三角函数基础知识点整理

合集下载

三角函数的基本性质知识点总结

三角函数的基本性质知识点总结

三角函数的基本性质知识点总结一、正弦函数的性质1. 基本定义:在直角三角形中,正弦函数是指对于一个锐角A,其对边与斜边之比,即sin A = 对边/斜边。

2. 定义域和值域:正弦函数的定义域是实数集,值域是[-1, 1]。

3. 奇偶性:正弦函数是奇函数,即sin(-A) = -sinA,对称轴为原点。

4. 周期性:正弦函数的周期是360°或2π,即sin(A + 360°) = sinA。

5. 正弦函数的图像:根据正弦函数的性质,可以绘制出正弦函数的图像,在0°到360°的范围内,图像呈现周期性的波动。

二、余弦函数的性质1. 基本定义:在直角三角形中,余弦函数是指对于一个锐角A,其临边与斜边之比,即cos A = 临边/斜边。

2. 定义域和值域:余弦函数的定义域是实数集,值域是[-1, 1]。

3. 奇偶性:余弦函数是偶函数,即cos(-A) = cosA,对称轴为y轴。

4. 周期性:余弦函数的周期是360°或2π,即cos(A + 360°) = cosA。

5. 余弦函数的图像:根据余弦函数的性质,可以绘制出余弦函数的图像,在0°到360°的范围内,图像呈现周期性的波动,与正弦函数的图像相似但形状相对位移。

三、正切函数的性质1. 基本定义:在直角三角形中,正切函数是指对于一个锐角A,其对边与临边之比,即tan A = 对边/临边。

2. 定义域和值域:正切函数的定义域是除去所有使得临边等于零的实数,值域是全体实数集。

3. 奇偶性:正切函数是奇函数,即tan(-A) = -tanA,对称轴为原点。

4. 周期性:正切函数的周期是180°或π,即tan(A + 180°) = tanA。

5. 正切函数的图像:根据正切函数的性质,可以绘制出正切函数的图像,在0°到180°的范围内,图像呈现周期性的波动。

完整版)三角函数知识点归纳

完整版)三角函数知识点归纳

完整版)三角函数知识点归纳三角函数一、任意角、弧度制及任意角的三角函数1.任意角1)角的概念的推广角可以按照旋转方向分为正角、负角和零角,也可以按照终边位置分为象限角和轴线角。

2)终边与角α相同的角可写成α+k·360°(k∈Z)。

3)弧度制弧度制是一种角度量,1弧度的角是指长度等于半径长的弧所对的圆心角。

弧度与角度可以互相转换。

2.任意角的三角函数定义设α是一个任意角,角α的终边上任意一点P(x,y),它与原点的距离为r(x^2+y^2),那么角α的正弦、余弦、正切分别是:sinα=y/r,cosα=x/r,tanα=y/x。

3.特殊角的三角函数值特殊角的三角函数值可以通过计算得到,如30度角的正弦为1/2,余弦为√3/2,正切为√3/3,以此类推。

注意:删除了明显有问题的段落,同时对每段话进行了小幅度的改写以提高表达清晰度。

和周期;2掌握三角函数的图像及其性质;3熟练运用诱导公式和基本关系进行化简和求值。

二、同角三角函数的基本关系与诱导公式A.基础梳理1.同角三角函数的基本关系1)平方关系:sin^2α+cos^2α=1;(在利用同角三角函数的平方关系时,若开方,要特别注意判断符号)2)商数关系:sinα/cosα=tanα,cosα/sinα=1/tanα,1+tan^2α=sec^2α,1+ cot^2α=csc^2α。

2.诱导公式公式一:sin(α+2kπ)=sinα,cos(α+2kπ)=cosα,tan(α+2kπ)=tanα其中k∈Z.公式二:sin(π+α)=-sinα,cos(π+α)=-cosα,tan(π+α)=tanα.公式三:sin(π-α)=sinα,cos(π-α)=-cosα,XXX(π-α)=-tanα.公式四:sin(-α)=-sinα,cos(-α)=cosα,tan(-α)=-tanα.公式五:sin(π/2-α)=cosα,cos(π/2-α)=sinα.公式六:sin(π/2+α)=cosα,cos(π/2+α)=-sinα.诱导公式可概括为k·±α的各三角函数值的化简公式.口诀:奇变偶不变,符号看象限.其中的奇、偶是指的奇数22倍和偶数倍,变与不变是指函数名称的变化.若是奇数倍,则函数名称要变(正弦变余弦,余弦变正弦);若是偶数倍。

三角函数的知识点总结

三角函数的知识点总结

三角函数的知识点总结1. 三角函数的基本概念三角函数源于三角形的角度关系,最开始是根据角度的定义和圆的性质推导得到。

三角函数最常用的有正弦函数(sin)、余弦函数(cos)、正切函数(tan)等。

正弦函数是指直角三角形中对边和斜边的比值,余弦函数是指直角三角形中邻边和斜边的比值,正切函数是指对边和邻边的比值。

这些函数中的输入变量是角度,输出变量是一个无量纲的比值。

2. 三角函数的关系与性质(1)正弦函数与余弦函数的关系:在单位圆上,当一个角为Θ时,其余弦函数值等于该角的补角的正弦函数值,即cos(Θ)=sin(π/2-Θ)。

(2)正切函数与余切函数的关系:在单位圆上,对于角Θ,其正切函数值等于角Θ的补角的余切函数值的倒数,即tan(Θ)=1/cot(Θ)。

(3)函数性质:三角函数具有周期性,正弦函数和余弦函数的周期是2π,而正切函数的周期为π。

3. 三角函数的定义和图像(1)正弦函数的定义和图像:正弦函数sin(x)在整个实数集上都有定义,其图像为一条连续曲线,且在区间[-π, π]上是凹函数,区间[0, π]上是凸函数,在区间[-π/2, π/2]上是单调递增函数,在区间[π/2, 3π/2]上是单调递减函数。

(2)余弦函数的定义和图像:余弦函数cos(x)在整个实数集上都有定义,其图像也是一条连续曲线,且在区间[0, π]上是凹函数,在区间[-π, 0]上是凸函数,在区间[0, π/2]上是单调递减函数,在区间[π/2, 3π/2]上是单调递增函数。

(3)正切函数的定义和图像:正切函数tan(x)在实数集上有定义,其图像是一条有无数间断点的曲线,且在每个周期的中点有一个无穷大的间断点。

4. 三角函数的导数(1)正弦函数和余弦函数的导数:正弦函数sin(x)的导数是cos(x),余弦函数cos(x)的导数是-sin(x)。

(2)正切函数的导数:正切函数tan(x)的导数是sec^2(x)。

5. 三角函数的应用三角函数在物理、工程、计算机科学等领域有着广泛的应用,例如在振动力学中,三角函数用于描述谐波振动的性质;在信号处理中,三角函数用于描述周期信号的特性;在工程中,正切函数用于计算斜面的坡度等。

三角函数知识点梳理

三角函数知识点梳理

三角函数知识点梳理关键信息项:1、三角函数的定义正弦函数余弦函数正切函数余切函数正割函数余割函数2、三角函数的基本关系式平方关系商数关系倒数关系3、三角函数的诱导公式正弦诱导公式余弦诱导公式4、三角函数的图像和性质正弦函数图像和性质余弦函数图像和性质正切函数图像和性质5、三角函数的周期性周期的定义常见三角函数的周期6、三角函数的最值和值域正弦函数的最值和值域余弦函数的最值和值域正切函数的最值和值域7、三角函数的和差公式正弦和差公式余弦和差公式正切和差公式8、三角函数的倍角公式余弦倍角公式正切倍角公式9、三角函数的半角公式正弦半角公式余弦半角公式正切半角公式11 三角函数的定义111 正弦函数:在直角三角形中,锐角的正弦等于其对边与斜边的比值。

即 sinA = a/c,其中 A 为锐角,a 为 A 的对边,c 为斜边。

112 余弦函数:锐角的余弦等于其邻边与斜边的比值。

即 cosA =b/c,其中 b 为 A 的邻边。

113 正切函数:锐角的正切等于其对边与邻边的比值。

即 tanA =a/b。

114 余切函数:锐角的余切等于其邻边与对边的比值。

即 cotA =b/a。

115 正割函数:斜边与邻边的比值。

即 secA = c/b。

116 余割函数:斜边与对边的比值。

即 cscA = c/a。

12 三角函数的基本关系式121 平方关系:sin²A + cos²A = 1,1 + tan²A = sec²A,1 + cot²A = csc²A。

122 商数关系:tanA = sinA / cosA,cotA = cosA / sinA。

123 倒数关系:sinA × cscA = 1,cosA × secA = 1,tanA × cotA =1。

13 三角函数的诱导公式131 正弦诱导公式:sin(2kπ + A) = sinA,sin(π + A) = sinA,sin(A) = sinA 等。

三角函数基础知识归纳

三角函数基础知识归纳

(3)函数 y=sin x 在-π2 +2kπ,π2 +2kπ上递增,在 π2 +2kπ,3π 2 +2kπ上递减;函数 y=cos x 在[-π+2kπ, 2kπ]上递增,在[2kπ,2kπ+π]上递减;函数 y=tan x 在 -π2 +kπ,π2 +kπ上递增,以上 k∈Z.
(4)利用函数的单调性比较同名三角函数值的大小时,注意 利用诱导公式将角化到同一单调区间内;求形如 f(ωx+φ)的单 调区间时,采用整体代换的方法将 ωx+φ 视为整体求解相应 x 的范围即可,注意 ω 的符号及 f 对单调性的影响.
②中,当 x∈π2,π时,f(x)=sin x+sin x=2sin x,函数单调递减,故 ②错误; ③中,当 x=0 时,f(x)=0, 当 x∈(0,π]时,f(x)=2sin x,令 f(x)=0,得 x=π. 又∵f(x)是偶函数, ∴函数 f(x)在[-π,π]上有 3 个零点,故③错误; ④中,∵sin|x|≤|sin x|,∴f(x)≤2|sin x|≤2, 当 x=π2+2kπ(k∈Z)或 x=-π2+2kπ(k∈Z)时, f(x)能取得最大值 2,故④正确. 综上,①④正确.故选 C.
=-csiosnisn33αα3α·cocso2sα3α+csoicnos22sααα·scino4sα3α
=-cos2α+sin2α
=2sin2α-1.
(2)原式
=--tatnan51600°0°co(s 2-10si°n 3co3s0°12)0°+csoins 2691°°-tan 36°·tan 54°
答案:C
[对点训练] 6.函数 f(x)=3sin2x-π3 的图象为 C. ①图象 C 关于直线 x=111π2 对称; ②函数 f(x)在区间-π 12,51π2 内是增函数;

三角函数知识点

三角函数知识点

三角函数一、基础知识定义1 角,一条射线绕着它的端点旋转得到的图形叫做角。

若旋转方向为逆时针方向,则角为正角,若旋转方向为顺时针方向,则角为负角,若不旋转则为零角。

角的大小是任意的。

定义2 角度制,把一周角360等分,每一等价为一度,弧度制:把等于半径长的圆弧所对的圆心角叫做一弧度。

360度=2π弧度。

若圆心角的弧长为L ,则其弧度数的绝对值|α|=rL ,其中r 是圆的半径。

定义3 三角函数,在直角坐标平面内,把角α的顶点放在原点,始边与x 轴的正半轴重合,在角的终边上任意取一个不同于原点的点P ,设它的坐标为(x ,y ),到原点的距离为r,则正弦函数s in α=r y ,余弦函数co s α=r x ,正切函数tan α=x y ,余切函数cot α=yx,定理1 同角三角函数的基本关系式, 倒数关系:tan α=αcot 1,商数关系:tan α=αααααsin cos cot ,cos sin =;乘积关系:tan α×co s α=s in α,cot α×s in α=co s α;平方关系:s in 2α+co s 2α=1, tan 2α+1=se c 2α, cot 2α+1=c s c 2α.定理2 诱导公式(Ⅰ)s in (α+π)=-s in α, co s(π+α)=-co s α, tan (π+α)=tan α; (Ⅱ)s in (-α)=-s in α, co s(-α)=co s α, tan (-α)=-tan α;(Ⅲ)s in (π-α)=s in α, co s(π-α)=-co s α, tan =(π-α)=-tan α; ( Ⅳ)s in ⎪⎭⎫⎝⎛-απ2=co s α, co s ⎪⎭⎫⎝⎛-απ2=s in α(奇变偶不变,符号看象限)。

定理3 正弦函数的性质,根据图象可得y =s inx (x ∈R )的性质如下。

三角函数基础知识

三角函数基础知识

三角函数基础知识三角函数基础知识1、任意角的三角函数(1)任意角的三角函数的定义:角α的终边上任意一点p的坐标是(x,y),它与原点的距离是r(r>0),那么角α的正弦、余弦、正切、余切分别是(2)三角函数值的符号正弦值与余割值对于第一、二象限的角是正的,而对于第三、四象限的角是负的.余弦值与正割值对于第一、四象限的角是正的,而对于第二、三象限的角是负的.正切值与余切值对于第一、三象限的角是正的,而对于第二、四象限角是负的,也可以按正的在各象限的函数来记,即“一全、二正弦,三切、四余弦”(正割、余割分别与余弦、正弦符号相同)2.同角三角函数的基本关系式(1)倒数关系:sinαcsc=1 cosαsecα= tgαctgα=1(3)平方关系:sin2α+cos2α=1 1+tg2α=sec2α 1+ctg2α=csc2α3.诱导公式(1) k·360°+α(k∈Z),-α,180°±a,360°-α的三角函数值等于α的同名函数值,前面加上一个把α角看成锐角时原函数值的符号,即sin(k·360°+α)=sinα,cos(k·360°+α)=cosαtg(k·360°+α)=tgα,ct g(k·360°+α)=ctgα(k∈Z)sin(-α)=-sinα,cos(-α)=cosαtg(-α)=-tgα,ctg(-α)=-tgαsin(180°+α)=-sinα,cos(180°+α)=-cosαtg(180°+α)=tgα,ctg(180°+α)=ctgαsin(180°-α)=sinα,cos(180°-α)=-cosαtg(180°-α)=-tgα,ctg(180°-α)=-ctgαsin(360°-α)=-sinα,cos(360°-α)=cosαtg(360°-α)=-tgα,ctg(360°-α)=-ctgα(2) 90°±α,270°±α的三角函数值等于a的余名函数值,前面加上一个把α看成锐角时原函数值的符号,例如sin(90°+α)=cosα,tg(270°+α)=-ctgα综上,诱导公式可概括为k·90°±α(k∈Z)的三角函数值,等于α的同名(k为偶数时)或余名(k为奇数时)的函数值,前面加上一个把α看成锐角时原函数值的符号.简称之为“奇余偶不变,符号看象限”.4.三角函数的图象和性质(1)三角函数线以原点为圆心,以单位长为半径的圆叫做单位圆,如图2—3,设角α的终边与单位圆的交点为p ,过p作PM垂直于x轴,垂足为M,A(1,0)、B(0,1),过A、B点作单位的切线AT、BS分别与角α的终边或其反向延长线交于T、S则有向线及MP、OM、AT、BS、OT、OS分别叫作角α的正弦线、余弦线、正切线、余切线、正割线、余割线.(2)三角函数的图象正弦函数y=sinx 余弦函数y=cosx(如图2—4)正切函数y=tgx 余切函数y=ctgx (如图2—5)(3)三角函数的周期①周期函数对于函数y=f(x),如果存在着一个不为零的常数T,使得当x取定义域内的每一个值时,都成立,那么就把函数y=f(x)叫做周期函数,不为零的常数T叫做这个函数的周期.②最小正周期:对于一个周期函数来说、如果在所有的周期中存在着一个最小正数,就把这个最小的正数叫做最小正周期.教科书上所指三角函数的周期均为最小正周期.(4)三角函数的性质5、积化和差与和差化积(1)积化和差与和差化积各有四个公式,它们实质是一类公式的正用或逆用,即积化和差公式的逆用就是和差化积公式。

三角函数相关知识点

三角函数相关知识点

三角函数相关知识点三角函数知识点学习资料一、基本概念1. 角的概念推广正角、负角和零角:按逆时针方向旋转形成的角为正角,按顺时针方向旋转形成的角为负角,不作任何旋转形成的角为零角。

象限角:使角的顶点与原点重合,角的始边与x轴的非负半轴重合,角的终边落在第几象限,就说这个角是第几象限角。

终边在坐标轴上的角不属于任何象限。

终边相同的角:所有与角α终边相同的角(连同α在内),可构成一个集合S ={β|β=α + k·360^∘,k∈ Z}。

2. 弧度制定义:长度等于半径长的弧所对的圆心角叫做1弧度的角,用符号rad表示。

弧度与角度的换算:180^∘=π rad,所以1^∘=(π)/(180) rad,1 rad = ((180)/(π))^∘。

弧长公式:l =|α|r(其中l为弧长,α为圆心角弧度数,r为半径)。

扇形面积公式:S=(1)/(2)lr=(1)/(2)|α|r^2。

二、三角函数定义设α是一个任意角,它的终边与单位圆交于点P(x,y),那么sinα=y,cosα = x,tanα=(y)/(x)(x≠0)。

对于角α终边上任意一点P(x,y)(r=√(x^2)+y^{2}),则sinα=(y)/(r),cosα=(x)/(r),tanα=(y)/(x)(x≠0)。

2. 三角函数值在各象限的符号正弦函数y = sin x:一、二象限为正,三、四象限为负。

余弦函数y=cos x:一、四象限为正,二、三象限为负。

正切函数y = tan x:一、三象限为正,二、四象限为负。

三、同角三角函数的基本关系1. 平方关系sin^2α+cos^2α = 1。

2. 商数关系tanα=(sinα)/(cosα)(cosα≠0)。

四、诱导公式1. α + 2kπ(k∈ Z)与α的三角函数关系sin(α + 2kπ)=sinα,cos(α+2kπ)=cosα,tan(α + 2kπ)=tanα。

sin(-α)=-sinα,cos(-α)=cosα,tan(-α)=-tanα。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数基础知识点
1、两角和公式
sin(A ±B) = sinAcosB ±cosAsinB B
A B
A B A tan tan 1tan tan )tan(⋅±=±μ
cos(A ±B) = cosAcosB μsinAsinB
2、二倍角公式(含万能公式)
tan2A =
A tan 12tanA 2- sin2A=2s inA•cosA=A
tan 12tanA
2
+ cos2A = cos 2A-sin 2A=2cos 2A-1=1-2sin 2A=A
tan 1A
tan -12
2
+ 22cos 1tan 1tan sin 222
A A A A -=+= 2
2cos 1cos 2
A A +=
3、特殊角的三角函数值
4、诱导公式
公式一: απαsin )2sin(=+k ;απαcos )2cos(=+k ;απαtan )2tan(=+k .(其中Z ∈k ).
公式二: ααπ-sin sin(=+);ααπ-cos cos(=+);ααπtan tan(=+). 公式三: sin()-sin αα-=;cos()cos αα-= ;tan()tan αα-=-. 公式四: ααπsin sin(=-);ααπ-cos cos(=-);ααπtan tan(-=-) 公式五: sin(2sin παα-=-);cos(2cos παα-=);tan(2tan παα-=-)
公式六: sin(
2π) = cos ; cos(2π
) = sin . 公式七: sin(2π+) = cos ;cos(2π
+) = sin .
公式八: sin(32π)=- cos ; cos(32π
) = -sin .
公式九: sin(32π+) = -cos ;cos(32
π
+) = sin .
以上九组公式可以推广归结为:要求角2
k π
α⋅±的三角函数值,
只需要直接求角α的三角函数值的问题.这个转化的过程及结果就是十字口诀“奇变偶不变,符号看象限”。

即诱导公式的左边为k ·900+α(k ∈Z )的正弦(切)或余弦(切)函数,当k 为奇数时,右边的函数名称正余互变;当k 为偶数时,右边的函数名称不改变,这就是“奇变偶不变”的含义,再就是将α“看成”锐角(可能并不是锐角,也可能是大于锐角也可能小于锐角还有可能是任意角),然后分析k ·900+α(k ∈Z )为第几象限角,再判断公式左边这个三角函数在此象限是正还是负,也就是公式右边的符号。

5、正弦定理和余弦定理
正弦定理
1、正弦定理:在△ABC 中,R C
c
B b A a 2sin sin sin ===(R 为△AB
C 外接圆半径)。

2、变形公式:(1)化边为角:2sin ,2sin ,2sin ;a R A b R B c R C === (2)化角为边:sin ,sin ,sin ;222a b c
A B C R R R
=
== (3)::sin :sin :sin a b c A B C = (4)
2sin sin sin sin sin sin a b c a b c R A B C A B C
++====++.
3、三角形面积公式:
21111sin sin sin 2sin sin sin 22224ABC abc S ah ab C ac B bc A R A B C R
∆======
余弦定理
A bc c b a cos 22
2
2
-+=⇔bc
a c
b A 2cos 2
2
2
-+=
B ac a c b cos 22
2
2
-+=⇔ca b a c B 2cos 2
22-+=
C ab b a c cos 22
2
2
-+=⇔ab
c b a C 2cos 2
2
2
-+=
1、(山东卷)要得到函数y=sin (4x-3
π
)的图像,只需要将函数y=sin4x 的图像(B ) (A )向左平移
12
π
个单位 (B )向右平移
12
π
个单位
(C )向左平移3π个单位 (D )向右平移3
π个单位 2、(新课标1卷)sin20°cos10°-cos 160°sin10°=(D )
(A )2-
(B )2 (C )1
2
- (D )12 3、已知),2
(ππα∈,5
5
sin =
α.
(1)求)4
sin(απ
+的值; (2)求)26
5cos(απ-的值.
4、已知函数()2
cos sin 34
f x x x x π⎛⎫=⋅+-+ ⎪


,x R ∈. (Ⅰ)求()f x 的最小正周期;
(Ⅱ)求()f x 在闭区间,44ππ
⎡⎤
-⎢⎥⎣⎦
上的最大值和最小值.
5、已知函数1()cos (sin cos )2
f x x x x =+-.
(1)若02
π
α<<
,且sin 2
α=
,求()f α的值; (2)求函数()f x 的最小正周期及单调递增区间.
6、已知函数
2()cos 222
x x x
f x =

(Ⅰ) 求()f x 的最小正周期;
(Ⅱ) 求()f x 在区间[π0]-,上的最小值.
7、(重庆卷)(本小题满分13分,(I )小问7分,(II )小问6分)
已知函数()2
sin sin 2
f x x x x π
⎛⎫=- ⎪⎝

(I )求()f x 的最小正周期和最大值; (II )讨论()f x 在2,
6
3ππ⎡⎤
⎢⎥⎣⎦
上的单调性.
1.(2013·北京高考文科·T5)在△ABC 中,a=3,b=5,sinA=13
,则sinB=( )
A.15
B.59
C.
5
3
D.1 2.(2013·新课标全国Ⅱ高考文科·T4)ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知2b =,6
B π=,4
C π
=
,则ABC ∆的面积为( )
A.232+
B.31+
C.232-
D.31-
3.设△ABC 的内角A , B , C 所对的边分别为a, b, c , 若
cos cos sin b C c B a A +=, 则△ABC
的形状为 ( )
A. 直角三角形
B. 锐角三角形
C. 钝角三角形
D. 不确定
4.(2013·天津卷)在△ABC 中,∠ABC =π
4,AB =2,BC =3,则sin
∠BAC =( )
A.1010
B.105
C.31010
D.55
5.已知A ,B 两地的距离为10 km ,B ,C 两地的距离为20 km ,现测得∠ABC =120°,则A 、C 两地的距离为________km.
6.(2013·上海高考文科·T5)已知∆ABC 的内角A 、B 、C 所对的边
分别是a、b、c.若a2+ab+b2-c2=0,则角C的大小是 .
7.在ABC
∆中,角,,
A B C的对边分别为,,
a b c且cos3
cos
C a c
B b
-
=.
(1)求sin B;
(2)若
b a c
==,求ABC
∆的面积.
8.在△ABC中,角A,B,C的对边分别为a,b,c,已知cos cos cos cos
a C
b C
c B c A
-=-,且C=120°.
(1)求角A;(2)若a=2,求c.
9.在△ABC,已知.
sin
sin
3
)
sin
sin
)(sin
sin
sin
(sin C
B
A
C
B
C
B
A=
-
+
+
+
(1)求角A值;
(2)求C
B cos
sin
3-的最大值.。

相关文档
最新文档