017B.2018C.2019D.20203.如果过多边形的一个顶点的对角线把多边形分成8个三角形,那么这个多边形的边数为()A.8B.9C.10D.114.将一个四边形截去一个角后,它不可能是()A.三角形B.四边形C.五边形D.六边形5.在n边形的一边上任取一点(不包含顶点)与各顶点相连,可得三角形的个数是()A.nB.n-2C.n-1D.n+16.过m边形的一个顶点有7条对角线,n边形没有对角线,则m n=.7.已知一个多边形的边数恰好是从这个多边形的一个顶点出发所作的对角线的条数的2倍,求此多边形的边数.二、创新应用8.观察下面图形,解答下列问题:(1)在上面第四个图中画出六边形的所有对角线;(2)观察规律,把下表填写完整.边数 3 4 5 6 7 …n对角线条0 2 5 …数答案一、能力提升1.D2.D3.C4.D一个多边形截去一个角后,可能出现三种情况:少一个角、角的个数不变或多一个角.5.C6.1000;从m边形的一个顶点出发有(m-3)条对角线,由m-3=7,得m=10. n边形没有对角线,所以n=3.所以m n=103=1000.7.解:设这个多边形的边数为n,则从多边形的一个顶点出发所作的对角线的条数为n-3.依题意,得n=2(n-3),解得n=6.二、创新应用8.解:(1)(2)边数 3 4 5 6 7 …n对角线条数0 2 5 9 14 …n(n-3)11.3.2多边形的内角和一、能力提升1.如果一个正多边形的每一个外角都是锐角,那么这个正多边形的边数一定不小于()A.3B.4C.5D.62.(2020·山东济宁中考)一个多边形的内角和是1080°,则这个多边形的边数是()A.9B.8C.7D.63.若一个多边形的边数由5增加到11,则内角和增加的度数是()A.1080°B.720°C.540°D.360°4.如图,∠1,∠2,∠3,∠4是五边形ABCDE的外角,且∠1=∠2=∠3=∠4=70°,则∠AED的度数是()A.110°B.108°C.105°D.100°5.如果一个多边形的内角和是其外角和的一半,那么这个多边形是()A.六边形B.五边形C.四边形D.三角形6.若凸n边形的内角和为1260°,则从一个顶点出发引的对角线条数是.7.如图,在四边形ABCD中,∠A+∠B=210°,且∠ADC的平分线与∠DCB的平分线相交于点O,则∠COD的度数是.8.一个多边形的内角和比它的外角和的3倍少180°,求这个多边形的边数和内角和.9.如图,求∠A+∠B+∠OCD+∠ODC+∠E+∠F的度数.二、创新应用10.在一个多边形中,一个内角相邻的外角与其他各内角的和为600°.(1)如果这个多边形是五边形,请求出这个外角的度数;(2)是否存在符合题意的其他多边形?如果存在,请求出边数及这个外角的度数;如果不存在,请说明理由.答案一、能力提升1.C每个外角都是锐角,即小于90°,设边数为n,则这些锐角的和一定小于n×90°.而外角和为360°,所以360°<n×90°,n>4,即n不小于5.2.B设这个多边形的边数是n,则(n-2)×180°=1080°,解得n=8.3.A因为每增加一条边,内角和增加180°,所以增加6条边,内角和增加180°×6=1080°.4.D由题意知∠AED的补角为80°,则∠AED=100°.5.D多边形的外角和是360°,内角和等于外角和的一半,则内角和是180°,可知此多边形为三角形.6.6因为凸n边形的内角和为1260°,所以(n-2)×180°=1260°,得n=9.故从一个顶点出发引的对角线的条数为9-3=6.7.105°∵四边形的内角和为360°,∠A+∠B=210°,∴∠ADC+∠BCD=360°-210°=150°.∵DO,CO分别为∠ADC与∠BCD的平分线,∴∠ODC=∠ADC,∠OCD=∠BCD.∴∠ODC+∠OCD=(∠ADC+∠BCD)=×150°=75°.∴∠COD=180°-75°=105°.8.解:由题意知这个多边形的内角和为3×360°-180°=900°.设这个多边形的边数为n,根据题意,得(n-2)×180°=900°,解得n=7.故这个多边形的边数为7.9.解:如图,连接BE,则在△COD与△BOE中,∠ODC+∠OCD+∠COD=180°,∠OBE+∠OEB+∠BOE=180°.∵∠COD与∠BOE是对顶角,∴∠COD=∠BOE.∵∠ODC+∠OCD=180°-∠COD,∠OBE+∠OEB=180°-∠BOE,∴∠ODC+∠OCD=∠OBE+∠OEB.∴题图中的∠A+∠B+∠OCD+∠ODC+∠E+∠F等于上图中的∠A+∠F+∠ABC+∠DEF+∠OBE+∠OEB=∠A+∠F+∠ABE+∠BEF=360°,即所求六个角的和为360°.二、创新应用10.解:(1)设这个外角的度数是x°,则(5-2)×180-(180-x)+x=600,解得x=120.故这个外角的度数是120°.(2)存在.设边数为n,这个外角的度数是x°,则(n-2)×180-(180-x)+x=600,整理得x=570-90n.因为0<x<180,即0<570-90n<180,并且n为正整数,所以n=5或n=6.故这个多边形的边数是6,这个外角的度数为30°.。

八年级数学三角形专题训练

八年级数学三角形专题训练

八年级数学三角形专题训练一、三角形的基本概念1. 三角形的定义题目:下列图形中,属于三角形的是()选项:A. 由三条线段首尾顺次相接组成的封闭图形;B. 由三条线段组成的图形;C. 由不在同一直线上的三条直线组成的图形。

解析:三角形的定义是由不在同一条直线上的三条线段首尾顺次相接所组成的封闭图形。

选项B中只说三条线段组成的图形,没有强调首尾顺次相接和封闭,选项C中说三条直线是错误的,所以答案是A。

2. 三角形的分类题目:三角形按角分类可分为()选项:A. 锐角三角形、直角三角形、钝角三角形;B. 等腰三角形、等边三角形、不等边三角形;C. 直角三角形、等腰三角形、锐角三角形。

解析:三角形按角分类分为锐角三角形(三个角都是锐角)、直角三角形(有一个角是直角)、钝角三角形(有一个角是钝角)。

选项B是按边分类,选项C分类混乱,所以答案是A。

二、三角形的三边关系1. 定理内容题目:已知三角形的两边长分别为3和5,则第三边的取值范围是()解析:根据三角形三边关系,两边之和大于第三边,两边之差小于第三边。

设第三边为x,则5 3<x<5+3,即2<x<8。

2. 应用解析:对于①,3+4 = 7<8,不满足两边之和大于第三边,所以不能组成三角形。

对于②,5+6 = 11>10,6 + 10=16>5,5+10 = 15>6,且10 5 = 5<6,10 6=4<5,6 5 = 1<10,满足三边关系,可以组成三角形。

对于③,5+5 = 10<11,不满足两边之和大于第三边,所以不能组成三角形。

三、三角形的内角和定理1. 定理内容题目:三角形的内角和等于()选项:A. 90°;B. 180°;C. 360°。

解析:三角形内角和定理表明三角形的内角和等于180°,所以答案是B。

2. 应用题目:在△ABC中,∠A = 50°,∠B = 60°,求∠C的度数。

(完整版)人教版初二数学上册三角形习题整理.docx

(完整版)人教版初二数学上册三角形习题整理.docx

一、选择题 ( 每小题 3 分,共 30 分 )1. 有下列长度的三条线段,能组成三角形的是( )A 2cm , 3cm ,4cmB 1cm ,4cm ,2cm C1cm , 2cm , 3cm D 6cm ,2cm ,3cm2. 六边形的对角线的条数是()A( A )7(B )8 ( C )9(D )103. 右图中三角形的个数是( )A .6B .7C . 8D .9BFDEC3 题4. 能把一个任意三角形分成面积相等的两部分是()A. 角平分线B. 中线C.高D.A 、B 、C 都可以5 下列不能够镶嵌的正多边形组合是()A. 正三角形与正六边形B. 正方形与正六边形C.正三角形与正方形D.正五边形与正十边形6. 一个三角形三个内角的度数之比为 2:3:7 ,这个三角形一定是()A .直角三角形B .等腰三角形C .锐角三角形D .钝角三角形7 如图 1 四个图形中,线段 BE 是△ ABC 的高的图是()ACCEBEE BC ABAE CAB A (A)(B)C (C)D(D)B图 18 一个多边形的内角和比它的外角的和的2 倍还大 180°,这个多边形的边数是()A.5B.6C.7D.89. 三角形的一个外角是锐角,则此三角形的形状是( )A. 锐角三角形B. 钝角三角形C. 直角三角形D.无10. 下列判断:①三角形的三个内角中最多有一个钝角,②三角形的三个内角中至少有两个锐角,③有两个内角为 500 和 200 的三角形一定是钝角三角形,④直角三角形中两锐角的和为 900,其中判断正确的有()A.1 个B.2 个C.3 个D.4 个二、填空题:(每题 4 分共 32 分)11、为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条,这样做的道理是。

12、如图 2 所示:(1)在△ ABC 中, BC 边上的高是;(2)在△ AEC 中, AE 边上的高是;13 若一个等腰三角形的两边长分别是 3 cm 和 5 cm ,则它的周长是cm 。

初二上册数学三角形题目大全

初二上册数学三角形题目大全

选择题:在三角形ABC中,若∠A = 70°,∠B = 40°,则∠C的度数为:A. 60°B. 70°C. 80°D. 90°(正确答案)下列哪个条件不能判定两个三角形全等?A. SSS(三边相等)B. ASA(两角及非夹边相等)C. ASA(两角及夹边相等)(正确答案)D. HL(直角三角形的斜边和一条直角边相等)在三角形ABC中,若AB = AC,且∠B = 50°,则∠A的度数为:A. 50°B. 80°(正确答案)C. 100°D. 130°下列哪个是直角三角形的一个性质?A. 三边相等B. 有一个角为90°(正确答案)C. 三个角都小于90°D. 对角线互相平分在三角形ABC中,若∠A : ∠B : ∠C = 1 : 2 : 3,则三角形ABC是:A. 锐角三角形B. 直角三角形(正确答案)C. 钝角三角形D. 等边三角形下列哪个条件可以判定两个三角形相似?A. 两边成比例,且夹角相等(正确答案)B. 三边对应成比例,但角度不相等C. 两角对应相等,但三边不成比例D. 两边对应成比例,但夹角不相等在三角形ABC中,若D是BC的中点,且AD = BD,则三角形ABC是:A. 等边三角形B. 等腰三角形(正确答案)C. 直角三角形D. 锐角三角形下列哪个是等腰三角形的一个性质?A. 两腰之和等于底边B. 两腰相等(正确答案)C. 有一个角为90°D. 对角线互相垂直平分在三角形ABC中,若∠A = ∠B + ∠C,则三角形ABC是:A. 锐角三角形B. 直角三角形(正确答案)C. 钝角三角形D. 等腰三角形。

2024_2025学年八年级数学上学期期中核心考点专题01三角形的基础含解析新人教版

2024_2025学年八年级数学上学期期中核心考点专题01三角形的基础含解析新人教版

期中考点专题01 三角形的基础重点突破三角形的概念:由不在同一条直线上的三条线段首尾依次相接所组成的图形叫做三角形。

三角形特性三角形用符号“”表示,顶点是A、B、C的三角形记作“ABC”,读作“三角形ABC”。

三角形按边分类:等腰三角形:有两条边相等的三角形叫做等腰三角形,其中相等的两条边叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰与底边的夹角叫做底角。

等边三角形:底边与腰相等的等腰三角形叫做等边三角形,即三边都相等。

三角形三边的关系(重点(1)三角形的随意两边之和大于第三边。

三角形的随意两边之差小于第三边。

(这两个条件满意其中一个即可)用数学表达式表达就是:记三角形三边长分别是a,b,c,则a+b>c或c-b<a。

(2)已知三角形两边的长度分别为a,b,求第三边长度的范围:|a-b|<c<a+b三角形的分类:三角形按边的关系分类如下:三角形按角的关系分类如下:三角形的稳定性➢三角形具有稳定性➢四边形及多边形不具有稳定性要使多边形具有稳定性,方法是将多边形分成多个三角形,这样多边形就具有稳定性了。

考查题型考查题型一三角形的个数问题典例1.(2024·西林县期中)如图所示,其中三角形的个数是()A.2个B.3个C.4个D.5个【答案】D【提示】依据三角形的定义解答即可,由不在同始终线上的三条线段首尾顺次相接所组成的图形叫做三角形.【详解】图中的三角形有:△ABC,△BCD,△BCE,△ABE,△CDE共5个.故选D.【名师点拨】本题考查了三角形的概念,由不在同始终线上的三条线段首尾顺次相接所组成的图形叫做三角形.组成三角形的线段叫做三角形的边,相邻边的公共端点叫做三角形的顶点.相邻两条边组成的角,叫做三角形的内角,简称为三角形的角.变式1-1.(2024·秦皇岛市期中)图中三角形的个数是()A.3个B.4个C.5个D.6个【答案】D【解析】图中的三角形有: △ABD, △ADE, △AEC, △ABE, △ADC, △ABC,共6个.故选D.变式1-2.(2024·洛阳市期末)图中三角形的个数是()A.4个B.6个C.8个D.10个【答案】C【提示】依据三角形的定义即可得.【详解】图中的三角形是,共8个故选:C.【名师点拨】本题考查了三角形的定义,驾驭理解三角形的概念是解题关键.变式1-3.(2024·恩施市期中)如图,图中三角形的个数有()A.6个B.8个C.10个D.12个【答案】B【解析】试题解析:以O为一个顶点的有△CBO、△CDO、△ABO、△ADO,不以O为顶点的三角形有△CAD、△CBA、△BCD、△BAD,共有8个.故选B.考查题型二三角形的分类典例2(2024·石家庄市期末)在△ABC中,∠A=20°,∠B=60°,则△ABC的形态是()A.等边三角形 B.锐角三角形C.直角三角形 D.钝角三角形【答案】D【解析】试题提示:依据三角形的内角和定理求出∠C,即可判定△ABC的形态.解:∵∠A=20°,∠B=60°,∴∠C=180°﹣∠A﹣∠B=180°﹣20°﹣60°=100°,∴△ABC是钝角三角形.故选D.变式2-1.(2024·黄冈市期中)一个三角形三个内角的度数之比为1:2:3,则这个三角形肯定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰直角三角形【答案】B【解析】试题提示:依据三角形的内角和为180°,可知最大角为90°,因式这个三角形是直角三角形.故选B.变式2-2.(2024·深圳市期中)在△ABC中,若∠A:∠B:∠C=1:3:5,则△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.形态不确定【答案】C【提示】依据∠A:∠B:∠C=1:3:5,可设∠A=x°,∠B=3x°,∠C=5x°,再依据三角形内角和为180°可得方程x+3x+5x=180,解方程算出x的值,即可推断出△ABC的形态.【详解】解:∵∠A:∠B:∠C=1:3:5,∴设∠A=x°,∠B=3x°,∠C=5x°,∴x+3x+5x=180,解得:x=20,∴∠C=5×20°=100°,∴△ABC是钝角三角形.故选:C.【名师点拨】本题考查三角形内角和定理,关键是利用方程思想列出三个角的关系式.变式2-3.(2024·石家庄市期末)下面给出的四个三角形都有一部分被遮挡,其中不能确定三角形类型的是()A.B.C.D.【答案】A【提示】依据三角形按角分类的方法一一推断即可.【详解】视察图象可知:选项B,D的三角形是钝角三角形,选项C中的三角形是锐角三角形,选项A中的三角形无法判定三角形的类型.故选A.【名师点拨】本题考查了三角形的分类,解题的关键是娴熟驾驭基本学问,属于中考常考题型.考查题型三构成三角形的条件典例3.(2024·宜兴市期末)下列各组线段不能组成三角形的是 ( )A.4cm、4cm、5cm B.4cm、6cm、11cmC.4cm、5cm、6cm D.5cm、12cm、13cm【答案】B【提示】依据三角形的随意两边之和大于第三边对各选项提示推断后利用解除法求解.【详解】A 、4485+=>,∴445cm cm cm 、、能组成三角形,故本选项错误;B 、461011+=<,∴4611cm cm cm 、、不能组成三角形,故本选项正确;C 、5496+=>,∴456cm cm cm 、、能组成三角形,故本选项错误;D 、5121713+=>,∴51213cm cm cm 、、能组成三角形,故本选项错误.故选:B .【名师点拨】本题考查了三角形的三边关系,是基础题,熟记三边关系是解题的关键.变式3-1.(2024·太仓市)等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( )A .12B .15C .12或15D .18【答案】B【解析】试题提示:依据题意,要分状况探讨:①、3是腰;②、3是底.必需符合三角形三边的关系,随意两边之和大于第三边.解:①若3是腰,则另一腰也是3,底是6,但是3+3=6,∴不构成三角形,舍去.②若3是底,则腰是6,6.3+6>6,符合条件.成立.∴C=3+6+6=15.故选B .变式3-2.(2024·兰州市期末)等腰三角形的一边长为4,另一边长为9,则这个三角形的周长为( )A .22B .17C .13D .17或22【答案】A【提示】分4是腰长和底边两种状况探讨求解即可.【详解】解:4是腰长时,三角形的三边分别为4、4、9,∵4+4=8<9,∴不能组成三角形,4是底边时,三角形的三边分别为4、9、9,能组成三角形,周长=4+9+9=22,综上所述,该等腰三角形的周长为22.故选A .【名师点拨】本题主要考查了三角形三边关系,难点在于分状况探讨并利用三角形的三边关系推断是否能组成三角形.cm cm长的两根木棒首尾相接成一个三角形的变式3-3.(2024·哈尔滨市期中)下列长度的四根木棒中,能与49,是()A.4cm B.5cm C.9cm D.13cm【答案】C【提示】依据三角形三边关系:三角形随意两边之和大于第三边,逐一推断选项,即可.【详解】∵4+4<9,cm cm长的木棒首尾相接,不能组成三角形,∴4cm,49,∴A错误;∵5+4=9,cm cm长的木棒首尾相接,不能组成三角形,∴5cm,49,∴B错误;∵9+4>9,cm cm长的木棒能组成三角形,∴9cm,49,∴C正确;∵4+9=13,cm cm长的木棒,不能组成三角形,∴13cm,49,∴D错误;故选C.【名师点拨】本题主要考查三角形的三边关系,驾驭“三角形随意两边之和大于第三边”,是解题的关键.m-=,且m,n恰好是等腰△ABC的两条边的边长,变式3-4.(2024·濮阳市期末)若实数m,n满意20则△ABC的周长是( )A.12 B.8 C.10 D.10或8【答案】C【提示】依据非负数的性质求出,m n的值,依据等腰三角形的性质求解即可.m-=【详解】20m n∴==2,4,当三角形的腰长为2时,224+=,构不成三角形;++=.当三角形的腰长为4时,三角形的周长为:44210故答案选:C.【名师点拨】考查非负数的性质以及等腰三角形的性质,驾驭三角形的三边关系是解题的关键.考查题型四三角形第三边的取值范围典例4.(2024·三明市期末)已知三角形两边的长分别是3和7,则此三角形第三边的长可能是()A.1 B.2 C.8 D.11【答案】C【提示】依据三角形两边之和大于第三边,两边之差小于第三边可确定出第三边的范围,据此依据选项即可推断. 【详解】设第三边长为x,则有7-3<x<7+3,即4<x<10,视察只有C选项符合,故选 C.【名师点拨】本题考查了三角形三边的关系,娴熟驾驭三角形三边之间的关系是解题的关键.a的三条线段能组成一个三角形,则a的值可以是()变式4-1.(2024·龙岩市期中)若长度分别为,3,5A.1 B.2 C.3 D.8【答案】C【提示】依据三角形三边关系可得5﹣3<a<5+3,解不等式即可求解.【详解】由三角形三边关系定理得:5﹣3<a<5+3,即2<a<8,由此可得,符合条件的只有选项C,故选C.【名师点拨】本题考查了三角形三边关系,能依据三角形的三边关系定理得出5﹣3<a<5+3是解此题的关键,留意:三角形的两边之和大于第三边,三角形的两边之差小于第三边.变式4-2.(2024·齐齐哈尔市期末)已知三角形三边长分别为2,x,13,若x为正整数,则这样的三角形个数为A.2 B.3 C.5 D.13【答案】B【提示】依据“三角形两边之和大于第三边, 两边之差小于第三边”,可得x的取值范围,一一推断可得答案. 【详解】解:依据“三角形两边之和大于第三边, 两边之差小于第三边”可得:13-2<x<13+2,即11<x<15,因为取正整数,故x的取值为12、13、14,即这样的三角形共有3个.故本题正确答案为B.【名师点拨】本题主要考查构成三角形的三边的关系.变式4-3.(2024·广州市期中)一个三角形的两边长为3和8,第三边长为奇数,则第三边长为()A .5或7B .7或9C .7D .9【答案】B 【详解】依据三角形三边关系可得:5<第三边<11,依据第三边长为奇数,则第三边长为7或9.故选B.考查题型五 三角形三边关系的应用典例5.(2024·德州市期末)已知三角形的两边分别为1和4,第三边长为整数 ,则该三角形的周长为( )A .7B .8C .9D .10【答案】C【提示】依据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围;再依据第三边是整数,从而求得周长.【详解】设第三边为x ,依据三角形的三边关系,得:4-1<x <4+1,即3<x <5,∵x 为整数,∴x 的值为4.三角形的周长为1+4+4=9.故选C.【名师点拨】此题考查了三角形的三边关系.关键是正确确定第三边的取值范围.变式5-1.(2024·汕头市期中)已知a b c 、、是ABC ∆的三边长,化简a b c b a c +----的值是( )A .2c -B .22b c -C .22a c -D .22a b - 【答案】B【提示】依据三角形的三边关系“随意两边之和大于第三边,随意两边之差小于第三边”,得到a+b-c >0,b -a -c <0,再依据肯定值的性质进行化简计算.【详解】依据三角形的三边关系,得a+b-c>0,b -a -c <0.∴原式= a+b-c −(a +c −b)= 22b c -.故选择B 项.【名师点拨】本题考查三角形三边关系和肯定值,解题的关键是娴熟驾驭三角形三边关系.变式5-2.(2024·保定市期末)如图,为估计池塘岸边A ,B 的距离,小明在池塘的一侧选取一点O ,测得OA=15米,OB=10米,A ,B 间的距离可能是( )A.30米B.25米C.20米D.5米【答案】C【解析】设A,B间的距离为x.依据三角形的三边关系定理,得:15-10<x<15+10,解得:5<x<25,所以,A,B之间的距离可能是20m.故选C.变式5-3.(2024·滨州市期末)若(a﹣3)2+|b﹣6|=0,则以a、b为边长的等腰三角形的周长为()A.12 B.15 C.12或15 D.18【答案】B【提示】依据非负数的和为零,可得每个非负数同时为零,可得a、b的值,依据等腰三角形的判定,可得三角形的腰,依据三角形的周长公式,可得答案.【详解】由(a﹣3)2+|b﹣6|=0,得a﹣3=0,b﹣6=0.则以a、b为边长的等腰三角形的腰长为6,底边长为3,周长为6+6+3=15,故选B.【名师点拨】本题考查了非负数的性质,利用非负数的和为零得出每个非负数同时为零是解题关键.变式5-4.(2024·南开区期末)假如一等腰三角形的周长为27,且两边的差为12,则这个等腰三角形的腰长为()A.13 B.5 C.5或13 D.1【答案】A【详解】设等腰三角形的腰长为x,则底边长为x﹣12或x+12,当底边长为x﹣12时,依据题意,2x+x﹣12=27,解得x=13,∴腰长为13;当底边长为x+12时,依据题意,2x+x+12=27,解得x=5,因为5+5<17,所以构不成三角形,故这个等腰三角形的腰的长为13,故选A.考查题型六三角形的稳定性典例6.(2024·路北区期中)下列图形具有稳定性的是()A.B.C.D.【答案】A【提示】依据三角形具有稳定性,四边形具有不稳定性进行推断即可得.【详解】A、具有稳定性,符合题意;B、不具有稳定性,故不符合题意;C、不具有稳定性,故不符合题意;D、不具有稳定性,故不符合题意,故选A.【名师点拨】本题考查了三角形的稳定性和四边形的不稳定性,正确驾驭三角形的性质是解题关键.变式6-1.(2024·乌鲁木齐市期末)为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条,这样做的道理是()A.两点之间,线段最短B.垂线段最短C.三角形具有稳定性D.两直线平行,内错角相等【答案】C【解析】试题提示:三角形具有稳定性,其它多边形不具有稳定性,把多边形分割成三角形则多边形的形态就不会变更.解:这样做的道理是三角形具有稳定性.故选:C.变式6-2.(2024·安阳市期末)王师傅用4根木条钉成一个四边形木架,如图.要使这个木架不变形,他至少还要再钉上几根木条?().A.0根B.1根C.2根D.3根【答案】B【解析】三角形具有稳定性,连接一条对角线,即可得到两个三角形,故选B变式6-3.(2024·济南市期末)如图,窗户打开后,用窗钩AB可将其固定,其所运用的几何原理是()A.三角形的稳定性B.垂线段最短C.两点确定一条直线D.两点之间,线段最短【答案】A【提示】依据点A、B、O组成一个三角形,利用三角形的稳定性解答.【详解】解:一扇窗户打开后,用窗钩将其固定,正好形成三角形的形态,所以,主要运用的几何原理是三角形的稳定性.故答案选A.【名师点拨】本题考查三角形稳定性的实际应用.三角形的稳定性在实际生活中有着广泛的应用.变式6-4.(2024·深圳市期末)如图,工人师傅砌门时,常用木条EF固定长方形门框ABCD,使其不变形,这样做的依据是( )A.两点之间的线段最短B.长方形的四个角都是直角C.三角形有稳定性D.长方形是轴对称图形【答案】C【详解】用木条EF固定长方形门框ABCD,使其不变形的依据是三角形具有稳定性.故选:C.【名师点拨】本题考查了三角形具有稳定性在实际生活中的应用,是基础题.变式6-5.(2024·抚顺市期中)人字梯中间一般会设计一“拉杆”,这样做的道理是()A.两点之间,线段最短B.垂线段最短C.两直线平行,内错角相等D.三角形具有稳定性【答案】D【提示】依据三角形的稳定性解答即可.【详解】解:人字梯中间一般会设计一“拉杆”,是为了形成三角形,利用三角形具有稳定性来增加其稳定性,故选:D.【名师点拨】此题考查三角形的性质,关键是依据三角形的稳定性解答.。

初二数学上三角形(题目有分类)38509

初二数学上三角形(题目有分类)38509

方向教育《三角形》一.知识框架1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边.3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高.4.中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性.7.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.8.多边形的内角:多边形相邻两边组成的角叫做它的内角.9.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角.10.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.11.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形. 12.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面13.公式与性质:⑴三角形的内角和:三角形的内角和为180°⑵三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和.性质2:三角形的一个外角大于任何一个和它不相邻的内角.考点一:三角形的分类例题1:具备下列条件的三角形中,不是直角三角形的是()。

A:∠A+∠B=∠C B:∠A=∠B= ∠C C:∠A=90°-∠B D:∠A-∠B=90例题2:等腰三角形一腰上的高与另一腰的夹角为30°则顶角的度数为()A.60° B.120° C.60°或150° D.60°或120°考点二:三角形三边的关系例题1:已知:如图1,△ABC中,D是AB上除顶点外的一点.,求证:AB+AC>DB+DC;例题2:现有两根木棒,它们的长分别是40cm和50cm,若要钉成一个三角形木架,则在下列四根木棒中应选取长为()A.100cm的木棒B.90cm的木棒C.40cm的木棒D.10cm的木棒练习:1. 下列长度的三条线段能组成三角形的是()A、 3,4,8B、 5,6,11C、 1,2,3D、 5,6,102. 一个等腰三角形的两条边长分别为8㎝和3㎝,那么它的周长为_____ .考点三:三角形的中线的性质考点四:三角形的稳定性三角形的三边确定了,那么它的形状、大小都确定了,三角形的这个性质就叫做三角形的稳定性.例如起重机的支架采用三角形结构就是这个道理.练习:1.不是利用三角形稳定性的是( )A、自行车的三角形车架B、三角形房架C、照相机的三角架D、矩形门框的斜拉条2.下列图形中具有稳定性的有()A 、正方形 B、长方形 C、梯形 D、直角三角形考点五:三角形的外角与不相邻的内角的关系例题1:如图,已知点P在△ABC内任一点,试说明∠A与∠P的大小关系。

初二上三角形练习题含答案

初二上三角形练习题含答案1. 已知一个三角形的两边长分别为5cm和8cm,夹角为60度,求第三边的长度。

解答:根据余弦定理,三角形的第三边的长度可以通过以下公式计算:c² = a² + b² - 2abcosC其中,c为第三边的长度,a和b分别为已知的两边的长度,C为夹角的度数。

代入已知数据,得到c² = 5² + 8² - 2*5*8cos60°计算得:c² = 25 + 64 - 80*0.5 = 49取平方根,得到c≈7所以,第三边的长度约为7cm。

2. 已知一个等边三角形的周长为36cm,求三角形的面积。

解答:等边三角形的三条边的长度相等,假设为a。

周长为36cm,所以3a = 36,解方程可得a = 12。

根据等边三角形的性质,三角形的高、中线、角平分线均相等。

由于等边三角形的高等于边长的sin60°,而sin60°=√3/2,所以三角形的高等于a*sin60° = 12*√3/2 cm。

三角形的面积可以通过以下公式计算:S = (底边长度 * 高) / 2 = a * a*sin60° / 2 = 12*12*√3/2 / 2 = 36√3 cm²。

所以,等边三角形的面积为36√3 cm²。

3. 已知一个直角三角形的斜边长为10cm,一条直角边长为8cm,求另一条直角边的长度。

解答:根据勾股定理,直角三角形的两个直角边的平方和等于斜边的平方。

设另一条直角边的长度为b,则8² + b² = 10²计算得:64 + b² = 100解方程可得:b² = 100 - 64 = 36取平方根,得到b = √36 = 6所以,另一条直角边的长度为6cm。

4. 已知一个钝角三角形的两边长分别为7cm和9cm,夹角为135度,求另一条边的长度。

(完整)人教版八年级上册数学三角形练习题

人教版八年级上册数学三角形练习题一.选择题1.以下列各组线段为边,能组成三角形的是 A.3cm,4cm,5cm B.4cm,6cm,10cm C.1cm,1cm,3cm D.3cm,4cm,9cm2.等腰三角形的一边长等于4,一边长等于9,则它的周长是 A.1 B.1C.17或2 D.22图6、一个三角形的两边分别为3和8,第三边长是一个偶数,则第三边的长不能为456789123、如图3,∠1,∠2,∠3是△ABC的三个外角,则∠1+∠2+∠34.要使五边形木架不变形,至少要再钉根木条。

、一个多边形的内角和的度数是外角和的2倍,这个多边形是。

16、如图6,△ABC中,∠A=36°,BE平分∠ABC, CE 平分∠ACD,∠E=________.、在△ABC 中,∠A=100°,∠B=3∠C,则∠B=________.、如图8,△ABC 中,∠A=35°,∠C=60°,BD平分∠ABC,DE∥BC交AB 于E,则∠BDE=______.9、一个多边形截去一个角后,所形成的一个新多边形的内角和为2520°,则原多边形边数是图8CADCFA2005.如图,在△ABC中,AD⊥BC于D,AE平分∠DAC,∠BAC=80,∠B=60;求∠AEC的度数.D E6BE和CF7、101112.A.3B.C.5D..下面四个图形中,线段BE是⊿ABC 的高的图是3.已知三角形的两边长分别为4cm和9cm,则下列长度的四条线段中能作为第三边的是 A.13cmB.6cmC.5cmD.4cm4.三角形一个外角小于与它相邻的内角,这个三角形是 A.直角三角形 B.锐角三角形 C.钝角三角形 D.属于哪一类不能确定.如图,在直角三角形ABC中,AC≠AB,AD是斜边上的高,DE⊥AC,DF⊥AB,垂足分别为E、F,则图中与∠C 相等的角的个数是A、3个 B、4个 C、5个 D、6个6.如图,将一副三角板叠放在一起,使直角的顶点重合于O,则∠AOC+∠DOB=A、90B、120C、160D、180第5题图第6题图7.以长为13cm、10cm、5cm、7cm的四条线段中的三条线段为边,可以画出三角形的个数是1个2个3个4个8.给出下列命题:①三条线段组成的图形叫三角形②三角形相邻两边组成的角叫三角形的内角③三角形的角平分线是射线④三角形的高所在的直线交于一点,这一点不在三角形内就在三角形外⑤任何一个三角形都有三条高、三条中线、三条角平分线⑥三角形的三条角平分线交于一点,且这点在三角形内。

人教版八年级数学上册《三角形基础分类》专项练习题-附含答案

人教版八年级数学上册《三角形基础分类》专项练习题-附含答案1.在三角形中一定能将其面积分成相等两部分的是()A.中线B.高线C.角平分线D.某一边的垂直平分线【答案】A【解答】解:根据同底等高的两个三角形面积相等可知在三角形中三角形的中线一定能将其面积分成相等两部分故选:A.2.如图为估计池塘岸边A、B的距离小方在池塘的一侧选取一点O测得OA=17米OB=9米A、B间的距离不可能是()A.23米B.8米C.10米D.18米【答案】B【解答】解:∵OA=17米OB=9米∴17﹣9<AB<17+9即:8<AB<26故选:B3.如果一个三角形的三条高的交点恰是三角形的一个顶点那么这个三角形是()A.锐角三角形B.钝角三角形C.直角三角形D.不能确定【答案】C【解答】解:A、锐角三角形三条高线交点在三角形内故错误;B、钝角三角形三条高线不会交于一个顶点故错误;C、直角三角形的直角所在的顶点正好是三条高线的交点可以得出这个三角形是直角三角形故正确;D、能确定C正确故错误.故选:C.4.如图AD是△ABC的中线已知△ABD的周长为25cm AB比AC长6cm则△ACD的周长为()A.19cm B.22cm C.25cm D.31cm 【答案】A【解答】解:∵AD是BC边上的中线∴BD=CD∴△ABD和△ACD周长的差=(AB+BD+AD)﹣(AC+AD+CD)=AB﹣AC ∵△ABD的周长为25cm AB比AC长6cm∴△ACD周长为:25﹣6=19cm.故选:A.5.在△ABC中AB=3 AC=2 BC=a a的值可能是()A.1B.3C.5D.7【答案】B【解答】解:∵△ABC中AB=3 AC=2 BC=a∴1<a<5∴B符合故选:B.6.下列长度的三条线段能组成三角形的是()A.3cm5cm7cm B.3cm3cm7cmC.4cm4cm8cm D.4cm5cm9cm【答案】A【解答】解:A.∵A3+5=8>7∴能组成三角形符合题意;B.∵3+3<7∴不能组成三角形不符合题意;C.∵4+4=8∴不能组成三角形不符合题意;D.∵4+5=9∴不能组成三角形不符合题意.故选:A.7.如图所示四个图形中线段BE能表示三角形ABC的高的是()A.B.C.D.【答案】B【解答】解:由题意线段BE能表示三角形ABC的高时BE⊥AC于E.A选项中BE与AC不垂直;C选项中BE与AC不垂直;D选项中BE与AC不垂直;∴线段BE是△ABC的高的图是B选项.故选:B.8.如图已知△ABC中点D、E分别是边BC、AB的中点.若△ABC的面积等于8 则△BDE的面积等于()A.2B.3C.4D.5【答案】A【解答】解:∵点D是边BC的中点△ABC的面积等于8∴S△ABD=S△ABC=4∵E是AB的中点∴S△BDE=S△ABD=4=2故选:A.9.若△ABC的三边长分别为m﹣2 2m+1 8.(1)求m的取值范围;(2)若△ABC的三边均为整数求△ABC的周长.【解答】解:(1)根据三角形的三边关系解得:3<m<5;(2)因为△ABC的三边均为整数且3<m<5 所以m=4.所以△ABC的周长为:(m﹣2)+(2m+1)+8=3m+7=3×4+7=19.10.若三角形三个内角度数比为2:3:4 则这个三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定【答案】A【解答】解:设三个内角度数为2x、3x、4x由三角形内角和定理得2x+3x+4x=180°解得x=20°则三个内角度数为40°、60°、80°则这个三角形一定是锐角三角形故选:A.11.如图直线a∥b在Rt△ABC中点C在直线a上若∠1=58°∠2=24°则∠A的度数为()A.56°B.34°C.36°D.24°【答案】B【解答】解:如图∵∠1=54°a∥b∴∠3=∠1=58°.∵∠2=24°∠A=∠3﹣∠2∴∠A=58°﹣24°=34°.故选:B.12.如图将一副直角三角板按如图所示叠放其中∠C=90°∠B=45°∠E=30°则∠BFD的大小是()A.10°B.15°C.25°D.30°【答案】B【解答】解:∵∠B=45°∴∠BAC=45°∴∠EAF=135°∴∠AFD=135°+30°=165°∴∠BFD=180°﹣∠AFD=15°故选:B.13.如图在△ABC中∠A=70°∠B=60°∠ACD是△ABC的一个外角∠ACD的度数为()A.50°B.60°C.70°D.130°【答案】D【解答】解:∵△ABC中∠A=70°∠B=60°∴∠ACB=180°﹣70°﹣60°=50°∴∠ACD=180°﹣50°=130°故选:D.14.如图已知△ABC为直角三角形∠C=90°若沿图中虚线剪去∠C则∠1+∠2等于()A.90°B.135°C.270°D.315°【答案】C【解答】解:∵四边形的内角和为360°直角三角形中两个锐角和为90°∴∠1+∠2=360°﹣(∠A+∠B)=360°﹣90°=270°.故选:C.15.如图直线AB∥CD如果∠EFB=31°∠END=70°那么∠E的度数是()A.31°B.40°C.39°D.70°【答案】C【解答】解:∵直线AB∥CD∴∠EMB=∠END=70°∵∠EFB=31°∠EMB=∠E+∠EFB∴∠E=70°﹣31°=39°故选:C.16.如图在△ABC中∠BCA=40°∠ABC=60°.若BF是△ABC的高与角平分线AE相交于点O 则∠EOF的度数为()A.130°B.70°C.110D.100°【答案】A【解答】解:∵∠BCA=40°∠ABC=60°∴∠BAC=180°﹣∠BCA﹣∠ABC=180°﹣40°﹣60°=80°.∵AE是∠BAC的平分线∴∠EAC=∠BAC=40°.∵BF是△ABC的高∴∠BF A=90°.∴∠AOF=90°﹣∠EAC=90°﹣40°=50°.∴∠EOF=180°﹣∠AOF=180°﹣50°=130°.故选:A.17.如图已知△ABC的外角∠CAD=120°∠C=80°则∠B的度数是()A.30°B.40°C.50°D.60°【答案】B【解答】解:∵∠CAD=∠B+∠C∠CAD=120°∠C=80°∴∠B=∠CAD﹣∠C=120°﹣80°=40°故选:B18.如图在△ABC中AD是BC边上的高AE BF分别是∠BAC∠ABC的平分线.∠BAC=50°∠ABC=60°.则∠DAE+∠ACD等于()A.75°B.80°C.85°D.90°【答案】A【解答】解:∵AD是BC边上的高∠ABC=60°∴∠BAD=30°∵∠BAC=50°AE平分∠BAC∴∠BAE=25°∴∠DAE=30°﹣25°=5°∵△ABC中∠C=180°﹣∠ABC﹣∠BAC=70°∴∠EAD+∠ACD=5°+70°=75°.故选:A.19.已知直线a∥b Rt△DCB按如图所示的方式放置点C在直线b上∠DCB=90°若∠B=20°则∠1+∠2的度数为()A.90°B.70°C.60°D.45°【答案】B【解答】解:如图延长BD交直线b于点M.∵∠DCB=90°∠B=20°∴∠BDC=90°﹣20°=70°∵a∥b∴∠1=∠BMC∵∠BDC=∠DMC+∠2=∠1+∠2∴∠1+∠2=70°故选:B20.如图在△ABC中∠A=50°∠1=30°∠2=40°∠D的度数是()A.110°B.120°C.130°D.140°【答案】B【解答】解:∴∠A=50°∴∠ABC+∠ACB=180°﹣50°=130°∴∠DBC+∠DCB=∠ABC+∠ACB﹣∠1﹣∠2=130°﹣30°﹣40°=60°∴∠BDC=180°﹣(∠DBC+∠DCB)=120°故选:B.21.如图将△ABC沿MN折叠使MN∥BC点A的对应点为点A' 若∠A'=32°∠B=112°则∠A'NC的度数是()A.114°B.112°C.110°D.108°【答案】D【解答】解:∵MN∥BC∴∠MNC+∠C=180°又∵∠A+∠B+∠C=180°∠A=∠A′=32°∠B=112°∴∠C=36°∠MNC=144°.由折叠的性质可知:∠A′NM+∠MNC=180°∴∠A′NM=36°∴∠A′NC=∠MNC﹣∠A′NM=144°﹣36°=108°.故选:D.22.已知:如图点D、E、F、G都在△ABC的边上DE∥AC且∠1+∠2=180°(1)求证:AD∥FG;(2)若DE平分∠ADB∠C=40°求∠BFG的度数.【解答】证明:(1)∵DE∥AC∴∠2=∠DAC∵∠l+∠2=180°∴∠1+∠DAC=180°∴AD∥GF(2)∵ED∥AC∴∠EDB=∠C=40°∵ED平分∠ADB∴∠2=∠EDB=40°∴∠ADB=80°∵AD∥FG∴∠BFG=∠ADB=80°23.在△ABC中CD平分∠ACB交AB于点D AH是△ABC边BC上的高且∠ACB=70°∠ADC=80°求:(1)∠BAC的度数.(2)∠BAH的度数.【解答】解:(1)∵CD平分∠ACB∠ACB=70°∴∠ACD=∠ACB=35°∵∠ADC=80°∴∠BAC=180°﹣∠ACD﹣∠ADC=180°﹣35°﹣80°=65°;(2)由(1)知∠BAC=65°∵AH⊥BC∴∠AHC=90°∴∠HAC=90°﹣∠ACB=90°﹣70°=20°∴∠BAH=∠BAC﹣∠HAC=65°﹣20°=45°.24.如图在△ABC中点E在AC上点F在AB上点G在BC上且EF∥CD∠1+∠2=180°.(1)求证:GD∥CA;(2)若CD平分∠ACB DG平分∠CDB且∠A=40°求∠ACB的度数.【解答】证明:(1)∵EF∥CD∴∠1+∠3=180°.∵∠1+∠2=180°∴∠2=∠3.∴AC∥GD.(2)∵CD平分∠ACB DG平分∠CDB∴∠3=∠ACB∠2=∠GDB=∠CDB.∵∠CDB=∠A+∠3 ∠2=∠3∴2∠3=∠A+∠3.∴∠3=∠A=40°.∴∠ACB=80°.25.如图在△ABC中∠B=31°∠C=55°AD⊥BC于D AE平分∠BAC交BC于E DF⊥AE于F求∠ADF的度数.【解答】解:∵∠B=31°∠C=55°∴∠BAC=94°∵AE平分∠BAC∴∠BAE=∠BAC=47°∴∠AED=∠B+∠BAE=31°+47°=78°∵AD⊥BC DF⊥AE∴∠EFD=∠ADE=90°∴∠AED+∠EDF=∠EDF+∠ADF∴∠ADF=∠AED=78°.26.如图在△ABC中AD平分∠BAC AE⊥BC若∠BAD=40°∠C=70°求∠DAE的度数.【解答】解:∵AD平分∠BAC∴∠BAC=2∠BAD=80°∵∠C=70°∴∠B=180°﹣∠BAC﹣∠C=180°﹣70°﹣80°=30°∴∠ADE=∠B+∠BAD=30°+40°=70°∵AE⊥BC∴∠AEB=90°∴∠DAE=90°﹣∠ADE=90°﹣70°=20°.27.一个正多边形它的一个内角恰好是一个外角的3倍则这个正多边形是()A.正十二边形B.正十边形C.正八边形D.正六边形【答案】C【解答】解:设这个正多边的一个外角为x°由题意得:x+3x=180解得:x=45360°÷45°=8.故选:C.28.若一个多边形的内角和等于1800°这个多边形的边数是()A.6B.8C.10D.12【答案】D【解答】解:设这个多边形是n边形根据题意得(n﹣2)×180=1800解得n=12∴这个多边形是12边形.故选:D.29.如图足球图片中的一块黑色皮块的内角和是()A.720°B.540°C.360°D.180°【答案】B【解答】解:∵黑色皮块是正五边形∴黑色皮块的内角和是(5﹣2)×180°=540°.故选:B.30.如图已知∠1+∠2+∠3=240°那么∠4的度数为()A.60°B.120°C.130°D.150°【答案】B【解答】解:∵∠1+∠2+∠3+∠4=360°∠1+∠2+∠3=240°∴∠4=360°﹣(∠1+∠2+∠3)=360°﹣240°=120°故选:B.31.若一个正多边形的每个内角都是120°则这个正多边形是()A.正六边形B.正七边形C.正八边形D.正九边形【答案】A【解答】解:解法一:设所求正多边形边数为n则120°n=(n﹣2)•180°解得n=6 ∴这个正多边形是正六边形.解法二:∵正多边形的每个内角都等于120°∴正多边形的每个外角都等于180°﹣120°=60°又∵多边形的外角和为360°∴这个正多边形边数=360°÷60°=6.故选:A.32.小丽利用最近学习的数学知识给同伴出了这样一道题:假如从点A出发沿直线走6米后向左转θ接着沿直线前进6米后再向左转θ……如此下法当他第一次回到A点时发现自己走了72米θ的度数为()A.28°B.30°C.33°D.36°【答案】B【解答】解:∵第一次回到出发点A时所经过的路线正好构成一个正多边形∴多边形的边数为:72÷6=12.根据多边形的外角和为360°∴他每次转过的角度θ=360°÷12=30°.故选:B.33.将正六边形与正五边形按如图所示方式摆放公共顶点为O且正六边形的边AB与正五边形的边DE 在同一条直线上则∠COF的度数是()A.74°B.76°C.84°D.86°【答案】C【解答】解:由题意得:∠EOF=108°∠BOC=120°∠OEB=72°∠OBE=60°∴∠BOE=180°﹣72°﹣60°=48°∴∠COF=360°﹣108°﹣48°﹣120°=84°故选:C.34.小明把一副含45°30°的直角三角板如图摆放其中∠C=∠F=90°∠A=45°∠D=30°则∠α+∠β等于()A.280°B.285°C.290°D.295°【答案】B【解答】解:∵∠C=∠F=90°∠A=45°∠D=30°∴∠2+∠3=180°﹣∠D=150°∵∠α=∠1+∠A∠β=∠4+∠C∵∠1=∠2 ∠3=∠4∴∠α+∠β=∠A+∠1+∠4+∠C=∠A+∠C+∠2+∠3=45°+90°+150°=285°故选:B.35.如图若干全等正五边形排成环状.图中所示的是前3个五边形要完成这一圆环还需()个五边形.A.6B.7C.8D.9【答案】B【解答】解:五边形的内角和为(5﹣2)×180°=540°所以正五边形的每一个内角为540°÷5=108°如图延长正五边形的两边相交于点O则∠1=360°﹣108°×3=360°﹣324°=36°360°÷36°=10∵已经有3个五边形∴10﹣3=7即完成这一圆环还需7个五边形.故选:B.36.一个多边形它的内角和比外角和的4倍多180°求这个多边形的边数.【解答】解:根据题意得(n﹣2)•180=1620解得:n=11.则这个多边形的边数是11 内角和度数是1620度.。

八上数学 专题一 三角形基础(内含答案详解)

八上数学专题一三角形基础一.填空题(共24小题)1.已知△ABC的两条边长分别为2和5,则第三边c的取值范围是.2.若三角形的三边长分别为3,4,x﹣1,则x的取值范围是.3.已知△ABC的三边长a、b、c,化简|a+b﹣c|﹣|b﹣a﹣c|的结果是.4.如图,BD是△ABC的中线,AB=8,BC=6,△ABD和△BCD的周长的差是.5.三角形两边长分别是2,4,第三边长为偶数,第三边长为.6.AE是△ABC的角平分线,AD⊥BC于点D,若∠BAC=130°,∠C=30°,则∠DAE 的度数是.7.△ABC中,下列说法正确的有(填序号)①三条角平分线的交点到三边的距离相等;②三条中线的交点到三边的距离相等;③三条中垂线的交点到三顶点的距离相等;④三边的高的交点一定在三角形的内部.8.若一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是.9.已知如图△ABC中,AD为BC边上的中线,AB=6cm,AC=8cm,则△ABD与△ACD的周长之差为,面积之差为.10.如图.小明的父亲在院子的门板上钉了一个加固板,从数学的角度看,这样做的原因是三角形的具有.11.如图,点E在△ABC边BC的延长线上,CD平分∠ACE,若∠A=70°,∠DCA=65°,则∠B的度数是.12.如果将一副三角板按如图方式叠放,那么∠1=.13.在直角△ABC中,∠C=90°,沿图中虚线剪去∠C,则∠1+∠2=.14.三角形的三个内角的度数比是1:1:2.则最大内角的度数是.15.如图,是一个不规则的五角星,则∠A+∠B+∠C+∠D+∠E=.(用度数表示)16.如图,在△ABC中,∠ABC和∠ACB的平分线交于点O,若∠A=80°,则∠BOC=.17.在△ABC中,∠C=∠A=∠B,则∠A=度.18.将一副三角尺按如图所示的方式叠放(两条直角边重合),则∠α的度数是.19.在下列条件中:①∠A+∠B=∠C,②∠A:∠B:∠C=1:2:3,③∠A=90°﹣∠B,④∠A=∠B=∠C中,能确定△ABC是直角三角形的条件有(填序号)20.在Rt△ABC中,锐角∠A=35°,则另一个锐角∠B=.21.若直角三角形的两个锐角之差为34°,则此三角形较小锐角的度数为.22.一个多边形的内角和是720°,则它是边形.23.一个多边形的每一个外角为30°,那么这个多边形的边数为.24.一个正多边形的内角是外角的2倍,则这个正多边形是边形.二.解答题(共4小题)25.如图,BG∥EF,△ABC的顶点C在EF上,AD=BD,∠A=23°,∠BCE=44°,求∠ACB的度数.26.如图,A,B分别为CD,CE的中点,AE⊥CD于点A,BD⊥CE于点B.求∠AEC的度数.27.如图,在△ABC中,∠C=90°,外角∠EAB,∠ABF的平分线AD、BD相交于点D,求∠D的度数.28.如图所示,求∠A+∠B+∠C+∠D+∠E+∠F.八上数学专题一三角形基础参考答案与试题解析一.填空题(共24小题)1.已知△ABC的两条边长分别为2和5,则第三边c的取值范围是3<c<7.【分析】根据三角形三边关系定理可得5﹣2<c<5+2,进而求解即可.【解答】解:由题意,得5﹣2<c<5+2,即3<c<7.故答案为:3<c<7.【点评】此题主要考查了三角形的三边关系,关键是掌握三角形三边关系定理:三角形两边之和大于第三边.2.若三角形的三边长分别为3,4,x﹣1,则x的取值范围是2<x<8.【分析】根据三角形三边关系:“任意两边之和大于第三边,任意两边之差小于第三边”即可求x的取值范围.【解答】解:由三角形三边关系定理得:4﹣3<x﹣1<4+3,解得:2<x<8,即x的取值范围是2<x<8.故答案为:2<x<8.【点评】此类求范围的问题,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可.3.已知△ABC的三边长a、b、c,化简|a+b﹣c|﹣|b﹣a﹣c|的结果是2(b﹣c).【分析】先根据三角形三边关系判断出a+b﹣c与b﹣a﹣c的符号,再把要求的式子进行化简,即可得出答案.【解答】解:∵△ABC的三边长分别是a、b、c,∴a+b>c,b﹣a<c,∴a+b﹣c>0,b﹣a﹣c<0,∴|a+b﹣c|﹣|b﹣a﹣c|=a+b﹣c﹣(﹣b+a+c)=a+b﹣c+b﹣a﹣c=2(b﹣c);故答案为:2(b﹣c)【点评】此题考查了三角形三边关系,用到的知识点是三角形的三边关系、绝对值、整式的加减,关键是根据三角形的三边关系判断出a+b﹣c与,b﹣a﹣c的符号.4.如图,BD是△ABC的中线,AB=8,BC=6,△ABD和△BCD的周长的差是2.【分析】根据三角形中线的定义可得AD=CD,然后求出△ABD和△BCD的周长差=AB﹣BC,代入数据进行计算即可得解.【解答】解:∵BD是△ABC的中线,∴AD=CD,∴△ABD和△BCD的周长差=(AB+AD+BD)﹣(BC+CD+BD),=AB+AD+BD﹣BC﹣CD﹣BD,=AB﹣BC,∵AB=8,BC=6,∴△ABD和△BCD的周长差=8﹣6=2.答:△ABD和△BCD的周长差为2.故答案为:2【点评】本题考查了三角形的中线的定义,是基础题,数据概念并求出△ABD和△BCD的周长差=AB﹣BC是解题的关键.5.三角形两边长分别是2,4,第三边长为偶数,第三边长为4.【分析】利用三角形三边关系定理,先确定第三边的范围,进而就可以求出第三边的长.【解答】解:设第三边为a,根据三角形的三边关系知,4﹣2<a<4+2.即2<a<6,由周长为偶数,则a为4.故答案为:4.【点评】此题主要考查了三角形三边关系,要注意三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边.6.AE是△ABC的角平分线,AD⊥BC于点D,若∠BAC=130°,∠C=30°,则∠DAE 的度数是5°.【分析】根据角平分线的定义求出∠CAE,再根据直角三角形两锐角互余求出∠CAD,然后根据∠DAE=∠CAE﹣∠CAD计算即可得解.【解答】解:∵AE是△ABC的角平分线,∴∠CAE=∠BAC=×130°=65°,∵AD⊥BC于点D,∴∠CAD=90°﹣30°=60°,∴∠DAE=∠CAE﹣∠CAD=65°﹣60°=5°.故答案为:5°.【点评】本题考查了三角形的角平分线、中线和高线,熟记概念是解题的关键.7.△ABC中,下列说法正确的有①③(填序号)①三条角平分线的交点到三边的距离相等;②三条中线的交点到三边的距离相等;③三条中垂线的交点到三顶点的距离相等;④三边的高的交点一定在三角形的内部.【分析】根据角平分线上的点到角的两边距离相等,线段垂直平分线上的点到两端点的距离相等,三角形的高的交点的位置对各小题分析判断即可得解.【解答】解:①三条角平分线的交点到三边的距离相等,正确;②三条中线的交点到三边的距离相等,错误;③三条中垂线的交点到三顶点的距离相等,正确;④三边的高的交点一定在三角形的内部,错误,只有锐角三角形的高的交点在三角形的内部;综上所述,说法正确的是①③.故答案为:①③.【点评】本题考查了三角形的角平分线、中线和高,是基础题,熟记概念与与性质是解题的关键.8.若一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是直角三角形.【分析】作出一个直角三角形的高线进行判断,就可以得到.【解答】解:因为直角三角形的直角所在的顶点正好是三条高线的交点,所以可以得出这个三角形是直角三角形.故答案为:直角三角形.【点评】本题主要考查三角形的高的概念,属于基础题型.注意:锐角三角形的三条高在三角形内部,相交于三角形内一点;直角三角形有两条高与直角边重合,另一条高在三角形内部,它们的交点是直角顶点;钝角三角形有两条高在三角形外部,一条高在三角形内部,三条高所在直线相交于三角形外一点.9.已知如图△ABC中,AD为BC边上的中线,AB=6cm,AC=8cm,则△ABD与△ACD的周长之差为2cm,面积之差为0cm2.【分析】利用中线的定义可知BD=CD,可知△ABD和△ACD的周长之差即为AB 和AC的差,可求得答案.【解答】解:∵AD是△ABC的中线,∴BD=CD,∵△ABD周长=AB+AD+BD,△ACD周长=AC+CD+AD,∵△ACD周长﹣△ABD周长=(AC+CD+AD)﹣(AB+BD+AD)=AC﹣AB=8﹣6=2,即△BCD和△ACD的周长之差是2cm;∵AD为中线,∴△ABD面积=△ACD面积,∴△ABD与△ACD的面积之差为0cm2,故答案为:2cm;0cm2【点评】本题主要考查三角形中线的性质,由条件得出两三角形的周长之差即为AB和AC的差是解题的关键.10.如图.小明的父亲在院子的门板上钉了一个加固板,从数学的角度看,这样做的原因是三角形的具有稳定性.【分析】此题根据题目的意思,钉了一个加固板,即分割成了三角形,故利用了三角形的稳定性.【解答】解:这样做的原因是:利用三角形的稳定性使门板不变形,故答案为:稳定性【点评】本题考查三角形稳定性的实际应用.三角形的稳定性在实际生活中有着广泛的应用,如钢架桥、房屋架梁等,因此要使一些图形具有稳定的结构,往往通过连接辅助线转化为三角形而获得.11.如图,点E在△ABC边BC的延长线上,CD平分∠ACE,若∠A=70°,∠DCA=65°,则∠B的度数是60°.【分析】先根据CD平分∠ACE,∠DCA=65°,可得∠ACE=2∠DCA=130°,再根据三角形外角性质,即可得出∠B的度数.【解答】解:∵CD平分∠ACE,∠DCA=65°,∴∠ACE=2∠DCA=130°,又∵∠A=70°,∴∠B=130°﹣70°=60°,故答案为:60°.【点评】本题主要考查了三角形内角和定理,以及三角形的外角的性质,关键是掌握三角形的一个外角等于和它不相邻的两个内角的和.12.如果将一副三角板按如图方式叠放,那么∠1=105°.【分析】由三角形的内角和为180°即可得出∠2+∠3+45°=180°结合∠2=30°即可求出∠3的度数,再由∠1和∠3为对顶角即可得出∠1的度数.【解答】解:给图中角标上序号,如图所示.∵∠2+∠3+45°=180°,∠2=30°,∴∠3=180°﹣30°﹣45°=105°,∴∠1=∠3=105°.故答案为:105°.【点评】本题考查了三角形内角和定理,解题的关键是利用三角形的内角和为180°求出∠3的度数.本题属于基础题,难度不大,解决该题型题目时,根据三角形的内角和以及另外两角的度数求出第三个角的度数是关键.13.在直角△ABC中,∠C=90°,沿图中虚线剪去∠C,则∠1+∠2=270°.【分析】首先根据三角形的内角和定理求得∠A与∠B的度数的和,然后利用四边形的内角和定理即可求解.【解答】解:∵∠A+∠B+∠C=180°,∴∠A+∠B=180°﹣∠C=90°,∵∠1+∠2+∠A+∠B=360°,∴∠1+∠2=360°﹣90°=270°.故答案是:270°.【点评】本题考查了三角形的内角和定理以及四边形的内角和定理,正确理解定理是关键.14.三角形的三个内角的度数比是1:1:2.则最大内角的度数是90°.【分析】三角形的内角和为180°,进一步直接利用按比例分配求得份数最大的角即可.【解答】解:最大内角的度数为:180°×=90°,故答案为:90°.【点评】此题主要利用三角形的内角和与按比例分配来解答问题.解题时注意:三角形内角和是180°.15.如图,是一个不规则的五角星,则∠A+∠B+∠C+∠D+∠E=180°.(用度数表示)【分析】根据三角形外角性质,可得∠1=∠C+∠2,∠2=∠A+∠D,那么有∠1=∠C+∠A+∠D,再根据三角形内角和定理有∠1+∠B+∠E=180°,从而易求∠A+∠B+∠C+∠D+∠E=180°.【解答】解:如右图所示,∵∠1=∠C+∠2,∠2=∠A+∠D,∴∠1=∠C+∠A+∠D,又∵∠1+∠B+∠E=180°,∴∠A+∠B+∠C+∠D+∠E=180°.故答案是:180°.【点评】本题考查了三角形内角和定理、三角形外角的性质.三角形的外角等于和它不相邻的两个内角的和.16.如图,在△ABC中,∠ABC和∠ACB的平分线交于点O,若∠A=80°,则∠BOC=130°.【分析】先根据三角形内角和定理求出∠ABC+∠ACB的度数,再由角平分线的性质得出∠OBC+∠OCB的度数,由三角形内角和定理即可得出结论.【解答】解:∵在△ABC中,∠A=80°,∴∠ABC+∠ACB=180°﹣80°=100°,∵∠ABC和∠ACB的平分线交于O点,∴∠OBC+∠OCB=(∠ABC+∠ACB)=×100°=50°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣50°=130°.故答案为:130°.【点评】本题考查的是三角形内角和定理,熟知三角形的内角和等于180°是解答此题的关键.17.在△ABC中,∠C=∠A=∠B,则∠A=60度.【分析】设∠C=α,则∠B=3α,∠A=2α,依据∠A+∠B+∠C=180°,可得2α+3α+α=180°,进而得出α=30°,由此可得∠A=2×30°=60°.【解答】解:设∠C=α,则∠B=3α,∠A=2α,∵∠A+∠B+∠C=180°,∴2α+3α+α=180°,∴α=30°,∴∠A=2×30°=60°,故答案为:60.【点评】本题主要考查了三角形内角和定理的运用,解决问题的关键是掌握:三角形内角和是180°.18.将一副三角尺按如图所示的方式叠放(两条直角边重合),则∠α的度数是75°.【分析】先根据∠DAC+∠ACB=180°,判定AD∥BC,进而得出∠B=∠DAE=30°,再根据∠DEB=∠D+∠DAE进行计算即可.【解答】解:∵∠DAC+∠ACB=180°,∴AD∥BC,∴∠B=∠DAE=30°,∴∠DEB=∠D+∠DAE=45°+30°=75°,即∠α的度数是75°.故答案为:75°.【点评】本题主要考查了平行线的性质的运用,解题时注意:两直线平行,内错角相等.19.在下列条件中:①∠A+∠B=∠C,②∠A:∠B:∠C=1:2:3,③∠A=90°﹣∠B,④∠A=∠B=∠C中,能确定△ABC是直角三角形的条件有①②③(填序号)【分析】根据有一个角是直角的三角形是直角三角形进行分析判断.【解答】解:①∵∠A+∠B=∠C,∠A+∠B+∠C=180°,∴2∠C=180°,∠C=90°,则该三角形是直角三角形;②∠A:∠B:∠C=1:2:3,∠A+∠B+∠C=180°,∴∠C=90°,则该三角形是直角三角形;③∠A=90°﹣∠B,则∠A+∠B=90°,∠C=90°.则该三角形是直角三角形;④∠A=∠B=∠C,则该三角形是等边三角形.故能确定△ABC是直角三角形的条件有①②③.【点评】此题要能够结合已知条件和三角形的内角和定理求得角的度数,根据直角三角形的定义进行判定.20.在Rt△ABC中,锐角∠A=35°,则另一个锐角∠B=55°.【分析】根据在直角三角形中两个锐角互余即可得出答案.【解答】解:∵在Rt△ABC中,锐角∠A=35°,∴另一个锐角∠B=90°﹣35°=55°,故答案为:55°.【点评】本题考查了直角三角形的性质,属于基础题,主要掌握直角三角形中两个锐角互余.21.若直角三角形的两个锐角之差为34°,则此三角形较小锐角的度数为28°.【分析】根据直角三角形中两锐角和为90°,再根据两个锐角之差为34°,设其中一个角为x,则另一个为90°﹣x,即可求出最小的锐角度数.【解答】解:∵两个锐角和是90°,∴设一个锐角为x,则另一个锐角为90°﹣x,∵一个直角三角形两个锐角的差为34°,得:90°﹣x﹣x=34°,得:x=28°,∴较小的锐角的度数是28°.故答案为:28°.【点评】本题考查了直角三角形的性质,两锐角和为90°,关键是根据两锐角的关系设出未知数,列出方程.22.一个多边形的内角和是720°,则它是六边形.【分析】n边形的内角和是(n﹣2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【解答】解:设此多边形边数为n,由题意可得:(n﹣2)•180=720,解得:n=6.故答案为:六.【点评】此题主要考查了多边形的内角,已知多边形的内角和求边数,可以转化为方程的问题来解决.23.一个多边形的每一个外角为30°,那么这个多边形的边数为12.【分析】一个正多边形的每个内角都相等,根据内角与外角互为邻补角,因而就可以求出外角的度数.根据任何多边形的外角和都是360°,利用360°除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.【解答】解:多边形的边数:360°÷30°=12,则这个多边形的边数为12.故答案为:12.【点评】根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.24.一个正多边形的内角是外角的2倍,则这个正多边形是6边形.【分析】设这个正多边的外角为x°,则内角为2x°,根据内角和外角互补可得x+2x=180,解可得x的值,再利用外角和360°÷外角度数可得边数.【解答】解:设这个正多边的外角为x°,由题意得:x+2x=180,解得:x=60,360°÷60°=6.故答案为6.【点评】此题主要考查了多边形的内角和外角,关键是计算出外角的度数,进而得到边数.二.解答题(共4小题)25.如图,BG∥EF,△ABC的顶点C在EF上,AD=BD,∠A=23°,∠BCE=44°,求∠ACB的度数.【分析】根据等角对等边得出∠ABD=∠A,再利用平行线的性质得出∠DBC=∠BCE,进而利用三角形的内角和解答即可.【解答】解:∵AD=BD,∠A=23°,∴∠ABD=∠A=23°,∵BG∥EF,∠BCE=44°,∴∠DBC=∠BCE=44°,∴∠ABC=44°+23°=67°,∴∠ACB=180°﹣67°﹣23°=90°.【点评】此题考查三角形的内角和问题,关键是根据等角对等边得出∠ABD=∠A.26.如图,A,B分别为CD,CE的中点,AE⊥CD于点A,BD⊥CE于点B.求∠AEC的度数.【分析】根据题意得出△CDE为等边三角形,进而得出∠AEC的度数.【解答】解:连接DE∵A,B分别为CD,CE的中点,AE⊥CD于点A,BD⊥CE于点B,∴CD=CE=DE,∴△CDE为等边三角形.∴∠C=60°.∴∠AEC=90°﹣∠C=30°.【点评】此题主要考查了等边三角形的判定,正确得出△CDE为等边三角形是解题关键.27.如图,在△ABC中,∠C=90°,外角∠EAB,∠ABF的平分线AD、BD相交于点D,求∠D的度数.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠EAB和∠ABF,再根据角平分线的定义表示出∠DAB+∠DBA,然后利用三角形的内角和定理列式计算即可得解.【解答】解:根据三角形的外角性质,∠EAB=∠ABC+∠C,∠ABF=∠BAC+∠C,∵AD、BD分别是∠EAB,∠ABF的平分线,∴∠DAB+∠DBA=(∠ABC+∠C+∠BAC+∠C)=(∠ABC+∠BAC)+∠C,∵∠C=90°,∴∠ABC+∠BAC=180°﹣90°=90°,∴∠DAB+∠DBA=×90°+90°=135°,在△ABD中,∠D=180°﹣135°=45°.【点评】本题考查了三角形外角的性质,三角形的内角和定理等知识,解题的关键是学会利用整体思想解决问题,属于中考常考题型.28.如图所示,求∠A+∠B+∠C+∠D+∠E+∠F.【分析】连接AD,由三角形内角和外角的关系可知∠E+∠F=∠FAD+∠EDA,由四边形内角和是360°,即可求∠A+∠B+∠C+∠D+∠E+∠F=360°.【解答】解:如图,连接AD.∵∠1=∠E+∠F,∠1=∠FAD+∠EDA,∴∠E+∠F=∠FAD+∠EDA,∴∠A+∠B+∠C+∠D+∠E+∠F=∠BAD+∠ADC+∠B+∠C.又∵∠BAD+∠ADC+∠B+∠C=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.【点评】本题考查的是三角形内角与外角的关系,涉及到四边形及三角形内角和定理,比较简单.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

方向教育《三角形》
一.知识框架
1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.
2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边.
3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高.
4.中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.
5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.
6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性.
7.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.
8.多边形的内角:多边形相邻两边组成的角叫做它的内角.
9.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角.
10.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对
角线.
11.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形.12.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用
多边形覆盖平面
13.公式与性质:
⑴三角形的内角和:三角形的内角和为180°
⑵三角形外角的性质:
性质1:三角形的一个外角等于和它不相邻的两个内角的和.
性质2:三角形的一个外角大于任何一个和它不相邻的内角.
考点一:三角形的分类
例题1:具备下列条件的三角形中,不是直角三角形的是()。

A:∠A+∠B=∠C B:∠A=∠B=∠C C:∠A=90°-∠B D:∠A-∠B=90
例题2:等腰三角形一腰上的高与另一腰的夹角为30°则顶角的度数为()
A.60°B.120°C.60°或150°D.60°或120°
考点二:三角形三边的关系
例题1:已知:如图1,△ABC中,D是AB上除顶点外的一点.,求证:AB+AC>DB+DC;
例题2:现有两根木棒,它们的长分别是40cm和50cm,若要钉成一个三角形木架,则在下列四根木棒中应选取长为()
A.100cm的木棒
B.90cm的木棒
C.40cm的木棒
D.10cm的木棒
练习:
1.下列长度的三条线段能组成三角形的是()
A、3,4,8
B、5,6,11
C、1,2,3
D、5,6,10
2.一个等腰三角形的两条边长分别为8㎝和3㎝,那么它的周长为_____.
考点三:三角形的中线的性质
考点四:三角形的稳定性
三角形的三边确定了,那么它的形状、大小都确定了,三角形的这个性质就叫做三角形的稳定性.例如起重机的支架采用三角形结构就是这个道理.
练习:
1.不是利用三角形稳定性的是()
A、自行车的三角形车架
B、三角形房架
C、照相机的三角架
D、矩形门框的斜拉条
2.下列图形中具有稳定性的有()
A、正方形
B、长方形
C、梯形
D、直角三角形
考点五:三角形的外角与不相邻的内角的关系
例题1:如图,已知点P在△ABC内任一点,试说明∠A与∠P的大小关系。

练习:
若一个三角形的一个外角小于与它相邻的内角,则这个三角形是().
A、直角三角形
B、锐角三角形
C、钝角三角形
D、无法确定
考点六:三角形的内角和、外角和相关的计算与证明
例题1:若三角形的三个外角的比为3:4:5,则这个三角形为().
A.锐角三角形B.直角三角形C.等边三角形D.钝角三角形
例题2:已知等腰三角形的一个外角为150°,则它的底角为_______.
练习:
1、如图,若∠AEC=100°,∠B=45°,∠C=38°,则∠DFE等于
(A)A.125° B.115° C.110° D.105°
2、如图,∠1=______.
3、如图,则∠1=______,∠2=______,∠3=______,
4、已知等腰三角形的一个外角是120°,则它是()
A.等腰直角三角形
B.一般的等腰三角形
C.等边三角形
D.等腰钝角三角形
5、如果三角形的一个外角和与它不相邻的两个内角的和为180°,那么与这个外角相邻的内角的度数为()
A.30°
B.60°
C.90°
D.120°
6已知三角形的三个外角的度数比为2∶3∶4,则它最大内角的度数().
A. 90°
B.110°
C.100°
D.120°
考点七:多边形的内角和与外角和(识记)
例题1:若一个多边形的内角和与外角和相等,则这个多边形是()
A.三角形B.六边形C.五边形D.四边形
例题2:下列说法错误的是()
A.边数越多,多边形的外角和越大B.多边形每增加一条边,内角和就增加180°C.正多边形的每一个外角随着边数的增加而减小D.六边形的每一个内角都是120°
例题3:一个多边形内角和与其中一个外角的总和为1360°这个多边形的边数为_____.
例题4:一个多边形的每一个外角都是24°,则此多边形的内角和()
A.2160°B.2340°C.2700°D.2880°
练习:
1.一个多边形内角和是10800,则这个多边形的边数为()
A、6
B、7
C、8
D、9
2.一个多边形的内角和是外角和的2倍,它是()
A、四边形
B、五边形
C、六边形
D、八边形
3.一个多边形的边数增加一倍,它的内角和增加()
A.180°
B.360°
C.(n-2)·180°
D.n·180
4、若一个多边形的内角和与外角和相加是1800°,则此多边形是()
A、八边形
B、十边形
C、十二边形
D、十四边形
5、正方形每个内角都是______,每个外角都是______。

6、正六边形共有_______条对角线,内角和等于_________,每一个内角等于_______。

7、内角和是1620°的多边形的边数是______。

考点六:镶嵌
例题1:边长相等的下列两种正多边形的组合,不能作平面镶嵌的是()
A.正方形与正三角形
B.正五边形与正三角形
C.正六边形与正三角形
D.正八边形与正方形
练习:
1.下列正多边中,能铺满地面的是()
A、正方形
B、正五边形
C、等边三角形
D、正六边形
2.下列正多边形的组合中,不能够铺满地面的是().
A.正六边形和正三角形
B.正三角形和正方形
C.正八边形和正方形
D.正五边形和正八边形。

相关文档
最新文档