三角函数基本知识

合集下载

三角函数所有知识点

三角函数所有知识点

三角函数所有知识点
三角函数是一种数学函数,它们描述的是在直角三角形中,三角形的角度和边长之间的关系。

在这里,将介绍一些三角函数的重要知识点,包括定义、性质、图像、公式和应用。

一、常见三角函数
在三角函数中,最常见的三个函数包括正弦函数、余弦函数和正切函数。

它们的定义如下:
正弦函数:sin(x) = 对边/斜边
余弦函数:cos(x) = 邻边/斜边
正切函数:tan(x) = 对边/邻边
其中,x代表角度,对边代表直角三角形中与角度x 相对应的直角边,邻边代表另一条直角边,斜边代表斜边。

二、三角函数的周期性
三角函数具有周期性,这意味着它们在一定范围内以特定的周期不断重复。

正弦函数和余弦函数的周期都是2π,而正切函数的周期是π。

三、三角函数的图像
三角函数的图像都是连续的曲线,它们的形状和周期是不同的。

正弦函数的图像类似于波浪线,余弦函数的图像则类似于正弦函数图像向右平移π/2,正切函数的图像是一个连续的周期性分数函数。

四、三角函数的公式
三角函数有很多重要的公式,包括欧拉公式、和差化积公式、倍角公式、半角公式和逆三角函数公式。

这些公式可以帮助我们在计算中更方便地使用三角函数。

五、三角函数的应用
三角函数广泛应用于科学和工程领域,包括声学、天文学、物理学、计算机图形学等。

例如,在声学中,三角函数可以用于描述声波和光波的振动模式,而在计算机图形学中,它们可以用于图像处理和动画设计。

以上就是三角函数的一些重要知识点,希望能帮助你更好地理解三角函数。

三角函数初学知识点总结

三角函数初学知识点总结

三角函数初学知识点总结一、正弦函数正弦函数是最基本的三角函数之一,它的定义如下:在直角三角形中,对于任意角A,正弦函数的定义为:sinA=对边/斜边其中,对边是角A的对边,斜边是角A的斜边。

正弦函数的图像是一条连续的曲线,它的周期性是2π,即sin(x+2π)=sinx。

正弦函数的奇偶性:sin(-x)=-sinx,可以看出正弦函数是奇函数。

正弦函数的性质:在区间[-π/2,π/2]上,正弦函数是单调递增的,并且在[-π/2,π/2]上具有最大值1和最小值-1。

正弦函数的应用:正弦函数在物理、几何、工程等领域都有广泛的应用,例如在振动、波动、周期性变化等方面。

二、余弦函数余弦函数也是三角函数中的重要函数,它的定义如下:在直角三角形中,对于任意角A,余弦函数的定义为:cosA=邻边/斜边其中,邻边是角A的邻边,斜边是角A的斜边。

余弦函数的图像也是一条连续的曲线,它的周期性是2π,即cos(x+2π)=cosx。

余弦函数的奇偶性:cos(-x)=cosx,可以看出余弦函数是偶函数。

余弦函数的性质:在区间[0,π]上,余弦函数是单调递减的,并且在[0,π]上具有最大值1和最小值-1。

余弦函数的应用:余弦函数在物理、几何、工程等领域同样有着广泛的应用,例如在力的分解、振动、周期性变化等方面。

三、正切函数正切函数是三角函数中比较特殊的一个函数,它的定义如下:在直角三角形中,对于任意角A,正切函数的定义为:tanA=对边/邻边其中,对边是角A的对边,邻边是角A的邻边。

正切函数的图像也是一条连续的曲线,它的周期性是π,即tan(x+π)=tanx。

正切函数的奇偶性:tan(-x)=-tanx,可以看出正切函数是奇函数。

正切函数的性质:在区间(-π/2,π/2)上,正切函数是单调递增的,但在整个定义域上是周期性的,且具有无穷多个间断点。

正切函数的应用:正切函数在解决角度的测量、直角三角形的求解等问题中有着重要的应用。

三角函数知识清单

三角函数知识清单

三角函数是数学中的基础知识之一,主要包括正弦、余弦和正切三个基本函数。

以下是关于三角函数的知识清单:1. 定义:* 正弦函数:sin(x) = y = (e^(ix) - e^(-ix)) / (2i)* 余弦函数:cos(x) = y = (e^(ix) + e^(-ix)) / 2* 正切函数:tan(x) = y = sin(x) / cos(x)2. 性质:* 周期性:sin(x), cos(x)等具有周期性,周期为2π。

* 奇偶性:sin(x)是奇函数,cos(x)是偶函数。

* 有界性:sin(x), cos(x)的值域为[-1,1]。

3. 图像:* 正弦函数的图像是一个波浪线,余弦函数的图像也是一个波浪线,但相位差了π/2。

* 正切函数的图像是连续的直线,在每一个周期内都有无数条直线。

4. 公式:* 和差公式:sin(x+y) = sinxcosy + cosxsiny, cos(x+y) = cosxcosy -sinxsiny, tan(x+y) = (tanx + tany)/(1 - tanxtany)。

* 积的和差公式:sinxcosy = (1/2)(sin(x+y) + sin(x-y)), cosxcosy = (1/2)(cos(x+y) + cos(x-y)), sinxsiny = (1/2)(cos(x-y) - cos(x+y))。

5. 应用:* 在物理、工程、计算机科学等领域中,三角函数都有广泛的应用。

例如,在交流电中,电流和电压是随时间变化的正弦和余弦函数。

在信号处理中,正弦和余弦函数用于表示各种波形。

在计算机图形学中,正弦和余弦函数用于生成各种动画效果。

6. 特殊角度:* sin0=0, cos0=1, tan0=0。

* sin30=1/2, cos30=√3/2, tan30=√3/3。

* sin45=√2/2, cos45=√2/2, tan45=1。

三角函数基础知识

三角函数基础知识

三角函数基础知识整理一.角的概念:1.角的概念的推广⑴“旋转”形成角一条射线由原来的位置OA,绕着它的端点O按逆时针方向旋转到另一位置OB,就形成角α.旋转开始时的射线OA叫做角α的始边,旋转终止的射线OB叫做角α的终边,射线的端点O叫做角α的顶点.⑵.“正角”与“负角”“0角”⑶意义:用“旋转”定义角之后,角的范围大大地扩大了,角的概念推广以后,它包括任意大小的正角、负角和零角.2.“象限角”角的顶点合于坐标原点,角的始边合于x轴的正半轴,这样一来,角的终边落在第几象限,我们就说这个角是第几象限的角(角的终边落在坐标轴上,则此角不属于任何一个象限)3.终边相同的角结论:所有与终边相同的角连同在内可以构成一个集合:{}Z k k S ∈⋅+==,360|οαββ即:任何一个与角终边相同的角,都可以表示成角与整数个周角的和.注意: (1)Z k ∈ (2)是任意角; (3)0360⋅k 与之间是“+”号,如:0360⋅k -30°,应看成0360⋅k +(-30°);(4)终边相同的角不一定相等,但相等的角,终边一定相同,终边相同的角有无数多个,它们相差360°的整数倍.二. 弧度制:1. 定义:长度等于半径长的弧所对的圆心角称为1弧度的角它的单位是rad 读作弧度,这种用“弧度”做单位来度量角的制度叫做弧度制.如下图,依次是1rad , 2rad , 3rad ,αradr rr1rad2rr2rad3rr 3radlrα rad2.弧长公式:α⋅=r l由公式:⇒=r l α α⋅=r l 比公式180r n l π=简单 即弧长等于弧所对的圆心角(的弧度数)的绝对值与半径的积 3.扇形面积公式 lR S 21=其中l 是扇形弧长,R 是圆的半径oR Sl三. 三角函数的定义:1. 设α是一个任意角,在α的终边上任取(异于原点的)一点P (x,y ) 则P 与原点的距离02222>+=+=y x yx r2. 比值ry叫做α的正弦 记作: r y =αsin比值r x叫做α的余弦 记作: rx =αcos比值xy叫做α的正切 记作: x y =αtan比值yx叫做α的余切 记作: y x =αcot比值x r叫做α的正割 记作: xr =αsec比值yr叫做α的余割 记作: y r =αcsc以上六种函数,统称为三角函数. 3. 突出探究的几个问题:①角是“任意角”,当=2k +(k Z)时,与的同名三角函数值应该是相等的,即凡是终边相同的角的三角函数值相等②实际上,如果终边在坐标轴上,上述定义同样适用③三角函数是以“比值”为函数值的函数④0>r 而x,y 的正负是随象限的变化而不同,故三角函数的符号应由象限确定. ⑤定义域:r y=αsin 的定义域: R r x=αcos 的定义域:Rx y =αtan 的定义域:⎭⎬⎫⎩⎨⎧∈+≠Z k k ,2|ππαα注意:(1)以后我们在平面直角坐标系内研究角的问题,其顶点都在原点,始边都与x 轴的非负半轴重合. (2)比值只与角的大小有关.ry)(x,αP4. 三角函数在各象限内的符号规律:正弦在第一、二象限为正;余弦在第一、四象限为正; 正切在第一、三象限为正.四. 诱导公式:1.必须熟记的两组诱导公式:诱导公式一(其中Z ∈k ): 用弧度制可写成ααsin )360sin(=︒⋅+k απαsin )2sin(=+k ααcos )360cos(=︒⋅+k απαcos )2cos(=+k ααtan )360tan(=︒⋅+k απαtan )2tan(=+k诱导公式二:αα-sin sin(=-) ααcos cos(=-) ααtan tan(-=-)2. 诱导公式的变形规则:奇变偶不变,符号看象限.诱导公式三: 用弧度制可表示如下:ααsin 180sin(=-︒) ααπsin sin(=-) αα-cos 180cos(=-︒) ααπ-cos cos(=-) ααtan 180tan(-=-︒) ααπtan tan(-=-)诱导公式四: 用弧度制可表示如下:αα-sin 180sin(=+︒) ααπ-sin sin(=+) αα-cos 180cos(=+︒) ααπ-cos cos(=+) ααtan 180tan(=+︒) ααπtan tan(=+)诱导公式五: 用弧度制可表示如下:ααcos )90sin(=-︒ ααπcos )2sin(=-ααsin )90cos(=-︒ ααπsin )2cos(=-ααcot )90tan(=-︒ααπcot )2tan(=-诱导公式六: 用弧度制可表示如下:ααcos )90sin(-=+︒ ααπcos )2sin(-=+ααsin )90cos(-=+︒ ααπsin )2cos(-=+ααcot )90tan(=+︒ ααπcot )2tan(=+补充公式七: 用弧度制可表示如下:αα-sin 360sin(=-︒) ααπ-sin 2sin(=-) ααcos 360cos(=-︒) ααπcos 2cos(=-) ααtan 360tan(-=-︒) ααπtan 2tan(-=-)补充公式八: 用弧度制可表示如下:ααcos )270sin(-=-︒ ααπcos )23sin(-=- ααsin )270cos(-=-︒ ααπsin )23cos(-=-ααcot )270tan(=-︒ααπcot )23tan(=-补充公式九: 用弧度制可表示如下:ααcos )270sin(-=+︒ ααπcos )23sin(-=+ ααsin )270cos(=+︒ ααπsin )23cos(=+ααcot )270tan(-=+︒ ααπcot )23tan(-=+五.两角和与差的三角函数关系式:1.两角和与差的三角函数关系式βαβαβαsin sin cos cos )cos(-=+ βαβαβαsin sin cos cos )cos(+=- βαβαβαcos sin cos sin )sin(+=+ βαβαβαcos sin cos sin )sin(-=-βαβαβαtan tan 1tan tan )tan(-+=+βαβαβαtan tan 1tan tan )tan(+-=-2 推导公式:)cos sin (cos sin 222222ααααba b ba ab a b a ++++=+因为1)()(222222=+++ba b ba a .所以sin 2θ+cos 2θ=1(1)若令22ba a +=sin θ,则22ba b +=cos θ则asin α+bcos α=22b a +(sin θsin α+cos θcos α)=22b a +cos (θ-α) (或=22b a +cos (α-θ))(2)若令22ba a +=cos ϕ,则22ba b +=sin ϕ.则a sin α+b cos α=22b a +(sin αcos ϕ+cos αsin ϕ)=22b a +sin (α+ϕ)六.二倍角公式:1.二倍角公式:αααcos sin 22sin =;)(2αS ααα22sin cos 2cos -=;)(2αC ααα2tan 1tan 22tan -=;)(2αT1cos 22cos 2-=αααα2sin 212cos -=)(2αC ' 注意:(1)二倍角公式的作用在于用单角的三角函数来表达二倍角的三角函数,它适用于二倍角与单角的三角函数之间的互化问题.(2)二倍角公式为仅限于α2是α的二倍的形式,尤其是“倍角”的意义是相对的(3)二倍角公式是从两角和的三角函数公式中,取两角相等时推导出,记忆时可联想相应角的公式.(4) 公式)(2αS ,)(2αC ,)(2αC ',)(2αT 成立的条件是: 公式)(2αT 成立的条件是Z k k k R ∈+≠+≠∈,4,2,ππαππαα.其他R ∈α(5) 熟悉“倍角”与“二次”的关系(升角—降次,降角—升次)(6) 特别注意公式的三角表达形式,且要善于变形:22cos 1sin ,22cos 1cos 22α-=αα+=α 这两个形式今后常用七.万能公式:1.万能公式2tan 12tan2tan ,2tan 12tan 1cos ,2tan 12tan2sin 2222ααααααααα-=+-=+=证明:12tan 12tan22cos 2sin 2cos 2sin 21sin sin 222α+α=α+ααα=α=α22tan 12tan 12cos 2sin 2sin 2cos 1cos cos 222222α+α-=α+αα-α=α=α32tan 12tan22sin 2cos 2cos 2sin2cos sin tan 222α-α=α-ααα=αα=α八. 三角函数的图象与性质:1.正弦线、余弦线:设任意角α的终边与单位圆相交于点P(x ,y),过P 作x 轴的垂线,垂足为M ,则有MP r y ==αsin ,OM rx==αcos 注:有向线段MP 叫做角α的正弦线,有向线段OM 叫做角α的余弦线.2.用单位圆中的正弦线、余弦线作正弦函数y=sinx ,x ∈[0,2π]、余弦函数y=cosx ,x ∈[0,2π]的图象(几何法):把y=sinx ,x ∈[0,2π]和y=cosx ,x ∈[0,2π]的图象,沿着x 轴向右和向左连续地平行移动,每次移动的距离为2π,就得到y=sinx ,x ∈R 和y=cosx ,x ∈R 的图象,分别叫做正弦曲线和余弦曲线.-11y x-6π-5π6π5π-4π-3π-2π-π4π3π2ππf x () = sin x ()-11y x-6π-5π6π5π-4π-3π-2π-π4π3π2ππf x () = cos x ()3.用五点法作正弦函数和余弦函数的简图(描点法):正弦函数y=sinx ,x ∈[0,2π]的图象中,五个关键点是:(0,0) (2π,1) (,0) (23π,-1) (2,0)(1)y=cosx, x R 与函数y=sin(x+2π) x R 的图象相同(2)将y=sinx 的图象向左平移2π即得y=cosx 的图象 (3)也同样可用五点法作图:y=cosx x[0,2]的五个点关键是(0,1) (2π,0) (,-1) (23π,0) (2,1)4.定义域:正弦函数、余弦函数的定义域都是实数集R [或(-∞,+∞)], 分别记作: y =sin x ,x ∈R y =cos x ,x ∈R 5.值域正弦函数、余弦函数的值域都是[-1,1] 其中正弦函数y =sin x ,x ∈R①当且仅当x =2π+2k π,k ∈Z 时,取得最大值1 ②当且仅当x =-2π+2k π,k ∈Z 时,取得最小值-1而余弦函数y =cos x ,x ∈R①当且仅当x =2k π,k ∈Z 时,取得最大值1②当且仅当x =(2k +1)π,k ∈Z 时,取得最小值-16.周期性一般地,对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有f (x +T )=f (x ),那么函数f (x )就叫做周期函数,非零常数T 叫做这个函数的周期对于一个周期函数f (x ),如果在它所有的周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期注意:1 周期函数x 定义域M ,则必有x+T M, 且若T>0则定义域无上界;T<0则定义域无下界;2 “每一个值”只要有一个反例,则f (x )就不为周期函数(如f (x 0+t)f (x 0))3 T 往往是多值的(如y=sinx 2,4,…,-2,-4,…都是周期)周期T 中最小的正数叫做f (x )的最小正周期(有些周期函数没有最小正周期)正弦函数、余弦函数都是周期函数,2k π(k ∈Z 且k ≠0)都是它的周期,最小正周期是2π 7.奇偶性y =sinx 为奇函数,y =cosx 为偶函数正弦曲线关于原点O 对称,余弦曲线关于y 轴对称8.单调性正弦函数在每一个闭区间[-2π+2k π,2π+2k π](k ∈Z )上都是增函数,其值从-1增大到1;在每一个闭区间[2π+2k π,23π+2k π](k ∈Z )上都是减函数,其值从1减小到-1余弦函数在每一个闭区间[(2k -1)π,2k π](k ∈Z )上都是增函数,其值从-1增加到1;在每一个闭区间[2k π,(2k +1)π](k ∈Z )上都是减函数,其值从1减小到-1九. 函数()()0,0sin >>+=ωψωA x A y 的图象与性质:1.振幅变换:y=Asinx ,x R(A>0且A 1)的图象可以看作把正数曲线上的所有点的纵坐标伸长(A>1)或缩短(0<A<1)到原来的A 倍得到的它的值域[-A, A] 最大值是A, 最小值是-A .若A<0 可先作y=-Asinx 的图象 ,再以x 轴为对称轴翻折A 称为振幅 2.周期变换:函数y=sin ωx, x R (ω>0且ω1)的图象,可看作把正弦曲线上所有点的横坐标缩短(ω>1)或伸长(0<ω<1)到原来的ω1倍(纵坐标不变).若 ω<0则可用诱导公式将符号“提出”再作图ω决定了函数的周期3 相位变换: 函数y =sin(x +ϕ),x ∈R (其中ϕ≠0)的图象,可以看作把正弦曲线上所有点向左(当ϕ>0时)或向右(当ϕ<0时=平行移动|ϕ|个单位长度而得到(用平移法注意讲清方向:“加左”“减右”)十. 正切函数的图象与性质:1. 正切线:正切函数R x xy ∈=tan ,且()z k k x ∈+≠ππ2的图象,称“正切曲线”余切函数y =cotx ,x ∈(k π,k π+π),k ∈Z 的图象(余切曲线)正切函数的性质:1.定义域:⎭⎬⎫⎩⎨⎧∈+≠z k k x x ,2|ππ, 2.值域:R 3.当z k k k x ∈⎪⎭⎫⎝⎛+∈2,πππ时0>y , 当z k k k x ∈⎪⎭⎫⎝⎛-∈πππ,2时0<y 4.周期性:π=T5.奇偶性:()x x tan tan -=-奇函数6.单调性:在开区间z k k k ∈⎪⎭⎫⎝⎛++-ππππ2,2内,函数单调递增十一. 正、余弦定理:1 正弦定理:在任一个三角形中,各边和它所对角的正弦比相等,即A a sin =B b sin =Ccsin =2R (R 为△ABC 外接圆半径) 2 正弦定理的应用 从理论上正弦定理可解决两类问题: (1)两角和任意一边,求其它两边和一角;(2)两边和其中一边对角,求另一边的对角,进而可求其它的边和角(见图示)已知a, b 和A, 用正弦定理求B 时的各种情况:①若A 为锐角时:⎪⎪⎩⎪⎪⎨⎧≥<<=<)( b a ) ,( b a bsinA )( bsinA asin 锐角一解一钝一锐二解直角一解无解A b a已知边a,b 和∠A有两个解仅有一个解无解CH=bsinA<a<b a=CH=bsinA a<CH=bsinA②若A 为直角或钝角时:⎩⎨⎧>≤)(b a 锐角一解无解b a3. 余弦定理:A bc c b a cos 2222-+=⇔bca cb A 2cos 222-+=B ca a c b cos 2222-+=⇔cab ac B 2cos 222-+=C ab b a c cos 2222-+=⇔abc b a C 2cos 222-+=4.余弦定理可以解决的问题(1)已知三边,求三个角;(2)已知两边和它们的夹角,求第三边和其他两个角5.三角形的知识在测量、航海、几何、物理学等方面都有非常广泛的应用,如果我们抽去每个应用题中与生产生活实际所联系的外壳,就暴露出解三角形问题的本质,这就要提高分析问题和解决问题的能力及化实际问题为抽象的数学问题的能力,要求大家掌握利用正、余弦定理解斜三角形的方法,明确解斜三角形知识在实际中的广泛应用,熟练掌握由实际问题向解斜三角形类型问题的转化,逐步提高数学知识的应用能力。

三角函数基础知识

三角函数基础知识

三角函数基础知识三角函数基础知识1、任意角的三角函数(1)任意角的三角函数的定义:角α的终边上任意一点p的坐标是(x,y),它与原点的距离是r(r>0),那么角α的正弦、余弦、正切、余切分别是(2)三角函数值的符号正弦值与余割值对于第一、二象限的角是正的,而对于第三、四象限的角是负的.余弦值与正割值对于第一、四象限的角是正的,而对于第二、三象限的角是负的.正切值与余切值对于第一、三象限的角是正的,而对于第二、四象限角是负的,也可以按正的在各象限的函数来记,即“一全、二正弦,三切、四余弦”(正割、余割分别与余弦、正弦符号相同)2.同角三角函数的基本关系式(1)倒数关系:sinαcsc=1 cosαsecα= tgαctgα=1(3)平方关系:sin2α+cos2α=1 1+tg2α=sec2α 1+ctg2α=csc2α3.诱导公式(1) k·360°+α(k∈Z),-α,180°±a,360°-α的三角函数值等于α的同名函数值,前面加上一个把α角看成锐角时原函数值的符号,即sin(k·360°+α)=sinα,cos(k·360°+α)=cosαtg(k·360°+α)=tgα,ct g(k·360°+α)=ctgα(k∈Z)sin(-α)=-sinα,cos(-α)=cosαtg(-α)=-tgα,ctg(-α)=-tgαsin(180°+α)=-sinα,cos(180°+α)=-cosαtg(180°+α)=tgα,ctg(180°+α)=ctgαsin(180°-α)=sinα,cos(180°-α)=-cosαtg(180°-α)=-tgα,ctg(180°-α)=-ctgαsin(360°-α)=-sinα,cos(360°-α)=cosαtg(360°-α)=-tgα,ctg(360°-α)=-ctgα(2) 90°±α,270°±α的三角函数值等于a的余名函数值,前面加上一个把α看成锐角时原函数值的符号,例如sin(90°+α)=cosα,tg(270°+α)=-ctgα综上,诱导公式可概括为k·90°±α(k∈Z)的三角函数值,等于α的同名(k为偶数时)或余名(k为奇数时)的函数值,前面加上一个把α看成锐角时原函数值的符号.简称之为“奇余偶不变,符号看象限”.4.三角函数的图象和性质(1)三角函数线以原点为圆心,以单位长为半径的圆叫做单位圆,如图2—3,设角α的终边与单位圆的交点为p ,过p作PM垂直于x轴,垂足为M,A(1,0)、B(0,1),过A、B点作单位的切线AT、BS分别与角α的终边或其反向延长线交于T、S则有向线及MP、OM、AT、BS、OT、OS分别叫作角α的正弦线、余弦线、正切线、余切线、正割线、余割线.(2)三角函数的图象正弦函数y=sinx 余弦函数y=cosx(如图2—4)正切函数y=tgx 余切函数y=ctgx (如图2—5)(3)三角函数的周期①周期函数对于函数y=f(x),如果存在着一个不为零的常数T,使得当x取定义域内的每一个值时,都成立,那么就把函数y=f(x)叫做周期函数,不为零的常数T叫做这个函数的周期.②最小正周期:对于一个周期函数来说、如果在所有的周期中存在着一个最小正数,就把这个最小的正数叫做最小正周期.教科书上所指三角函数的周期均为最小正周期.(4)三角函数的性质5、积化和差与和差化积(1)积化和差与和差化积各有四个公式,它们实质是一类公式的正用或逆用,即积化和差公式的逆用就是和差化积公式。

三角函数知识点归纳总结

三角函数知识点归纳总结

三角函数是高中数学中的重要内容,涉及到三角函数的定义、性质、图像、公式等方面的知识。

下面是对三角函数知识点的归纳总结:一、三角函数的定义1. 正弦函数(sin):在直角三角形中,对边与斜边的比值。

2. 余弦函数(cos):在直角三角形中,邻边与斜边的比值。

3. 正切函数(tan):在直角三角形中,对边与邻边的比值。

4. 余切函数(cot):在直角三角形中,邻边与对边的比值。

5. 正割函数(sec):在直角三角形中,斜边与邻边的比值。

6. 余割函数(csc):在直角三角形中,斜边与对边的比值。

二、三角函数的性质1. 奇偶性:sin和cos函数是奇函数,tan和cot函数是偶函数。

2. 周期性:sin和cos函数的周期为2π,tan和cot函数的周期为π。

3. 值域:sin和cos函数的值域为[-1, 1],tan和cot函数的值域为实数集。

4. 单调性:sin和cos函数在每个周期内单调递增或递减,tan和cot函数在每个周期内单调递增。

5. 对称性:sin和cos函数关于原点对称,tan和cot函数关于坐标轴对称。

三、三角函数的图像1. 正弦函数的图像:在直角坐标系中,以x轴为始边,以角θ为终边的一条线段。

2. 余弦函数的图像:在直角坐标系中,以x轴为始边,以角θ为终边的一条线段。

3. 正切函数的图像:在直角坐标系中,以x轴为始边,以角θ为终边的一条线段。

4. 余切函数的图像:在直角坐标系中,以x轴为始边,以角θ为终边的一条线段。

5. 正割函数的图像:在直角坐标系中,以x轴为始边,以角θ为终边的一条线段。

6. 余割函数的图像:在直角坐标系中,以x轴为始边,以角θ为终边的一条线段。

四、三角函数的基本公式1. 和差公式:sin(a+b) = sina * cosb + cosa * sinb;cos(a+b) = cosa * cosb - sina * sinb;tan(a+b) = (tana + tanb) / (1 - tana * tanb);cot(a+b) = (1 / tana + 1 / tanb) / (1 / tana * 1 / tanb - 1);sec(a+b) = secab / (cosa * cosb - sina * sinb);csc(a+b) = cscab / (cosa * cosb + sina * sinb)。

三角函数基础知识

三角函数基础知识

三角函数基础知识三角函数是数学中非常重要的一个分支,广泛应用于几何、物理、工程等领域。

本文将介绍三角函数的基础知识,包括正弦、余弦和正切等常用三角函数的定义、性质以及在实际问题中的应用。

一、正弦函数正弦函数是三角函数中最基本的函数之一。

对于任意实数x,其正弦值可以表示为sin(x),即sin(x) = A/C,其中A是x点在单位圆上垂直于x轴的投影长度,C是单位圆的半径。

正弦函数有以下一些重要特点:1. 周期性:sin(x)具有周期2π,即对于任意实数x,有sin(x + 2π) = sin(x)。

2. 奇偶性:sin(-x) = -sin(x),即正弦函数关于原点对称,即图像关于原点对称。

3. 取值范围:正弦函数的值域为[-1, 1],即sin(x) ≤ 1,sin(x)≥ -1。

二、余弦函数余弦函数是三角函数中与正弦函数相似的一个函数。

对于任意实数x,其余弦值可以表示为cos(x),即cos(x) = B/C,其中B是x点在单位圆上与x轴的夹角的邻边长度。

余弦函数与正弦函数有相似的性质:1. 周期性:cos(x)具有周期2π,即对于任意实数x,有cos(x + 2π) = cos(x)。

2. 偶函数性:cos(-x) = cos(x),即余弦函数关于y轴对称,即图像关于y轴对称。

3. 取值范围:余弦函数的值域为[-1, 1],即cos(x) ≤ 1,cos(x)≥ -1。

三、正切函数正切函数是三角函数中另一个重要的函数,对于任意实数x,其正切值可以表示为tan(x),即tan(x) = sin(x) / cos(x)。

正切函数有以下一些特点:1. 周期性:tan(x)具有周期π,即对于任意实数x,有tan(x + π) = tan(x)。

2. 奇函数性:tan(-x) = -tan(x),即正切函数关于原点对称,即图像关于原点对称。

3. 取值范围:正切函数的取值范围为整个实数集。

四、三角函数的应用三角函数在许多实际问题中都有广泛的应用。

(完整版)高中三角函数知识点总结

(完整版)高中三角函数知识点总结

(完整版)高中三角函数知识点总结高中三角函数知识点总结1. 基本三角函数概念- 三角函数是以单位圆为基础的函数,包括正弦函数、余弦函数和正切函数。

- 正弦函数(sin):在直角三角形中,对于一个锐角,其对边与斜边的比值称为正弦值。

即:sinA = 对边/斜边。

- 余弦函数(cos):在直角三角形中,对于一个锐角,其邻边与斜边的比值称为余弦值。

即:cosA = 邻边/斜边。

- 正切函数(tan):在直角三角形中,对于一个锐角,其对边与邻边的比值称为正切值。

即:tanA = 对边/邻边。

2. 基本三角函数性质和公式- 三角函数的周期性:正弦函数和余弦函数的周期都是2π;正切函数的周期是π.- 三角函数的奇偶性:正弦函数是奇函数,余弦函数是偶函数,正切函数是奇函数。

- 三角函数的同角关系:sinA/cosA = tanA。

- 三角函数的和差化积公式和积化和差公式:具体公式可根据需要进行查阅。

3. 三角函数图像和性质- 正弦函数图像:在0到2π的区间内,正弦函数的图像为一条周期性的波浪线,最高点为1,最低点为-1,对应于最大值和最小值,0点对应于零值。

- 余弦函数图像:在0到2π的区间内,余弦函数的图像为一条周期性的波浪线,最高点为1,最低点为-1,对应于最大值和最小值,0点对应于最大值。

- 正切函数图像:在0到π的区间内,正切函数的图像无法在x=π/2和3π/2时定义,其他点对应的图像为一条连续的射线。

4. 三角函数的应用- 三角函数广泛应用于科学和工程领域中的周期性现象的描述和计算,例如电流的正弦波,声波的波动等。

- 在几何学中,三角函数也应用于测量角度和距离等问题的解决。

以上为高中三角函数的基本知识点总结,更详细的内容和公式可以参考相关教材或资料。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数基本知识一、基本概念、定义:1. 角的概念推广后,包括 、 、 ,与α终边相同的角表示为 。

终边角: x 轴上 y 轴上 第一象限 第二象限 第二四象限 直线y =x 上 2. 弧度制:把 叫1弧度的角。

公式:|α|=— 换算:180°= 弧度; 1弧度= 度; 1°= 弧度扇形: 弧长L = = ,面积S = = 3. 任意角的三角函数:①定义:角α终边上任意一点P(x ,y),则r = ,六个三角函数的定义依次是 、、 、 、 、 。

②三角函数线:角的终边与单位圆交于点P ,过点P 作 轴的垂线,垂足为M ,则 。

过点A(1,0)作 ,交 于点T ,则 。

③同角三角函数关系式:平方关系: 商数关系:二、基本三角公式:(1~2要求能熟练运用:顺用、逆用、变形用,3~6要求能证明,不记忆)1.和、差角公式=±)sin(βα =±)cos(βα=±)tan(βα2.二倍角公式=α2sin =α2cos = = =α2tan倍角公式变形:降幂公式=ααcos sin =α2sin =α2cos3.半角公式 αααααααsin cos 1cos 1sin cos 1cos 12tan-=+=+-±=4.万能公式: 2tan12tan2sin 2ααα+=;2tan12tan 1cos 22ααα+-=;2tan12tan 2tan 2ααα-=.5.积化和差公式)]sin()[sin(21cos sin βαβαβα-++=; )]sin()[sin(21sin cos βαβαβα--+=; )]cos()[cos(21cos cos βαβαβα-++=; )]cos()[cos(21sin sin βαβαβα--+-=.6.和差化积公式2cos 2sin 2sin sin βαβαβα-+=+; 2sin 2cos 2sin sin βαβαβα-+=-;2cos 2cos 2cos cos βαβαβα-+=+; 2sin 2sin 2cos cos βαβαβα-+-=-.三、应用公式解题的基本题型:化简、求值、证明三角变换是运算化简过程中运用较多的变换, 也是历年高考命题的热点. 提高三 角变换能力, 要学会设置条件, 灵活运用三角公式, 掌握运算、化简的方法和技能. 常 用的数学思想方法技巧如下:1. 角的变换: 在三角化简、求值、证明中, 表达式往往出现较多的相异角, 可根据角与角之 间的和差、倍半、互补、互余的关系, 运用角的变换, 沟通条件与结论中的差异, 使问题 获解.对角的变形如下:)2()2()(,2304560304515α-β-β+α=β-β+α=α=-=-= οοοοοο,)4()4()()(2α-π-α+π=β-α+β+α=α,)4(24α-π-π=α+π特别地, α+π4与α-π4为互余角, 它们之间可以互相转化, 在三角变形中使用频率高.2. 函数名称变换: 三角变形中, 常常需要变函数名称为同名函数. 如在三角函数中正余弦是基础, 通常化切、割为弦, 变异名为同名.3. 常数代换: 在三角函数运算、求值、证明中, 有时需要将常数转化为三角函数值, 例如常 数“1”的代换变形有: α-α=α-α=α+α=222222cot csc tan sec cos sin 1.4. 幂的变换: 降幂是三角变换时常用方法, 对次数较高的三角函数式, 一般采用降幂处理的方法. 常用降幂公式有: 1cos sin ,22cos 1cos ,22cos 1sin 2222=α+αα+=αα-=α 等, 三角变换时, 有时需要升幂, 如对无理式α+cos 1常用升幂化为有理式, 升幂公式与降幂公式是相对而言的.5. 公式变形式: 三角公式是变换的依据, 应熟练掌握三角公式的直接应用, 逆用以及变形式 的应用. 如: )tan tan 1)(tan(tan tan ,sin 22sin cos β⋅αβ±α=β±ααα=αμ等.四、注意事项对于三角函数进行恒等变形,是三角知识的综合应用,其题目类型多样,变化似乎复杂,处理这类问题,注意以下几个方面:1.三角函数式化简的目标:项数尽可能少,三角函数名称尽可能少,角尽可能小和少,次数尽可能低,分母尽可能不含三角式,尽可能不带根号,能求出值的求出值.2.三角变换的一般思维与常用方法.注意角的关系的研究,既注意到和、差、倍、半的相对性,如ααββαββαα22122)()(⨯=⨯=+-=-+=.也要注意题目中所给的各角之间的关系. 注意函数关系,尽量异名化同名、异角化同角,如切割化弦,互余互化,常数代换等. 熟悉常数“1”的各种三角代换:6sin24tan0cos 2sinsec cos tan sec cos sin 12222πππααβαβα====⋅=-=+=等.注意万能公式的利弊:它可将各三角函数都化为2tanθ的代数式,把三角式转化为代数式.但往往代数运算比较繁.熟悉公式的各种变形及公式的范围,如sin α = tan α · cos α ,2cos 2cos 12αα=+,2tan sin cos 1ααα=-等.利用倍角公式或半角公式,可对三角式中某些项进行升降幂处理,如2sin2cos 12αα=-,22cos 2sin sin 1⎪⎭⎫ ⎝⎛+=+ααα,22cos 2sin sin 1⎪⎭⎫ ⎝⎛-=-ααα等.从右到左为升幂,这种变形有利用根式的化简或通分、约分;从左到右是降幂,有利于加、减运算或积和(差)互化.3.几个重要的三角变换:sin α cos α可凑倍角公式; 1±cos α可用升次公式;1±sin α 可化为⎪⎭⎫⎝⎛-±απ2cos 1,再用升次公式;()ϕααα++=+sin cos sin 22b a b a (其中 ab=ϕtan )这一公式应用广泛,熟练掌握.单调性增:减:增:减:增区间:对称中心对称轴六、y=Asin(ωx+ψ)的图像和性质:1、作图:五点法,依次取ωx+ψ=2、周期T=3、单调区间:A•ω>0时,增区间:解不等式≤ωx+ψ≤减区间:解不等式≤ωx+ψ≤A•ω<0时,增区间:解不等式≤ωx+ψ≤减区间:解不等式≤ωx+ψ≤4、最大值:A>0时,当ωx+ψ=时,y取最大值A。

最小值:A>0时,当ωx+ψ=时,y取最小值-A。

5、概念:振幅;周期T=;频率f=;初相;相位。

6、三角变换:(A>0,ω>0)将y=sinx的图像—————————>y=sin(x+ψ) ——————————>y=sin(ωx +ψ)——————————>y=Asin(ωx+ψ)或者:将y=sinx的图像—————————>y=sin(ωx) —————————>y=sin(ωx+ψ)——————————>y=Asin(ωx+ψ)7、联系:y=tan((ωx+ψ) (ω>0)的周期是T=,单调区间是解不等式。

七、解三角形1.三角形中的三角变换三角形中的三角变换,除了应用上述公式和上述变换方法外,还要注意三角形自身的特点.(1)角的变换因为在△ABC中,A+B+C=π,所以sin(A+B)=sinC;cos(A+B)=-cosC;tan(A+B)=-tanC.(2)三角形边、角关系定理及面积公式,正弦定理,余弦定理.r 为三角形内切圆半径,p 为周长之半.在非直角△ABC 中,tanA+tanB+tanC=tanA ·tanB ·tanC . (4)在△ABC 中,熟记并会证明:∠A ,∠B ,∠C 成等差数列的充分必要条件是∠B=60°.△ABC 是正三角形的充分必要条件是∠A ,∠B ,∠C 成等差数列且a ,b ,c 成等比数列.2.三角形的面积公式:(1)△=21ah a =21bh b =21ch c (h a 、h b 、h c 分别表示a 、b 、c 上的高). (2)△=21ab sin C =21bc sin A =21ac sin B .(3)△=)sin(2sin sin 2C B C B a +=)sin(2sin sin 2A C A C b +=)sin(2sin sin 2B A BA c +.(4)△=2R 2sin A sin B sin C . (R 为外接圆半径) (5)△=Rabc 4. (6)△=))()((c s b s a s s ---;⎪⎭⎫ ⎝⎛++=)(21c b a s . (7)△=r ·s .3.直角三角形中各元素间的关系:如图,在△ABC 中,C =90°,AB =c ,AC =b ,BC =a . (1)三边之间的关系:a 2+b 2=c 2.(勾股定理) (2)锐角之间的关系:A +B =90°; (3)边角之间的关系:(锐角三角函数定义)sin A =cos B =c a ,cos A =sin B =c b, tg A =ctg B =b a ,ctg A =tg B =ab.4.斜三角形中各元素间的关系:如图6-29,在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边. (1)三角形内角和:A +B +C =π.(2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等.R CcB b A a 2sin sin sin === (R 为外接圆半径)(3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍.a 2=b 2+c 2-2bc cos A , b 2=c 2+a 2-2ca cos B , c 2=a 2+b 2-2ab cos C .(4)射影定理:a =b ·cos C +c ·cos B ,b =a ·cos C +c ·cos A , c =a ·cos B +c ·cos A .5.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)求其他未知元素的问题叫做解三角形.广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面积等等.解三角形的问题一般可分为下面两种情形:若给出的三角形是直角三角形,则称为解直角三角形;若给出的三角形是斜三角形,则称为解斜三角形.解斜三角形的主要依据是:设△ABC 的三边为a 、b 、c ,对应的三个角为A 、B 、C . (1)角与角关系:A +B +C = π,(2)边与边关系:a + b > c ,b + c > a ,c + a > b ,a -b < c ,b -c < a ,c -a > b . (3)边与角关系:正弦定理R CcB b A a 2sin sin sin ===(R 为外接圆半径). 余弦定理 c 2 = a 2+b 2-2bc cos C ,b 2 = a 2+c 2-2ac cos B ,a 2 = b 2+c 2-2bc cos A .它们的变形形式有:a = 2R sin A ,baB A =sin sin ,bc a c b A 2cos 222-+=. (4)面积公式:A bcB acC ab ch bh ah S c b a sin 21sin 21sin 21212121======∆. 解斜三角形的常规思维方法是:(1)已知两角和一边(如A 、B 、C ),由A +B +C = π求C ,由正弦定理求a 、b . (2)已知两边和夹角(如a 、b 、c ),应用余弦定理求c 边;再应用正弦定理先求较短边所对的角,然后利用A +B +C = π,求另一角.(3)已知两边和其中一边的对角(如a 、b 、A ),应用正弦定理求B ,由A +B +C = π求C ,再由正弦定理或余弦定理求c 边,要注意解可能有多种情况.(4)已知三边a 、b 、c ,应余弦定理求A 、B ,再由A +B +C = π,求角C .八、数学思想方法: 数形结合思想,例如:解三角不等式可以用 、或 ;整体思想,例如:研究函数y =Asin(ωx +ψ)的图像和性质可以把 看成整体。

相关文档
最新文档