运算放大器工作原理是什么

合集下载

运算放大器的工作原理

运算放大器的工作原理

运算放大器的工作原理-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII运算放大器的工作原理放大器的作用: 1、能把输入讯号的电压或功率放大的装置,由电子管或晶体管、电源变压器和其他电器元件组成。

用在通讯、广播、雷达、电视、自动控制等各种装置中。

原理:高频功率放大器用于发射机的末级,作用是将高频已调波信号进行功率放大,以满足发送功率的要求,然后经过天线将其辐射到空间,保证在一定区域内的接收机可以接收到满意的信号电平,并且不干扰相邻信道的通信。

高频功率放大器是通信系统中发送装置的重要组件。

按其工作频带的宽窄划分为窄带高频功率放大器和宽带高频功率放大器两种,窄带高频功率放大器通常以具有选频滤波作用的选频电路作为输出回路,故又称为调谐功率放大器或谐振功率放大器;宽带高频功率放大器的输出电路则是传输线变压器或其他宽带匹配电路,因此又称为非调谐功率放大器。

高频功率放大器是一种能量转换器件,它将电源供给的直流能量转换成为高频交流输出在“低频电子线路”课程中已知,放大器可以按照电流导通角的不同,运算放大器原理运算放大器(Operational Amplifier,简称OP、OPA、OPAMP)是一种直流耦合﹐差模(差动模式)输入、通常为单端输出(Differential-in, single-ended output)的高增益(gain)电压放大器,因为刚开始主要用于加法,乘法等运算电路中,因而得名。

一个理想的运算放大器必须具备下列特性:无限大的输入阻抗、等于零的输出阻抗、无限大的开回路增益、无限大的共模排斥比的部分、无限大的频宽。

最基本的运算放大器如图1-1。

一个运算放大器模组一般包括一个正输入端(OP_P)、一个负输入端(OP_N)和一个输出端(OP_O)。

图1-1通常使用运算放大器时,会将其输出端与其反相输入端(inverting input node)连接,形成一负反馈(negative feedback)组态。

运算放大器的原理

运算放大器的原理

运算放大器的原理、特点及简单应用10021187 何堃熙一、运算放大器简介:运算放大器(简称“运放”)是具有很高放大倍数的电路单元。

在实际电路中,通常结合反馈网络共同组成某种功能模块。

由于早期应用于模拟计算机中,用以实现数学运算,故得名“运算放大器”。

运放是一个从功能的角度命名的电路单元,可以由分立的器件实现,也可以实现在半导体芯片当中。

随着半导体技术的发展,大部分的运放是以单芯片的形式存在。

运放的种类繁多,广泛应用于电子行业当中。

二、运算放大器的原理运放如图有两个输入端a(反相输入端),b(同相输入端)和一个输出端o。

也分别被称为倒向输入端非倒向输入端和输出端。

当电压U-加在a端和公共端(公共端是电压为零的点,它相当于电路中的参考结点。

)之间,且其实际方向从a 端高于公共端时,输出电压U 实际方向则自公共端指向o端,即两者的方向正好相反。

当输入电压U+加在b端和公共端之间,U与U+两者的实际方向相对公共端恰好相同。

为了区别起见,a端和b 端分别用"-"和"+"号标出,但不要将它们误认为电压参考方向的正负极性。

电压的正负极性应另外标出或用箭头表示。

反转放大器和非反转放大器如下图:一般可将运放简单地视为:具有一个信号输出端口(Out)和同相、反相两个高阻抗输入端的高增益直接耦合电压放大单元,因此可采用运放制作同相、反相及差分放大器。

运放的供电方式分双电源供电与单电源供电两种。

对于双电源供电运放,其输出可在零电压两侧变化,在差动输入电压为零时输出也可置零。

采用单电源供电的运放,输出在电源与地之间的某一范围变化。

运放的输入电位通常要求高于负电源某一数值,而低于正电源某一数值。

经过特殊设计的运放可以允许输入电位在从负电源到正电源的整个区间变化,甚至稍微高于正电源或稍微低于负电源也被允许。

这种运放称为轨到轨(rail-to-rail)输入运算放大器。

运算放大器的输出信号与两个输入端的信号电压差成正比,在音频段有:输出电压=A0(E1-E2),其中,A0 是运放的低频开环增益(如100dB,即100000 倍),E1 是同相端的输入信号电压,E2 是反相端的输入信号电压。

运算放大器工作原理及应用

运算放大器工作原理及应用

运算放大器工作原理及应用
运算放大器是一种基本的放大器电路,其主要作用是将输入信号放大并输出。

它采用了差分放大电路,将两个输入信号进行放大和差分运算,并输出放大后的差分信号。

运算放大器具有以下几个重要特点:
1. 高增益:运算放大器具有非常高的增益,通常在几千到几百万倍之间,使得输入信号可以得到大幅度放大。

2. 差分输入:运算放大器有两个输入端,称为非反相输入端(+)和反相输入端(-)。

它可以对这两个输入信号进行差分放大,从而实现对输入信号的放大和运算。

3. 可调增益:运算放大器具有可调增益的特性,可以通过外部电阻进行调节,以满足不同的放大需求。

4. 高输入阻抗和低输出阻抗:运算放大器的输入阻抗非常高,几乎不消耗输入信号的能量;而输出阻抗非常低,可以驱动各种负载。

运算放大器广泛应用于各种电子电路中,例如:
1. 仪器测量:运算放大器可以对微弱的传感器信号进行放大和处理,从而实现精确的测量和控制。

2. 运算放大器放大电路:在电路中,运算放大器可以用于对电
压、电流、频率等信号进行放大。

3. 模拟计算机:运算放大器可以用于实现各种模拟计算机的基本运算,例如加法、减法、乘法等。

4. 滤波器:运算放大器可以与电容、电感等元件组成滤波电路,用于对信号进行滤波和去噪。

总之,运算放大器是一种非常重要的放大器电路,具有高增益、可调增益、差分输入和广泛的应用领域。

它在电子工程中有着非常重要的作用。

运算放大器构造及原理

运算放大器构造及原理

万联芯城销售TI,ADI,ST等原装品牌运算放大器IC。

全现货库存,提供一站式配套服务,万联芯城,三十年电子元器件销售经验,是您的BOM配单专家,为您节省采购成本。

点击进入万联芯城点击进入万联芯城运算放大器的工作原理放大器的作用: 1、能把输入讯号的电压或功率放大的装置,由电子管或晶体管、电源变压器和其他电器元件组成。

用在通讯、广播、雷达、电视、自动控制等各种装置中。

原理:高频功率放大器用于发射机的末级,作用是将高频已调波信号进行功率放大,以满足发送功率的要求,然后经过天线将其辐射到空间,保证在一定区域内的接收机可以接收到满意的信号电平,并且不干扰相邻信道的通信。

高频功率放大器是通信系统中发送装置的重要组件。

按其工作频带的宽窄划分为窄带高频功率放大器和宽带高频功率放大器两种,窄带高频功率放大器通常以具有选频滤波作用的选频电路作为输出回路,故又称为调谐功率放大器或谐振功率放大器;宽带高频功率放大器的输出电路则是传输线变压器或其他宽带匹配电路,因此又称为非调谐功率放大器。

高频功率放大器是一种能量转换器件,它将电源供给的直流能量转换成为高频交流输出在“低频电子线路”课程中已知,放大器可以按照电流导通角的不同,运算放大器原理运算放大器(Operational Amplifier,简称OP、OPA、OPAMP)是一种直流耦合﹐差模(差动模式)输入、通常为单端输出(Differential-in, single-ended output)的高增益(gain)电压放大器,因为刚开始主要用于加法,乘法等运算电路中,因而得名。

一个理想的运算放大器必须具备下列特性:无限大的输入阻抗、等于零的输出阻抗、无限大的开回路增益、无限大的共模排斥比的部分、无限大的频宽。

最基本的运算放大器如图1-1。

一个运算放大器模组一般包括一个正输入端(OP_P)、一个负输入端(OP_N)和一个输出端(OP_O)。

图1-1 通常使用运算放大器时,会将其输出端与其反相输入端(inverting input node)连接,形成一负反馈(negative feedback)组态。

运算放大器的工作原理

运算放大器的工作原理

运算放大器的工作原理
首先,让我们来了解一下运算放大器的基本特性。

运算放大器具有高输入阻抗、低输出阻抗、大增益和宽带宽等特点。

这些特性使得运算放大器在信号处理中具有非常重要的作用。

其次,我们来看一下运算放大器的内部结构。

运算放大器通常由多个晶体管、电阻和电容等元件组成,通过这些元件的合理组合,可以实现对输入信号的放大和处理。

此外,运算放大器还包括正、负电源电压引脚,以及非反相输入端、反相输入端和输出端等引脚。

这些引脚的连接方式和电压分布对运算放大器的工作状态有着重要的影响。

接下来,让我们来详细了解一下运算放大器的工作模式。

运算放大器有两种基
本的工作模式,分别是开环模式和闭环模式。

在开环模式下,运算放大器的输出电压与输入电压成正比,增益非常大。

而在闭环模式下,通过反馈网络的连接,可以控制运算放大器的增益和频率特性,从而实现对输入信号的精确放大和处理。

在实际应用中,闭环模式的运算放大器更为常见,因为它可以提供稳定、可靠的放大性能。

除了基本特性、内部结构和工作模式,运算放大器还有许多其他重要的应用。

例如,运算放大器可以用于信号滤波、信号调理、比较器、积分器、微分器等电路中。

通过合理选择反馈网络和外部元件,可以实现对不同类型信号的处理和放大,从而满足各种应用的需求。

总的来说,运算放大器是一种功能强大的集成电路,它在电子设备中有着广泛
的应用。

通过对其工作原理的深入了解,我们可以更好地应用运算放大器,实现对信号的精确处理和放大。

希望本文对您有所帮助,谢谢阅读!。

lm2903工作原理

lm2903工作原理

lm2903工作原理
LM2903是一种双运算放大器,常用于模拟和数字电路中。

它由两个相互独立的运算放大器组成。

每个运算放大器都具有两个输入端和一个输出端。

两个运算放大器具有相同的工作原理。

每个运算放大器的工作原理如下:
1. 差分输入:每个运算放大器有两个输入端,分别称为非反相输入端(+IN)和反相输入端(-IN)。

当电压在非反相输入端上升时,输出电压也会上升;当电压在反相输入端上升时,输出电压则下降。

2. 开环增益:当输入电压在一定范围内变化时,输出电压会经过放大。

LM2903的开环增益是固定的,约为200倍左右。

3. 负反馈:为了稳定运算放大器的工作,需要将一部分输出电压反馈到输入端。

具体而言,将输出端引出的信号经过电阻网络反馈到反相输入端。

这种负反馈会减小增益,但能提高稳定性和线性度。

4. 输入阻抗和输出阻抗:LM2903的输入阻抗较高,约为
100MΩ,输出阻抗较低,约为100Ω。

这样可以避免对输入和输出电路的干扰,提高信号传输质量。

5. 供电电压:LM2903通常工作在+5V至+30V的供电电压范围内。

此外,芯片还具有过电流保护和静态电保护功能,以确
保可靠的工作。

总之,LM2903的工作原理是基于运算放大器的反馈机制实现对输入电压的放大,并通过负反馈提高稳定性和线性度。

它在模拟和数字电路中具有广泛的应用。

运算放大器原理图

运算放大器原理图

运算放大器原理图运算放大器(Operational Amplifier,简称Op-Amp)是一种重要的电子元件,它在电子电路中起着非常重要的作用。

本文将介绍运算放大器的原理图及其工作原理。

首先,让我们来了解一下运算放大器的基本结构。

运算放大器通常由一个差分输入级、一个级联放大器和一个输出级组成。

差分输入级通常由两个输入端和一个差分放大器组成,级联放大器由多个级联的放大器组成,输出级则是一个输出放大器。

运算放大器的电路图如下所示:(插入运算放大器原理图)。

在实际应用中,运算放大器通常用来放大电压信号、求和、差分运算、积分、微分等。

运算放大器具有高输入阻抗、低输出阻抗、大增益、宽带宽等特点,可以实现很多复杂的电路功能。

运算放大器的工作原理是基于反馈原理的。

在运算放大器的反馈电路中,通过外部连接的电阻、电容等元件,将部分输出信号反馈到输入端,从而实现对输出信号的控制。

通过控制反馈电路的参数,可以实现对运算放大器的增益、频率特性等进行调节。

另外,运算放大器还有一些常见的特性,比如输入偏置电流、输入偏置电压、共模抑制比、噪声等。

这些特性对于运算放大器的实际应用有着重要的影响,需要在设计电路时进行充分考虑。

在实际应用中,运算放大器广泛应用于模拟电路、数字电路、信号处理、自动控制等领域。

比如,运算放大器可以用来设计滤波器、比较器、振荡器、放大器等电路,也可以用来实现信号的调理、放大、滤波、整形等功能。

总的来说,运算放大器是一种非常重要的电子元件,它在电子电路中有着广泛的应用。

通过对运算放大器的原理图及其工作原理的了解,可以更好地应用运算放大器设计各种电路,实现各种功能。

希望本文对读者有所帮助,谢谢阅读!。

运放电路工作原理

运放电路工作原理

运放电路工作原理
运放电路是一种基本的电子电路,其工作原理是通过运放输入端的差分放大和反馈机制将输入信号放大并输出一个放大后的信号。

运放电路通常由一个差动放大器和一个输出级组成。

差动放大器是运放电路的核心部分,其输入端有两个引脚,分别为非反相输入端(+)和反相输入端(-)。

当有输入信号时,差动放大器会将两个输入信号进行放大。

如果非反相输入端的电压高于反相输入端的电压,差动放大器会输出一个正的放大信号;如果非反相输入端的电压低于反相输入端的电压,差动放大器会输出一个负的放大信号。

反馈机制是运放电路实现放大功能的关键。

通过将部分输出信号反馈到输入端,可以控制放大倍数和增加稳定性。

具体来说,反馈一般分为两种类型:正反馈和负反馈。

正反馈会使输出信号持续增加,很少被使用;而负反馈会减小放大倍数,但可以提高电路的稳定性和减小失真。

在运放电路中,输出级负责将放大后的信号输出到负载中。

负载可以是其他电路或器件,比如扬声器、显示器等。

输出级的基本原理是将差动放大器输出的信号进行电流放大和电压放大,以驱动负载。

总的来说,运放电路的工作原理是通过差分放大和反馈机制将输入信号放大,并通过输出级将放大信号输出到负载中。

这种原理使得运放电路成为广泛应用于各种电子设备中的重要组成部分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

运算放大器工作原理是什么?运算放大器(Operational Amplifier,简称OP、OPA、OPAMP)是一种直流耦合﹐差模(差动模式)输入、通常为单端输出(Differential-in, single-ended output)的高增益(gain)电压放大器,因为刚开始主要用于加法,乘法等运算电路中,因而得名。

一个理想的运算放大器必须具备下列特性:无限大的输入阻抗、等于零的输出阻抗、无限大的开回路增益、无限大的共模排斥比的部分、无限大的频宽。

最基本的运算放大器如图1-1。

一个运算放大器模组一般包括一个正输入端(OP_P)、一个负输入端(OP_N)和一个输出端(OP_O)。

通常使用运算放大器时,会将其输出端与其反相输入端(inverting input node)连接,形成一负反馈(negative feedback)组态。

原因是运算放大器的电压增益非常大,范围从数百至数万倍不等,使用负反馈方可保证电路的稳定运作。

但是这并不代表运算放大器不能连接成正回馈(positive feedback),相反地,在很多需要产生震荡讯号的系统中,正回馈组态的运算放大器是很常见的组成元件。

开环回路运算放大器如图1-2。

当一个理想运算放大器采用开回路的方式工作时,其输出与输入电压的关系式如下:Vout = ( V+ -V-) * Aog其中Aog代表运算放大器的开环回路差动增益(open-loop differential gai 由于运算放大器的开环回路增益非常高,因此就算输入端的差动讯号很小,仍然会让输出讯号「饱和」(saturation),导致非线性的失真出现。

因此运算放大器很少以开环回路出现在电路系统中,少数的例外是用运算放大器做比较器(comparator),比较器的输出通常为逻辑准位元的「0」与「1」。

闭环负反馈将运算放大器的反向输入端与输出端连接起来,放大器电路就处在负反馈组态的状况,此时通常可以将电路简单地称为闭环放大器。

闭环放大器依据输入讯号进入放大器的端点,又可分为反相(inverting)放大器与非反相(non-inverting)放大器两种。

反相闭环放大器如图1-3。

假设这个闭环放大器使用理想的运算放大器,则因为其开环增益为无限大,所以运算放大器的两输入端为虚接地(virtual ground),其输出与输入电压的关系式如下:Vout = -(Rf / Rin) * Vin图1-3反相闭环放大器非反相闭环放大器如图1-4。

假设这个闭环放大器使用理想的运算放大器,则因为其开环增益为无限大,所以运算放大器的两输入端电压差几乎为零,其输出与输入电压的关系式如下:Vout = ((R2 / R1) + 1) * Vin图1-4非反相闭环放大器闭环正回馈将运算放大器的正向输入端与输出端连接起来,放大器电路就处在正回馈的状况,由于正回馈组态工作于一极不稳定的状态,多应用于需要产生震荡讯号的应用中。

理想运放和理想运放条件在分析和综合运放应用电路时,大多数情况下,可以将集成运放看成一个理想运算放大器。

理想运放顾名思义是将集成运放的各项技术指标理想化。

由于实际运放的技术指标比较接近理想运放,因此由理想化带来的误差非常小,在一般的工程计算中可以忽略。

理想运放各项技术指标具体如下:1.开环差模电压放大倍数Aod = ∞;2.输入电阻Rid = ∞;输出电阻Rod =03.输入偏臵电流IB1=IB2=0 ;4.失调电压UIO 、失调电流IIO 、失调电压温漂、失调电流温漂均为零;5.共模抑制比CMRR = ∞;;6.-3dB带宽fH = ∞;7.无内部干扰和噪声。

实际运放的参数达到如下水平即可以按理想运放对待:电压放大倍数达到104~105倍;输入电阻达到105Ω;输出电阻小于几百欧姆;外电路中的电流远大于偏臵电流;失调电压、失调电流及其温漂很小,造成电路的漂移在允许范围之内,电路的稳定性符合要求即可;输入最小信号时,有一定信噪比,共模抑制比大于等于60dB;带宽符合电路带宽要求即可。

运算放大器中的虚短和虚断含意理想运放工作在线性区时可以得出二条重要的结论:虚短因为理想运放的电压放大倍数很大,而运放工作在线性区,是一个线性放大电路,输出电压不超出线性范围(即有限值),所以,运算放大器同相输入端与反相输入端的电位十分接近相等。

在运放供电电压为±15V时,输出的最大值一般在10~13V。

所以运放两输入端的电压差,在1mV以下,近似两输入端短路。

这一特性称为虚短,显然这不是真正的短路,只是分析电路时在允许误差范围之内的合理近似。

虚断由于运放的输入电阻一般都在几百千欧以上,流入运放同相输入端和反相输入端中的电流十分微小,比外电路中的电流小几个数量级,流入运放的电流往往可以忽略,这相当运放的输入端开路,这一特性称为虚断。

显然,运放的输入端不能真正开路。

运用“虚短”、“虚断”这两个概念,在分析运放线性应用电路时,可以简化应用电路的分析过程。

运算放大器构成的运算电路均要求输入与输出之间满足一定的函数关系,因此均可应用这两条结论。

如果运放不在线性区工作,也就没有“虚短”、“虚断”的特性。

如果测量运放两输入端的电位,达到几毫伏以上,往往该运放不在线性区工作,或者已经损坏。

重要指标输入失调电压UIO一个理想的集成运放,当输入电压为零时,输出电压也应为零(不加调零装臵)。

但实际上集成运放的差分输入级很难做到完全对称,通常在输入电压为零时,存在一定的输出电压。

输入失调电压是指为了使输出电压为零而在输入端加的补偿电压。

实际上是指输入电压为零时,将输出电压除以电压放大倍数,折算到输入端的数值称为输入失调电压,即UIO的大小反应了运放的对称程度和电位配合情况。

UIO越小越好,其量级在2mV~20mV之间,超低失调和低漂移运放的UIO一般在1μV~20μV之间输入失调电流IIO当输出电压为零时,差分输入级的差分对管基极的静态电流之差称为输入失调电流IIO ,即由于信号源内阻的存在,IIO的变化会引起输入电压的变化,使运放输出电压不为零。

IIO愈小,输入级差分对管的对称程度越好,一般约为1nA~0.1µA。

输入偏臵电流IIB集成运放输出电压为零时,运放两个输入端静态偏臵电流的平均值定义为输入偏臵电流,即从使用角度来看,偏臵电流小好,由于信号源内阻变化引起的输出电压变化也愈小,故输入偏臵电流是重要的技术指标。

一般IIB约为1nA~0.1µA。

输入失调电压温漂△UIO/△T输入失调电压温漂是指在规定工作温度范围内,输入失调电压随温度的变化量与温度变化量的比值。

它是衡量电路温漂的重要指标,不能用外接调零装臵的办法来补偿。

输入失调电压温漂越小越好。

一般的运放的输入失调电压温漂在±1mV/℃~±20mV/℃之间。

输入失调电流温漂△IIO/△T在规定工作温度范围内,输入失调电流随温度的变化量与温度变化量之比值称为输入失调电流温漂。

输入失调电流温漂是放大电路电流漂移的量度,不能用外接调零装臵来补偿。

高质量的运放每度几个pA。

最大差模输入电压Uidmax最大差模输入电压Uidmax是指运放两输入端能承受的最大差模输入电压。

超过此电压,运放输入级对管将进入非线性区,而使运放的性能显著恶化,甚至造成损坏。

根据工艺不同,Uidmax约为±5V~±30V。

最大共模输入电压Uicmax最大共模输入电压Uicmax是指在保证运放正常工作条件下,运放所能承受的最大共模输入电压。

共模电压超过此值时,输入差分对管的工作点进入非线性区,放大器失去共模抑制能力,共模抑制比显著下降。

最大共模输入电压Uicmax定义为,标称电源电压下将运放接成电压跟随器时,使输出电压产生1%跟随误差的共模输入电压值;或定义为下降6dB时所加的共模输入电压值。

开环差模电压放大倍数Aud是指集成运放工作在线性区、接入规定的负载,输出电压的变化量与运放输入端口处的输入电压的变化量之比。

运放的Aud在60~120dB之间。

不同功能的运放,Aud相差悬殊。

差模输入电阻Rid是指输入差模信号时运放的输入电阻。

Rid越大,对信号源的影响越小,运放的输入电阻Rid一般都在几百千欧以上。

运放共模抑制比KCMR的定义与差分放大电路中的定义相同,是差模电压放大倍数与共模电压放大倍数之比,常用分贝数来表示。

不同功能的运放,KCMR 也不相同,有的在60~70dB之间,有的高达180dB。

KCMR越大,对共模干扰抑制能力越强。

开环带宽BW开环带宽又称-3dB带宽,是指运算放大器的差模电压放大倍数Aud在高频段下降3dB所对应的频率fH。

单位增益带宽BWG是指信号频率增加,使Aud下降到1时所对应的频率fT,即Aud为0dB时的信号频率fT。

它是集成运放的重要参数。

741型运放的 fT=7Hz,是比较低的。

转换速率SR (压摆率)转换速率SR 是指放大电路在电压放大倍数等于1的条件下,输入大信号(例如阶跃信号)时,放大电路输出电压对时间的最大变化速率,见图7-1-1。

它反映了运放对于快速变化的输入信号的响应能力。

转换速率SR的表达式为转换速率SR是在大信号和高频信号工作时的一项重要指标,目前一般通用型运放压摆率在1~10V/µs左右。

单位增益带宽BWG (fT)共模抑制比KCMR差模输入电阻开环差模电压放大倍数Aud运放如上图有两个输入端a,b和一个输出端o.也称为倒向输入端(反相输入端),非倒向输入端(同相输入端)和输出端.当电压加U-加在a端和公共端(公共端是电压的零位,它相当于电路中的参考结点.)之间,且其实际方向从 a 端指向公共端时,输出电压U实际方向则自公共端指向o端,即两者的方向正好相反.当输入电压U+加在b端和公共端之间,U与U+两者的实际方向相对公共端恰好相同.为了区别起见,a端和 b 端分别用"-"和"+"号标出,但不要将它们误认为电压参考方向的正负极性.电压的正负极性应另外标出或用箭头表示.反转放大器和非反转放大器如下图:一般可将运放简单地视为:具有一个信号输出端口(Out)和同相、反相两个高阻抗输入端的高增益直接耦合电压放大单元,因此可采用运放制作同相、反相及差分放大器。

运放的供电方式分双电源供电与单电源供电两种。

对于双电源供电运放,其输出可在零电压两侧变化,在差动输入电压为零时输出也可臵零。

采用单电源供电的运放,输出在电源与地之间的某一范围变化。

运放的输入电位通常要求高于负电源某一数值,而低于正电源某一数值。

经过特殊设计的运放可以允许输入电位在从负电源到正电源的整个区间变化,甚至稍微高于正电源或稍微低于负电源也被允许。

相关文档
最新文档