高一数学必修2空间几何部分公式定理大全

合集下载

高中数学几何公式大全

高中数学几何公式大全

高中数学几何公式大全在高中数学中,几何学是一门重要的数学分支。

几何学研究的是空间中的图形和形状的性质、变换以及其关系。

几何学的公式是解决几何问题的基础,本文将为您介绍一些高中数学几何公式。

1.平面几何公式1.1.面积公式-矩形面积公式:面积=长×宽-正方形面积公式:面积=边长×边长-三角形面积公式:面积=(底边长×高)/2-任意多边形面积公式:如果已知多边形所有顶点的坐标,可以使用行列式的方法计算面积。

1.2.周长公式-矩形周长公式:周长=2×(长+宽)-正方形周长公式:周长=4×边长-三角形周长公式:周长=边1+边2+边3-任意多边形周长公式:周长=边1+边2+...+边n1.3.直角三角形公式-勾股定理:a²+b²=c²,其中a、b为直角边,c为斜边。

- 正弦定理:a/sinA=b/sinB=c/sinC,其中a、b、c为三角形边长,A、B、C为对应的角度。

- 余弦定理:c²=a²+b²-2ab*cosC,其中a、b、c为三角形边长,C为对边的角度。

2.立体几何公式2.1.体积公式-立方体体积公式:体积=边长³-球体体积公式:体积=(4/3)πr³,其中r为球的半径-圆柱体体积公式:体积=πr²h,其中r为底面半径,h为高度-锥体体积公式:体积=(1/3)πr²h,其中r为底面半径,h为高度2.2.表面积公式-立方体表面积公式:表面积=6边长²-球体表面积公式:表面积=4πr²- 圆柱体表面积公式:表面积=2πrh+2πr²,其中r为底面半径,h为高度- 锥体表面积公式:表面积=πrl+πr²,其中r为底面半径,l为斜高以上只是高中数学几何公式的一部分,还有许多其他公式未在此列出。

掌握这些公式可以帮助高中生更好地解决几何问题,提高几何学习的效果。

高一必修二第八章立体几何初步公式总结

高一必修二第八章立体几何初步公式总结

高一必修二第八章立体几何初步公式总结高一必修二第八章立体几何初步公式总结如下:1.三角形的面积公式:A = 1/2 *底边长*高。

2.三棱柱的体积公式:V =底面积*高。

3.三棱锥的体积公式:V = 1/3 *底面积*高。

4.直方体(长方体)的体积公式:V =长*宽*高。

5.圆柱的体积公式:V =底面积*高。

6.圆锥的体积公式:V = 1/3 *底面积*高。

7.球体的体积公式:V = 4/3 * π *半径³。

8.三角形的角平分线定理:设三角形ABC的内角平分线AD,以角带底的形式在三角形ABC中有以下等式:AB/BD = AC/CD。

9.任意三角形的角平分线公式:设三角形ABC的内角平分线AD,以角带底的形式在三角形ABC中有以下等式:BD/DC = AB/AC。

10.三视图制图:通过俯视图、正视图和左视图的投影来描述一个几何物体的形状和大小。

拓展:1.正方体的体积公式:V =边长³。

2.圆锥的侧面积公式:A = π *半径*母线。

3.球体的表面积公式:A = 4 * π *半径²。

4.锥台的体积公式:V = 1/3 * (上底面积+下底面积+ √(上底面积*下底面积)) *高。

5.二面角余弦定理:设二面角的两个面的法线为a和b,夹角为θ,那么二面角的余弦为cosθ= (a·b) / (|a| |b|)。

6.球冠的体积公式:V = 1/3 * π *高* (3r² + h²)。

7.二面角的计算公式:θ = arccos((a·b) / (|a| |b|))。

8.正多面体的数量关系公式:F + V = E + 2,其中F代表面的数量,V代表顶点的数量,E代表边的数量。

高中数学立体几何公式大全

高中数学立体几何公式大全

高中数学立体几何公式大全高中数学立体几何公式整理如下:1. 正方体:a-边长,S=6a²,V=a³2. 长方体:a-长,b-宽,c-高,S=2(ab+ac+bc),V=abc3. 圆柱:r-底半径,h-高,C=2πr,S底=πr²,S侧=Ch,S表=Ch+2S底,V=S底h=πr²h4. 空心圆柱:R-外圆半径,r-内圆半径,h-高,V=πh(R²-r²)5. 直圆锥:r-底半径,h-高,V=πr²h/36. 圆台:r-上底半径,R-下底半径,h-高,V=πh(R²+Rr+r²)/37. 棱柱:S-底面积,h-高,V=Sh8. 棱锥:S-底面积,h-高,V=Sh/39. 棱台:S1和S2-上、下底面积,h-高,V=h[S1+S2+(S1S1)1/2]/310. 拟柱体:S1-上底面积,S2-下底面积,S0-中截面积,h-高,V=h(S1+S2+4S0)/611. 球:r-半径,d-直径,V=4/3πr³=πd²/612. 球缺:h-球缺高,r-球半径,a-球缺底半径,V=πh(3a²+h²)/6=πh²(3r-h)/3a²=h(2r-h)13. 球台:r1和r2-球台上、下底半径,h-高,V=πh[3(r1²+r2²)+h²]/614. 圆环体:R-环体半径,D-环体直径,r-环体截面半径,d-环体截面直径,V=2π²Rr²=π²Dd²/415. 桶状体:D-桶腹直径,d-桶底直径,h-桶高,V=πh(2D²+d²)/12以上公式涵盖了几何体各个方面的内容。

数学-必修二公式定理

数学-必修二公式定理

高中数学必修二 包含的公式定理一 空间几何体的表面积和体积(1)圆柱 S=2πr ²+2πr l=2πr (r + l) 柱体 V=Sh(2)圆锥 S= πr ²+πr l =πr (r + l) 椎体 V=31Sh(3)圆台 S=π( r 1²+r 2²+r 1l+r 2l) 台体V=31(S 上底下底下底S S ⋅+S 下底)h(4)球 S=4πR ² V=34πR 3二 线线,线面,面面之间的定理(1)空间中如果两个角的两边分别对应平行,那么这两个角相等或互补. (2)平面外一条直线与此平面内的一条直线平行,则此直线与此平面平行. (3)一个平面内的两条相交直线与另一平面平行,则这两个平面平行.(4)一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行. (5)如果两个平行平面同时和第三个平面相交,那么它们的交线平行.(6)一条直线与一个平面内的两条相交的直线垂直,则该直线与此平面垂直. (7)一个平面过另一平面的垂线,则这两个平面垂直. (8)垂直于同一平面的两条直线平行.(9)两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.三 直线与方程(1) 2121y y k x x -=-当12x x =,12y y ≠时,直线与x 轴垂直,斜率k 不存在;当12x x ≠,12y y =时,直线与y 轴垂直,斜率k =0.(2) 12//l l ⇔12k k = 12l l ⊥⇔121k k ⋅=-(3)点斜式:直线l 过点000(,)P x y ,且斜率为k ,其方程为00()y y k x x -=- (4)斜截式:直线l 的斜率为k ,在y 轴上截距为b ,其方程为y kx b =+(5)两点式:直线l 经过两点111222(,),(,)P x y P x y ,其方程为112121y y x x y y x x --=-- (6)截距式:直线l 在x 、y 轴上的截距分别为a 、b ,其方程为1x ya b+=(7)一般式:0Ax By C ++=,注意A 、B 不同时为0. 直线一般式方程0(0)Ax By C B ++=≠化为斜截式方程A C y x B B =--,表示斜率为A-,y 轴上截距为CB-的直线.(8)两点间的距离为:12||PP =(9)点00(,)P xy 到直线:0l Ax By C ++=的距离公式为d =.(10) 两条平行直线11:0l Ax By C ++=,22:0l Ax By C ++=之间的距离公式d =四 圆与方程(1)圆的标准方程: 222()()x a y b r -+-= (a , b)为圆心 r 为半径(2)圆的一般方程: x 2+y 2+Dx +Ey +F=0当D 2+E 2-4F >0时,方程②表示(1)当0422>-+F E D 时,表示以(-2D,-2E )为圆心,F E D 42122-+为半径的圆;当0422=-+F E D 时,方程只有实数解2D x -=,2E y -=,即只表示一个点(-2D,-2E );当0422<-+F E D 时,方程没有实数解(4)空间坐标系两点间的距离:1点斜式和斜截式不能表示垂直x 轴直线. 若直线l 过点000(,)P x y 且与x 轴垂直,此时它的倾斜角为90°,斜率不存在,它的方程不能用点斜式表示,这时的直线方程为00x x -=,或0x x =. 2两点式不能表示垂直x 、y轴直线;截距式不能表示垂直x 、y 轴及过原点的直线.。

必修2立体几何公式定理

必修2立体几何公式定理

(必修2)空间几何体的公式定理一、空间几何体1、多面体的结构特征(1)棱柱的上下底面 ,侧棱都 且 ,上底面和下底面是 的多边形; (2)棱锥的底面是任意多边形,侧面是有一个 的三角形; (3)棱台可由 的平面截棱锥得到,其上下底面的两个多边形 。

2、旋转体的机构特征(1)圆柱可以由矩形绕其 旋转得到;(2)圆锥可以由直角三角形绕其 旋转得到;(3)圆台可以由直角梯形绕直角腰所在直线或等腰梯形绕上下底中点连线旋转得到,也可以由 的平面截圆锥得到。

(4)球可以由半圆或圆绕其 旋转得到。

注意:简单几何体是指棱柱、圆柱、棱锥、圆锥、棱台、圆台和球,简单组合体是由简单几何体拼接或截去(挖去)一部分而成的几何体。

柱体、台体的底面相互平行,棱台侧棱的延长线、圆台母线的延长线各交于一点。

柱体、台体、锥体的关系如图所示:3、空间几何体的三视图空间几何体的三视图是用 得到,这种投影下与投影面平行的平面图形留下的影子与平面图形的形状和大小是 的,三视图包括 、 、 . 注意:①画三视图时,侧视图画在正视图的正右方,保持高度一致;俯视图画在正视图的正下方,保持宽度一致。

②对于能看到的几何体轮廓线画成实线,看不到的轮廓线应用虚线画出。

由三视图还原简单组合体时,注意根据虚线、实线确定轮廓。

③给出三视图求表面积和体积时,依据“正视图反映几何体的长和高,侧视图反映几何体的宽和高,俯视图反映几何体的长和宽”来确定表面积公式和体积公式里涉及的基本量。

4、空间几何体的直观图画空间几何体的直观图常用 画法,基本步骤:(1)在已知图形中取相互垂直的x 轴,y 轴,两轴相交于点O ,画直观图时,把它们画成对应的x ’轴,y ’轴,两轴相交于点O ’,且使'''x y z ∠= .(2)已知图形中平行于x 轴、y 轴的线段,在直观图中分别平行于 ;(3)已知图形中平行于x 轴的线段,在直观图中长度 ,平行于y 轴的线段,长度变为 ;(4)在已知图形中过O 点作z 轴垂直于xOy 平面,在直观图中对应的z ’轴也垂直于x ’O ’y ’平面,已知图形中平行于z 轴的线段,在直观图中仍平行于z ’轴且长度 。

高一数学必修二公式定理总结简洁

高一数学必修二公式定理总结简洁

高一数学必修二公式定理总结简洁以下是高一数学必修二中的一些重要公式和定理,以简洁的方式总结:1. 直线方程:点斜式:y-y1=m(x-x1)斜截式:y=mx+b两点式:y-y1=(y2-y1)/(x2-x1)截距式:x/a + y/b = 12. 圆的方程:一般式:x²+y²+Dx+Ey+F=0圆心式:(x-a)²+(y-b)²=r²,圆心(a,b),半径r截距式:x²+y²=Dx+Ey+F3. 空间几何公式定理:三垂线定理:如果平面内的一条直线,与穿过该平面的一条斜线在这个平面内的射影垂直,那么这条直线与斜线垂直。

空间向量基本定理:如果三个向量a、b、c不共面,那么对于空间任意向量p,存在实数x、y、z,使得p=xa+yb+zc。

4. 空间几何性质:平行线的性质:平行线永不相交。

垂直线的性质:垂直线永不相交。

5. 圆的性质:直径所对的圆周角为直角。

弦长与圆心角的关系:在同圆或等圆中,弦长与对应的圆心角成正比。

6. 椭圆、双曲线、抛物线的性质:椭圆:中心在原点,焦点在x轴或y轴上的一个封闭曲线。

双曲线:中心在原点,焦点在x轴或y轴上的一个开口曲线。

抛物线:中心在原点,焦点在x轴或y轴上的一个开口曲线。

7. 余弦定理:对于任意三角形ABC,有a²=b²+c²-2bc cosA。

8. 正弦定理:对于任意三角形ABC,有a/sin A = b/sin B = c/sin C = 2R (R为外接圆半径)。

9. 向量的加法、减法、数乘运算性质:向量加法满足平行四边形法则和三角形法则;向量数乘满足分配律;向量减法可以转化为加法,即a-b=a+(-b)。

高中数学必修2公式

高中数学必修2公式

高中数学必修2公式1.代数式与方程式-二项式定理:(a+b)^n=C(n,0)a^nb^0+C(n,1)a^(n-1)b^1+...+C(n,n-1)a^1b^(n-1)+C(n,n)a^0b^n- 一元二次方程:ax^2 + bx + c = 0,其中a≠0-二次根式:√a*√b=√(a*b),(√a)^2=a- 二次方差:(a+b)^2 - (a-b)^2 = 4ab2.几何原理- 数列求和公式:Sn = (a1 + an) * n / 2-等差数列:an = a1 + (n-1)d,Sn = (n/2)(a1+an)-等比数列:an = a1 * q^(n-1),Sn = a1*(q^n - 1) / (q - 1)- 余弦定理:a^2 = b^2 + c^2 - 2bc*cosA- 正弦定理:a/sinA = b/sinB = c/sinC-相似三角形的性质:直角三角形的斜边上任意一点与另外两条边所构成的两个三角形也相似3.函数与图像- 一次函数:y = kx + b- 二次函数:y = ax^2 + bx + c,顶点坐标:(h, k),对称轴:x = -b/2a-指数函数:y=a^x,a>0并且a≠1- 对数函数:y = logₐx,a>0并且a≠1- 三角函数:sinθ,cosθ,tanθ的正弦、余弦、正切是周期函数-幂函数:y=x^a,若a>0,则y=x^a是递增函数;若0<a<1,则y=x^a是递减函数4.数列与数学归纳法-等差数列通项公式:an = a1 + (n-1)d-等差数列求和:Sn = (n/2)(a1 + an) = (n/2)(2a1 + (n-1)d)-等比数列通项公式:an = a1 * q^(n-1),其中q≠0-等比数列求和:Sn=a1(q^n-1)/(q-1),其中q≠1-斐波那契数列:F(0)=0,F(1)=1,F(n)=F(n-1)+F(n-2)5.概率与统计-随机事件A发生的概率:P(A)=n(A)/n(S),其中n(A)为事件A的样本点数,n(S)为样本空间的样本点数-加法原理:P(A∪B)=P(A)+P(B)-P(A∩B)-乘法原理:P(A∩B)=P(A)*P(B,A),其中P(B,A)表示在事件A发生的条件下事件B发生的概率-排列:A(n,m)=n!/(n-m)!-组合:C(n,m)=n!/(m!*(n-m)!)-平均值:算术平均值、几何平均值、调和平均值-方差:样本方差、标准差这些公式是高中数学必修2的基础内容,掌握好这些公式对于高中数学学习起到了至关重要的作用。

空间几何知识点公式总结

空间几何知识点公式总结

空间几何知识点公式总结1. 空间直角坐标系我们知道,在二维平面上有一个直角坐标系,它由两条互相垂直的坐标轴构成。

类似的,在三维空间中,我们可以构建一个三维直角坐标系,它由三条相互垂直的坐标轴构成,分别记作x轴、y轴和z轴。

在三维直角坐标系中,任意一点的坐标可以表示为(x, y, z),其中x、y、z分别代表该点在x轴、y轴、z轴上的投影。

任意一条直线也可以表示为方程的形式,通常的一般式方程如下:Ax + By + Cz + D = 0,其中A、B、C分别代表方向向量的分量,D为常数。

或者使用点向式方程表示:r = r0 + tV,其中r0为直线上一个已知的点,V为直线的方向向量,t为参数。

平面也可以用一般式方程表示为:Ax + By + Cz + D = 0,其中A、B、C为平面法向量的分量,D为常数。

2. 空间中的距离公式在空间中,两个点之间的距离可以使用三维空间中的距离公式来表示。

设P1(x1, y1, z1)和P2(x2, y2, z2)是空间中的两个点,它们之间的距离可以表示为:d(P1, P2) = √((x2 - x1)^2 + (y2 - y1)^2 + (z2 - z1)^2)。

这个公式就是三维空间中两点间距离的计算公式,它是由勾股定理推导而来。

3. 空间中的角度公式在空间中,我们也可以计算两条直线或者两个向量之间的夹角。

对于两条直线之间的夹角,可以通过它们的方向向量来计算。

如果两条直线的方向向量分别为V1和V2,它们的夹角θ可以表示为:cos(θ) = (V1·V2) / (|V1| · |V2|)。

对于两个向量之间的夹角,可以使用向量的点积和模长来表示。

设向量A(a1, a2, a3)和向量B(b1, b2, b3)是空间中的两个向量,它们之间的夹角θ可以表示为:cos(θ) = (a1b1 + a2b2 + a3b3) / (√(a1^2 + a2^2 + a3^2) · √(b1^2 + b2^2 + b3^2))。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

必修2空间几何部分公式定理总结
棱柱、棱锥、棱台的表面积
设圆柱的底面半径为,母线长为,则它的表面积等于圆柱的侧面积(矩形)加上底面积(两个圆),即
.
设圆锥的底面半径为,母线长为,则它的表面积等于圆锥的侧面积(扇形)加上底面积(圆形),即
.
设圆台的上、下底面半径分别为,,母线长为,则它的表面积等上、下底面的面积(大、小圆)加上侧面的面积(扇环),即
.
柱、锥、台的体积公式
柱体体积公式为:,(为底面积,为高)
锥体体积公式为:,(为底面积,为高)
台体体积公式为:
(,分别为上、下底面面积,为高)
球的体积和表面积
球的体积公式
球的表面积公式
其中,为球的半径.显然,球的体积和表面积的大小只与半径有关.
公理1 如果一条直线上的两点在一个平面内,那么这条直线在此平面内.
公理2 过不在一条直线上的三点,有且只有一个平面.
推论1 经过一条直线和直线外一点有且只有一个平面.
推论2 经过两条相交的直线有且只有一个平面.
推论3 经过两条平行的直线有且只有一个平面.
公理3 如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.
公理4 (平行公理)平行于同一条直线的两条直线互相平行.
定理空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.
不同在任何一个平面内的两条直线叫做异面直线.
空间两条直线的位置关系有且只有三种:
共面直线:相交直线(在同一平面内,有且只有一个公共点);平行直线(在同一平面内,没有公共点);异面直线:不同在任何一个平面内且没有公共点.
空间中直线与平面位置关系有且只有三种:
直线在平面内——有无数个公共点
直线与平面相交——有且只有一个公共点
直线与平面平行——没有公共点
直线与平面相交或平行的情况统称为直线在平面外.
两个平面的位置关系只有两种:
两个平面平行——没有公共点
两个平面相交——有一条公共直线
异面直线所成的角
已知两条异面直线,经过空间任一点作直线∥,∥,把与所成的锐角(或直角)叫做异面直线所成的角(夹角).如果两条异面直线所成的角是直角,就说这两条直线互相垂直,记作.
异面直线的判定定理
过平面外一点与平面内一点的直线,和平面内不经过该点的直线
是异面直线.
直线与平面平行的判定定理
平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行.
直线与平面平行的性质定理
一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线都与该直线平行. 两个平面平行的判定定理
一个平面内的两条相交直线与另一个平面平行,则这两个平面平行.
推论:一个平面内两条相交的直线分别平行于另一个平面内的两条直线,则这两个平面平行.
两个平面平行的性质定理
如果两个平行平面同时和第三个平面相交,那么它们的交线平行.两个平面平行,还有如下推论:
⑴如果两个平面平行,则一个平面内的任何直线都平行于另外一个平面;
⑵夹在两个平行平面内的所有平行线段的长度都相等;
⑶如果一条直线垂直于两个平行平面中的一个,那么这条直线也垂直于另一个平面.
⑷如果一条直线和两个平行平面中的一个相交,那么它和另一个也相交.
直线和平面垂直的概念
如果直线与平面内的任意一条直线都垂直,就说直线与平面互相垂直,记做. 叫做垂线,叫垂面,它们的交点叫垂足.
直线和平面垂直的判定定理
一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直.
直线与平面所成的角
如图,直线和平面相交但不垂直,叫做平面的斜线,和平面的交点叫斜足;,叫做斜线在平面上的射影.平面的一条斜线和它在平面上的射影所成的锐角,叫这条直线和平面所成的角.
直线垂直于平面,则它们所成的角是直角;直线和平面平行或在平面内,则它们所成的角是°角.
两个平面垂直的判定定理
一个平面过另一个平面的垂线,则这两个平面垂直.
从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫二面角的棱,这两个半平面叫二面角的面.
在二面角的棱上任取一点,以点为垂足,在半平面和内分别作垂直于棱的射线,则射线和构成的
叫做二面角的平面角.平面角是直角的二面角叫直二面角.
判断两平面垂直的方法:判定定理;求出二面角的平面角为直角.
三垂线定理:
平面内的一条直线,如果和平面的一条斜线的射影垂直,那么它也和这条斜线垂直.
如图:在平面内的直线若垂直于直线,则就一定垂直于平面的斜线.
直线与平面垂直的性质定理
垂直于同一个平面的两条直线平行.
平面与平面垂直的性质定理
两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.
两个平面垂直的性质还有:
⑴如果两个平面互相垂直,那么经过一个平面内一点且垂直于另外一个平面的直线,必在这个平面内;
⑵如果两个相交平面都垂直于另一个平面,那么这两个平面的交线垂直于这个平面;
⑶三个两两垂直的平面,它们的交线也两两垂直.
空间平行和垂直关系的转化。

相关文档
最新文档