通信原理_实验报告二
通信原理实验报告--信号源实验

通信原理实验报告--信号源实验通信原理实验报告信号源实验一、实验目的本次通信原理实验的目的是深入了解信号源的工作原理和特性,通过实际操作和观察,掌握信号源的产生、调制和分析方法,为后续的通信系统学习和研究打下坚实的基础。
二、实验原理(一)信号源的分类信号源根据其产生信号的方式和特点,可以分为正弦信号源、方波信号源、脉冲信号源等。
正弦信号源是最常见的一种,其输出的信号具有单一频率和稳定的幅度。
(二)信号的调制调制是将原始信号(称为基带信号)加载到高频载波上的过程。
常见的调制方式有幅度调制(AM)、频率调制(FM)和相位调制(PM)。
在本次实验中,我们重点研究了幅度调制。
(三)信号的频谱分析通过傅里叶变换,可以将时域信号转换为频域信号,从而分析信号的频谱特性。
频谱分析对于理解信号的频率组成和带宽等特性具有重要意义。
三、实验设备与仪器本次实验使用的设备和仪器包括:信号源发生器、示波器、频谱分析仪、电源等。
信号源发生器用于产生各种类型的信号;示波器用于观察信号的时域波形;频谱分析仪用于分析信号的频谱;电源为实验设备提供稳定的工作电压。
四、实验步骤(一)正弦信号的产生与测量1、打开信号源发生器,设置输出为正弦波,频率为 1kHz,幅度为5V。
2、将信号源的输出连接到示波器的输入通道,观察正弦波的时域波形,测量其幅度和周期,并计算频率。
(二)方波信号的产生与测量1、在信号源发生器上设置输出为方波,频率为2kHz,幅度为3V,占空比为 50%。
2、用示波器观察方波的时域波形,测量其幅度、周期和占空比。
(三)脉冲信号的产生与测量1、设置信号源输出为脉冲波,频率为 5kHz,幅度为 4V,脉冲宽度为10μs。
2、通过示波器观察脉冲波的时域波形,测量其幅度、周期和脉冲宽度。
(四)幅度调制实验1、产生一个频率为 1kHz 的正弦波作为基带信号,幅度为 2V。
2、产生一个频率为 10kHz 的正弦波作为载波信号,幅度为 5V。
通信原理实验报告

通信原理实验报告引言:通信原理是现代通信技术的基础,通过实验可以更深入地理解通信原理的各个方面。
本次实验主要涉及到调制解调和频谱分析。
调制解调是将原始信号转换成适合传输的信号形式,频谱分析则是对信号的频域特性进行研究。
通过这些实验,我们可以进一步了解调制解调原理、频谱分析技术以及其在通信领域中的应用。
实验一:调制解调实验调制解调是将信息信号转换为适合传输的信号形式的过程。
在实验中,我们使用了模拟调制技术。
首先,我们通过声卡输入一个带通信号,并将其调制成调幅信号。
接着,通过示波器观察和记录调制信号的波形,并利用解调器将其还原为原始信号。
实验二:频谱分析实验频谱分析是对信号在频域上的特性进行研究。
在实验中,我们使用了频谱分析仪来观察信号的频谱分布情况。
首先,我们输入一个具有特定频率和幅度的正弦信号,并使用频谱分析仪来观察其频谱。
然后,我们改变信号的频率和幅度,继续观察和记录频谱的变化情况。
实验三:应用实验在实际通信中,调制解调和频谱分析技术有着广泛的应用。
通过实验三,我们可以了解到这些技术在通信领域中的具体应用。
例如,我们可以模拟调制解调技术在调制解调器中的应用,观察和分析不同调制方式下的信号特性。
同样,我们可以使用频谱分析仪来研究和理解不同信号在传输过程中的频谱分布。
这些实验将帮助我们更好地理解通信系统中的调制解调和频谱分析技术,从而为实际应用提供支持。
结论:通过本次实验,我们对通信原理中的调制解调和频谱分析技术有了更深入的了解。
调制解调是将信息信号转换为适合传输的信号形式,而频谱分析则是对信号的频域特性进行研究。
这些技术在通信领域中有着广泛的应用,对于实际通信系统的设计和优化非常重要。
通过实验的学习和实践,我们能够更好地掌握调制解调和频谱分析的原理和应用,从而提高我们在通信领域中的能力和技术水平。
总结:通过本次实验,我们对通信原理中的调制解调和频谱分析技术进行了学习和实践。
通过实验的过程,我们深入了解了这些技术的原理和应用,并通过观察和记录不同信号的波形和频谱特征,加深了我们对通信原理的理解。
通信原理实验报告

通信原理实验报告实验一抽样定理实验二 CVSD编译码系统实验实验一抽样定理一、实验目的所谓抽样。
就是对时间连续的信号隔一定的时间间隔T 抽取一个瞬时幅度值(样值),即x(t)*s(t)=x(t)s(t)。
在一个频带限制在(0,f h)内的时间连续信号f(t),如果以小于等于1/(2 f h)的时间间隔对它进行抽样,那么根据这些抽样值就能完全恢复原信号。
抽样定理告诉我们:如果对某一带宽有限的时间连续信号(模拟信号)进行抽样,且抽样速率达到一定数值时,那么根据这些抽样值就能准确地还原信号。
这就是说,若要传输模拟信号,不一定要传输模拟信号本身,可以只传输按抽样定理得到的抽样值。
二、功能模块介绍1.DDS 信号源:位于实验箱的左侧(1)它可以提供正弦波、三角波等信号,通过连接P03 测试点至PAM 脉冲调幅模块的32P010 作为脉冲幅度调制器的调制信号x(t)。
抽样脉冲信号则是通过P09 测试点连至PAM 脉冲调幅模块。
(2)按下复合式按键旋钮SS01,可切换不同的信号输出状态,例如D04D03D02D01=0010对应的是输出正弦波,每种LED 状态对应一种信号输出,具体实验板上可见。
(3)旋转复合式按键旋钮SS01,可步进式调节输出信号的频率,顺时针旋转频率每步增加100Hz,逆时针减小100Hz。
(4)调节调幅旋钮W01,可改变P03 输出的各种信号幅度。
2.抽样脉冲形成电路模块它提供有限高度,不同宽度和频率的抽样脉冲序列,可通过P09 测试点连线送到PAM 脉冲调幅模块32P02,作为脉冲幅度调制器的抽样脉冲s(t)。
P09 测试点可用于抽样脉冲的连接和测量。
该模块提供的抽样脉冲频率可通过旋转SS01 进行调节,占空比为50%。
3.PAM 脉冲调幅模块它采用模拟开关CD4066 实现脉冲幅度调制。
抽样脉冲序列为高电平时,模拟开关导通,有调制信号输出;抽样脉冲序列为低电平,模拟开关断开,无信号输出。
通信原理实验2

①以9号模块“NRZ-I”为触发,观测“I”;以9号模块 “NRZ-Q”为触发,观测“Q”。
②以9号模块“基带信号”为触发,观测“调制输出”。 ③以9号模块的“基带信号”为触发,观测13号模块的 “SIN”,调节13号模块的W1使“SIN”的波形稳定,即恢复 出载波。 ④以9号模块的“基带信号”为触发观测“DBPSK解调输 出”,多次单击13号模块的“复位”按键。观测“DBPSK解 调输出”的变化。
⑤以信号源的CLK为触发,测9号模块LPF-FSK,观测眼 图。
实验项目三 2PSK调制及解调实验
1、实验原理框图
256K
信号源
PN15
载波1 基带信号
256K
载波2
BPSK解调 输出
门限
低通
判决 LPF-BPSK 滤波
9# 数字调制解调模块
反相
I NRZ_I
取反
NRZ_Q Q
相干载波
13# 载波同步及位同步模块
模块9:TH4(调制输出) 模块13:TH2(载波同步输入) 载波同步信号输入
模块13:TH1(SIN)
模块9:TH10(相干载波输入) 用于解调的载波
模块9:TH4(调制输出) 模块9:TH7(解调输入)
解调信号输入
模块9:TH12(BPSK输出) 模块13:TH7(锁相环输入) 锁相环信号输入
模块13:TH5(BS2)
(4)波形观测 ①示波器CH1接9号模块TH1基带信号,CH2接9号模块 TH4调制输出,以CH1为触发对比观测FSK调制输入及输出, 验证FSK调制原理。 ②将PN序列输出频率改为64KHz,观察载波个数是否发 生变化。 ③尝试以学号作为基带信号,观测调制输出波形。
④以9号模块TH1为触发,用示波器分别观测9号模块 TH1和TP6(单稳相加输出)、TP7(LPF-FSK)、 TH8(FSK 解调输出),验证FSK解调原理。
通信原理实验_实验报告

一、实验名称通信原理实验二、实验目的1. 理解通信原理的基本概念和原理;2. 掌握通信系统中的调制、解调、编码和解码等基本技术;3. 培养实际操作能力和分析问题能力。
三、实验内容1. 调制与解调实验(1)实验目的:验证调幅(AM)和调频(FM)调制与解调的基本原理;(2)实验步骤:1. 准备实验设备:调幅调制器、调频调制器、解调器、示波器、信号发生器等;2. 设置调制器参数,生成AM和FM信号;3. 将调制信号输入解调器,观察解调后的信号波形;4. 分析实验结果,比较AM和FM调制信号的特点;(3)实验结果与分析:通过实验,观察到AM和FM调制信号的特点,验证了调制与解调的基本原理。
2. 编码与解码实验(1)实验目的:验证数字通信系统中的编码与解码技术;(2)实验步骤:1. 准备实验设备:编码器、解码器、示波器、信号发生器等;2. 设置编码器参数,生成数字信号;3. 将数字信号输入解码器,观察解码后的信号波形;4. 分析实验结果,比较编码与解码前后的信号特点;(3)实验结果与分析:通过实验,观察到编码与解码前后信号的特点,验证了数字通信系统中的编码与解码技术。
3. 信道模型实验(1)实验目的:验证信道模型对通信系统性能的影响;(2)实验步骤:1. 准备实验设备:信道模型仿真软件、信号发生器、示波器等;2. 设置信道模型参数,生成模拟信号;3. 将模拟信号输入信道模型,观察信道模型对信号的影响;4. 分析实验结果,比较不同信道模型下的信号传输性能;(3)实验结果与分析:通过实验,观察到不同信道模型对信号传输性能的影响,验证了信道模型在通信系统中的重要性。
4. 通信系统性能分析实验(1)实验目的:分析通信系统的性能指标;(2)实验步骤:1. 准备实验设备:通信系统仿真软件、信号发生器、示波器等;2. 设置通信系统参数,生成模拟信号;3. 仿真通信系统,观察系统性能指标;4. 分析实验结果,比较不同参数设置下的系统性能;(3)实验结果与分析:通过实验,观察到不同参数设置对通信系统性能的影响,验证了通信系统性能分析的重要性。
通信原理实验二 抽样定理实验(PAM)

实验数据
1、对2K正弦基波用不同方波进行抽样的过程:
(1)、4KHZ方波A
(2)8KHZ方波A
(3)16KHZ方波A
由上面3个图的比较可知,对基波信号进行抽样的抽样脉冲即方波A的频率越大,在一个周期内的抽样点就越多,PAM输出点的波形就越接近基波信号。频谱更密集。
实验原理
1、图8-1是模拟信号的抽样原理框图。
图8-1模拟信号的抽样原理框图
实际上理想冲激脉冲串物理实现困难,实验中采用DDS直接数字频率合成信源产生的矩形脉冲来代替理想的窄脉冲串。
抽样信号规定在音频信号300~3400Hz范围内,由信号源模块提供。抽样脉冲的频率根据抽样定理的描述,应大于或等于输入音频信号频率的2倍。
抽样信号和抽样脉冲送入模拟信号数字化模块抽样电路中,产生PAM抽样信号。
3、抽样信号的还原
若要解调出原始语音信号,将抽样信号送入截止频率为3400Hz的低通滤波器即可。
图8-2抽样信号的还原原理框图
实验仪器
1、信号源模块一块
2、模拟信号数字化模块一块
3、20M双踪示波器一台
4、带话筒立体声耳机一副
5、频谱分析仪一台
4、实验连线如下:
信号源模块模拟信号数字化模块
2K正弦基波——————抽样信号
DDS-OUT——————抽样脉冲
模拟信号数字化模块内连线
PAM输出———————解调输入
5、不同频率方波抽样
(1)信号源模块“DDS-OUT”测试点输出选择“方波A”,调节“DDS调幅”旋转电位器,使其峰峰值为3V左右。
贵州大学实验报告
学院:计信学院专业:网络工程班级:091
通信原理硬件实验报告

通信原理硬件实验报告实验二抑制载波双边带的产生一.实验目的:1.了解抑制载波双边带(SC-DSB)调制器的基本原理。
2.测试SC-DSB 调制器的特性。
二.实验步骤:1.将TIMS 系统中的音频振荡器(Audio Oscillator)、主振荡器(Master Signals)、缓冲放大器(Buffer Amplifiers)和乘法器(Multiplier)按图连接。
2.用频率计来调整音频振荡器,使其输出为1kHz 作为调制信号,并调整缓冲放大器的K1,使其输出到乘法器的电压振幅为1V。
3.调整缓冲放大器的K2,使主振荡器输至乘法器的电压为1V 作为载波信号。
4.测量乘法器的输出电压,并绘制其波形。
见下图:5.调整音频振荡器的输出,重复步骤4。
见下图:6.将电压控制振荡器(VCO)模快和可调低通滤波器(Tuneable LPF)模块按图连接。
8.将可调低通滤波器的频率范围选择范围至“wide”状态,并将频率调整至最大,此时截至频率大约在12kHz 左右。
LPF 截止频率最大的时候输出:(频响)9.将可调低通滤波器的输出端连接至频率计,其读数除360 就为LPF 的3dB 截止频率。
10.降低可调LPF 的截止频率,使SC-DSB 信号刚好完全通过低通滤波器,记录此频率(fh=fc+F)。
11.再降低3dB 截止频率,至刚好只有单一频率的正弦波通过低通滤波器,记录频率(fl=fc-F)只通过单一频率的LPF 输出:12.变化音频振荡器输出为频率为800Hz、500Hz,重复步骤10、11。
OSC=500HZOSC=800HZ 的频响:三、思考题1、如何能使示波器上能清楚地观察到载波信号的变化?答:可以通过观察输出信号的频谱来观察载波的变化,另一方面,调制信号和载波信号的频率要相差大一些,可通过调整音频震荡器来完成。
2.用频率计直接读SC—DSB 信号,将会读出什么值。
答:围绕一个中心频率来回摆动的值。
通信原理实验实验报告

1. 理解并掌握通信系统基本组成及工作原理。
2. 掌握通信系统中信号的传输与调制、解调方法。
3. 学习通信系统性能评估方法及分析方法。
二、实验器材1. 通信原理实验平台2. 双踪示波器3. 信号发生器4. 信号分析仪5. 计算机及实验软件三、实验内容1. 通信系统基本组成及工作原理(1)观察通信原理实验平台,了解通信系统的基本组成,包括发送端、信道、接收端等。
(2)分析实验平台中各模块的功能,如调制器、解调器、滤波器等。
(3)通过实验验证通信系统的工作原理。
2. 信号的传输与调制、解调方法(1)学习并掌握模拟信号的调制、解调方法,如AM、FM、PM等。
(2)学习并掌握数字信号的调制、解调方法,如2ASK、2FSK、2PSK等。
(3)通过实验验证调制、解调方法的有效性。
3. 通信系统性能评估方法及分析方法(1)学习并掌握通信系统性能评估方法,如误码率、信噪比、调制指数等。
(2)通过实验测量通信系统性能参数,如误码率、信噪比等。
(3)分析实验数据,总结通信系统性能。
1. 观察通信原理实验平台,了解通信系统的基本组成。
2. 设置实验参数,如调制方式、载波频率、调制指数等。
3. 观察并记录实验过程中各模块的输出信号。
4. 利用示波器、信号分析仪等仪器分析实验数据。
5. 计算通信系统性能参数,如误码率、信噪比等。
6. 分析实验结果,总结实验结论。
五、实验结果与分析1. 通过实验验证了通信系统的基本组成及工作原理。
2. 实验结果表明,调制、解调方法对通信系统性能有显著影响。
例如,在相同条件下,2PSK调制比2ASK调制具有更好的误码率性能。
3. 通过实验测量了通信系统性能参数,如误码率、信噪比等。
实验数据表明,在合适的调制方式、载波频率等参数下,通信系统可以达到较好的性能。
4. 分析实验数据,总结实验结论。
实验结果表明,在通信系统中,合理选择调制方式、载波频率等参数,可以提高通信系统性能。
六、实验总结本次实验通过观察、实验、分析等方法,对通信原理进行了深入学习。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验报告学院(系)名称:计算机与通信工程学院
2.编程实现阵列校验:
程序代码:
//通信实验二进制数方阵奇校验
#include<iostream>
#include<string.h>
#define N 100
using namespace std;
int main()
{
int n;
cout<<"侯赵伟请您输入二进制方阵的行列数n:\n";
cin>>n;
int arr[N][N]={0};
int ar0[N]={0}; //用来记录行中1的个数
int ar1[N]={0}; //用来记录列中1的个数
int ar2[N]={0}; //用来进行监督元组的记录
int s[N]={0}; //用来记录接收到的码元序列
cout<<"输入方阵数据,数字之间用空格隔开,输入"<<n<<"个数据后请您换行!"<<endl;
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
{
cin>>arr[i][j];
if(arr[i][j]==1)
{
ar0[i]++;
}
心得体会:
通过这次实验,我对编码的检错和纠错有了更加深刻的认识和体会,每种编码的检错性能各有独特之处,对原利用原有信息的规律来添加纠错位,可以大幅度提高编码的纠错性能且对编码原有的性能不会造成太大的影响。