统计学第八章课后题及答案解析

合集下载

统计学概论课后答案第8章统计指数习题解答.

统计学概论课后答案第8章统计指数习题解答.

167第八章 对比分析与统计指数思考与练习4. 指出下列哪一个数量加权算术平均数指数,恒等于综合指数形式的拉 氏数量指标指数(C )。

C. d.6. 编制数量指标综合指数所采用的同度量因素是( a ) a .质量指标b .数量指标C •综合指标d •相对指标7. 空间价格指数一般可以采用( C )指数形式来编制。

a .拉氏指数 b.帕氏指数 C.马埃公式d.平均指数二、问答题:1.报告期与基期相比,某城一、选择题:1.某企业计划要求本月每万元产值能源消耗率指标比去年同期下降 实际降低了2.5%,则该项计划的计划完成百分比为( d )。

d. 102.6%5%a. 50.0%b. 97.4%c. 97.6% 2. 下列指标中属于强度相对指标的是(a..产值利润率 C.恩格尔系数3. 编制综合指数时, a .指数化指标 b. b. d.应固定的因素是( b基尼系数 人均消费支出C )。

个体指数c.同度量因素 d.被测定的因素S k q q 。

P 1 」2k q q 1 p 1S k q q o P 0 」 S k q q t p o;b. --------- ; c. -------- ; d. -------- a .S q 。

P 1送 q i P i S q o P o Z q i P o 5.之所以称为同度量因素,是因为:它可使得不同度量单位的现象总体转化为数量上可以加总; 客观上体现它在实际经济现象或过程中的份额 ;是我们所要测定的那个因素; 它必须固定在相同的时期。

(a )。

a .市居民消费价格指数为110%,居民可支配收入增加了20 %,试问居民的实际收入水平提高了多少?解:(1+20% /110%-100%=109.10%-100%=9.10%2.某公司报告期能源消耗总额为28.8万元,与去年同期相比,所耗能源的价格平均上升了20%那么按去年同期的能源价格计算,该公司报告期能源消耗总额应为多少?解:28.8 -(1+20%)=24 万元3.编制综合指数时,同度量因素的选择与指数化指标有什么关系?同度量因素为什么又称为权数?它与平均指数中的权数是否一致?解:(略)4.结构影响指数的数值越小,是否说明总体结构的变动程度越小?一般说来,当总体结构发生什么样的变动时,结构影响指数就会大于1。

贾俊平《统计学》课后习题-第八章至第十四章(圣才出品)

贾俊平《统计学》课后习题-第八章至第十四章(圣才出品)
而 Z0.025 1.96 >|-1.833|,因此不能拒绝原假设,即可认为现在生产的铁水平均含碳
量为 4.55。
2.一种元件,要求其使用寿命不得低于 700 小时。现从一批这种元件中随机抽取 36
件,测得其平均寿命为 680 小时。已知该元件寿命服从正态分布, =60 小时,试在显著
性水平 0.05 下确定这批元件是否合格。 解:建立假设:
圣才电子书 十万种考研考证电子书、题库视频学习平台

答:如果减小 错误,就会增大犯β错误的机会;若减小β错误,也会增大犯 错误的 机会。如果想使 和β同时变小,就只有增大样本量。
5.解释假设检验中的 P 值。 答:P 值就是当原假设为真时所得到的样本观察结果或更极端结果出现的概率。如果 P 值很小,说明这种情况发生的概率很小,而如果出现了,根据小概率原理,就有理由拒绝原 假设,P 值越小,拒绝原假设的理由就越充分。
H0 : 700 , H1 : 700
这是左侧检验,并且方差已知,检验统计量 Z 为:
3 / 152
圣才电子书

十万种考研考证电子书、题库视频学习平台
Z 680 700 2 60 / 36
而 Z0.05 1.645 2 ,因此拒绝原假设,即在显著性水平 0.05 下这批元件是不合
8.在单侧检验中原假设和备择假设的方向如何确定?
2 / 152
圣才电子书 十万种考研考证电子书、题库视频学习平台

答:单侧检验有两种情况:一种是所考察的数值越大越好,也就是左单侧检验,要求原
假设取 ,相应的备择假设取<;另一种是数值越小越好,也就是右单侧检验,要求原假设 取 ,相应的备择假设取>。
n
9
n
(xi x )2

统计学第8章的习题答案

统计学第8章的习题答案

1. 解:根据题意建立原假设和备择假设:01:700;:700H H μμ≥<2x Z ===- 由于-2<-1.645,所以Z Z α<-,Z 值位于原假设0H 的拒绝域,所以拒绝0H ,即在显著性水平0.05下该批元件不合格。

2. 根据题意建立原假设和备择假设:01:250;:250H H μμ≤>20 3.336x t ====,0.05(24) 1.7109t =, 由于0.05(24),.t t t t α>>所以t 值位于原假设H 0,即在显著性水平0.05下该种化肥使得水稻明显增产。

3. 解:已知 0620.157,0.155,0.05, 1.96.400p p Z αα===== 根据题意建立原假设和备择假设:01:0.157;:0.157H P H P =≠0.10995P Z ===- -0.10995>-1.96,所以Z 值位于原假设H 0的接受域。

即在显著性水平0.05下随机调查的结果支持该市老年人口比重为15.7%。

4. 解:已知 09,100,99.98, 1.2122n x s μ====。

根据题意建立原假设和备择假设:01:100;:100H H μμ=≠0.020.04950.4041x t -====- -0.0495>-2.306,所以t 位于原假设H 0的接受域,即在显著性水平0.05下,打包机打包正常。

5. 解:已知00.05200,20,208.5,30,(19) 1.7291n x S t μ=====。

根据题意建立原假设和备择假设:01:200;:200H H μμ≤>8.5 1.2676.7083x t ==== t t α<,所以t 值位于原假设H 0的接受域,即在显著性水平0.05下,接受原假设,即在特定时间内每小时经过该地的汽车数量小于200辆。

6. 解:已知015,40,14.5, 2.3,0.05, 1.645n x S Z αμα======。

贾平凹统计学第四版第八章课后答案

贾平凹统计学第四版第八章课后答案

贾平凹统计学第四版第八章课后答案8.01 已知某炼铁厂的含碳量服从正态分布N(4.55, 0.108),现在测定了9炉铁水,其平均含碳量为4.484。

如果估计方差没有变化,可否认为现在生产的铁水平均含碳量为4.55 (a=0.05) 。

H0: = 4.55H1: 1 4.55= 0.05 n = 9临界值(s): -1.96,1.96 在-1.96~1.96之间接受;否则拒绝检验统计量: =(4.484-4.55)/(0.33/3 )= -0.6 -0.6∈(-1.96,1.96) 决策:在 = 0.05的水平上接受H0结论: 有证据表明现在生产的铁水平均含碳量为4.558.02 一种元件,要求其使用寿命不得低于700小时。

现从一批这种元件中随机抽取36件,测得其平均寿命为680小时。

已知该元件寿命服从正态分布,s=60小时,试在显著性水平a=0.05下确定这批元件是否合格。

H0: <700H1: ≥700= 0.05 n = 36临界值(s):1.645 <1.645接受;否则拒绝检验统计量: =(680-700)/(60/6)=-2 -2<1.645决策:在 = 0.05的水平上接受H0结论: 有证据表明元件不合格8.03 某地区小麦的一般生产水平为亩产250公斤,其标准差为30公斤。

现用一种化肥进行试验,从25个小区抽样结果,平均产量为270公斤。

问这种化肥是否使小麦明显增产?(a=0.05) H0: ≤250 H1: >250= 0.05 n = 25临界值(s):1.645 <1.645接受;否则拒绝检验统计量: =(270-250)/(30/5)=3.33 3.33>1.645决策:在 = 0.05的水平上拒绝H0结论: 有证据表明这种化肥使小麦明显增产8.04 糖厂用自动打包机打包,每包标准重量是100公斤。

每天开工后需要检验一次打包机工作是否正常。

某日开工后测得9包重量如下:99.3 98.7 100.5 101.2 98.3 99.7 99.5 102.1 100.5已知包重服从正态分布,试检验该日打包机工作是否正常?(a=0.05)H0: =100H1: ≠100= 0.05 n = 9 s=1.21 =99.98临界值(s): -2.31,2.31 在-2.31~2.231之间接受;否则拒绝检验统计量: =(99.98-100)/(1.21/3)=0.50 0.50∈(-2.31,2.31)决策:在 = 0.05的水平上接受H0结论: 有证据表明试检验该日打包机工作正常8.05 某种大量生产的袋装食品,按规定不得少于250克。

统计学贾俊平_第四版课后习题答案第八章

统计学贾俊平_第四版课后习题答案第八章

姓名:潘方 学号:1106026 班级:金融一班8.2 解:根据题目的分析,本题采用左单侧检验:已知:μ0=700,x =680,σ=60, n=36,α=0.05则z α=1.645 其过程为: H 0:μ≥700 H 1:μ<700 x z ==-2 因为|z|>|z α|,Z 值位于拒绝域,故拒绝原假设,说明这批产品不合格。

因为2=Z ,且为左单侧检验,则()05.0022750132.0977249868.01=<=-=αP8.4 解:由excel 计算得:x =99.9778 S =1.21221H 0:μ=100 H 1:μ≠100 x t =-0.055 这是一个双侧检验,当α=0.05,自由度n -1=9时,得()29t α=2.262。

因为t <|2t α|,t 值位于接受区域,故接受原假设,说明打包机工作正常。

因为|Z|=0.055,且为双侧检验,由excel 得: P=0.95734>(α=0.05)8.9解:该题样本为,大样本,方差2σ已知、且不等,因此采用z 统计量 已知, 05.0=α、即96.12/=αZ ,811=n , 642=n ,σA=63*63 2σB=57*57 0:211≠-μμH 0:210=-μμH , ()()96.15.0645781630102010702222<≈+--=+---=BB A AB A B A n n x x Z σσμμ 因为|z|<|z α|,Z 值位于接受区域,故接受原假设,两厂生产材料抗压强度相同。

因为5.0=Z ,则()=-⨯=691462461.012P 0.617075078()05.0=>α8.13 解:此题为两个总体比例之差的假设H 0:π1≥π2;H 1:π1<π 2 α=0.05,即z α=1.6451100021==n n ,00945.0110001041==p ,01718.0110001892==pp p d z --=0.009450.017180--=-5 因为|z|>|z α|,Z 值位于拒绝域,故拒绝原假设,说明用阿司匹林可以降低心脏病发生率。

统计学第五版第八章课后习题答案

统计学第五版第八章课后习题答案
0.025
决策: ∵Z值落入接受域, ∴在α=0.05的显著水平上接受 H 0 。
结论:有证据表明现在生产的铁水平均含碳量与以前没有显著差 异,可以认为现在生产的铁水平均含碳量为4.55。
8.2 一种元件,要求其使用寿命不得低于700小时。现从一批这种 元件中随机抽取36件,测得其平均寿命为680小时。已知该元件寿 命服从正态分布,σ=60小时,试在显著性水平0.05下确定这批元 件是否合格。
甲法:31 34 29 32 35 38 34 30 29 32 31 26 乙法:26 24 28 29 30 29 32 26 31 29 32 28 两总体为正态总体,且方差相同。问两种方法的装配时 间有无显著差别(α =0.05)? 解: 正态总体,小样本,σ²未知但相同,独立样本t检验 H 0 : 甲 -乙 = 0 H1 : 甲 - 乙 ≠ 0
由Excel制表得:
由图可知:
已知:α = 0.05,n1 = n2=12 2 2 x甲 =31.75 x乙 =28.67 S甲=10.20 S乙 =6.06 t=1.72 t∈(-1.72,1.72)接受,否则拒绝。 t=(31.75-28.67)/(8.08* 0.41)=0.93 0.93∈(-1.72,1.72) 决策:在α = 0.05的水平上接受H 0 。 结论: 两种方法的装配时间无显著不同。
σ²≤100 H 1 : σ²>100 α= 0.05,n=9,自由度= 9 - 1 = 8, S² =215.75, x =63 采用χ²检验 临界值(s): χ² =15.5 )S 2 (9 - 1) * 215.75 2 (n - 1 17.26 15.5 检验统计量: 2 100 决策:在 a = 0.05的水平上拒绝 H 0 结论: σ²>100

统计学第八章 时间数列分析试题及答案

第八章时间数列分析(二) 单项选择题1、组成动态数列的两个基本要素是(A )。

A、时间和指标数值B、变量和次数(频数)C、主词和宾词D、水平指标和速度指标2、下列数列中哪一个属于动态数列( C )A、学生按学习成绩分组形成的数列B、职工按工资水平分组形成的数列C、企业总产值按时间顺序形成的数列D、企业按职工人数多少形成的分组数列3、下列属于时点数列的是( C )。

A、某工厂各年工业总产值;B、某厂各年劳动生产率;C、某厂历年年初固定资产额D、某厂历年新增职工人数。

3、时间数列中,各项指标数值可以相加的是( A )。

A、时期数列B、相对数时间数列C、平均数时间数列D、时点数列5、工人劳动生产率时间数列,属于( C )。

A、时期数列B、时点数列C、相对数时间数列D、平均数时点数列6、在时点数列中,称为“间隔”的是( C )。

A、最初水平与最末水平之间的距离;B、最初水平与最末水平之差;C、两个相邻指标在时间上的距离;D、两个相邻指标数值之间的距离。

7、对时间数列进行动态分析基础指标是( A )。

A、发展水平;B、平均发展水平;C、发展速度;D、平均发展速度。

8、计算序时平均数与一般平均数的资料来源是( D)A、前者为时点数列,后者为时期数列B、前者为时期数列,后者为时点数列C、前者为变量数列,后者为时间数列D、前者为时间数列,后者为变量数列9、根据时期数列计算序时平均数应采用( B )A、首尾折半法B、简单算术平均法C、加权算术平均法D、几何平均法10、某企业某年1-4月初的商品库存额如下表:(单位:万元)月份 1 2 3 4月初库存额 20 24 18 22则第一季度的平均库存额为( C )A、(20+24+18+22)/4B、(20+24+18)/3C、(10+24+18+11)/3D、(10+24+9)/311、上题中如果把月初库存额指标换成企业利润额,则第一季度的平均利润额为( B )A、(20+24+18+22)/4B、(20+24+18)/3C、(10+24+18+11)/3D、(10+24+9)/312、某企业某年一季度的利润额为150万元,职工人数120人,则一季度平均每月的利润额和平均每月的职工人数分别为:( B )A、50万元,40人B、 50万元,120人C、150万元,120人D、以上全错13、定基增长量和环比增长量的关系是( B )。

统计学第五版第八章课后习题答案


解:大样本,σ²已知,采用Z统计量 2 = 0 H0 : 1 - H1 : 2 ≠ 0 1 - 已知:α = 0.05 n1 = 81 n2 = 64 双侧检验:Z =1.96
Z ( x A - xB ) - ( A - B )
2

2 A
nA


2 B

1070 - 1020 - 0 63 57 81 64
结论: Z统计量落入拒绝域,在α=0.05的显著性水平上,拒绝 H 0 ,接 受 H1 。
决策:有证据表明,这种化肥可以使小麦明显增产。

8.4 糖厂用自动打包机打包,每包标准重量是100千克。每天开 工后需要检验一次打包机工作是否正常。某日开工后测得9包重 量(单位:千克)如下: 99.3,98.7,100.5,101.2,98.3,99.7,99.5,102.1,100.5 已知包重服从正态分布,试检验该日打包机工作是否正常 (α=0.05) 。 解:
甲法:31 34 29 32 35 38 34 30 29 32 31 26 乙法:26 24 28 29 30 29 32 26 31 29 32 28 两总体为正态总体,且方差相同。问两种方法的装配时 间有无显著差别(α =0.05)? 解: 正态总体,小样本,σ²未知但相同,独立样本t检验 H 0 : 甲 -乙 = 0 H1 : 甲 - 乙 ≠ 0

x- 27000 - 25000 t 1.55 S/ n 5000 / 15
结论: 因为t值落入接受域,所以接受 H 0,拒绝 H 1 。
决策:有证据证明,该厂家生产的轮胎在正常行驶 条件下使用寿命与目前平均水平25000公里无显著 性差异,该厂家广告不真实。

统计学习题答案 第8章 相关与回归分析【精选文档】

6.表中给出y 对2x 和3x 回归的结果:
离差来源 平方和(SS ) 自由度(df ) 平方和的均值(MSS ) 来自回归(ESS ) 65965 来自残差(RSS ) 总离差(TSS ) 66042 14
(1) 该回归分析中样本容量是多少? (2) 计算RSS ;
(3) ESS 和RSS 的自由度是多少? (4) 计算可决系数和修正的可决系数;
(5) 怎样检验2x 和3x 对y 是否有显著影响?根据以上信息能否确定2x 和3x 各自对
y 的贡献为多少?
解:(1)该回归分析中样本容量是14+1=15
(2)计算RSS=66042-65965=77
ESS 的自由度为k —1=2,RSS 的自由度 n-k=15—3=12 (3)计算:可决系数 2
65965/660420.9988R == 修正的可决系数 2151
1(10.9988)0.9986153
R -=-
⨯-=- (4)检验X2和X3对Y 是否有显著影响
/(1)65965/232982
5140.11/()77/12 6.4166
ESS k F RSS n k -=
===-
(5) F 统计量远比F 临界值大,说明X2和X3联合起来对Y 有显著影响,但并不能确定X2和X3各自对Y 的贡献为多少。

7. 在计算一元线性回归方程时,已得到以下结果:
试根据此结果,填写下表的空格:
来 源 平方和 自由度 方差 来自回归 2179.56
来自残差 99。

11 22 总离差平方和
2278。

67。

医学统计学课后答案第八章秩和检验习题

235-293
294-366
69.5
186.5
264
330
2641
8206
3168
7920
3683.5
5408.5
7392
5280
3266.5
4289.5
5016
10890
合计
118
126
122
366
21935
21764
23462
按书上式(8.5)求出H=2.4143
(三)确定P值,做出推断结论
由于k=3,每组例数ni>9,已超出附表11的范围,故按v=k-1=2,查附表8,χ2界值表,得P>0.05。按α=0.05水准不拒绝H0,差异无统计学意义。故尚不能认为针刺不同穴位的镇痛效果有差别。
(四)确定P值,做出推断结论
由于n2>10,T分布已接近均数为n1(N+1)/2,方差为n1n2(N+1)/12的正态分布,按书上式(8.3)(8.4)求出uc=3.7439
uc> 2.56, P<0.01,按α=0.05水准拒绝H0,接受H1,差异有统计学意义。可以认为缓释片和普通片治疗心绞痛的疗效有差别。
1答:适用于有序分类资料、偏态分布资料、变异较大或方差不齐的资料、分布型不明的资料及有特大、特小值或数据的一端或两端有不确定数值的资料。
2答:属于非参数检验。
因为参数检验针对的是总体变量服从某种分布,即具有某个已知的函数形式,而其中的参数是未知的,统计分析的目的就是对这些未知参数进行估计或检验。但本题即使n1> 10,n2-n1> 10时采用的是u检验,但它比较的是分布而不是参数,所以它还是属于非差数检验。
5答:(一)建立检验假设
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档