生物质碳化技术

合集下载

生物质成型以及炭化技术讲义

生物质成型以及炭化技术讲义

1.5 生物质成型燃料的性能指标
• 生物质成型燃料生产原料的种类不同,成型方式各异,使 得燃料的品质特性差异较大。 生物质成型燃料的品质特性包括成型块的物理特性和燃烧 特性。
• 1.5.1生物质成型燃料的物理特性 直接决定成型燃料的使用要求、运输要求和收藏条件。 衡量指标:松驰密度、耐久性
生物质成型燃料的物理特性
• ⑵物料粉碎
• 木块、树皮、植物秸杆等尺寸较大的原料要时行粉碎,粉 碎作业尽量在粉碎机上完成; 锯末、稻壳等只需清除尺寸较大的异物,无需粉碎。
• 对颗粒成型燃料,一般需要将90%左右的原料粉碎到2mm 以下,必要时原料需进行二次甚至三次粉碎。
• 常用粉碎机械:锤片式粉碎机。
• ⑶干燥
• 干燥处理的原因: 水分含量超过经验值上限时,加工过程中当温度升高时, 体积突然膨胀,易发生爆炸造成事故; 水分含量过低时,会使范德华力降低,物料难以成型。
• ②先炭化后成型:先将生物质原料炭化或部分炭化,然后 加入一定量的黏结剂压缩成型。
• 特点: 炭化过程高分子组分受热裂解转化成炭,并释放出挥发分, 因而其挤压加工性能得到改善,功率消耗也明显下降。 炭化后的原料在挤压成型后维持既定形状的能力较差,故 成型时一般都要加入一定量的黏结剂。
1.4 生物质成型影响因素
• 物料湿度一般要求在10~15%之间,间歇式或低速压缩 工艺中可适当放宽。
• 常用干燥机有回转圆筒干燥机、立式气流干燥机。
①回转圆筒干燥机: • 构造:
排湿口 干燥筒
进料口
热风炉
出料口 驱动装置
优点: 生产能力大,运行可靠,操作容易,适应性强,流体阻力小, 动力消耗低。 缺点: 设备复杂,体积庞大,一次性投资高,占地面积大。

《生物质炭化技术》课件

《生物质炭化技术》课件
根据温度和原料特性,控制炭化时间在30分钟至数小时,确保有机物完全转化成 生物质炭。
炭化产物收集与处理
产物收集
收集生成的生物质炭,进行初步的冷 却和除尘处理。
产物处理
根据应用需求,对生物质炭进行破碎 、筛分和表面改性等处理,以提高其 性能。
炭化过程的安全与环保措施
安全措施
在炭化过程中,采取相应的安全措施, 如设置安全警示标识、配备灭火器材等 ,确保操作安全。
化工领域
生物质炭化技术可以用于生产炭黑、活性炭、石墨烯等炭材料,这些材料在化工、环保、 新能源等领域有广泛的应用前景。
02
生物质炭化技术原理
生物质炭化基本原理
01
生物质炭化是将生物质在缺氧或绝氧条件下热解,生成炭、挥 发分和少量热解油的过程。
02
生物质炭化过程中,生物质中的氢、氧等元素以水蒸气、二氧
化碳等形态释放出来,而碳以固定碳的形式保留下来。
生物质炭化技术可以应用于生产炭基肥料、土壤改良剂、生物
03
质炭吸附剂等方面。
生物质炭化过程中的化学反应
生物质炭化过程中的化学反应主要包括热解、裂解、氧化和 缩聚等。
热解是指生物质在高温下发生分解,产生挥发分和炭。裂解 是指挥发分在高温下进一步分解成小分子物质。氧化是指生 物质与氧气反应生成二氧化碳和水。缩聚是指生物质中的大 分子聚合物在高温下发生交联反应,形成炭。
《生物质炭化技术》 ppt课件
目录
• 生物质炭化技术概述 • 生物质炭化技术原理 • 生物质炭化技术工艺流程 • 生物质炭化技术优势与挑战 • 生物质炭化技术应用案例
01
生物质炭化技术概述
定义与特点
定义
生物质炭化技术是指将生物质原料在缺氧或绝氧条件下热解,生成生物质炭、 可燃气和生物质焦油等产物的过程。

废弃物处理和资源化利用技术

废弃物处理和资源化利用技术

废弃物处理和资源化利用技术随着人类社会和经济的快速发展,废弃物的产生量也在不断增加。

如何有效地处理和利用废弃物,已成为困扰我们环保工作者和科学家的重要问题。

同时,资源的短缺也迫使我们要寻找更多的资源化利用技术,以解决这些问题。

废弃物是指任何被丢弃或废弃的物品、物料、或物质。

废物可以分为生活垃圾、工业废弃物、农业废弃物、医疗废弃物等类型。

这些废弃物不仅污染环境,还浪费了生命质量和资源。

因此,随着环境问题的不断加剧,废弃物的处理和资源化利用技术成为刻不容缓的任务。

废弃物处理技术废弃物处理技术包括物理处理、化学处理、生物处理和综合处理。

具体来说,常见的废处理技术包括焚烧、填埋、分离、生物降解和深度处理等。

焚烧是指将可燃的废弃物燃烧成灰烬和气体。

这种方法可以将有毒的有害物质转化为无害的形态,但它在处理过程中产生了大量的二氧化碳、氧化硫、氧化氮等有害气体,而这些气体会对环境和人体健康造成极大的危害。

填埋是指将废弃物掩埋在地下,以减少它们对环境的影响。

但是,这种方法会导致沼气等有害物质的产生,在长时间的使用期间,还会对水域和食品产生污染。

随着人们的环保意识不断提高,物理处理、化学处理和生物处理也逐渐得到了广泛的应用。

其中物理处理是指通过筛选、振动筛和重力分离等方法将不同种类的废弃物分离开来。

化学处理包括酸碱中和、沉淀、氧化和还原等,这种方法可以将有机物质分离掉,同时对种种化学品产生的有害物质产生作用。

生物处理是指利用微生物降解废弃物、利用植物的吸收作用和人工渗透等方法将废弃物吸收和降解。

废弃物资源化利用技术废弃物的资源化利用方法包括传统的回收、循环利用和开发废弃物资源等多种形式。

其中,废弃物资源开发是通过科研工作发现和探索新型资源化利用技术,以及推广技术产生的新效果等一系列工作来解决废弃物处理的问题。

例如,作为一种高效的废弃物资源化利用技术,生物质碳化技术越来越受到人们的关注。

生物质碳化技术是指通过高温加热和干馏,将废弃的剩余物质转化为并不具有固定化作用的炭素材料。

生物质炭化技术

生物质炭化技术

生物质炭化制气技术克服了以往 技术的弊端,具有原材料来源稳 定可靠,生产规模及产品方案构 成合理,采用的生产技术工艺设 备及加工工艺技术成熟可靠,项 目财务投资回收期短经济效益明 显,市场利润大等优点,还是国 家大力推广和产业政策所扶持的 项目,并具有良好的经济效益、 社会效益和生态效益,市场前景 广阔,具有很好的发展前景
生物质炭化技术
项慧
生物质炭化是指将生物 质通过一定的工艺加工、 化学反应生成产品及副 产品的过程。生物质在 无空气等氧化气氛情形 下发生的不完全热降解, 以生成炭、并且可冷凝 液体等产物的过程
生 物 质 炭 化 制 气 技 术
生物质制气技术是利用锯末、树枝、玉米 芯及农作物秸秆等各种农业废弃物,经粉 碎后通过烘干系统、上料系统连续加入裂 解炉,在炉内依次完成烘干、裂解碳化, 最终产生生物粗燃气、碳粉;粗燃气经炭 化分离可得生物燃气、木焦油、木醋液
原料充足价廉
树枝、秸秆等
锯末、稻壳等 木焦油
出售
粉碎
烘干 气 体 裂解炉
净化器
燃 气储气柜 用户使用炭粉源自储存木醋液出售
活 化
活 性 炭
成 型 出 售
出 售
出 售
节约了能源,有效的利用了 资源使生物质变废为宝
改善了农民的人居条件,提高 了生活质量,缩小了城乡差别, 加快了我国建设社会主义新农 村步伐 保护了环境,有效的解决了 农村的三堆问题 为我国能源的开发利用开辟新 途径
裂解炉采用自动流水线方式,一边进 料一边出炭粉,生产中根据粉碎后的原材料水分 含量大小,控制上料机,是原材料能依次经过烘 干、炭化达到成品。运行中调解燃烧机控制裂解 温度,使成炭品质稳定。同时,对 生产过程中 产生的裂解气进行净化回收,收集起来供用户使 用

生物质碳化技术ppt

生物质碳化技术ppt
-
7.2.4生物质碳化产品 • 生物质碳化产品—木炭,可用于冶金、有色金属
生产、活性炭制造等,用途极其广泛
-
(1)木炭的主要成分:
除C元素外,还有H和O等元素。各种元素含量 多少,依赖于热裂解方法和炭化最终温度,与原料 无关。随炭化最终温度的升高,木炭中C元素的含 量增加,H和O的含量降低。
-
固定碳 木炭放入白金坩埚内,900℃喷灯火焰下煅烧
-
(3)节柴炭烧炉
节柴炭烧炉由砖砌成,烧炭同时,可利用产 生的热量取暖或烧水。 结构:由炉盖、炭化室、燃烧室、火山墙、迎风
墙、烟囱、炉门等组成。 程序:装料、缺氧闷烧、闭炉和出炭。
-
(3)可移出式烧炭炉
结构紧凑、操作容易、移动方便、出炭率高、 炭质较好、劳动强度和受季节影响小。 结构:上炉体、下炉体、烟道、风孔、炉
炭化温度高,木炭的炭含量就大。
-
(4)木炭的反应能力 在高温下与活性气体和蒸气相互作用的能力,
是评价固体原料在工业中使用的基本性质的方法 之一,与其含碳素的无定形多孔结构有关。其中 所含的灰分,尤其是碱金属、碱土金属及其氧化 物的存在,对木炭的化学反应能力也起催化作用。
-
谢谢
-Hale Waihona Puke 7.2 生物质炭化设备-
7.2.1生物质炭化设备
• 烧炭在我国已有2000年以上的历史。 • 常见的碳化设备:
炭窑、移动式炭化炉、果壳炭化炉和流态 化炉。
-
(1)炭窑
原料:薪炭材
结构:炭化室、烟道、燃烧室和 排烟孔。
特点:1、最简单的木材热裂解 方法。
2、得炭率25%,周期3~7 天。
3、闷窑熄火熄火产物为 黑炭,窑外熄火产物 为白炭。

生物质颗粒碳化过程工艺

生物质颗粒碳化过程工艺

生物质颗粒碳化过程工艺
生物质颗粒碳化是将生物质颗粒转化为高碳含量的固体燃料或活性炭的过程。

下面是生物质颗粒碳化的常见工艺流程:
1.原料处理:首先,将生物质原料进行预处理。

这可能包括颗粒化、粉碎、干燥等步骤,以获得适合碳化的颗粒大小和含水率。

2.碳化反应:将预处理后的生物质颗粒送入碳化炉或碳化器中进行碳化反应。

碳化反应是在高温(通常在500°C至900°C之间)和缺氧条件下进行的。

在缺氧环境中,生物质颗粒中的可燃性物质部分氧化,释放出燃料气体,同时颗粒的碳含量增加。

3.除去挥发物:在碳化过程中,生物质颗粒中的挥发物会释放出来。

这些挥发物通常是燃料气体,可以收集和利用。

通过适当的气体处理和净化系统,将挥发物进行处理,以收集和回收其中的能源。

4.产品冷却和收集:碳化后的颗粒经过碳化炉后,需要进行冷却和收集。

这可以通过气体冷却和颗粒分离设备来完成。

冷却后的颗粒可作为固体燃料或进一步处理制成活性炭等产品。

5.产品处理和利用:最终的产品可以是固体燃料、活性炭或其他碳质产品。

根据具体需求,产品可以进一步处理和加工,以满足不同的应用需求。

例如,固体燃料可以用于锅炉、热能设备或发电厂,活性炭可以用于废水处理、空气净化等。

需要注意的是,生物质颗粒碳化的具体工艺流程可能因碳化设备、原料特性和产品要求而有所不同。

不同的工艺参数和操作条件也会对碳化过程和产品性质产生影响。

因此,在实际应用中,需要根据具体情况选择合适的工艺方案,并进行相应的工艺优化和控制。

1/ 1。

生物质炭化工艺

生物质炭化工艺

生物质炭化工艺生物质炭化工艺是将生物质原料在高温无氧或低氧条件下进行热解,生成炭质产物的过程。

这种工艺可以将生物质转化为生物质炭,具有广泛的应用前景和环境保护意义。

生物质炭化工艺一般包括预处理、干燥、炭化和冷却等几个步骤。

首先,生物质原料经过预处理,去除杂质、调整湿度和粒度,以提高炭化效率和产物质量。

然后,生物质原料经过干燥,除去水分,以降低炭化过程中的能耗。

接下来,生物质原料进入炭化炉进行热解,热解过程中,生物质中的有机物发生裂解和重组,生成炭质产物和气体产物。

最后,炭质产物经过冷却,得到生物质炭。

生物质炭化工艺有多种方法,常见的包括焦化、气化和热解等。

焦化是将生物质原料在高温下分解,生成焦炭的过程。

焦炭具有高热值和良好的化学稳定性,可以用作燃料或冶金原料。

气化是将生物质原料在高温下与气体反应,生成可燃气体的过程。

气化产物可以用作燃料或化工原料。

热解是将生物质原料在低氧或无氧条件下进行加热,生成炭质产物的过程。

热解产物主要是生物质炭,具有良好的吸附性能和环境友好性。

生物质炭化工艺具有多项优点。

首先,生物质炭化可以将生物质转化为高附加值的炭质产物,实现资源的高效利用。

其次,生物质炭化可以减少生物质的体积和质量,便于储存和运输。

再次,生物质炭化可以降低生物质的水分含量,提高热值和燃烧效率。

此外,生物质炭化过程中产生的气体可以用作燃料或化工原料,实现能源的综合利用。

生物质炭化工艺在能源、农业和环境保护等领域具有广泛的应用前景。

在能源领域,生物质炭可以替代传统的化石燃料,减少温室气体的排放,降低能源消耗。

在农业领域,生物质炭可以用作土壤改良剂,提高土壤肥力和作物产量。

在环境保护领域,生物质炭可以吸附和去除水体和大气中的有害物质,净化环境。

然而,生物质炭化工艺也面临一些挑战和问题。

首先,生物质原料的选择和处理对炭化效果和产物质量有很大影响。

不同的生物质原料具有不同的结构和组成,需要针对性地进行处理和优化。

生物炭碳化步骤

生物炭碳化步骤

生物炭碳化步骤一、生物炭碳化的概念和原理生物炭碳化是指利用高温无氧条件下,将生物质原料转化为生物炭的一种过程。

生物质经过碳化处理后,可以得到高效、高附加值的生物炭产品,具有广泛的应用前景。

二、生物炭碳化的步骤1. 原料准备生物炭碳化的第一步是准备好合适的原料。

常用的生物质原料包括木材、秸秆、植物残渣等。

这些原料应经过干燥处理,以降低水分含量,提高碳化效果。

2. 碳化设备准备生物炭碳化需要使用专门的碳化设备,常见的有炭化炉和碳化气化炉。

炭化炉是一种密闭式设备,能够在无氧状态下进行碳化反应。

而碳化气化炉则可以在一定程度上利用产生的气体燃烧提供热能,提高碳化效率。

3. 加热升温在进行生物炭碳化前,需要将炭化设备预热至适当的温度。

通常情况下,生物质原料的碳化温度在400°C-600°C之间,过高或过低都会影响生物炭的质量和产量。

4. 生物炭碳化将预处理好的生物质原料放入炭化设备中,关闭设备并开始加热。

在无氧状态下,原料中的有机物会发生热解和气化反应,生成固体的生物炭和气体产物。

碳化过程一般需要几个小时至几十个小时,具体时间取决于原料的性质和设备的工艺参数。

5. 热解气体处理炭化过程中产生的热解气体需要进行处理,以提高生物炭的质量和减少环境污染。

热解气体主要包括可燃气体和非可燃气体。

可燃气体可以通过气体燃烧装置进行燃烧利用,而非可燃气体则需要进行净化处理,以去除其中的有害成分。

6. 生物炭收集和包装碳化结束后,将产生的生物炭从炭化设备中取出,进行冷却处理。

冷却后的生物炭可以进行筛分和研磨处理,以获得符合要求的产品颗粒度。

最后,将生物炭进行包装,以便储存和销售。

三、生物炭碳化的应用1. 农业领域:生物炭可以作为土壤改良剂,改善土壤结构和保持土壤水分,提高土壤肥力和农作物产量。

此外,生物炭还可以作为农田有机废弃物的处理方法,减少田间秸秆焚烧对环境的影响。

2. 环境保护:生物炭具有良好的吸附性能,可以吸附有机物、重金属和有害气体等污染物,用于水处理、空气净化和废气治理等领域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2)移动式炭化炉
原料:薪炭材 结构:2mm钢板焊接而成,由炉 下体、炉上体和顶盖叠接 而成。 特点:1、劳动强度和受季节影响 小。 2、得炭率25%,周期24h。
(3)果壳炭化炉
原料:果壳 果壳经风选,送至炉顶的加料槽,分别通过 预热段、炭化段、冷却段从卸料口出料,得炭率: 25%~30%,周期 4~5小时,灰分小于2%,挥发 分为8%~15%。
7.2 生物质炭化设备
7.2.1生物质炭化设备
• 烧炭在我国已有2000年以上的历史。
• 常见的碳化设备: 炭窑、移动式炭化炉、果壳炭化炉和流态 化炉。
(1)炭窑
原料:薪炭材
结构:炭化室、烟道、燃烧室和 排烟孔。
特点:1、最简单的木材热裂解 方法。 2、得炭率25%,周期3~7 天。 3、闷窑熄火熄火产物为 黑炭,窑外熄火产物 为白炭。
(3)节柴炭烧炉
节柴炭烧炉由砖砌成,烧炭同时,可利用产 生的热量取暖或烧水。 结构:由炉盖、炭化室、燃烧室、火山墙、迎风 墙、烟囱、炉门等组成。 程序:装料、缺氧闷烧、闭炉和出炭。
(3)可移出式烧炭炉
结构紧凑、操作容易、移动方便、出炭率高、 炭质较好、劳动强度和受季节影响小。 结构:上炉体、下炉体、烟道、风孔、炉 盖、点火架、炉栅。 出炭率:25~30%。
7.2.3木材干馏的工艺流程
木材干流的工艺流程包括木材干燥、木 材干馏、气体冷凝冷却、木炭冷却和供热 系统。要求原料的含水率低于 20% 。木材 干馏产生的蒸气气体混合物在焦油分离器 或列管冷凝器中进行冷凝冷却,是其中可 凝结的蒸气冷凝为木醋酸和焦油。
木材干馏设备即干馏釜,根据加热的方式 不同,可分为内热式和外热式。
(2)窑烧法
程序:烘窑、缺氧闷烧、闷窑。 出炭率:黑炭15%~20%,白炭比黑炭少 1/4~1/3。 现状:发展中国家许多地方使用最简易的烘窑,用土覆盖木 柴或将木柴放入地坑内。这种窑不仅炭化过程慢而且 效果和质量都很差。

用窑烧法烧制木炭,其木炭的质量和产 量与操作水平关系甚大。如果控制不好, 火候太过,产炭量减少;若火候不足,会 烧出夹生炭。
• 内热式:木材通过载热体进入釜内与木材 直接接触的加热方式。 • 外热式:热量通过釜壁传给木材的加热方 式。
影响干馏釜产量的主要因素: 木材含水率、 木材形态、加料速度、载热体温度和数量以及气体 出口温度与压力等。 其中木材含水率和载热体温度对产量的影响 最大。一般每立方米的木材可以得到137kg木炭、 37kg乙酸和65kg焦油。
水分 木炭与水接触时的吸水能力取决于其结构特 性和表面浸润的情况,能吸收超过它自身质量的 水分。长时间储存在空气中,即使不淋雨雪,其 含水量可能超过50%,此时木炭很容易破碎,而 且不能用于冶炼。
灰分
木炭中的灰分含量及其组成与炭化最终温度、 原料种类和组成等因素有关。炭化最终温度越高, 灰分含量越大。
(4)流态化炉
原料:木屑等粉状或颗粒 原料 结构:立式圆筒或圆锥形 炉体。 特点:用螺旋加料器从下 部送料,从底部吹入空气 作为流态化气体,使原料 进行流态化炭化,得炭率 为20%。
7.2.2炭化工艺技术类型
• 木炭制取的主要方法:
堆烧法(欧美国家常用方法)、窑烧法(我 国常用方法)和炉烧法。
7.2.4生物质碳化产品
• 生物质碳化产品—木炭,可用于冶金、有色金属 生产、活性炭制造等,用途极其广泛
(1)木炭的主要成分:
除C元素外,还有H和O等元素。各种元素含量 多少,依赖于热裂解方法和炭化最终温度,与原料 无关。随炭化最终温度的升高,木炭中C元素的含 量增加,H和O的含量降低。
固定碳 木炭放入白金坩埚内,900℃喷灯火焰下煅烧 5min,或在电炉内加热2.5h将温度升高到900℃来 测定其固定碳的含量,由于热裂解方法和炭化最终 温度不同,木炭中可能含有70%~86%的固定碳。 随着煅烧温度的升高,木炭中固定碳的含量将会增 加。
(2)木炭的相对密度和孔隙度
木炭的相对密度随炭化原料种类、含碳量及 炭化温度的不同而不同。炭化原料的相对密度越 大、含碳量越大、炭化温度越高,则相对密度越 大。
(3)木炭的发热量
木炭的发热量主要取决于木炭的含碳量。而 炭化温度高,木炭的炭含量就大。
(4)木炭的反应能力
在高温下与活性气体和蒸气相互作用的能力, 是评价固体原料在工业中使用的基本性质的方法 之一,与其含碳素的无定形多孔结构有关。其中 所含的灰分,尤其是碱金属、碱土金属及其氧化 物的存在,对木炭的化学反应能力也起催化作用。
(1)堆烧法
程序: 将炭化原料竖立或横放在垫木上,上铺 一层小树枝或柴草,再用黏土覆盖密封,同时修 筑一排烟口或装一根排烟管,然后点火烧制。烧 炭过程中,要注意供给的空气量。 出炭率:硬木原料 20%~35%,软木原料 14%~18%。
• 比利时兰姆比奥特公司利用立式干馏釜进 行连续生产,由于这种大规模生产投资强 度大,所以限制了在发展中国家的应用。
谢 谢
相关文档
最新文档