高等数学第六版上册(同济大学) 第四章答案
同济大学第六版高等数学上册课后答案全集

高等数学第六版上册课后习题答案第一章习题1-11. 设A =(-∞, -5)⋃(5, +∞), B =[-10, 3), 写出A ⋃B , A ⋂B , A \B 及A \(A \B )的表达式.解 A ⋃B =(-∞, 3)⋃(5, +∞),A ⋂B =[-10, -5),A \B =(-∞, -10)⋃(5, +∞),A \(A \B )=[-10, -5).2. 设A 、B 是任意两个集合, 证明对偶律: (A ⋂B )C =A C ⋃B C .证明 因为x ∈(A ⋂B )C ⇔x ∉A ⋂B ⇔ x ∉A 或x ∉B ⇔ x ∈A C 或x ∈B C ⇔ x ∈A C ⋃B C , 所以 (A ⋂B )C =A C ⋃B C .3. 设映射f : X →Y , A ⊂X , B ⊂X . 证明(1)f (A ⋃B )=f (A )⋃f (B );(2)f (A ⋂B )⊂f (A )⋂f (B ).证明 因为y ∈f (A ⋃B )⇔∃x ∈A ⋃B , 使f (x )=y⇔(因为x ∈A 或x ∈B ) y ∈f (A )或y ∈f (B )⇔ y ∈f (A )⋃f (B ),所以 f (A ⋃B )=f (A )⋃f (B ).(2)因为y ∈f (A ⋂B )⇒∃x ∈A ⋂B , 使f (x )=y ⇔(因为x ∈A 且x ∈B ) y ∈f (A )且y ∈f (B )⇒ y ∈ f (A )⋂f (B ),所以 f (A ⋂B )⊂f (A )⋂f (B ).4. 设映射f : X →Y , 若存在一个映射g : Y →X , 使X I f g = , Y I g f = , 其中I X 、I Y 分别是X 、Y 上的恒等映射, 即对于每一个x ∈X , 有I X x =x ; 对于每一个y ∈Y , 有I Y y =y . 证明: f 是双射, 且g 是f 的逆映射: g =f -1.证明 因为对于任意的y ∈Y , 有x =g (y )∈X , 且f (x )=f [g (y )]=I y y =y , 即Y 中任意元素都是X 中某元素的像, 所以f 为X 到Y 的满射.又因为对于任意的x 1≠x 2, 必有f (x 1)≠f (x 2), 否则若f (x 1)=f (x 2)⇒g [ f (x 1)]=g [f (x 2)] ⇒ x 1=x 2.因此f 既是单射, 又是满射, 即f 是双射.对于映射g : Y →X , 因为对每个y ∈Y , 有g (y )=x ∈X , 且满足f (x )=f [g (y )]=I y y =y , 按逆映射的定义, g 是f 的逆映射.5. 设映射f : X →Y , A ⊂X . 证明:(1)f -1(f (A ))⊃A ;(2)当f 是单射时, 有f -1(f (A ))=A .证明 (1)因为x ∈A ⇒ f (x )=y ∈f (A ) ⇒ f -1(y )=x ∈f -1(f (A )),所以 f -1(f (A ))⊃A .(2)由(1)知f -1(f (A ))⊃A .另一方面, 对于任意的x ∈f -1(f (A ))⇒存在y ∈f (A ), 使f -1(y )=x ⇒f (x )=y . 因为y ∈f (A )且f 是单射, 所以x ∈A . 这就证明了f -1(f (A ))⊂A . 因此f -1(f (A ))=A . 6. 求下列函数的自然定义域:(1)23+=x y ;解 由3x +2≥0得32->x . 函数的定义域为) ,32[∞+-. (2)211xy -=; 解 由1-x 2≠0得x ≠±1. 函数的定义域为(-∞, -1)⋃(-1, 1)⋃(1, +∞).(3)211x xy --=; 解 由x ≠0且1-x 2≥0得函数的定义域D =[-1, 0)⋃(0, 1].(4)241x y -=; 解 由4-x 2>0得 |x |<2. 函数的定义域为(-2, 2).(5)x y sin =;解 由x ≥0得函数的定义D =[0, +∞).(6) y =tan(x +1);解 由21π≠+x (k =0, ±1, ±2, ⋅ ⋅ ⋅)得函数的定义域为 12-+≠ππk x (k =0, ±1, ±2, ⋅ ⋅⋅).(7) y =arcsin(x -3);解 由|x -3|≤1得函数的定义域D =[2, 4].(8)xx y 1arctan 3+-=; 解 由3-x ≥0且x ≠0得函数的定义域D =(-∞, 0)⋃(0, 3).(9) y =ln(x +1);解 由x +1>0得函数的定义域D =(-1, +∞).(10)x e y 1=.解 由x ≠0得函数的定义域D =(-∞, 0)⋃(0, +∞).7. 下列各题中, 函数f (x )和g (x )是否相同?为什么?(1)f (x )=lg x 2, g (x )=2lg x ;(2) f (x )=x , g (x )=2x ;(3)334)(x x x f -=,31)(-=x x x g .(4)f (x )=1, g (x )=sec 2x -tan 2x .解 (1)不同. 因为定义域不同.(2)不同. 因为对应法则不同, x <0时, g (x )=-x .(3)相同. 因为定义域、对应法则均相相同.(4)不同. 因为定义域不同.8. 设⎪⎩⎪⎨⎧≥<=3|| 03|| |sin |)(ππϕx x x x , 求)6(πϕ, )4(πϕ, )4(πϕ-, ϕ(-2), 并作出函数y =ϕ(x )的图形.解 21|6sin |)6(==ππϕ, 22|4sin |)4(==ππϕ, 22|)4sin(|)4(=-=-ππϕ, 0)2(=-ϕ. 9. 试证下列函数在指定区间内的单调性:(1)xx y -=1, (-∞, 1); (2)y =x +ln x , (0, +∞).证明 (1)对于任意的x 1, x 2∈(-∞, 1), 有1-x 1>0, 1-x 2>0. 因为当x 1<x 2时,0)1)(1(112121221121<---=---=-x x x x x x x x y y , 所以函数xx y -=1在区间(-∞, 1)内是单调增加的. (2)对于任意的x 1, x 2∈(0, +∞), 当x 1<x 2时, 有0l n )()l n ()l n (2121221121<+-=+-+=-x x x x x x x x y y , 所以函数y =x +ln x 在区间(0, +∞)内是单调增加的.10. 设 f (x )为定义在(-l , l )内的奇函数, 若f (x )在(0, l )内单调增加, 证明f (x )在(-l , 0)内也单调增加.证明 对于∀x 1, x 2∈(-l , 0)且x 1<x 2, 有-x 1, -x 2∈(0, l )且-x 1>-x 2.因为f (x )在(0, l )内单调增加且为奇函数, 所以f (-x 2)<f (-x 1), -f (x 2)<-f (x 1), f (x 2)>f (x 1),这就证明了对于∀x 1, x 2∈(-l , 0), 有f (x 1)< f (x 2), 所以f (x )在(-l , 0)内也单调增加. 11. 设下面所考虑的函数都是定义在对称区间(-l , l )上的, 证明:(1)两个偶函数的和是偶函数, 两个奇函数的和是奇函数;(2)两个偶函数的乘积是偶函数, 两个奇函数的乘积是偶函数, 偶函数与奇函数的乘积是奇函数.证明 (1)设F (x )=f (x )+g (x ). 如果f (x )和g (x )都是偶函数, 则F (-x )=f (-x )+g (-x )=f (x )+g (x )=F (x ),所以F (x )为偶函数, 即两个偶函数的和是偶函数.如果f (x )和g (x )都是奇函数, 则F (-x )=f (-x )+g (-x )=-f (x )-g (x )=-F (x ),所以F (x )为奇函数, 即两个奇函数的和是奇函数.(2)设F (x )=f (x )⋅g (x ). 如果f (x )和g (x )都是偶函数, 则F (-x )=f (-x )⋅g (-x )=f (x )⋅g (x )=F (x ),所以F (x )为偶函数, 即两个偶函数的积是偶函数.如果f (x )和g (x )都是奇函数, 则F (-x )=f (-x )⋅g (-x )=[-f (x )][-g (x )]=f (x )⋅g (x )=F (x ),所以F (x )为偶函数, 即两个奇函数的积是偶函数.如果f (x )是偶函数, 而g (x )是奇函数, 则F (-x )=f (-x )⋅g (-x )=f (x )[-g (x )]=-f (x )⋅g (x )=-F (x ),所以F (x )为奇函数, 即偶函数与奇函数的积是奇函数.12. 下列函数中哪些是偶函数, 哪些是奇函数, 哪些既非奇函数又非偶函数?(1)y =x 2(1-x 2);(2)y =3x 2-x 3;(3)2211xxy +-=; (4)y =x (x -1)(x +1);(5)y =sin x -cos x +1;(6)2x x a a y -+=. 解 (1)因为f (-x )=(-x )2[1-(-x )2]=x 2(1-x 2)=f (x ), 所以f (x )是偶函数.(2)由f (-x )=3(-x )2-(-x )3=3x 2+x 3可见f (x )既非奇函数又非偶函数.(3)因为())(111)(1)(2222x f x x x x x f =+-=-+--=-, 所以f (x )是偶函数. (4)因为f (-x )=(-x )(-x -1)(-x +1)=-x (x +1)(x -1)=-f (x ), 所以f (x )是奇函数.(5)由f (-x )=sin(-x )-cos(-x )+1=-sin x -cos x +1可见f (x )既非奇函数又非偶函数.(6)因为)(22)()()(x f a a a a x f x x x x =+=+=-----, 所以f (x )是偶函数. 13. 下列各函数中哪些是周期函数?对于周期函数, 指出其周期:(1)y =cos(x -2);解 是周期函数, 周期为l =2π.(2)y =cos 4x ;解 是周期函数, 周期为2π=l . (3)y =1+sin πx ;解 是周期函数, 周期为l =2.(4)y =x cos x ;解 不是周期函数.(5)y =sin 2x .解 是周期函数, 周期为l =π.14. 求下列函数的反函数:(1)31+=x y 错误!未指定书签。
同济大学 第六版 高数练习册答案 上册

高等数学习题解答第一章(7-11) 第六节 极限存在准则 两个重要极限1.0;1;1;0;2;2/32. 1-e ;1432;0;;;--e e e e3. 证明:{n x }显然单调递增,1x 3≤,若31≤-n x ,则n x ≤33+≤3∴ {n x }单调有界,∴{n x }收敛,不妨设∞→n lim n x =a , 则有 a =3+a ,解得,a =(1+13)/2,2)131(-=a∴2)131(lim +=∞→n n x4. 解:1)12111(22222+≤++++++≤+n n nn n n n n n11limlim22=+=+∞→∞→n nn n n n n∴1)12111(lim 222=++++++∞→nn n n n第七节 无穷小的比较1.(B )2. (A )3. 证明: 令t x sin = , 1sin lim arcsin lim00==→→ttx x t x∴当0→x 时,x x ~arcsin 。
4. 解:(1)0lim →x x x 25tan =0lim →x x x 25=25(2)0lim →x ())cos 1(arcsin 2x x x -=0lim →x 222x x x =∞(3)0lim →x x x )sin 21ln(-=0lim→x 2sin 2-=-xx(4)0lim →x =-+1)21ln(3x e x 3232lim 0=→x x x(5)0lim→x x x x 3sin sin tan -=0lim →x =-xx x x cos )cos 1(sin 30lim →x 322xx x=1/2(6)0lim →x ⎪⎭⎫ ⎝⎛-x x tan 1sin 1=0lim →x x x sin cos 1-=0lim →x 022=x x (7)431)3tan arctan (lim 220=+=+++→nn n n n a n n第八节 函数的连续性与间断点1. 0 ;2. 充要;3. 2;4. D5. B6. C7. 解:12121lim 1212lim )(lim0=+-=+-=--+∞→+∞→→+t tt t t t x x f1)(lim 0-=-→x f x ∴ )(x f 在x=0 不连续,且x=0 为函数)(x f 的第一类间断点。
第六版同济大学高等数学上下课后答案详解

|sin x | | x | 3 求 ( ) ( ) ( ) (2) 并作出函数 y(x) 8 设 ( x) 4 6 4 | x | 0 3
的图形 解 ( ) |sin | 1 ( ) |sin | 2 ( ) |sin( )| 2 (2) 0 6 6 2 4 4 2 4 4 2 9 试证下列函数在指定区间内的单调性 (1) y x ( 1) 1 x (2)yxln x (0 ) 证明 (1)对于任意的 x1 x2( 1) 有 1x10 1x20 因为当 x1x2 时
对于映射 g YX 因为对每个 yY 有 g(y)xX 且满足 f(x)f[g(y)]Iy yy 按逆映射的定义 g 是 f 的逆映射 5 设映射 f XY AX 证明 (1)f 1(f(A))A (2)当 f 是单射时 有 f 1(f(A))A 证明 (1)因为 xA f(x)yf(A) f 1(y)xf 1(f(A)) f 1(f(A))A 所以 (2)由(1)知 f 1(f(A))A 另一方面 对于任意的 xf 1(f(A))存在 yf(A) 使 f 1(y)xf(x)y 因为 yf(A)且 f 是单射 所以 xA 这就证明了 f 1(f(A))A 因此 f 1(f(A))A 6 求下列函数的自然定义域 (1) y 3x 2 解 由 3x20 得 x 2 函数的定义域为 [ 2 , ) 3 3 (2) y 1 2 1 x 解 由 1x20 得 x1 函数的定义域为( 1)(1 1)(1 ) (3) y 1 1 x 2 x 解 由 x0 且 1x20 得函数的定义域 D[1 0)(0 1] (4) y
y1 y2
x1 x x1 x2 2 0 1 x1 1 x2 (1 x1)(1 x2 )
高等数学同济第六版第四章第2节.ppt

x
dx
d(sec x tan x) sec x tan x
第四章第二节
同样可证
csc xdx ln csc x cot x C
或
ln tan x C (P196 例16 )
2
13
例11.
求
(
x2
x3 a2
3
)2
dx
.
第四章第二节
解:
原式
=
1 2
(
x2 dx2
x
2
a
2
3
)
2
1 2
(x2 a2)
例8. 求 sec6 xdx .
解: 原式 = (tan2 x 1)2dsteacn2 xd x
(tan4 x 2tan2 x 1)dtan x
1 tan5 x 2 tan3 x tan x C
5
3
第四章第二节
10
例9.
求
1
dx e
x
.
解法1
第四章第二节
(1 e x ) e x
1 e2x
(P203 公式 (22) )
34
例24. 求
第四章第二节
解:
令
x
1 t
,得
原式
t dt a2t2 1
1 2a2
d (a2t2 a 2t 2
1) 1
1 a2
a2t2 1 C
35
例25. 求
第四章第二节
解: 原式 ( x 1)3
dx ( x 1)2 1
令
x
1
1 t
t3
(1) 分项积分: 利用积化和差; 分式分项; 1 sin2 x cos2 x等
同济大学第六版高等数学上册课后答案全集精编版

高等数学第六版上册课后习题答案第一章习题1−11.设A =(−∞,−5)∪(5,+∞),B =[−10,3),写出A ∪B ,A ∩B ,A \B 及A \(A \B )的表达式.解A ∪B =(−∞,3)∪(5,+∞),A ∩B =[−10,−5),A \B =(−∞,−10)∪(5,+∞),A \(A \B )=[−10,−5).2.设A 、B 是任意两个集合,证明对偶律:(A ∩B )C =A C ∪B C .证明因为x ∈(A ∩B )C ⇔x ∉A ∩B ⇔x ∉A 或x ∉B ⇔x ∈A C 或x ∈B C ⇔x ∈A C ∪B C ,所以(A ∩B )C =A C ∪B C .3.设映射f :X →Y ,A ⊂X ,B ⊂X .证明(1)f (A ∪B )=f (A )∪f (B );(2)f (A ∩B )⊂f (A )∩f (B ).证明因为y ∈f (A ∪B )⇔∃x ∈A ∪B ,使f (x )=y⇔(因为x ∈A 或x ∈B )y ∈f (A )或y ∈f (B )⇔y ∈f (A )∪f (B ),所以f (A ∪B )=f (A )∪f (B ).(2)因为y ∈f (A ∩B )⇒∃x ∈A ∩B ,使f (x )=y ⇔(因为x ∈A 且x ∈B )y ∈f (A )且y ∈f (B )⇒y ∈f (A )∩f (B ),所以f (A ∩B )⊂f (A )∩f (B ).4.设映射f :X →Y ,若存在一个映射g :Y →X ,使X I f g =ο,Y I g f =ο,其中I X 、I Y 分别是X 、Y 上的恒等映射,即对于每一个x ∈X ,有I X x =x ;对于每一个y ∈Y ,有I Y y =y .证明:f 是双射,且g 是f 的逆映射:g =f −1.证明因为对于任意的y ∈Y ,有x =g (y )∈X ,且f (x )=f [g (y )]=I y y =y ,即Y 中任意元素都是X 中某元素的像,所以f 为X 到Y 的满射.又因为对于任意的x 1≠x 2,必有f (x 1)≠f (x 2),否则若f (x 1)=f (x 2)⇒g [f (x 1)]=g [f (x 2)]⇒x 1=x 2.因此f 既是单射,又是满射,即f 是双射.对于映射g :Y →X ,因为对每个y ∈Y ,有g (y )=x ∈X ,且满足f (x )=f [g (y )]=I y y =y ,按逆映射的定义,g 是f 的逆映射.5.设映射f :X →Y ,A ⊂X .证明:(1)f −1(f (A ))⊃A ;(2)当f 是单射时,有f −1(f (A ))=A .证明(1)因为x ∈A ⇒f (x )=y ∈f (A )⇒f −1(y )=x ∈f −1(f (A )),所以f −1(f (A ))⊃A .(2)由(1)知f −1(f (A ))⊃A .另一方面,对于任意的x ∈f −1(f (A ))⇒存在y ∈f (A ),使f −1(y )=x ⇒f (x )=y .因为y ∈f (A )且f 是单射,所以x ∈A .这就证明了f −1(f (A ))⊂A .因此f −1(f (A ))=A .6.求下列函数的自然定义域:(1)23+=x y ;解由3x +2≥0得32−>x .函数的定义域为) ,32[∞+−.(2)211xy −=;解由1−x 2≠0得x ≠±1.函数的定义域为(−∞,−1)∪(−1,1)∪(1,+∞).(3)211x xy −−=;解由x ≠0且1−x 2≥0得函数的定义域D =[−1,0)∪(0,1].(4)241x y −=;解由4−x 2>0得|x |<2.函数的定义域为(−2,2).(5)x y sin =;解由x ≥0得函数的定义D =[0,+∞).(6)y =tan(x +1);解由21π≠+x (k =0,±1,±2,⋅⋅⋅)得函数的定义域为 12−+≠ππk x (k =0,±1,±2,⋅⋅⋅).(7)y =arcsin(x −3);解由|x −3|≤1得函数的定义域D =[2,4].(8)xx y 1arctan 3+−=;解由3−x ≥0且x ≠0得函数的定义域D =(−∞,0)∪(0,3).(9)y =ln(x +1);解由x +1>0得函数的定义域D =(−1,+∞).(10)x e y 1=.解由x ≠0得函数的定义域D =(−∞,0)∪(0,+∞).7.下列各题中,函数f (x )和g (x )是否相同?为什么?(1)f (x )=lg x 2,g (x )=2lg x ;(2)f (x )=x ,g (x )=2x ;(3)334)(x x x f −=,31)(−=x x x g .(4)f (x )=1,g (x )=sec 2x −tan 2x .解(1)不同.因为定义域不同.(2)不同.因为对应法则不同,x <0时,g (x )=−x .(3)相同.因为定义域、对应法则均相相同.(4)不同.因为定义域不同.8.设⎪⎩⎪⎨⎧≥<=3|| 03|| |sin |)(ππϕx x x x ,求)6(πϕ,)4(πϕ,)4(πϕ−,ϕ(−2),并作出函数y =ϕ(x )的图形.解216sin |)6(==ππϕ,22|4sin |)4(==ππϕ,22|)4sin(|)4(=−=−ππϕ,0)2(=−ϕ.9.试证下列函数在指定区间内的单调性:(1)xx y −=1,(−∞,1);(2)y =x +ln x ,(0,+∞).证明(1)对于任意的x 1,x 2∈(−∞,1),有1−x 1>0,1−x 2>0.因为当x 1<x 2时,0)1)(1(112121221121<−−−=−−−=−x x x x x x x x y y ,所以函数xx y −=1在区间(−∞,1)内是单调增加的.(2)对于任意的x 1,x 2∈(0,+∞),当x 1<x 2时,有0ln )()ln ()ln (2121221121<+−=+−+=−x x x x x x x x y y ,所以函数y =x +ln x 在区间(0,+∞)内是单调增加的.10.设f (x )为定义在(−l ,l )内的奇函数,若f (x )在(0,l )内单调增加,证明f (x )在(−l ,0)内也单调增加.证明对于∀x 1,x 2∈(−l ,0)且x 1<x 2,有−x 1,−x 2∈(0,l )且−x 1>−x 2.因为f (x )在(0,l )内单调增加且为奇函数,所以f (−x 2)<f (−x 1),−f (x 2)<−f (x 1),f (x 2)>f (x 1),这就证明了对于∀x 1,x 2∈(−l ,0),有f (x 1)<f (x 2),所以f (x )在(−l ,0)内也单调增加.11.设下面所考虑的函数都是定义在对称区间(−l ,l )上的,证明:(1)两个偶函数的和是偶函数,两个奇函数的和是奇函数;(2)两个偶函数的乘积是偶函数,两个奇函数的乘积是偶函数,偶函数与奇函数的乘积是奇函数.证明(1)设F (x )=f (x )+g (x ).如果f (x )和g (x )都是偶函数,则F (−x )=f (−x )+g (−x )=f (x )+g (x )=F (x ),所以F (x )为偶函数,即两个偶函数的和是偶函数.如果f (x )和g (x )都是奇函数,则F (−x )=f (−x )+g (−x )=−f (x )−g (x )=−F (x ),所以F (x )为奇函数,即两个奇函数的和是奇函数.(2)设F (x )=f (x )⋅g (x ).如果f (x )和g (x )都是偶函数,则F (−x )=f (−x )⋅g (−x )=f (x )⋅g (x )=F (x ),所以F (x )为偶函数,即两个偶函数的积是偶函数.如果f (x )和g (x )都是奇函数,则F (−x )=f (−x )⋅g (−x )=[−f (x )][−g (x )]=f (x )⋅g (x )=F (x ),所以F (x )为偶函数,即两个奇函数的积是偶函数.如果f (x )是偶函数,而g (x )是奇函数,则F (−x )=f (−x )⋅g (−x )=f (x )[−g (x )]=−f (x )⋅g (x )=−F (x ),所以F (x )为奇函数,即偶函数与奇函数的积是奇函数.12.下列函数中哪些是偶函数,哪些是奇函数,哪些既非奇函数又非偶函数?(1)y =x 2(1−x 2);(2)y =3x 2−x 3;(3)2211xxy +−=;(4)y =x (x −1)(x +1);(5)y =sin x −cos x +1;(6)2x x a a y −+=.解(1)因为f (−x )=(−x )2[1−(−x )2]=x 2(1−x 2)=f (x ),所以f (x )是偶函数.(2)由f (−x )=3(−x )2−(−x )3=3x 2+x 3可见f (x )既非奇函数又非偶函数.(3)因为())(111)(1)(2222x f x x x x x f =+−=−+−−=−,所以f (x )是偶函数.(4)因为f (−x )=(−x )(−x −1)(−x +1)=−x (x +1)(x −1)=−f (x ),所以f (x )是奇函数.(5)由f (−x )=sin(−x )−cos(−x )+1=−sin x −cos x +1可见f (x )既非奇函数又非偶函数.(6)因为)(22)()()(x f a a a a x f x x x x =+=+=−−−−−,所以f (x )是偶函数.13.下列各函数中哪些是周期函数?对于周期函数,指出其周期:(1)y =cos(x −2);解是周期函数,周期为l =2π.(2)y =cos 4x ;解是周期函数,周期为2π=l .(3)y =1+sin πx ;解是周期函数,周期为l =2.(4)y =x cos x ;解不是周期函数.(5)y =sin 2x .解是周期函数,周期为l =π.14.求下列函数的反函数:(1)31+=x y ;解由31+=x y 得x =y 3−1,所以31+=x y 的反函数为y =x 3−1.(2)xx y +−=11;解由x x y +−=11得yy x +−=11,所以x x y +−=11的反函数为x x y +−=11.(3)dcx b ax y ++=(ad −bc ≠0);解由d cx b ax y ++=得acy b dy x −+−=,所以d cx b ax y ++=的反函数为a cx b dx y −+−=.(4)y =2sin3x ;解由y =2sin 3x 得2arcsin 31y x =,所以y =2sin3x 的反函数为2arcsin 31x y =.(5)y =1+ln(x +2);解由y =1+ln(x +2)得x =e y −1−2,所以y =1+ln(x +2)的反函数为y =e x −1−2.(6)122+=x x y .解由122+=x x y 得y y x −=1log 2,所以122+=x x y 的反函数为x x y −=1log 2.15.设函数f (x )在数集X 上有定义,试证:函数f (x )在X 上有界的充分必要条件是它在X 上既有上界又有下界.证明先证必要性.设函数f (x )在X 上有界,则存在正数M ,使|f (x )|≤M ,即−M ≤f (x )≤M .这就证明了f (x )在X 上有下界−M 和上界M .再证充分性.设函数f (x )在X 上有下界K 1和上界K 2,即K 1≤f (x )≤K 2.取M =max{|K 1|,|K 2|},则−M ≤K 1≤f (x )≤K 2≤M ,即|f (x )|≤M .这就证明了f (x )在X 上有界.16.在下列各题中,求由所给函数复合而成的函数,并求这函数分别对应于给定自变量值x 1和x 2的函数值:(1)y =u 2,u =sin x ,61π=x ,32π=x ;解y =sin 2x ,41)21(6sin 221===πy ,43)23(3sin 222===πy .(2)y =sin u ,u =2x ,81π=x ,42π=x ;解y =sin2x ,224sin )82sin(1==⋅=ππy ,12sin )42sin(2==⋅=ππy .(3)u y =,u =1+x 2,x 1=1,x 2=2;解21x y +=,21121=+=y ,52122=+=y .(4)y =e u ,u =x 2,x 1=0,x 2=1;解2x e y =,1201==e y ,e e y ==212.(5)y =u 2,u =e x ,x 1=1,x 2=−1.解y =e 2x ,y 1=e 2⋅1=e 2,y 2=e 2⋅(−1)=e −2.17.设f (x )的定义域D =[0,1],求下列各函数的定义域:(1)f (x 2);解由0≤x 2≤1得|x |≤1,所以函数f (x 2)的定义域为[−1,1].(2)f (sin x );解由0≤sin x ≤1得2n π≤x ≤(2n +1)π(n =0,±1,±2⋅⋅⋅),所以函数f (sin x )的定义域为[2n π,(2n +1)π](n =0,±1,±2⋅⋅⋅).(3)f (x +a )(a >0);解由0≤x +a ≤1得−a ≤x ≤1−a ,所以函数f (x +a )的定义域为[−a ,1−a ].(4)f (x +a )+f (x −a )(a >0).解由0≤x +a ≤1且0≤x −a ≤1得:当210≤<a 时,a ≤x ≤1−a ;当21>a 时,无解.因此当210≤<a 时函数的定义域为[a ,1−a ],当21>a 时函数无意义.18.设⎪⎩⎪⎨⎧>−=<=1|| 11|| 01|| 1)(x x x x f ,g (x )=e x ,求f [g (x )]和g [f (x )],并作出这两个函数的图形.解⎪⎩⎪⎨⎧>−=<=1|| 11|| 01|| 1)]([x x x e e e x g f ,即⎪⎩⎪⎨⎧>−=<=0 10 00 1)]([x x x x g f .⎪⎩⎪⎨⎧>=<==−1|| 1|| e 1|| )]([101)(x e x x e e x f g x f ,即⎪⎩⎪⎨⎧>=<=−1|| 1|| 11|| )]([1x e x x e x f g .19.已知水渠的横断面为等腰梯形,斜角ϕ=40°(图1−37).当过水断面ABCD 的面积为定值S 0时,求湿周L (L =AB +BC +CD )与水深h 之间的函数关系式,并指明其定义域.图1−37解ο40sin h DC AB ==,又从0)]40cot 2([21S h BC BC h =⋅++ο得h hS BC ⋅−=ο40cot 0,所以h h S L οο40sin 40cos 20−+=.自变量h 的取值范围应由不等式组h >0,040cot 0>⋅−h hS ο确定,定义域为ο40cot 00S h <<.20.收敛音机每台售价为90元,成本为60元.厂方为鼓励销售商大量采购,决定凡是订购量超过100台以上的,每多订购1台,售价就降低1分,但最低价为每台75元.(1)将每台的实际售价p 表示为订购量x 的函数;(2)将厂方所获的利润P 表示成订购量x 的函数;(3)某一商行订购了1000台,厂方可获利润多少?解(1)当0≤x ≤100时,p =90.令0.01(x 0−100)=90−75,得x 0=1600.因此当x ≥1600时,p =75.当100<x <1600时,p =90−(x −100)×0.01=91−0.01x .综合上述结果得到⎪⎩⎪⎨⎧≥<<−≤≤=1600 751600100 01.0911000 90x x x x p .(2)⎪⎩⎪⎨⎧≥<<−≤≤=−=1600 151600100 01.0311000 30)60(2x x x x x x x x p P .(3)P =31×1000−0.01×10002=21000(元).习题1−21.观察一般项x n 如下的数列{x n }的变化趋势,写出它们的极限:(1)n n x 21=;解当n →∞时,n n x 21=→0,021lim =∞→n n .(2)nx n n 1)1(−=;解当n →∞时,n x n n 1)1(−=→0,01)1(lim =−∞→nn n .(3)212nx n +=;解当n →∞时,212n x n +=→2,2)12(lim 2=+∞→nn .(4)11+−=n n x n ;解当n →∞时,12111+−=+−=n n n x n →0,111lim =+−∞→n n n .(5)x n =n (−1)n .解当n →∞时,x n =n (−1)n 没有极限.2.设数列{x n }的一般项nn x n 2cos π=.问n n x ∞→lim =?求出N ,使当n >N 时,x n 与其极限之差的绝对值小于正数ε,当ε=0.001时,求出数N .解0lim =∞→n n x .n n n x n 1|2cos ||0|≤=−π.∀ε>0,要使|x n −0|<ε,只要ε<n 1,也就是ε1>n .取]1[ε=N ,则∀n >N ,有|x n −0|<ε.当ε=0.001时,]1[ε=N =1000.3.根据数列极限的定义证明:(1)01lim 2=∞→nn ;分析要使ε=−221|01|n n ,只须ε12>n ,即ε1>n .证明因为∀ε>0,∃]1[ε=N ,当n >N 时,有ε<−|01|2n ,所以01lim 2=∞→n n .(2)231213lim =++∞→n n n ;分析要使ε<<+=−++n n n n 41)12(21|231213|,只须ε<n 41,即ε41>n .证明因为∀ε>0,∃]41[ε=N ,当n >N 时,有ε<−++|231213|n n ,所以231213lim =++∞→n n n .(3)1lim 22+∞→na n n ;分析要使ε<<++=−+=−+na n a n n a n n a n n a n 22222222)(|1|,只须ε2a n >.证明因为∀ε>0,∃][2εa N =,当∀n >N 时,有ε<−+|1|22na n ,所以1lim 22=+∞→na n n .(4)19 999.0lim =⋅⋅⋅∞→43421个n n .分析要使|0.99⋅⋅⋅9−1|ε<=−1101n ,只须1101−n <ε,即ε1lg 1+>n .证明因为∀ε>0,∃]1lg 1[ε+=N ,当∀n >N 时,有|0.99⋅⋅⋅9−1|<ε,所以19 999.0lim =⋅⋅⋅∞→43421个n n .4.a u n n =∞→lim ,证明||||lim a u n n =∞→.并举例说明:如果数列{|x n |}有极限,但数列{x n }未必有极限.证明因为a u n n =∞→lim ,所以∀ε>0,∃N ∈N ,当n >N 时,有ε<−||a u n ,从而||u n |−|a ||≤|u n −a |<ε.这就证明了||||lim a u n n =∞→.数列{|x n |}有极限,但数列{x n }未必有极限.例如1|)1(|lim =−∞→n n ,但n n )1(lim −∞→不存在.5.设数列{x n }有界,又0lim =∞→n n y ,证明:0lim =∞→n n n y x .证明因为数列{x n }有界,所以存在M ,使∀n ∈Z ,有|x n |≤M .又0lim =∞→n n y ,所以∀ε>0,∃N ∈N ,当n >N 时,有My n ε<||.从而当n >N 时,有εε=⋅<≤=−MM y M y x y x n n n n n |||||0|,所以0lim =∞→n n n y x .6.对于数列{x n },若x 2k −1→a (k →∞),x 2k →a (k →∞),证明:x n →a (n →∞).证明因为x 2k −1→a (k →∞),x 2k →a (k →∞),所以∀ε>0,∃K 1,当2k −1>2K 1−1时,有|x 2k −1−a |<ε;∃K 2,当2k >2K 2时,有|x 2k −a |<ε.取N =max{2K 1−1,2K 2},只要n >N ,就有|x n −a |<ε.因此x n →a (n →∞).习题1−31.根据函数极限的定义证明:(1)8)13(lim 3=−→x x ;分析因为|(3x −1)−8|=|3x −9|=3|x −3|,所以要使|(3x −1)−8|<ε,只须ε31|3|<−x .证明因为∀ε>0,∃εδ31=,当0<|x −3|<δ时,有|(3x −1)−8|<ε,所以8)13(lim 3=−→x x .(2)12)25(lim 2=+→x x ;分析因为|(5x +2)−12|=|5x −10|=5|x −2|,所以要使|(5x +2)−12|<ε,只须51|2|<−x .证明因为∀ε>0,∃εδ51=,当0<|x −2|<δ时,有|(5x +2)−12|<ε,所以12)25(lim 2=+→x x .(3)424lim 22−=+−−→x x x ;分析因为|)2(||2|244)4(2422−−=+=+++=−−+−x x x x x x x ,所以要使ε<−−+−)4(242x x ,只须ε<−−|)2(|x .证明因为∀ε>0,∃εδ=,当0<|x −(−2)|<δ时,有ε<−−+−)4(242x x ,所以424lim22−=+−−→x x x .(4)21241lim 321=+−−→x x x .分析因为|)21(|2|221|212413−−=−−=−+−x x x x ,所以要使ε<−+−212413x x ,只须ε21|)21(|<−−x .证明因为∀ε>0,∃εδ21=,当δ<−−<|)21(|0x 时,有ε<−+−212413x x ,所以21241lim 321=+−−→x x x .2.根据函数极限的定义证明:(1)2121lim 33=+∞→x x x ;分析因为333333||21212121x x x x x x =−+=−+,所以要使ε<+212133x x ,只须ε<3||21x ,即321||ε>x .证明因为∀ε>0,∃321ε=X ,当|x |>X 时,有ε<+212133x x ,所以2121lim 33=+∞→x x x .(2)0sin lim =+∞→x x x .分析因为xx x x x 1|sin |0sin =−.所以要使ε<−0sin x x ,只须ε<x 1,即21ε>x .证明因为∀ε>0,∃21ε=X ,当x >X 时,有ε<−0sin xx ,所以0sin lim =+∞→xx x .3.当x →2时,y =x 2→4.问δ等于多少,使当|x −2|<δ时,|y −4|<0.001?解由于当x →2时,|x −2|→0,故可设|x −2|<1,即1<x <3.要使|x 2−4|=|x +2||x −2|<5|x −2|<0.001,只要0002.05001.0|2|=<−x .取δ=0.0002,则当0<|x −2|<δ时,就有|x 2−4|<0.001.4.当x →∞时,13122→+−=x x y ,问X 等于多少,使当|x |>X 时,|y −1|<0.01?解要使01.034131222<+=−+−x x x ,只要397301.04||=−>x ,故397=X .5.证明函数f (x )=|x |当x →0时极限为零.证明因为|f (x )−0|=||x |−0|=|x |=|x −0|,所以要使|f (x )−0|<ε,只须|x |<ε.因为对∀ε>0,∃δ=ε,使当0<|x −0|<δ,时有|f (x )−0|=||x |−0|<ε,所以0||lim 0=→x x .6.求,)(x x x f =xx x ||)(=ϕ当x →0时的左﹑右极限,并说明它们在x →0时的极限是否存在.证明因为11lim lim )(lim 000===−−−→→→x x x x x x f ,11lim lim )(lim 000===+++→→→x x x x x x f ,)(lim )(lim 00x f x f x x +→→=−,所以极限)(lim 0x f x →存在.因为1lim ||lim )(lim 000−=−==−−−→→→xx x x x x x x ϕ,1lim ||lim )(lim 000===+++→→→x x x x x x x x ϕ,)(lim )(lim 00x x x x ϕϕ+→→≠−,所以极限)(lim 0x x ϕ→不存在.7.证明:若x →+∞及x →−∞时,函数f (x )的极限都存在且都等于A ,则A x f x =∞→)(lim .证明因为A x f x =−∞→)(lim ,A x f x =+∞→)(lim ,所以∀ε>0,∃X 1>0,使当x <−X 1时,有|f (x )−A |<ε;∃X 2>0,使当x >X 2时,有|f (x )−A |<ε.取X =max{X 1,X 2},则当|x |>X 时,有|f (x )−A |<ε,即A x f x =∞→)(lim .8.根据极限的定义证明:函数f (x )当x →x 0时极限存在的充分必要条件是左极限、右极限各自存在并且相等.证明先证明必要性.设f (x )→A (x →x 0),则∀ε>0,∃δ>0,使当0<|x −x 0|<δ时,有|f (x )−A |<ε.因此当x 0−δ<x <x 0和x 0<x <x 0+δ时都有|f (x )−A |<ε.这说明f (x )当x →x 0时左右极限都存在并且都等于A .再证明充分性.设f (x 0−0)=f (x 0+0)=A ,则∀ε>0,∃δ1>0,使当x 0−δ1<x <x 0时,有|f (x )−A <ε;∃δ2>0,使当x 0<x <x 0+δ2时,有|f (x )−A |<ε.取δ=min{δ1,δ2},则当0<|x −x 0|<δ时,有x 0−δ1<x <x 0及x 0<x <x 0+δ2,从而有|f (x )−A |<ε,即f (x )→A (x →x 0).9.试给出x →∞时函数极限的局部有界性的定理,并加以证明.解x →∞时函数极限的局部有界性的定理:如果f (x )当x →∞时的极限存在,则存在X >0及M >0,使当|x |>X 时,|f (x )|<M .证明设f (x )→A (x →∞),则对于ε=1,∃X >0,当|x |>X 时,有|f (x )−A |<ε=1.所以|f (x )|=|f (x )−A +A |≤|f (x )−A |+|A |<1+|A |.这就是说存在X >0及M >0,使当|x |>X 时,|f (x )|<M ,其中M =1+|A |.习题1−41.两个无穷小的商是否一定是无穷小?举例说明之.解不一定.例如,当x →0时,α(x )=2x ,β(x )=3x 都是无穷小,但32)()(lim 0=→x x x βα,)()(x x βα不是无穷小.2.根据定义证明:(1)392+−=x x y 当x →3时为无穷小;(2)xx y 1sin =当x →0时为无穷小.证明(1)当x ≠3时|3|39||2−=+−=x x x y .因为∀ε>0,∃δ=ε,当0<|x −3|<δ时,有εδ=<−=+−=|3|39||2x x x y ,所以当x →3时392+−=x x y 为无穷小.(2)当x ≠0时|0||1sin |||||−≤=x xx y .因为∀ε>0,∃δ=ε,当0<|x −0|<δ时,有εδ=<−≤=|0|1sin |||||x xx y ,所以当x →0时xx y 1sin =为无穷小.3.根据定义证明:函数xx y 21+=为当x →0时的无穷大.问x 应满足什么条件,能使|y |>104?证明分析2||11221||−≥+=+=x x x x y ,要使|y |>M ,只须M x >−2||1,即21||+<M x .证明因为∀M >0,∃21+=M δ,使当0<|x −0|<δ时,有M xx >+21,所以当x →0时,函数xx y 21+=是无穷大.取M =104,则21014+=δ.当2101|0|04+<−<x 时,|y |>104.4.求下列极限并说明理由:(1)xx x 12lim +∞→;(2)xx x −−→11lim 20.解(1)因为x x x 1212+=+,而当x →∞时x 1是无穷小,所以212lim =+∞→x x x .(2)因为x xx +=−−1112(x ≠1),而当x →0时x 为无穷小,所以111lim 20=−−→x x x .5.根据函数极限或无穷大定义,填写下表:f (x )→A f (x )→∞f (x )→+∞f (x )→−∞x →x 0∀ε>0,∃δ>0,使当0<|x −x 0|<δ时,有恒|f (x )−A |<ε.x →x 0+x →x 0−x →∞∀ε>0,∃X >0,使当|x |>X 时,有恒|f (x )|>M .x →+∞x →−∞解f (x )→A f (x )→∞f (x )→+∞f (x )→−∞x →x 0∀ε>0,∃δ>0,使当0<|x −x 0|<δ时,有恒|f (x )−A |<ε.∀M >0,∃δ>0,使当0<|x −x 0|<δ时,有恒|f (x )|>M .∀M >0,∃δ>0,使当0<|x −x 0|<δ时,有恒f (x )>M .∀M >0,∃δ>0,使当0<|x −x 0|<δ时,有恒f (x )<−M .x →x 0+∀ε>0,∃δ>0,使当0<x −x 0<δ时,有恒|f (x )−A |<ε.∀M >0,∃δ>0,使当0<x −x 0<δ时,有恒|f (x )|>M .∀M >0,∃δ>0,使当0<x −x 0<δ时,有恒f (x )>M .∀M >0,∃δ>0,使当0<x −x 0<δ时,有恒f (x )<−M .x →x 0−∀ε>0,∃δ>0,使当0<x 0−x <δ时,有恒|f (x )−A |<ε.∀M >0,∃δ>0,使当0<x 0−x <δ时,有恒|f (x )|>M .∀M >0,∃δ>0,使当0<x 0−x <δ时,有恒f (x )>M .∀M >0,∃δ>0,使当0<x 0−x <δ时,有恒f (x )<−M .x →∞∀ε>0,∃X >0,使当|x |>X 时,有恒|f (x )−A |<ε.∀ε>0,∃X >0,使当|x |>X 时,有恒|f (x )|>M .∀ε>0,∃X >0,使当|x |>X 时,有恒f (x )>M .∀ε>0,∃X >0,使当|x |>X 时,有恒f (x )<−M .x →+∞∀ε>0,∃X >0,使当x >X 时,有恒|f (x )−A |<ε.∀ε>0,∃X >0,使当x >X 时,有恒|f (x )|>M .∀ε>0,∃X >0,使当x >X 时,有恒f (x )>M .∀ε>0,∃X >0,使当x >X 时,有恒f (x )<−M .x →−∞∀ε>0,∃X >0,使当x <−X 时,有恒|f (x )−A |<ε.∀ε>0,∃X >0,使当x <−X 时,有恒|f (x )|>M .∀ε>0,∃X >0,使当x <−X 时,有恒f (x )>M .∀ε>0,∃X >0,使当x <−X 时,有恒f (x )<−M .6.函数y =x cos x 在(−∞,+∞)内是否有界?这个函数是否为当x →+∞时的无穷大?为什么?解函数y =x cos x 在(−∞,+∞)内无界.这是因为∀M >0,在(−∞,+∞)内总能找到这样的x ,使得|y (x )|>M .例如y (2k π)=2k πcos2k π=2k π(k =0,1,2,⋅⋅⋅),当k 充分大时,就有|y (2k π)|>M .当x →+∞时,函数y =x cos x 不是无穷大.这是因为∀M >0,找不到这样一个时刻N ,使对一切大于N 的x ,都有|y (x )|>M .例如0)22cos()22()22(=++=+ππππππk k k y (k =0,1,2,⋅⋅⋅),对任何大的N ,当k 充分大时,总有N k x >+=22ππ,但|y (x )|=0<M .7.证明:函数x x y 11=在区间(0,1]上无界,但这函数不是当x →0+时的无穷大.证明函数xx y 1sin 1=在区间(0,1]上无界.这是因为∀M >0,在(0,1]中总可以找到点x k ,使y (x k )>M .例如当221ππ+=k x k (k =0,1,2,⋅⋅⋅)时,有22)(ππ+=k x y k ,当k 充分大时,y (x k )>M .当x →0+时,函数xx y 1sin 1=不是无穷大.这是因为∀M >0,对所有的δ>0,总可以找到这样的点x k ,使0<x k <δ,但y (x k )<M .例如可取πk x k 21=(k =0,1,2,⋅⋅⋅),当k 充分大时,x k <δ,但y (x k )=2k πsin2k π=0<M .习题1−51.计算下列极限:(1)35lim22−+→x x x ;解9325235lim 222−=−+=−+→x x x .(2)13lim 223+−→x x x ;解01)3(3)3(13lim 22223=+−=+−→x x x .(3)112lim 221−+−→x x x x ;解02011lim )1)(1()1(lim 112lim 121221==+−=+−−=−+−→→→x x x x x x x x x x x .(4)xx x x x x 2324lim2230++−→;解2123124lim 2324lim 202230=++−=++−→→x x x x x x x x x x .(5)hx h x h 220)(lim −+→;解x h x h x h hx x h x h x h h h 2)2(lim 2lim )(lim 02220220=+=−++=−+→→→.(6))112(lim 2xx x +−∞→;解21lim 1lim 2)112(lim 22=+−=+−∞→∞→∞→x x xx x x x .(7)121lim22−−−∞→x x x x ;解2111211lim 121lim2222=−−−=−−−∞→∞→xx x x x x x x .(8)13lim 242−−+∞→x x x x x ;解013lim 242=−−+∞→x x x x x (分子次数低于分母次数,极限为零).或012111lim 13lim 4232242=−−+=−−+∞→∞→xx x x x x x x x x .(9)4586lim 224+−+−→x x x x x ;解32142412lim )4)(1()4)(2(lim 4586lim 44224=−−=−−=−−−−=+−+−→→→x x x x x x x x x x x x x .(10))12)(11(lim 2xx x −+∞→;解221)12(lim )11(lim )12)(11(lim 22=×=−⋅+=−+∞→∞→∞→x x x x x x x .(11))21 41211(lim n n +⋅⋅⋅+++∞→;解2211)21(1lim )21 41211(lim 1=−−=+⋅⋅⋅++++∞→∞→n n n n .(12)2)1( 321limn n n −+⋅⋅⋅+++∞→;解211lim 212)1(lim )1( 321lim 22=−=−=−+⋅⋅⋅+++∞→∞→∞→n n n n n n n n n n .(13)35)3)(2)(1(lim nn n n n +++∞→;解515)3)(2)(1(lim 3=+++∞→n n n n n (分子与分母的次数相同,极限为最高次项系数之比).或51)31)(21)(11(lim 515)3)(2)(1(lim 3=+++=+++∞→∞→n n n n n n n n n .(14))1311(lim 31xx x −−−→;解)1)(1()2)(1(lim )1)(1(31lim )1311(lim 2122131x x x x x x x x x x x x x x x ++−+−−=++−−++=−−−→→→112lim21−=+++−=→x x x x .2.计算下列极限:(1)2232)2(2lim −+→x x x x ;解因为01602)2(lim 2322==+−→x x x x ,所以∞=−+→2232)2(2lim x x x x .(2)12lim 2+∞→x x x ;解∞=+∞→12lim 2x x x (因为分子次数高于分母次数).(3))12(lim 3+−∞→x x x .解∞=+−∞→)12(lim 3x x x (因为分子次数高于分母次数).3.计算下列极限:(1)xx x 1sin lim 20→;解01sin lim 20=→x x x (当x →0时,x 2是无穷小,而x 1sin 是有界变量).(2)xx x arctan lim ∞→.解0arctan 1lim arctan lim =⋅=∞→∞→x x x x x x (当x →∞时,x1是无穷小,而arctan x 是有界变量).4.证明本节定理3中的(2).习题1−51.计算下列极限:(1)35lim22−+→x x x ;解9325235lim 222−=−+=−+→x x x .(2)13lim 223+−→x x x ;解01)3(3)3(13lim 22223=+−=+−→x x x .(3)112lim 221−+−→x x x x ;解02011lim )1)(1()1(lim 112lim 121221==+−=+−−=−+−→→→x x x x x x x x x x x .(4)xx x x x x 2324lim2230++−→;解2123124lim 2324lim 202230=++−=++−→→x x x x x x x x x x .(5)hx h x h 220)(lim −+→;解x h x h x h hx x h x h x h h h 2)2(lim 2lim )(lim 02220220=+=−++=−+→→→.(6))112(lim 2xx x +−∞→;解21lim 1lim 2)112(lim 22=+−=+−∞→∞→∞→x x xx x x x .(7)121lim22−−−∞→x x x x ;解2111211lim 121lim2222=−−−=−−−∞→∞→x x x x x x x x .(8)13lim 242−−+∞→x x x x x ;解013lim 242=−−+∞→x x x x x (分子次数低于分母次数,极限为零).或012111lim 13lim 4232242=−−+=−−+∞→∞→xx x x x x x x x x .(9)4586lim 224+−+−→x x x x x ;解32142412lim )4)(1()4)(2(lim 4586lim 44224=−−=−−=−−−−=+−+−→→→x x x x x x x x x x x x x .(10))12)(11(lim 2xx x −+∞→;解221)12(lim )11(lim )12)(11(lim 22=×=−⋅+=−+∞→∞→∞→x x x x x x x .(11))21 41211(lim n n +⋅⋅⋅+++∞→;解2211)21(1lim )21 41211(lim 1=−−=+⋅⋅⋅++++∞→∞→n n n n .(12)2)1( 321limnn n −+⋅⋅⋅+++∞→;解211lim 212)1(lim )1( 321lim 22=−=−=−+⋅⋅⋅+++∞→∞→∞→n n n nn n n n n n .(13)35)3)(2)(1(lim n n n n n +++∞→;解515)3)(2)(1(lim 3=+++∞→n n n n n (分子与分母的次数相同,极限为最高次项系数之比).或51)31)(21)(11(lim 515)3)(2)(1(lim 3=+++=+++∞→∞→n n n n n n n n n .(14))1311(lim 31xx x −−−→;解)1)(1()2)(1(lim )1)(1(31lim )1311(lim 2122131x x x x x x x x x x x x x x x ++−+−−=++−−++=−−−→→→112lim21−=+++−=→x x x x .2.计算下列极限:(1)2232)2(2lim −+→x x x x ;解因为01602)2(lim 2322==+−→x x x x ,所以∞=−+→2232)2(2lim x x x x .(2)12lim 2+∞→x x x ;解∞=+∞→12lim 2x x x (因为分子次数高于分母次数).(3))12(lim 3+−∞→x x x .解∞=+−∞→)12(lim 3x x x (因为分子次数高于分母次数).3.计算下列极限:(1)xx x 1sin lim 20→;解01sin lim 20=→x x x (当x →0时,x 2是无穷小,而x 1sin 是有界变量).(2)xx x arctan lim ∞→.解0arctan 1lim arctan lim =⋅=∞→∞→x x x x x x (当x →∞时,x1是无穷小,而arctan x 是有界变量).4.证明本节定理3中的(2).习题1−71.当x →0时,2x −x 2与x 2−x 3相比,哪一个是高阶无穷小?解因为02lim 2lim 202320=−−=−−→→xx x x x x x x x ,所以当x →0时,x 2−x 3是高阶无穷小,即x 2−x 3=o (2x −x 2).2.当x →1时,无穷小1−x 和(1)1−x 3,(2))1(212x −是否同阶?是否等价?解(1)因为3)1(lim 1)1)(1(lim 11lim 212131=++−++−=−−→→→x x xx x x x x x x x ,所以当x →1时,1−x 和1−x 3是同阶的无穷小,但不是等价无穷小.(2)因为1)1(lim 211)1(21lim 121=+=−−→→x x x x x ,所以当x →1时,1−x 和)1(212x −是同阶的无穷小,而且是等价无穷小.3.证明:当x →0时,有:(1)arctan x ~x ;(2)2~1sec 2x x −.证明(1)因为1tan lim arctan lim 00==→→y yx x y x (提示:令y =arctan x ,则当x →0时,y →0),所以当x →0时,arctan x ~x .(2)因为1)22sin 2(lim 22sin 2lim cos cos 1lim 2211sec lim 202202020===−=−→→→→x xx x x x x x x x x x x ,所以当x →0时,2~1sec 2x x −.4.利用等价无穷小的性质,求下列极限:(1)x x x 23tan lim 0→;(2)m n x x x )(sin )sin(lim 0→(n ,m 为正整数);(3)x x x x 30sin sin tan lim −→;(4))1sin 1)(11(tan sin lim320−+−+−→x x x x x .解(1)2323lim 23tan lim 00==→→x x x x x x .(2)⎪⎩⎪⎨⎧<∞>===→→mn m n m n x x x x mn x m n x 0 1lim )(sin )sin(lim 00.(3)21cos 21lim sin cos cos 1lim sin )1cos 1(sin lim sin sin tan lim 220203030==−=−=−→→→→x x x x x x x x x x x x x x x x .(4)因为32221)2(2~2sin tan 2)1(cos tan tan sin x x x x x x x x x −=⋅−−=−=−(x →0),23232223231~11)1(11x x x x x ++++=−+(x →0),x x x x x ~sin ~1sin 1sin 1sin 1++=−+(x →0),所以33121lim )1sin 1)(11(tan sin lim 230320−=⋅−=−+−+−→→x x x x x x x x x .5.证明无穷小的等价关系具有下列性质:(1)α~α(自反性);(2)若α~β,则β~α(对称性);(3)若α~β,β~γ,则α~γ(传递性).证明(1)1lim =αα,所以α~α;(2)若α~β,则1lim =βα,从而1lim =αβ.因此β~α;(3)若α~β,β~γ,1lim lim lim =⋅=βαγβγα.因此α~γ.习题1−81.研究下列函数的连续性,并画出函数的图形:(1)⎩⎨⎧≤<−≤≤=21 210 )(2x x x x x f ;解已知多项式函数是连续函数,所以函数f (x )在[0,1)和(1,2]内是连续的.在x =1处,因为f (1)=1,并且1lim )(lim 211==−−→→x x f x x ,1)2(lim )(lim 11=−=++→→x x f x x .所以1)(lim 1=→x f x ,从而函数f (x )在x =1处是连续的.综上所述,函数f (x )在[0,2]上是连续函数.(2)⎩⎨⎧>≤≤−=1|| 111 )(x x x x f .解只需考察函数在x =−1和x =1处的连续性.在x =−1处,因为f (−1)=−1,并且)1(11lim )(lim 11−≠==−−−→−→f x f x x ,)1(1lim )(lim 11−=−==++−→−→f x x f x x ,所以函数在x =−1处间断,但右连续.在x =1处,因为f (1)=1,并且1lim )(lim 11==−−→→x x f x x =f (1),11lim )(lim 11==++→→x x x f =f (1),所以函数在x =1处连续.综合上述讨论,函数在(−∞,−1)和(−1,+∞)内连续,在x =−1处间断,但右连续.2.下列函数在指出的点处间断,说明这些间断点属于哪一类,如果是可去间断点,则补充或改变函数的定义使它连续:(1)23122+−−=x x x y ,x =1,x =2;解)1)(2()1)(1(23122−−−+=+−−=x x x x x x x y .因为函数在x =2和x =1处无定义,所以x =2和x =1是函数的间断点.因为∞=+−−=→→231lim lim 2222x x x y x x ,所以x =2是函数的第二类间断点;因为2)2()1(lim lim 11−=−+=→→x x y x x ,所以x =1是函数的第一类间断点,并且是可去间断点.在x =1处,令y =−2,则函数在x =1处成为连续的.(2)x x y tan =,x =k ,2ππ+=k x (k =0,±1,±2,⋅⋅⋅);解函数在点x =k π(k ∈Z)和2ππ+=k x (k ∈Z)处无定义,因而这些点都是函数的间断点.因∞=→xx k x tan lim π(k ≠0),故x =k π(k ≠0)是第二类间断点;因为1tan lim0=→xx x ,0tan lim2=+→x x k x ππ(k ∈Z),所以x =0和2ππ+=k x (k ∈Z)是第一类间断点且是可去间断点.令y |x =0=1,则函数在x =0处成为连续的;令2 ππ+=k x 时,y =0,则函数在2ππ+=k x 处成为连续的.(3)xy 1cos 2=,x =0;解因为函数x y 1cos 2=在x =0处无定义,所以x =0是函数xy 1cos 2=的间断点.又因为xx 1cos lim 20→不存在,所以x =0是函数的第二类间断点.(4)⎩⎨⎧>−≤−=1 31 1x x x x y ,x =1.解因为0)1(lim )(lim 11=−=−−→→x x f x x ,2)3(lim )(lim 11=−=++→→x x f x x ,所以x =1是函数的第一类不可去间断点.3.讨论函数x xx x f n nn 2211lim )(+−=∞→的连续性,若有间断点,判别其类型.解⎪⎩⎪⎨⎧<=>−=+−=∞→1|| 1|| 01|| 11lim )(22x x x x x x x x x f nn n .在分段点x =−1处,因为1)(lim )(lim 11=−=−−−→−→x x f x x ,1lim )(lim 11−==++−→−→x x f x x ,所以x =−1为函数的第一类不可去间断点.在分段点x =1处,因为1lim )(lim 11==−−→→x x f x x ,1)(lim )(lim 11−=−=++→→x x f x x ,所以x =1为函数的第一类不可去间断点.4.证明:若函数f (x )在点x 0连续且f (x 0)≠0,则存在x 0的某一邻域U (x 0),当x ∈U (x 0)时,f (x )≠0.证明不妨设f (x 0)>0.因为f (x )在x 0连续,所以0)()(lim 00>=→x f x f x x ,由极限的局部保号性定理,存在x 0的某一去心邻域)(0x U ο,使当x ∈)(0x U ο时f (x )>0,从而当x ∈U (x 0)时,f (x )>0.这就是说,则存在x 0的某一邻域U (x 0),当x ∈U (x 0)时,f (x )≠0.5.试分别举出具有以下性质的函数f (x )的例子:(1)x =0,±1,±2,21±,⋅⋅⋅,±n ,n1±,⋅⋅⋅是f (x )的所有间断点,且它们都是无穷间断点;解函数x x x f ππcsc )csc()(+=在点x =0,±1,±2,21±,⋅⋅⋅,±n ,n1±,⋅⋅⋅处是间断的,且这些点是函数的无穷间断点.(2)f (x )在R 上处处不连续,但|f (x )|在R 上处处连续;解函数⎩⎨⎧∉∈−=Q Qx x x f 1 1)(在R 上处处不连续,但|f (x )|=1在R 上处处连续.(3)f (x )在R 上处处有定义,但仅在一点连续.解函数⎩⎨⎧∉−∈=Q Q x x x x x f )(在R上处处有定义,它只在x =0处连续.习题1−91.求函数633)(223−+−−+=x x x x x x f 的连续区间,并求极限)(lim 0x f x →,)(lim 3x f x −→及)(lim 2x f x →.解)2)(3()1)(1)(3(633)(223−++−+=−+−−+=x x x x x x x x x x x f ,函数在(−∞,+∞)内除点x =2和x =−3外是连续的,所以函数f (x )的连续区间为(−∞,−3)、(−3,2)、(2,+∞).在函数的连续点x =0处,21)0()(lim 0==→f x f x .在函数的间断点x =2和x =−3处,∞=−++−+=→→)2)(3()1)(1)(3(lim)(lim 22x x x x x x f x x ,582)1)(1(lim)(lim 33−=−+−=−→−→x x x x f x x .2.设函数f (x )与g (x )在点x 0连续,证明函数ϕ(x )=max{f (x ),g (x )},ψ(x )=min{f (x ),g (x )}在点x 0也连续.证明已知)()(lim 00x f x f x x =→,)()(lim 00x g x g x x =→.可以验证] |)()(|)()([21)(x g x f x g x f x −++=ϕ,] |)()(|)()([21)(x g x f x g x f x −−+=ψ.因此] |)()(|)()(21)(00000x g x f x g x f x −++=ϕ,] |)()(|)()(21)(00000x g x f x g x f x −−+=ψ.因为] |)()(|)()([21lim )(lim 00x g x f x g x f x x x x x −++=→→ϕ]|)(lim )(lim |)(lim )(lim [210000x g x f x g x f x x x x x x x x →→→→−++=] |)()(|)()([210000x g x f x g x f −++==ϕ(x 0),所以ϕ(x )在点x 0也连续.同理可证明ψ(x )在点x 0也连续.3.求下列极限:(1)52lim20+−→x x x ;(2)34)2(sin lim x x π→;(3))2cos 2ln(lim 6x x π→;(4)xx x 11lim0−+→;(5)145lim 1−−−→x x x x ;(6)a x a x a x −−→sin sin lim ;(7))(lim 22x x x x x −−++∞→.解(1)因为函数52)(2+−=x x x f 是初等函数,f (x )在点x =0有定义,所以55020)0(52lim220=+⋅−==+−→f x x x .(2)因为函数f (x )=(sin 2x )3是初等函数,f (x )在点4π=x 有定义,所以1)42(sin )4()2(sin lim 334=⋅==→πππf x x .(3)因为函数f (x )=ln(2cos2x )是初等函数,f (x )在点6π=x 有定义,所以0)62cos 2ln(6()2cos 2ln(lim 6=⋅==→πππf x x .(4))11(lim )11()11)(11(lim 11lim000++=++++−+=−+→→→x x x x x x x x x x x x 211101111lim 0=++=++=→x x .(5))45)(1()45)(45(lim 145lim11x x x x x x x x x x x x +−−+−−−=−−−→→)45)(1(44lim1x x x x x +−−−=→214154454lim 1=+−⋅=+−=→x x x .(6)ax a x a x a x a x a x a x −−+=−−→→2sin 2cos 2limsin sin lim a a a a x ax a x a x a x cos 12cos 22sin lim2cos lim =⋅+=−−+=→→.(7))())((lim )(lim 22222222x x x x x x x x x x x x x x x x x x −++−++−−+=−−++∞→+∞→1)1111(2lim )(2lim22=−++=−++=+∞→+∞→xx x x x x x x x .4.求下列极限:(1)xx e 1lim∞→;(2)xx x sin ln lim 0→;(3)2)11(lim xx x+∞→;(4)x x x 2cot 20)tan 31(lim +→;(5)21)63(lim −∞→++x x xx ;(6)xx x x x x −++−+→20sin 1sin 1tan 1lim.解(1)1lim 01lim1===∞→∞→e ee x xx x .(2)01ln )sin lim ln(sin ln lim 00===→→x x x x x x .(3)[]e e xx x x xx ==+=+∞→∞→21212)11(lim )11(lim .。
【7A文】高等数学第六版(同济大学)上册课后习题答案解析.doc

高等数学第六版上册课后习题答案及解析第一章习题1-11.设A =(-∞,-5)⋃(5,+∞),B =[-10,3),写出A ⋃B ,A ⋂B ,A \B 及A \(A \B )的表达式. 解A ⋃B =(-∞,3)⋃(5,+∞),A ⋂B =[-10,-5),A \B =(-∞,-10)⋃(5,+∞),A \(A \B )=[-10,-5).2.设A 、B 是任意两个集合,证明对偶律:(A ⋂B )C =A C ⋃B C .证明因为x ∈(A ⋂B )C ⇔x ∉A ⋂B ⇔x ∉A 或x ∉B ⇔x ∈A C 或x ∈B C ⇔x ∈A C ⋃B C ,所以(A ⋂B )C =A C ⋃B C .3.设映射f :X →Y ,A ⊂X ,B ⊂X .证明(1)f (A ⋃B )=f (A )⋃f (B );(2)f (A ⋂B )⊂f (A )⋂f (B ).证明因为y ∈f (A ⋃B )⇔∃x ∈A ⋃B ,使f (x )=y⇔(因为x ∈A 或x ∈B )y ∈f (A )或y ∈f (B )⇔y ∈f (A )⋃f (B ),所以f (A ⋃B )=f (A )⋃f (B ).(2)因为y ∈f (A ⋂B )⇒∃x ∈A ⋂B ,使f (x )=y ⇔(因为x ∈A 且x ∈B )y ∈f (A )且y ∈f (B )⇒y ∈f (A )⋂f (B ), 所以f (A ⋂B )⊂f (A )⋂f (B ).4.设映射f :X →Y ,若存在一个映射g :Y →X ,使X I f g = ,Y I g f = ,其中I X 、I Y 分别是X 、Y 上的恒等映射,即对于每一个x ∈X ,有I X x =x ;对于每一个y ∈Y ,有I Y y =y .证明:f 是双射,且g 是f 的逆映射:g =f -1.证明因为对于任意的y ∈Y ,有x =g (y )∈X ,且f (x )=f [g (y )]=I y y =y ,即Y 中任意元素都是X 中某元素的像,所以f 为X 到Y 的满射.又因为对于任意的x 1≠x 2,必有f (x 1)≠f (x 2),否则若f (x 1)=f (x 2)⇒g [f (x 1)]=g [f (x 2)]⇒x 1=x 2.因此f 既是单射,又是满射,即f 是双射.对于映射g :Y →X ,因为对每个y ∈Y ,有g (y )=x ∈X ,且满足f (x )=f [g (y )]=I y y =y ,按逆映射的定义,g 是f 的逆映射.5.设映射f :X →Y ,A ⊂X .证明:(1)f -1(f (A ))⊃A ;(2)当f 是单射时,有f -1(f (A ))=A .证明(1)因为x ∈A ⇒f (x )=y ∈f (A )⇒f -1(y )=x ∈f -1(f (A )),所以f -1(f (A ))⊃A .(2)由(1)知f -1(f (A ))⊃A .另一方面,对于任意的x ∈f -1(f (A ))⇒存在y ∈f (A ),使f -1(y )=x ⇒f (x )=y .因为y ∈f (A )且f 是单射,所以x ∈A .这就证明了f -1(f (A ))⊂A .因此f -1(f (A ))=A .6.求下列函数的自然定义域: (1)23+=x y ;解由3x +2≥0得32->x .函数的定义域为) ,32[∞+-. (2)211xy -=; 解由1-x 2≠0得x ≠±1.函数的定义域为(-∞,-1)⋃(-1,1)⋃(1,+∞). (3)211x xy --=; 解由x ≠0且1-x 2≥0得函数的定义域D =[-1,0)⋃(0,1]. (4)241xy -=; 解由4-x 2>0得|x |<2.函数的定义域为(-2,2). (5)x y sin =;解由x ≥0得函数的定义D =[0,+∞).(6)y =tan(x +1); 解由21π≠+x (k =0,±1,±2,⋅⋅⋅)得函数的定义域为 12-+≠ππk x (k =0,±1,±2,⋅⋅⋅).(7)y =arcsin(x -3);解由|x -3|≤1得函数的定义域D =[2,4]. (8)xx y 1arctan 3+-=; 解由3-x ≥0且x ≠0得函数的定义域D =(-∞,0)⋃(0,3).(9)y =ln(x +1);解由x +1>0得函数的定义域D =(-1,+∞). (10)x e y 1=.解由x ≠0得函数的定义域D =(-∞,0)⋃(0,+∞).7.下列各题中,函数f (x )和g (x )是否相同?为什么?(1)f (x )=lg x 2,g (x )=2lg x ;(2)f (x )=x ,g (x )=2x ; (3)334)(x x x f -=,31)(-=x x x g .(4)f (x )=1,g (x )=sec 2x -tan 2x .解(1)不同.因为定义域不同.(2)不同.因为对应法则不同,x <0时,g (x )=-x .(3)相同.因为定义域、对应法则均相相同.(4)不同.因为定义域不同.8.设⎪⎩⎪⎨⎧≥<=3|| 03|| |sin |)(ππϕx x x x ,求)6(πϕ,)4(πϕ,)4(πϕ-,ϕ(-2),并作出函数y =ϕ(x )的图形. 解21|6sin |)6(==ππϕ,22|4sin |)4(==ππϕ,22|)4sin(|)4(=-=-ππϕ,0)2(=-ϕ. 9.试证下列函数在指定区间内的单调性: (1)xx y -=1,(-∞,1); (2)y =x +ln x ,(0,+∞).证明(1)对于任意的x 1,x 2∈(-∞,1),有1-x 1>0,1-x 2>0.因为当x 1<x 2时,0)1)(1(112121221121<---=---=-x x x x x x x x y y ,所以函数xx y -=1在区间(-∞,1)内是单调增加的. (2)对于任意的x 1,x 2∈(0,+∞),当x 1<x 2时,有0ln )()ln ()ln (2121221121<+-=+-+=-x x x x x x x x y y , 所以函数y =x +ln x 在区间(0,+∞)内是单调增加的.10.设f (x )为定义在(-l ,l )内的奇函数,若f (x )在(0,l )内单调增加,证明f (x )在(-l ,0)内也单调增加.证明对于∀x 1,x 2∈(-l ,0)且x 1<x 2,有-x 1,-x 2∈(0,l )且-x 1>-x 2.因为f (x )在(0,l )内单调增加且为奇函数,所以f (-x 2)<f (-x 1),-f (x 2)<-f (x 1),f (x 2)>f (x 1),这就证明了对于∀x 1,x 2∈(-l ,0),有f (x 1)<f (x 2),所以f (x )在(-l ,0)内也单调增加. 11.设下面所考虑的函数都是定义在对称区间(-l ,l )上的,证明:(1)两个偶函数的和是偶函数,两个奇函数的和是奇函数;(2)两个偶函数的乘积是偶函数,两个奇函数的乘积是偶函数,偶函数与奇函数的乘积是奇函数.证明(1)设F (x )=f (x )+g (x ).如果f (x )和g (x )都是偶函数,则F (-x )=f (-x )+g (-x )=f (x )+g (x )=F (x ),所以F (x )为偶函数,即两个偶函数的和是偶函数.如果f (x )和g (x )都是奇函数,则F (-x )=f (-x )+g (-x )=-f (x )-g (x )=-F (x ),所以F (x )为奇函数,即两个奇函数的和是奇函数.(2)设F (x )=f (x )⋅g (x ).如果f (x )和g (x )都是偶函数,则F (-x )=f (-x )⋅g (-x )=f (x )⋅g (x )=F (x ),所以F (x )为偶函数,即两个偶函数的积是偶函数.如果f (x )和g (x )都是奇函数,则F (-x )=f (-x )⋅g (-x )=[-f (x )][-g (x )]=f (x )⋅g (x )=F (x ),所以F (x )为偶函数,即两个奇函数的积是偶函数.如果f (x )是偶函数,而g (x )是奇函数,则F (-x )=f (-x )⋅g (-x )=f (x )[-g (x )]=-f (x )⋅g (x )=-F (x ),所以F (x )为奇函数,即偶函数与奇函数的积是奇函数.12.下列函数中哪些是偶函数,哪些是奇函数,哪些既非奇函数又非偶函数?(1)y =x 2(1-x 2);(2)y =3x 2-x 3; (3)2211xxy +-=; (4)y =x (x -1)(x +1);(5)y =sin x -cos x +1; (6)2x x a a y -+=. 解(1)因为f (-x )=(-x )2[1-(-x )2]=x 2(1-x 2)=f (x ),所以f (x )是偶函数.(2)由f (-x )=3(-x )2-(-x )3=3x 2+x 3可见f (x )既非奇函数又非偶函数.(3)因为())(111)(1)(2222x f x x x x x f =+-=-+--=-,所以f (x )是偶函数. (4)因为f (-x )=(-x )(-x -1)(-x +1)=-x (x +1)(x -1)=-f (x ),所以f (x )是奇函数.(5)由f (-x )=sin(-x )-cos(-x )+1=-sin x -cos x +1可见f (x )既非奇函数又非偶函数.(6)因为)(22)()()(x f a a a a x f x x x x =+=+=-----,所以f (x )是偶函数. 13.下列各函数中哪些是周期函数?对于周期函数,指出其周期:(1)y =cos(x -2);解是周期函数,周期为l =2π.(2)y =cos4x ;解是周期函数,周期为2π=l . (3)y =1+sin πx ;解是周期函数,周期为l =2.(4)y =x cos x ;解不是周期函数.(5)y =sin 2x .解是周期函数,周期为l =π.14.求下列函数的反函数: (1)31+=x y ; 解由31+=x y 得x =y 3-1,所以31+=x y 的反函数为y =x 3-1. (2)xx y +-=11; 解由x x y +-=11得y y x +-=11,所以x x y +-=11的反函数为xx y +-=11. (3)dcx b ax y ++=(ad -bc ≠0); 解由d cx b ax y ++=得a cy b dy x -+-=,所以d cx b ax y ++=的反函数为acx b dx y -+-=. (4)y =2sin3x ;解由y =2sin3x 得2arcsin 31y x =,所以y =2sin3x 的反函数为2arcsin 31x y =. (5)y =1+ln(x +2);解由y =1+ln(x +2)得x =e y -1-2,所以y =1+ln(x +2)的反函数为y =e x -1-2. (6)122+=x x y . 解由122+=x x y 得y y x -=1log 2,所以122+=x x y 的反函数为xx y -=1log 2. 15.设函数f (x )在数集X 上有定义,试证:函数f (x )在X 上有界的充分必要条件是它在X 上既有上界又有下界.证明先证必要性.设函数f (x )在X 上有界,则存在正数M ,使|f (x )|≤M ,即-M ≤f (x )≤M .这就证明了f (x )在X 上有下界-M 和上界M .再证充分性.设函数f (x )在X 上有下界K 1和上界K 2,即K 1≤f (x )≤K 2.取M =max{|K 1|,|K 2|},则-M ≤K 1≤f (x )≤K 2≤M ,即|f (x )|≤M .这就证明了f (x )在X 上有界.16.在下列各题中,求由所给函数复合而成的函数,并求这函数分别对应于给定自变量值x 1和x 2的函数值:(1)y =u 2,u =sin x ,61π=x ,32π=x ;解y =sin 2x ,41)21(6sin 221===πy ,43)23(3sin 222===πy . (2)y =sin u ,u =2x ,81π=x ,42π=x ; 解y =sin2x ,224sin )82sin(1==⋅=ππy ,12sin )42sin(2==⋅=ππy . (3)u y =,u =1+x 2,x 1=1,x 2=2; 解21x y +=,21121=+=y ,52122=+=y .(4)y =e u ,u =x 2,x 1=0,x 2=1;解2x e y =,1201==e y ,e e y ==212.(5)y =u 2,u =e x ,x 1=1,x 2=-1.解y =e 2x ,y 1=e 2⋅1=e 2,y 2=e 2⋅(-1)=e -2.17.设f (x )的定义域D =[0,1],求下列各函数的定义域:(1)f (x 2);解由0≤x 2≤1得|x |≤1,所以函数f (x 2)的定义域为[-1,1].(2)f (sin x );解由0≤sin x ≤1得2n π≤x ≤(2n +1)π(n =0,±1,±2⋅⋅⋅),所以函数f (sin x )的定义域为[2n π,(2n +1)π](n =0,±1,±2⋅⋅⋅).(3)f (x +a )(a >0);解由0≤x +a ≤1得-a ≤x ≤1-a ,所以函数f (x +a )的定义域为[-a ,1-a ].(4)f (x +a )+f (x -a )(a >0).解由0≤x +a ≤1且0≤x -a ≤1得:当210≤<a 时,a ≤x ≤1-a ;当21>a 时,无解.因此当210≤<a 时函数的定义域为[a ,1-a ],当21>a 时函数无意义. 18.设⎪⎩⎪⎨⎧>-=<=1||11||01|| 1)(x x x x f ,g (x )=e x ,求f [g (x )]和g [f (x )],并作出这两个函数的图形. 解⎪⎩⎪⎨⎧>-=<=1|| 11||01|| 1)]([x x x e e e x g f ,即⎪⎩⎪⎨⎧>-=<=0 10 00 1)]([x x x x g f .⎪⎩⎪⎨⎧>=<==-1|| 1|| e 1|| )]([101)(x e x x e e x f g x f ,即⎪⎩⎪⎨⎧>=<=-1|| 1||11|| )]([1x e x x e x f g . 19.已知水渠的横断面为等腰梯形,斜角ϕ=40︒(图1-37).当过水断面ABCD 的面积为定值S 0时,求湿周L (L =AB +BC +CD )与水深h 之间的函数关系式,并指明其定义域.图1-37 解 40sin h DC AB ==,又从0)]40cot 2([21S h BC BC h =⋅++ 得h h S BC ⋅-= 40cot 0,所以 h h S L 40sin 40cos 20-+=. 自变量h 的取值范围应由不等式组h >0,040cot 0>⋅-h hS 确定,定义域为 40cot 00S h <<.20.收敛音机每台售价为90元,成本为60元.厂方为鼓励销售商大量采购,决定凡是订购量超过100台以上的,每多订购1台,售价就降低1分,但最低价为每台75元.(1)将每台的实际售价p 表示为订购量x 的函数;(2)将厂方所获的利润P 表示成订购量x 的函数;(3)某一商行订购了1000台,厂方可获利润多少?解(1)当0≤x ≤100时,p =90.令0.01(x 0-100)=90-75,得x 0=1600.因此当x ≥1600时,p =75.当100<x <1600时,p =90-(x -100)⨯0.01=91-0.01x .综合上述结果得到⎪⎩⎪⎨⎧≥<<-≤≤=1600 751600100 01.0911000 90x x x x p .(2)⎪⎩⎪⎨⎧≥<<-≤≤=-=1600 15160010001.0311000 30)60(2x x x x x x x x p P . (3)P =31⨯1000-0.01⨯10002=21000(元).习题1-21.观察一般项x n 如下的数列{x n }的变化趋势,写出它们的极限: (1)nn x 21=; 解当n →∞时,nn x 21=→0,021lim =∞→n n . (2)nx n n 1)1(-=; 解当n →∞时,n x n n 1)1(-=→0,01)1(lim =-∞→nn n . (3)212n x n +=; 解当n →∞时,212n x n +=→2,2)12(lim 2=+∞→n n . (4)11+-=n n x n ; 解当n →∞时,12111+-=+-=n n n x n →0,111lim =+-∞→n n n . (5)x n =n (-1)n .解当n →∞时,x n =n (-1)n 没有极限.2.设数列{x n }的一般项nn x n 2cos π=.问n n x ∞→lim =?求出N ,使当n >N 时,x n 与其极限之差的绝对值小于正数ε,当ε=0.001时,求出数N .解0lim =∞→n n x . n n n x n 1|2cos ||0|≤=-π.∀ε>0,要使|x n -0|<ε,只要ε<n 1,也就是ε1>n .取]1[ε=N , 则∀n >N ,有|x n -0|<ε.当ε=0.001时,]1[ε=N =1000. 3.根据数列极限的定义证明:(1)01lim 2=∞→n n ; 分析要使ε<=-221|01|n n ,只须ε12>n ,即ε1>n . 证明因为∀ε>0,∃]1[ε=N ,当n >N 时,有ε<-|01|2n ,所以01lim 2=∞→n n . (2)231213lim =++∞→n n n ; 分析要使ε<<+=-++n n n n 41)12(21|231213|,只须ε<n41,即ε41>n . 证明因为∀ε>0,∃]41[ε=N ,当n >N 时,有ε<-++|231213|n n ,所以231213lim =++∞→n n n . (3)1lim 22=+∞→na n n ; 分析要使ε<<++=-+=-+na n a n n a n n a n n a n 22222222)(|1|,只须ε2a n >. 证明因为∀ε>0,∃][2εa N =,当∀n >N 时,有ε<-+|1|22n a n ,所以1lim 22=+∞→na n n . (4)19 999.0lim =⋅⋅⋅∞→个n n . 分析要使|0.99⋅⋅⋅9-1|ε<=-1101n ,只须1101-n <ε,即ε1lg 1+>n . 证明因为∀ε>0,∃]1lg 1[ε+=N ,当∀n >N 时,有|0.99⋅⋅⋅9-1|<ε,所以19 999.0lim =⋅⋅⋅∞→个n n . 4.a u n n =∞→lim ,证明||||lim a u n n =∞→.并举例说明:如果数列{|x n |}有极限,但数列{x n }未必有极限.证明因为a u n n =∞→lim ,所以∀ε>0,∃N ∈N ,当n >N 时,有ε<-||a u n ,从而 ||u n |-|a ||≤|u n -a |<ε.这就证明了||||lim a u n n =∞→. 数列{|x n |}有极限,但数列{x n }未必有极限.例如1|)1(|lim =-∞→n n ,但n n )1(lim -∞→不存在. 5.设数列{x n }有界,又0lim =∞→n n y ,证明:0lim =∞→n n n y x . 证明因为数列{x n }有界,所以存在M ,使∀n ∈Z ,有|x n |≤M .又0lim =∞→n n y ,所以∀ε>0,∃N ∈N ,当n >N 时,有My n ε<||.从而当n >N 时,有 εε=⋅<≤=-MM y M y x y x n n n n n |||||0|,所以0lim =∞→n n n y x .6.对于数列{x n },若x 2k -1→a (k →∞),x 2k →a (k →∞), 证明:x n →a (n →∞).证明因为x 2k -1→a (k →∞),x 2k →a (k →∞),所以∀ε>0, ∃K 1,当2k -1>2K 1-1时,有|x 2k -1-a |<ε; ∃K 2,当2k >2K 2时,有|x 2k -a |<ε.取N =max{2K 1-1,2K 2},只要n >N ,就有|x n -a |<ε. 因此x n →a (n →∞). 习题1-31.根据函数极限的定义证明: (1)8)13(lim 3=-→x x ;分析因为|(3x -1)-8|=|3x -9|=3|x -3|,所以要使|(3x -1)-8|<ε,只须ε31|3|<-x .证明因为∀ε>0,∃εδ31=,当0<|x -3|<δ时,有|(3x -1)-8|<ε, 所以8)13(lim 3=-→x x .(2)12)25(lim 2=+→x x ;分析因为|(5x +2)-12|=|5x -10|=5|x -2|,所以要使|(5x +2)-12|<ε,只须ε51|2|<-x .证明因为∀ε>0,∃εδ51=,当0<|x -2|<δ时,有 |(5x +2)-12|<ε,所以12)25(lim 2=+→x x .(3)424lim 22-=+--→x x x ; 分析因为|)2(||2|244)4(2422--=+=+++=--+-x x x x x x x , 所以要使ε<--+-)4(242x x ,只须ε<--|)2(|x .证明因为∀ε>0,∃εδ=,当0<|x -(-2)|<δ时,有ε<--+-)4(242x x , 所以424lim 22-=+--→x x x . (4)21241lim 321=+--→x x x . 分析因为|)21(|2|221|212413--=--=-+-x x x x , 所以要使ε<-+-212413x x ,只须ε21|)21(|<--x . 证明因为∀ε>0,∃εδ21=,当δ<--<|)21(|0x 时,有ε<-+-212413x x , 所以21241lim 321=+--→x x x .2.根据函数极限的定义证明:(1)2121lim 33=+∞→x x x ; 分析因为333333||21212121x x x x x x =-+=-+, 所以要使ε<-+212133x x ,只须ε<3||21x ,即321||ε>x . 证明因为∀ε>0,∃321ε=X ,当|x |>X 时,有ε<-+212133x x , 所以2121lim 33=+∞→x x x . (2)0sin lim =+∞→xx x . 分析因为xx x x x 1|sin |0sin ≤=-. 所以要使ε<-0sin x x ,只须ε<x1,即21ε>x . 证明因为∀ε>0,∃21ε=X ,当x >X 时,有ε<-0sin xx ,所以0sin lim =+∞→xx x .3.当x →2时,y =x 2→4.问δ等于多少,使当|x -2|<δ时,|y -4|<0.001? 解由于当x →2时,|x -2|→0,故可设|x -2|<1,即1<x <3. 要使|x 2-4|=|x +2||x -2|<5|x -2|<0.001, 只要0002.05001.0|2|=<-x .取δ=0.0002,则当0<|x -2|<δ时,就有|x 2-4|<0.001.4.当x →∞时,13122→+-=x x y ,问X 等于多少,使当|x |>X 时,|y -1|<0.01? 解要使01.034131222<+=-+-x x x ,只要397301.04||=->x ,故397=X .5.证明函数f (x )=|x |当x →0时极限为零. 证明因为|f (x )-0|=||x |-0|=|x |=|x -0|, 所以要使|f (x )-0|<ε,只须|x |<ε.因为对∀ε>0,∃δ=ε,使当0<|x -0|<δ,时有 |f (x )-0|=||x |-0|<ε,所以0||lim 0=→x x .6.求,)(x x x f =xx x ||)(=ϕ当x →0时的左﹑右极限,并说明它们在x →0时的极限是否存在. 证明因为11lim lim )(lim 000===---→→→x x x x x x f , 11lim lim )(lim 000===+++→→→x x x x x x f , )(lim )(lim 0x f x f x x +→→=-,所以极限)(lim 0x f x →存在. 因为1lim ||lim )(lim 000-=-==---→→→xx x x x x x x ϕ,1lim ||lim )(lim 000===+++→→→x x x x x x x x ϕ, )(lim )(lim 0x x x x ϕϕ+→→≠-, 所以极限)(lim 0x x ϕ→不存在.7.证明:若x →+∞及x →-∞时,函数f (x )的极限都存在且都等于A ,则A x f x =∞→)(lim .证明因为A x f x =-∞→)(lim ,A x f x =+∞→)(lim ,所以∀ε>0,∃X 1>0,使当x <-X 1时,有|f (x )-A |<ε; ∃X 2>0,使当x >X 2时,有|f (x )-A |<ε.取X =max{X 1,X 2},则当|x |>X 时,有|f (x )-A |<ε,即A x f x =∞→)(lim .8.根据极限的定义证明:函数f (x )当x →x 0时极限存在的充分必要条件是左极限、右极限各自存在并且相等.证明先证明必要性.设f (x )→A (x →x 0),则∀ε>0,∃δ>0,使当0<|x -x 0|<δ时,有 |f (x )-A |<ε.因此当x 0-δ<x <x 0和x 0<x <x 0+δ时都有 |f (x )-A |<ε.这说明f (x )当x →x 0时左右极限都存在并且都等于A .再证明充分性.设f (x 0-0)=f (x 0+0)=A ,则∀ε>0, ∃δ1>0,使当x 0-δ1<x <x 0时,有|f (x )-A <ε; ∃δ2>0,使当x 0<x <x 0+δ2时,有|f (x )-A |<ε.取δ=min{δ1,δ2},则当0<|x -x 0|<δ时,有x 0-δ1<x <x 0及x 0<x <x 0+δ2,从而有 |f (x )-A |<ε, 即f (x )→A (x →x 0).9.试给出x →∞时函数极限的局部有界性的定理,并加以证明.解x →∞时函数极限的局部有界性的定理:如果f (x )当x →∞时的极限存在,则存在X >0及M >0,使当|x |>X 时,|f (x )|<M .证明设f (x )→A (x →∞),则对于ε=1,∃X >0,当|x |>X 时,有|f (x )-A |<ε=1.所以 |f (x )|=|f (x )-A +A |≤|f (x )-A |+|A |<1+|A |.这就是说存在X >0及M >0,使当|x |>X 时,|f (x )|<M ,其中M =1+|A |. 习题1-41.两个无穷小的商是否一定是无穷小?举例说明之. 解不一定.例如,当x →0时,α(x )=2x ,β(x )=3x 都是无穷小,但32)()(lim 0=→x x x βα,)()(x x βα不是无穷小.2.根据定义证明:(1)392+-=x x y 当x →3时为无穷小; (2)xx y 1sin =当x →0时为无穷小.证明(1)当x ≠3时|3|39||2-=+-=x x x y .因为∀ε>0,∃δ=ε,当0<|x -3|<δ时,有εδ=<-=+-=|3|39||2x x x y , 所以当x →3时392+-=x xy 为无穷小.(2)当x ≠0时|0||1sin |||||-≤=x xx y .因为∀ε>0,∃δ=ε,当0<|x -0|<δ时,有εδ=<-≤=|0||1sin |||||x xx y ,所以当x →0时xx y 1sin =为无穷小.3.根据定义证明:函数xx y 21+=为当x →0时的无穷大.问x 应满足什么条件,能使|y |>104?证明分析2||11221||-≥+=+=x x x x y ,要使|y |>M ,只须M x >-2||1,即21||+<M x .证明因为∀M >0,∃21+=M δ,使当0<|x -0|<δ时,有M x x >+21,所以当x →0时,函数xx y 21+=是无穷大.取M =104,则21014+=δ.当2101|0|04+<-<x 时,|y |>104. 4.求下列极限并说明理由: (1)xx x 12lim +∞→; (2)xx x --→11lim 20. 解(1)因为xx x 1212+=+,而当x →∞时x 1是无穷小,所以212lim =+∞→x x x .(2)因为x x x +=--1112(x ≠1),而当x →0时x 为无穷小,所以111lim 20=--→x x x .5.根据函数极限或无穷大定义,填写下表:解6.函数y=x cos x在(-∞,+∞)内是否有界?这个函数是否为当x→+∞时的无穷大?为什么?解函数y=x cos x在(-∞,+∞)内无界.这是因为∀M>0,在(-∞,+∞)内总能找到这样的x,使得|y(x)|>M.例如y(2kπ)=2kπcos2kπ=2kπ(k=0,1,2,⋅⋅⋅),当k充分大时,就有|y(2kπ)|>M.当x→+∞时,函数y=x cos x不是无穷大.这是因为∀M >0,找不到这样一个时刻N ,使对一切大于N 的x ,都有|y (x )|>M .例如0)22cos()22()22(=++=+ππππππk k k y (k =0,1,2,⋅⋅⋅),对任何大的N ,当k 充分大时,总有N k x >+=22ππ,但|y (x )|=0<M .7.证明:函数xx y 1sin 1=在区间(0,1]上无界,但这函数不是当x →0+时的无穷大.证明函数x x y 1sin 1=在区间(0,1]上无界.这是因为∀M >0,在(0,1]中总可以找到点x k ,使y (x k )>M .例如当221ππ+=k x k(k =0,1,2,⋅⋅⋅)时,有22)(ππ+=k x y k ,当k 充分大时,y (x k )>M .当x →0+时,函数xx y 1sin 1=不是无穷大.这是因为∀M >0,对所有的δ>0,总可以找到这样的点x k ,使0<x k <δ,但y (x k )<M .例如可取πk x k 21=(k =0,1,2,⋅⋅⋅),当k 充分大时,x k <δ,但y (x k )=2k πsin2k π=0<M . 习题1-5 1.计算下列极限:(1)35lim 22-+→x xx ; 解9325235lim 222-=-+=-+→x x x . (2)13lim 223+-→x x x ; 解01)3(3)3(13lim 22223=+-=+-→x x x . (3)112lim 221-+-→x x x x ; 解02011lim )1)(1()1(lim 112lim 121221==+-=+--=-+-→→→x x x x x x x x x x x .(4)xx x x x x 2324lim 2230++-→; 解2123124lim 2324lim 202230=++-=++-→→x x x x x x x x x x . (5)hx h x h 220)(lim -+→; 解x h x h x h hx x h x h x h h h 2)2(lim 2lim )(lim 02220220=+=-++=-+→→→.(6))112(lim 2x x x +-∞→; 解21lim 1lim2)112(lim 22=+-=+-∞→∞→∞→x x x x x x x . (7)121lim 22---∞→x x x x ; 解2111211lim 121lim 2222=---=---∞→∞→xx x x x x x x .(8)13lim 242--+∞→x x x x x ; 解013lim 242=--+∞→x x x x x (分子次数低于分母次数,极限为零). 或012111lim 13lim 4232242=--+=--+∞→∞→xx x x x x x x x x . (9)4586lim 224+-+-→x x x x x ; 解32142412lim )4)(1()4)(2(lim 4586lim 44224=--=--=----=+-+-→→→x x x x x x x x x x x x x . (10))12)(11(lim 2xx x -+∞→; 解221)12(lim )11(lim )12)(11(lim 22=⨯=-⋅+=-+∞→∞→∞→x x x x x x x . (11))21 41211(lim nn +⋅⋅⋅+++∞→;解2211)21(1lim )2141211(lim 1=--=+⋅⋅⋅++++∞→∞→n n n n .(12)2)1( 321limnn n -+⋅⋅⋅+++∞→; 解211lim 212)1(lim )1( 321lim 22=-=-=-+⋅⋅⋅+++∞→∞→∞→n n n nn n n n n n . (13)35)3)(2)(1(lim n n n n n +++∞→;解515)3)(2)(1(lim 3=+++∞→n n n n n (分子与分母的次数相同,极限为 最高次项系数之比).或51)31)(21)(11(lim 515)3)(2)(1(lim3=+++=+++∞→∞→n n n nn n n n n . (14))1311(lim 31xx x ---→;解)1)(1()2)(1(lim )1)(1(31lim )1311(lim 2122131x x x x x x x x x x x x x x x ++-+--=++--++=---→→→ 112lim 21-=+++-=→x x x x . 2.计算下列极限:(1)2232)2(2lim -+→x x x x ; 解因为01602)2(lim 2322==+-→x x x x ,所以∞=-+→2232)2(2lim x x x x .(2)12lim 2+∞→x x x ; 解∞=+∞→12lim2x x x (因为分子次数高于分母次数). (3))12(lim 3+-∞→x x x .解∞=+-∞→)12(lim 3x x x (因为分子次数高于分母次数).3.计算下列极限: (1)xx x 1sin lim 20→; 解01sin lim 20=→x x x (当x →0时,x 2是无穷小,而x 1sin 是有界变量). (2)xx x arctan lim ∞→.解0arctan 1lim arctan lim =⋅=∞→∞→x x xx x x (当x →∞时,x 1是无穷小, 而arctan x 是有界变量).4.证明本节定理3中的(2).习题1-51.计算下列极限: (1)35lim 22-+→x x x ; 解9325235lim 222-=-+=-+→x x x . (2)13lim 223+-→x x x ; 解01)3(3)3(13lim 22223=+-=+-→x x x . (3)112lim 221-+-→x x x x ; 解02011lim )1)(1()1(lim 112lim 121221==+-=+--=-+-→→→x x x x x x x x x x x . (4)xx x x x x 2324lim 2230++-→; 解2123124lim 2324lim 202230=++-=++-→→x x x x x x x x x x . (5)hx h x h 220)(lim -+→; 解x h x hx h hx x h x h x h h h 2)2(lim 2lim )(lim 02220220=+=-++=-+→→→. (6))112(lim 2x x x +-∞→; 解21lim 1lim 2)112(lim 22=+-=+-∞→∞→∞→x x x x x x x . (7)121lim 22---∞→x x x x ; 解2111211lim 121lim 2222=---=---∞→∞→xx x x x x x x .(8)13lim 242--+∞→x x x x x ; 解013lim 242=--+∞→x x x x x (分子次数低于分母次数,极限为零). 或012111lim 13lim 4232242=--+=--+∞→∞→xx x x x x x x x x . (9)4586lim 224+-+-→x x x x x ; 解32142412lim )4)(1()4)(2(lim 4586lim 44224=--=--=----=+-+-→→→x x x x x x x x x x x x x . (10))12)(11(lim 2x x x -+∞→; 解221)12(lim )11(lim )12)(11(lim 22=⨯=-⋅+=-+∞→∞→∞→x x x x x x x . (11))21 41211(lim nn +⋅⋅⋅+++∞→; 解2211)21(1lim )21 41211(lim 1=--=+⋅⋅⋅++++∞→∞→n n n n . (12)2)1( 321lim nn n -+⋅⋅⋅+++∞→; 解211lim 212)1(lim )1( 321lim 22=-=-=-+⋅⋅⋅+++∞→∞→∞→n n n n n n n n n n . (13)35)3)(2)(1(lim nn n n n +++∞→; 解515)3)(2)(1(lim 3=+++∞→n n n n n (分子与分母的次数相同,极限为 最高次项系数之比). 或51)31)(21)(11(lim 515)3)(2)(1(lim 3=+++=+++∞→∞→n n n nn n n n n . (14))1311(lim 31xx x ---→; 解)1)(1()2)(1(lim )1)(1(31lim )1311(lim 2122131x x x x x x x x x x x x x x x ++-+--=++--++=---→→→ 112lim 21-=+++-=→xx x x .2.计算下列极限: (1)2232)2(2lim -+→x x x x ; 解因为01602)2(lim 2322==+-→x x x x ,所以∞=-+→2232)2(2lim x x x x . (2)12lim 2+∞→x x x ; 解∞=+∞→12lim 2x x x (因为分子次数高于分母次数). (3))12(lim 3+-∞→x x x . 解∞=+-∞→)12(lim 3x x x (因为分子次数高于分母次数). 3.计算下列极限: (1)xx x 1sin lim 20→; 解01sin lim 20=→xx x (当x →0时,x 2是无穷小,而x 1sin 是有界变量). (2)xx x arctan lim ∞→. 解0arctan 1lim arctan lim =⋅=∞→∞→x x xx x x (当x →∞时,x 1是无穷小, 而arctan x 是有界变量).4.证明本节定理3中的(2).习题1-71.当x →0时,2x -x 2与x 2-x 3相比,哪一个是高阶无穷小? 解因为02lim 2lim 202320=--=--→→xx x x x x x x x , 所以当x →0时,x 2-x 3是高阶无穷小,即x 2-x 3=o (2x -x 2).2.当x →1时,无穷小1-x 和(1)1-x 3,(2))1(212x -是否同阶?是否等价? 解(1)因为3)1(lim 1)1)(1(lim 11lim 212131=++=-++-=--→→→x x xx x x x x x x x , 所以当x →1时,1-x 和1-x 3是同阶的无穷小,但不是等价无穷小.(2)因为1)1(lim 211)1(21lim 121=+=--→→x x x x x , 所以当x →1时,1-x 和)1(212x -是同阶的无穷小,而且是等价无穷小. 3.证明:当x →0时,有:(1)arctan x ~x ; (2)2~1sec 2x x -. 证明(1)因为1tan lim arctan lim 00==→→y y xx y x (提示:令y =arctan x ,则当x →0时,y →0), 所以当x →0时,arctan x ~x .(2)因为1)22sin 2(lim 22sin 2lim cos cos 1lim 2211sec lim 202202020===-=-→→→→x x x x x x x x x x x x x , 所以当x →0时,2~1sec 2x x -. 4.利用等价无穷小的性质,求下列极限: (1)xx x 23tan lim 0→; (2)mn x x x )(sin )sin(lim 0→(n ,m 为正整数); (3)x x x x 30sin sin tan lim -→; (4))1sin 1)(11(tan sin lim 320-+-+-→x x x x x . 解(1)2323lim 23tan lim 00==→→x x x x x x . (2)⎪⎩⎪⎨⎧<∞>===→→mn m n m n x x x x m n x m n x 0 1lim )(sin )sin(lim 00. (3)21cos 21lim sin cos cos 1lim sin )1cos 1(sin lim sin sin tan lim 220203030==-=-=-→→→→x x x x x x xx x x x x x x x x . (4)因为32221)2(2~2sin tan 2)1(cos tan tan sin x x x x x x x x x -=⋅--=-=-(x →0),23232223231~11)1(11x x x x x ++++=-+(x →0), x x x x x ~sin ~1sin 1sin 1sin 1++=-+(x →0), 所以33121lim )1sin 1)(11(tan sin lim 230320-=⋅-=-+-+-→→x x x x x x x x x . 5.证明无穷小的等价关系具有下列性质: (1)α~α(自反性);(2)若α~β,则β~α(对称性);(3)若α~β,β~γ,则α~γ(传递性).证明(1)1lim =αα,所以α~α; (2)若α~β,则1lim=βα,从而1lim =αβ.因此β~α; (3)若α~β,β~γ,1lim lim lim =⋅=βαγβγα.因此α~γ. 习题1-81.研究下列函数的连续性,并画出函数的图形:(1)⎩⎨⎧≤<-≤≤=21 210 )(2x x x x x f ; 解已知多项式函数是连续函数,所以函数f (x )在[0,1)和(1,2]内是连续的. 在x =1处,因为f (1)=1,并且1lim )(lim 211==--→→x x f x x ,1)2(lim )(lim 11=-=++→→x x f x x . 所以1)(lim 1=→x f x ,从而函数f (x )在x =1处是连续的. 综上所述,函数f (x )在[0,2]上是连续函数.(2)⎩⎨⎧>≤≤-=1|| 111 )(x x x x f . 解只需考察函数在x =-1和x =1处的连续性.在x =-1处,因为f (-1)=-1,并且)1(11lim )(lim 11-≠==---→-→f x f x x , )1(1lim )(lim 11-=-==++-→-→f x x f x x , 所以函数在x =-1处间断,但右连续.在x =1处,因为f (1)=1,并且1lim )(lim 11==--→→x x f x x =f (1),11lim )(lim 11==++→→x x x f =f (1), 所以函数在x =1处连续.综合上述讨论,函数在(-∞,-1)和(-1,+∞)内连续,在x =-1处间断,但右连续.2.下列函数在指出的点处间断,说明这些间断点属于哪一类,如果是可去间断点,则补充或改变函数的定义使它连续: (1)23122+--=x x x y ,x =1,x =2; 解)1)(2()1)(1(23122---+=+--=x x x x x x x y .因为函数在x =2和x =1处无定义,所以x =2和x =1是函数的间断点. 因为∞=+--=→→231limlim 2222x x x y x x ,所以x =2是函数的第二类间断点; 因为2)2()1(lim lim 11-=-+=→→x x y x x ,所以x =1是函数的第一类间断点,并且是可去间断点.在x =1处,令y =-2,则函数在x =1处成为连续的. (2)x x y tan =,x =k ,2ππ+=k x (k =0,±1,±2,⋅⋅⋅); 解函数在点x =k π(k ∈Z)和2ππ+=k x (k ∈Z)处无定义,因而这些点都是函数的间断点. 因∞=→xx k x tan lim π(k ≠0),故x =k π(k ≠0)是第二类间断点; 因为1tan lim 0=→x x x ,0tan lim 2=+→x x k x ππ(k ∈Z),所以x =0和2 ππ+=k x (k ∈Z)是第一类间断点且是可去间断点.令y |x =0=1,则函数在x =0处成为连续的; 令2 ππ+=k x 时,y =0,则函数在2ππ+=k x 处成为连续的.(3)xy 1cos 2=,x =0; 解因为函数x y 1cos 2=在x =0处无定义,所以x =0是函数x y 1cos 2=的间断点.又因为xx 1cos lim 20→不存在,所以x =0是函数的第二类间断点. (4)⎩⎨⎧>-≤-=1 31 1x x x x y ,x =1. 解因为0)1(lim )(lim 11=-=--→→x x f x x 2)3(lim )(lim 11=-=++→→x x f x x ,所以x =1是函数的第一类不可去间断点.3.讨论函数x xxx f n n n 2211lim )(+-=∞→的连续性,若有间断点,判别其类型. 解⎪⎩⎪⎨⎧<=>-=+-=∞→1|| 1|| 01|| 11lim )(22x x x x x x x x x f n n n . 在分段点x =-1处,因为1)(lim )(lim 11=-=---→-→x x f x x ,1lim )(lim 11-==++-→-→x x f x x ,所以x =-1为函数的第一类不可去间断点.在分段点x =1处,因为1lim )(lim 11==--→→x x f x x ,1)(lim )(lim 11-=-=++→→x x f x x ,所以x =1为函数的第一类不可去间断点.4.证明:若函数f (x )在点x 0连续且f (x 0)≠0,则存在x 0的某一邻域U (x 0),当x ∈U (x 0)时,f (x )≠0.证明不妨设f (x 0)>0.因为f (x )在x 0连续,所以0)()(lim 00>=→x f x f x x ,由极限的局部保号性定理,存在x 0的某一去心邻域)(0x U,使当x ∈)(0x U 时f (x )>0,从而当x ∈U (x 0)时,f (x )>0.这就是说,则存在x 0的某一邻域U (x 0),当x ∈U (x 0)时,f (x )≠0. 5.试分别举出具有以下性质的函数f (x )的例子:(1)x =0,±1,±2,21±,⋅⋅⋅,±n ,n1±,⋅⋅⋅是f (x )的所有间断点,且它们都是无穷间断点; 解函数x x x f ππcsc )csc()(+=在点x =0,±1,±2,21±,⋅⋅⋅,±n ,n1±,⋅⋅⋅处是间断的 且这些点是函数的无穷间断点.(2)f (x )在R 上处处不连续,但|f (x )|在R 上处处连续;解函数⎩⎨⎧∉∈-=Q Q x x x f 1 1)(在R 上处处不连续,但|f (x )|=1在R 上处处连续. (3)f (x )在R 上处处有定义,但仅在一点连续.解函数⎩⎨⎧∉-∈=Q Q x x x x x f )(在R 上处处有定义,它只在x =0处连续. 习题1-91.求函数633)(223-+--+=x x x x x x f 的连续区间,并求极限)(lim 0x f x →,)(lim 3x f x -→及)(lim 2x f x →. 解)2)(3()1)(1)(3(633)(223-++-+=-+--+=x x x x x x x x x x x f ,函数在(-∞,+∞)内除点x =2和x =-3外是连续的,所以函数f (x )的连续区间为(-∞,-3)、(-3,2)、(2,+∞). 在函数的连续点x =0处,21)0()(lim 0==→f x f x . 在函数的间断点x =2和x =-3处,∞=-++-+=→→)2)(3()1)(1)(3(lim )(lim 22x x x x x x f x x ,582)1)(1(lim )(lim 33-=-+-=-→-→x x x x f x x . 2.设函数f (x )与g (x )在点x 0连续,证明函数ϕ(x )=max{f (x ),g (x )},ψ(x )=min{f (x ),g (x )}在点x 0也连续.证明已知)()(lim 00x f x f x x =→,)()(lim 00x g x g x x =→. 可以验证] |)()(|)()([21)(x g x f x g x f x -++=ϕ, ] |)()(|)()([21)(x g x f x g x f x --+=ψ. 因此] |)()(|)()([21)(00000x g x f x g x f x -++=ϕ, ] |)()(|)()([21)(00000x g x f x g x f x --+=ψ. 因为] |)()(|)()([21lim )(lim 00x g x f x g x f x x x x x -++=→→ϕ ] |)(lim )(lim |)(lim )(lim [210000x g x f x g x f x x x x x x x x →→→→-++=] |)()(|)()([210000x g x f x g x f -++==ϕ(x 0), 所以ϕ(x )在点x 0也连续.同理可证明ψ(x )在点x 0也连续.3.求下列极限: (1)52lim 20+-→x x x ; (2)34)2(sin lim x x π→; (3))2cos 2ln(lim 6x x π→; (4)xx x 11lim 0-+→; (5)145lim 1---→x x x x ; (6)ax a x a x --→sin sin lim ; (7))(lim 22x x x x x --++∞→. 解(1)因为函数52)(2+-=x x x f 是初等函数,f (x )在点x =0有定义,所以 55020)0(52lim 220=+⋅-==+-→f x x x . (2)因为函数f (x )=(sin2x )3是初等函数,f (x )在点4π=x 有定义,所以 1)42(sin )4()2(sin lim 334=⋅==→πππf x x . (3)因为函数f (x )=ln(2cos2x )是初等函数,f (x )在点6π=x 有定义,所以 0)62cos 2ln()6()2cos 2ln(lim 6=⋅==→πππf x x . (4))11(lim )11()11)(11(lim 11lim 000++=++++-+=-+→→→x x x x x x x x x x x x 211101111lim 0=++=++=→x x . (5))45)(1()45)(45(lim 145lim 11x x x x x x x x x x x x +--+---=---→→)45)(1(44lim1x x x x x +---=→214154454lim 1=+-⋅=+-=→x x x . (6)ax ax a x a x a x a x a x --+=--→→2sin 2cos 2lim sin sin lim a a a a x ax a x a x a x cos 12cos 22sin lim 2cos lim =⋅+=--⋅+=→→. (7))())((lim )(lim 22222222x x x x x x x x x x x x x x x x x x -++-++--+=--++∞→+∞→ 1)1111(2lim )(2lim 22=-++=-++=+∞→+∞→x x x x x x x x x . 4.求下列极限: (1)x x e 1lim ∞→; (2)xx x sin ln lim 0→; (3)2)11(lim x x x+∞→; (4)x x x 2cot 20)tan 31(lim +→; (5)21)63(lim -∞→++x x xx ; (6)xx x x x x -++-+→20sin 1sin 1tan 1lim . 解(1)1lim 01lim 1===∞→∞→e e e x x x x . (2)01ln )sin lim ln(sin ln lim 00===→→x x xx x x . (3)[]e e xx xx x x ==+=+∞→∞→21212)11(lim )11(lim . (4)[]33tan 3120cot 2022)tan 31(lim )tan 31(lim e x x x x x x =+=+→→. (5)21633621)631()63(-+-⋅-+-+-+=++x x x x x x x .因为 e x x x =+-+-+∞→36)631(lim ,232163lim -=-⋅+-∞→x x x ,所以2321)63(lim --∞→=++e xx x x . (6))sin 1tan 1)(1sin 1()1sin 1)(sin 1tan 1(lim sin 1sin 1tan 1lim 22020x x x x x x x x x x x x x x +++-++++-+=-++-+→→ xx x x x x x x x x x x x 220220sin 2sin 2tan lim )sin 1tan 1(sin )1sin 1)(sin (tan lim ⋅=+++++-=→→ 21)2(2lim 320=⋅=→x x x x . 5.设函数⎩⎨⎧≥+<=00 )(x x a x e x f x 应当如何选择数a ,使得f (x )成为在(-∞,+∞)内的连续函数?解要使函数f (x )在(-∞,+∞)内连续,只须f (x )在x =0处连续,即只须a f x f x f x x ===+→-→)0()(lim )(lim 00. 因为1lim )(lim 00==-→-→x x x e x f ,a x a x f x x =+=+→+→)(lim )(lim 00,所以只须取a =1. 习题1-101.证明方程x 5-3x =1至少有一个根介于1和2之间.证明设f (x )=x 5-3x -1,则f (x )是闭区间[1,2]上的连续函数.因为f (1)=-3,f (2)=25,f (1)f (2)<0,所以由零点定理,在(1,2)内至少有一点ξ (1<ξ<2),使f (ξ)=0,即x =ξ是方程x 5-3x =1的介于1和2之间的根.因此方程x 5-3x =1至少有一个根介于1和2之间.2.证明方程x =a sin x +b ,其中a >0,b >0,至少有一个正根,并且它不超过a +b . 证明设f (x )=a sin x +b -x ,则f (x )是[0,a +b ]上的连续函数.f (0)=b ,f (a +b )=a sin(a +b )+b -(a +b )=a [sin(a +b )-1]≤0.若f (a +b )=0,则说明x =a +b 就是方程x =a sin x +b 的一个不超过a +b 的根;若f (a +b )<0,则f (0)f (a +b )<0,由零点定理,至少存在一点ξ∈(0,a +b ),使f (ξ)=0,这说明x =ξ也是方程x =a sin x +b 的一个不超过a +b 的根.总之,方程x =a sin x +b 至少有一个正根,并且它不超过a +b .3.设函数f (x )对于闭区间[a ,b ]上的任意两点x 、y ,恒有|f (x )-f (y )|≤L |x -y |,其中L 为正常数,且f (a )⋅f (b )<0.证明:至少有一点ξ∈(a ,b ),使得f (ξ)=0.证明设x 0为(a ,b )内任意一点.因为0||lim |)()(|lim 00000=-≤-≤→→x x L x f x f x x x x , 所以0|)()(|lim 00=-→x f x f x x , 即)()(lim 00x f x f x x =→. 因此f (x )在(a ,b )内连续.同理可证f (x )在点a 处左连续,在点b 处右连续,所以f (x )在[a ,b ]上连续.因为f (x )在[a ,b ]上连续,且f (a )⋅f (b )<0,由零点定理,至少有一点ξ∈(a ,b ),使得f (ξ)=0. 4.若f (x )在[a ,b ]上连续,a <x 1<x 2<⋅⋅⋅<x n <b ,则在[x 1,x n ]上至少有一点ξ,使nx f x f x f f n )( )()()(21+⋅⋅⋅++=ξ. 证明显然f (x )在[x 1,x n ]上也连续.设M 和m 分别是f (x )在[x 1,x n ]上的最大值和最小值. 因为x i ∈[x 1,x n ](1≤i ≤n ),所以有m ≤f (x i )≤M ,从而有M n x f x f x f m n n ⋅≤+⋅⋅⋅++≤⋅)( )()(21,M nx f x f x f m n ≤+⋅⋅⋅++≤)( )()(21. 由介值定理推论,在[x 1,x n ]上至少有一点ξ使nx f x f x f f n )( )()()(21+⋅⋅⋅++=ξ. 5.证明:若f (x )在(-∞,+∞)内连续,且)(lim x f x ∞→存在,则f (x )必在(-∞,+∞)内有界. 证明令A x f x =∞→)(lim ,则对于给定的ε>0,存在X >0,只要|x |>X ,就有 |f (x )-A |<ε,即A -ε<f (x )<A +ε.又由于f (x )在闭区间[-X ,X ]上连续,根据有界性定理,存在M >0,使|f (x )|≤M ,x ∈[-X ,X ]. 取N =max{M ,|A -ε|,|A +ε|},则|f (x )|≤N ,x ∈(-∞,+∞),即f (x )在(-∞,+∞)内有界.。
同济大学第六版高等数学上册课后答案全集()
高等数学第六版上册课后习题答案第一章习题1-11. 设A =(-∞, -5)⋃(5, +∞), B =[-10, 3), 写出A ⋃B , A ⋂B , A \B 及A \(A \B )的表达式.解 A ⋃B =(-∞, 3)⋃(5, +∞),A ⋂B =[-10, -5),A \B =(-∞, -10)⋃(5, +∞),A \(A \B )=[-10, -5).2. 设A 、B 是任意两个集合, 证明对偶律: (A ⋂B )C =A C ⋃B C .证明 因为x ∈(A ⋂B )C ⇔x ∉A ⋂B ⇔ x ∉A 或x ∉B ⇔ x ∈A C 或x ∈B C ⇔ x ∈A C ⋃B C , 所以 (A ⋂B )C =A C ⋃B C .3. 设映射f : X →Y , A ⊂X , B ⊂X . 证明(1)f (A ⋃B )=f (A )⋃f (B );(2)f (A ⋂B )⊂f (A )⋂f (B ).证明 因为y ∈f (A ⋃B )⇔∃x ∈A ⋃B , 使f (x )=y⇔(因为x ∈A 或x ∈B ) y ∈f (A )或y ∈f (B )⇔ y ∈f (A )⋃f (B ),所以 f (A ⋃B )=f (A )⋃f (B ).(2)因为y ∈f (A ⋂B )⇒∃x ∈A ⋂B , 使f (x )=y ⇔(因为x ∈A 且x ∈B ) y ∈f (A )且y ∈f (B )⇒ y ∈ f (A )⋂f (B ),所以 f (A ⋂B )⊂f (A )⋂f (B ).4. 设映射f : X →Y , 若存在一个映射g : Y →X , 使X I f g = , Y I g f = , 其中I X 、I Y 分别是X 、Y 上的恒等映射, 即对于每一个x ∈X , 有I X x =x ; 对于每一个y ∈Y , 有I Y y =y . 证明: f 是双射, 且g 是f 的逆映射: g =f -1.证明 因为对于任意的y ∈Y , 有x =g (y )∈X , 且f (x )=f [g (y )]=I y y =y , 即Y 中任意元素都是X 中某元素的像, 所以f 为X 到Y 的满射.又因为对于任意的x 1≠x 2, 必有f (x 1)≠f (x 2), 否则若f (x 1)=f (x 2)⇒g [ f (x 1)]=g [f (x 2)] ⇒ x 1=x 2.因此f 既是单射, 又是满射, 即f 是双射.对于映射g : Y →X , 因为对每个y ∈Y , 有g (y )=x ∈X , 且满足f (x )=f [g (y )]=I y y =y , 按逆映射的定义, g 是f 的逆映射.5. 设映射f : X →Y , A ⊂X . 证明:(1)f -1(f (A ))⊃A ;(2)当f 是单射时, 有f -1(f (A ))=A .证明 (1)因为x ∈A ⇒ f (x )=y ∈f (A ) ⇒ f -1(y )=x ∈f -1(f (A )),所以 f -1(f (A ))⊃A .(2)由(1)知f -1(f (A ))⊃A .另一方面, 对于任意的x ∈f -1(f (A ))⇒存在y ∈f (A ), 使f -1(y )=x ⇒f (x )=y . 因为y ∈f (A )且f 是单射, 所以x ∈A . 这就证明了f -1(f (A ))⊂A . 因此f -1(f (A ))=A . 6. 求下列函数的自然定义域:(1)23+=x y ;解 由3x +2≥0得32->x . 函数的定义域为) ,32[∞+-. (2)211xy -=; 解 由1-x 2≠0得x ≠±1. 函数的定义域为(-∞, -1)⋃(-1, 1)⋃(1, +∞).(3)211x xy --=; 解 由x ≠0且1-x 2≥0得函数的定义域D =[-1, 0)⋃(0, 1].(4)241x y -=; 解 由4-x 2>0得 |x |<2. 函数的定义域为(-2, 2).(5)x y sin =;解 由x ≥0得函数的定义D =[0, +∞).(6) y =tan(x +1);解 由21π≠+x (k =0, ±1, ±2, ⋅ ⋅ ⋅)得函数的定义域为 12-+≠ππk x (k =0, ±1, ±2, ⋅ ⋅⋅).(7) y =arcsin(x -3);解 由|x -3|≤1得函数的定义域D =[2, 4].(8)xx y 1arctan 3+-=; 解 由3-x ≥0且x ≠0得函数的定义域D =(-∞, 0)⋃(0, 3).(9) y =ln(x +1);解 由x +1>0得函数的定义域D =(-1, +∞).(10)x e y 1=.解 由x ≠0得函数的定义域D =(-∞, 0)⋃(0, +∞).7. 下列各题中, 函数f (x )和g (x )是否相同?为什么?(1)f (x )=lg x 2, g (x )=2lg x ;(2) f (x )=x , g (x )=2x ;(3)334)(x x x f -=,31)(-=x x x g .(4)f (x )=1, g (x )=sec 2x -tan 2x .解 (1)不同. 因为定义域不同.(2)不同. 因为对应法则不同, x <0时, g (x )=-x .(3)相同. 因为定义域、对应法则均相相同.(4)不同. 因为定义域不同.8. 设⎪⎩⎪⎨⎧≥<=3|| 03|| |sin |)(ππϕx x x x , 求)6(πϕ, )4(πϕ, )4(πϕ-, ϕ(-2), 并作出函数y =ϕ(x )的图形.解 21|6sin |)6(==ππϕ, 22|4sin |)4(==ππϕ, 22|)4sin(|)4(=-=-ππϕ, 0)2(=-ϕ. 9. 试证下列函数在指定区间内的单调性:(1)xx y -=1, (-∞, 1); (2)y =x +ln x , (0, +∞).证明 (1)对于任意的x 1, x 2∈(-∞, 1), 有1-x 1>0, 1-x 2>0. 因为当x 1<x 2时,0)1)(1(112121221121<---=---=-x x x x x x x x y y , 所以函数xx y -=1在区间(-∞, 1)内是单调增加的. (2)对于任意的x 1, x 2∈(0, +∞), 当x 1<x 2时, 有0ln )()ln ()ln (2121221121<+-=+-+=-x x x x x x x x y y , 所以函数y =x +ln x 在区间(0, +∞)内是单调增加的.10. 设 f (x )为定义在(-l , l )内的奇函数, 若f (x )在(0, l )内单调增加, 证明f (x )在(-l , 0)内也单调增加.证明 对于∀x 1, x 2∈(-l , 0)且x 1<x 2, 有-x 1, -x 2∈(0, l )且-x 1>-x 2.因为f (x )在(0, l )内单调增加且为奇函数, 所以f (-x 2)<f (-x 1), -f (x 2)<-f (x 1), f (x 2)>f (x 1),这就证明了对于∀x 1, x 2∈(-l , 0), 有f (x 1)< f (x 2), 所以f (x )在(-l , 0)内也单调增加. 11. 设下面所考虑的函数都是定义在对称区间(-l , l )上的, 证明:(1)两个偶函数的和是偶函数, 两个奇函数的和是奇函数;(2)两个偶函数的乘积是偶函数, 两个奇函数的乘积是偶函数, 偶函数与奇函数的乘积是奇函数.证明 (1)设F (x )=f (x )+g (x ). 如果f (x )和g (x )都是偶函数, 则F (-x )=f (-x )+g (-x )=f (x )+g (x )=F (x ),所以F (x )为偶函数, 即两个偶函数的和是偶函数.如果f (x )和g (x )都是奇函数, 则F (-x )=f (-x )+g (-x )=-f (x )-g (x )=-F (x ),所以F (x )为奇函数, 即两个奇函数的和是奇函数.(2)设F (x )=f (x )⋅g (x ). 如果f (x )和g (x )都是偶函数, 则F (-x )=f (-x )⋅g (-x )=f (x )⋅g (x )=F (x ),所以F (x )为偶函数, 即两个偶函数的积是偶函数.如果f (x )和g (x )都是奇函数, 则F (-x )=f (-x )⋅g (-x )=[-f (x )][-g (x )]=f (x )⋅g (x )=F (x ),所以F (x )为偶函数, 即两个奇函数的积是偶函数.如果f (x )是偶函数, 而g (x )是奇函数, 则F (-x )=f (-x )⋅g (-x )=f (x )[-g (x )]=-f (x )⋅g (x )=-F (x ),所以F (x )为奇函数, 即偶函数与奇函数的积是奇函数.12. 下列函数中哪些是偶函数, 哪些是奇函数, 哪些既非奇函数又非偶函数?(1)y =x 2(1-x 2);(2)y =3x 2-x 3;(3)2211xx y +-=; (4)y =x (x -1)(x +1);(5)y =sin x -cos x +1;(6)2x x a a y -+=. 解 (1)因为f (-x )=(-x )2[1-(-x )2]=x 2(1-x 2)=f (x ), 所以f (x )是偶函数.(2)由f (-x )=3(-x )2-(-x )3=3x 2+x 3可见f (x )既非奇函数又非偶函数.(3)因为())(111)(1)(2222x f x x x x x f =+-=-+--=-, 所以f (x )是偶函数. (4)因为f (-x )=(-x )(-x -1)(-x +1)=-x (x +1)(x -1)=-f (x ), 所以f (x )是奇函数.(5)由f (-x )=sin(-x )-cos(-x )+1=-sin x -cos x +1可见f (x )既非奇函数又非偶函数.(6)因为)(22)()()(x f a a a a x f x x x x =+=+=-----, 所以f (x )是偶函数. 13. 下列各函数中哪些是周期函数?对于周期函数, 指出其周期:(1)y =cos(x -2);解 是周期函数, 周期为l =2π.(2)y =cos 4x ;解 是周期函数, 周期为2π=l . (3)y =1+sin πx ;解 是周期函数, 周期为l =2.(4)y =x cos x ;解 不是周期函数.(5)y =sin 2x .解 是周期函数, 周期为l =π.14. 求下列函数的反函数:(1)31+=x y 错误!未指定书签。
同济大学第六版高等数学上册课后答案全集
3
(2)不同 . 因为对应法则不同 , x<0 时 , g(x) =- x. (3)相同 . 因为定义域、对应法则均相相同 (4)不同 . 因为定义域不同 . ?|sin x | | x|<π ? π π 3 , 求 ? (π 8. 设 ? ( x) = ? ) , ? ( ) , ? (- ) , ?(- 2), 并作出函数 y=?(x) π 6 4 4 | x|≥ ?0 3 ? 的图形 . 解 ? (π) =|sin π|= 1 , ? (π) =|sin π|= 2 , ? (- π ) =|sin(- π ) |= 2 , ? (- 2) = 0 . 6 6 2 4 4 2 4 4 2 9. 试证下列函数在指定区间内的单调性 (1) y = x , (- ∞, 1); 1- x : .
素都是 X 中某元素的像 , 所以 f 为 X 到 Y 的满射 . 又因为对于任意的 x1≠ x2 , 必有 f( x1)≠ f(x2 ), 否则若 f(x1)=f (x2 )? g[ f( x1)] =g[ f(x2)] ? x1 =x2 . 因此 f 既是单射 , 又是满射 , 即 f 是双射 . 对于映射 g: Y→ X, 因为对每个 y∈ Y, 有 g(y) =x∈X, 且满足 f(x) =f[g( y)]=I y y=y, 按逆映射的定义 , g 是 f 的逆映射 . 5. 设映射 f : X→ Y, A? X . 证明 : (1)f - 1(f(A))? A; (2)当 f 是单射时 , 有 f - 1 (f( A)) =A . 证明 (1)因为 x∈ A ? f(x)=y∈ f (A) ? f - 1 (y)=x∈ f - 1(f (A)), 所以 f - 1( f( A)) ? A. (2)由 (1) 知 f - 1(f (A))? A. 另一方面 , 对于任意的 x∈ f - 1(f(A))? 存在 y∈f(A), 使 f - 1( y)=x? f(x)=y . 因为 y∈ f (A)且 f 是单射 , 所以 x∈ A. 这就证明了 f - 1 (f(A))? A. 因此 f - 1(f(A)) =A . 6. 求下列函数的自然定义域 : (1) y = 3x + 2 ; 解 由 3x+2≥ 0 得 x >- 2 . 函数的定义域为 [ - 2 , + ∞ ). 3 3 (2) y = 1 2 ; 1- x 解 由 1- x2 ≠ 0 得 x≠± 1. 函数的定义域为 (- ∞, - 1)∪(- 1, 1) ∪ (1 , +∞ ). (3) y = 1 - 1- x2 ; x 解 由 x≠ 0 且 1- x2≥ 0 得函数的定义域 D =[- 1, 0) ∪(0, 1] . (4) y = 1 ; 2 4- x
高等数学同济第六版第四章第4节.ppt
2
2
2
思考: 如何求
提示: 变形方法同例3, 并利用 P209 例9 .
7
第四章第四节
说明: 将有理函数分解为部分分式进行积分虽可行, 但不一定简便 , 因此要注意根据被积函数的结构寻求 简便的方法.
例4. 求
解:
I
2x3 5x x4 5x2
4
dx
2x2 5 x4 5x2
dx 4
1 2
4 5
分别令 x 0,1代入等式两端
1 4C 5
1 4 BC 6 15 2
B 2 5
C1 5
第四章第四节
原式
=
1 5
1
4 2
x
2x 1
1 x2
4
四种典型部分分式的积分:
第四章第四节
1.
x
A
a
dx
Aln
xa
C
2.
(
x
A a)n
dx
1
A n
(
x
a)1n
C
(n 1)
3.
x
Mx N 2 px
d sin sin 3
x x
ln tan x
1 2
1 sin 2
x
C
24
第四章第四节
作业
P218 3 , 6 , 8 , 9 , 13 , 15, 17 , 18 , 20 , 21
25
备用题
1.
求不定积分
1 x6(1
x2)dx.
第四章第四节
分母次数较高,
解:令 t 1 ,则
, 故 宜使用倒代换.
d( x4 5x2 5) x4 5x2 4
同济大学第六版高等数学上册课后答案全集
高等数学第六版上册课后习题答案第一章习题1-11. 设A =(-∞, -5)⋃(5, +∞), B =[-10, 3), 写出A ⋃B , A ⋂B , A \B 及A \(A \B )的表达式.解 A ⋃B =(-∞, 3)⋃(5, +∞),A ⋂B =[-10, -5),A \B =(-∞, -10)⋃(5, +∞),A \(A \B )=[-10, -5).2. 设A 、B 是任意两个集合, 证明对偶律: (A ⋂B )C =A C ⋃B C .证明 因为x ∈(A ⋂B )C ⇔x ∉A ⋂B ⇔ x ∉A 或x ∉B ⇔ x ∈A C 或x ∈B C ⇔ x ∈A C ⋃B C , 所以 (A ⋂B )C =A C ⋃B C .3. 设映射f : X →Y , A ⊂X , B ⊂X . 证明(1)f (A ⋃B )=f (A )⋃f (B );(2)f (A ⋂B )⊂f (A )⋂f (B ).证明 因为y ∈f (A ⋃B )⇔∃x ∈A ⋃B , 使f (x )=y⇔(因为x ∈A 或x ∈B ) y ∈f (A )或y ∈f (B )⇔ y ∈f (A )⋃f (B ),所以 f (A ⋃B )=f (A )⋃f (B ).(2)因为y ∈f (A ⋂B )⇒∃x ∈A ⋂B , 使f (x )=y ⇔(因为x ∈A 且x ∈B ) y ∈f (A )且y ∈f (B )⇒ y ∈ f (A )⋂f (B ),所以 f (A ⋂B )⊂f (A )⋂f (B ).4. 设映射f : X →Y , 若存在一个映射g : Y →X , 使X I f g = , Y I g f = , 其中I X 、I Y 分别是X 、Y 上的恒等映射, 即对于每一个x ∈X , 有I X x =x ; 对于每一个y ∈Y , 有I Y y =y . 证明: f 是双射, 且g 是f 的逆映射: g =f -1.证明 因为对于任意的y ∈Y , 有x =g (y )∈X , 且f (x )=f [g (y )]=I y y =y , 即Y 中任意元素都是X 中某元素的像, 所以f 为X 到Y 的满射.又因为对于任意的x 1≠x 2, 必有f (x 1)≠f (x 2), 否则若f (x 1)=f (x 2)⇒g [ f (x 1)]=g [f (x 2)] ⇒ x 1=x 2.因此f 既是单射, 又是满射, 即f 是双射.对于映射g : Y →X , 因为对每个y ∈Y , 有g (y )=x ∈X , 且满足f (x )=f [g (y )]=I y y =y , 按逆映射的定义, g 是f 的逆映射.5. 设映射f : X →Y , A ⊂X . 证明:(1)f -1(f (A ))⊃A ;(2)当f 是单射时, 有f -1(f (A ))=A .证明 (1)因为x ∈A ⇒ f (x )=y ∈f (A ) ⇒ f -1(y )=x ∈f -1(f (A )),所以 f -1(f (A ))⊃A .(2)由(1)知f -1(f (A ))⊃A .另一方面, 对于任意的x ∈f -1(f (A ))⇒存在y ∈f (A ), 使f -1(y )=x ⇒f (x )=y . 因为y ∈f (A )且f 是单射, 所以x ∈A . 这就证明了f -1(f (A ))⊂A . 因此f -1(f (A ))=A . 6. 求下列函数的自然定义域:(1)23+=x y ;解 由3x +2≥0得32->x . 函数的定义域为) ,32[∞+-. (2)211xy -=; 解 由1-x 2≠0得x ≠±1. 函数的定义域为(-∞, -1)⋃(-1, 1)⋃(1, +∞).(3)211x xy --=; 解 由x ≠0且1-x 2≥0得函数的定义域D =[-1, 0)⋃(0, 1].(4)241x y -=; 解 由4-x 2>0得 |x |<2. 函数的定义域为(-2, 2).(5)x y sin =;解 由x ≥0得函数的定义D =[0, +∞).(6) y =tan(x +1);解 由21π≠+x (k =0, ±1, ±2, ⋅ ⋅ ⋅)得函数的定义域为 12-+≠ππk x (k =0, ±1, ±2, ⋅ ⋅⋅).(7) y =arcsin(x -3);解 由|x -3|≤1得函数的定义域D =[2, 4].(8)xx y 1arctan 3+-=; 解 由3-x ≥0且x ≠0得函数的定义域D =(-∞, 0)⋃(0, 3).(9) y =ln(x +1);解 由x +1>0得函数的定义域D =(-1, +∞).(10)x e y 1=.解 由x ≠0得函数的定义域D =(-∞, 0)⋃(0, +∞).7. 下列各题中, 函数f (x )和g (x )是否相同?为什么?(1)f (x )=lg x 2, g (x )=2lg x ;(2) f (x )=x , g (x )=2x ;(3)334)(x x x f -=,31)(-=x x x g .(4)f (x )=1, g (x )=sec 2x -tan 2x .解 (1)不同. 因为定义域不同.(2)不同. 因为对应法则不同, x <0时, g (x )=-x .(3)相同. 因为定义域、对应法则均相相同.(4)不同. 因为定义域不同.8. 设⎪⎩⎪⎨⎧≥<=3|| 03|| |sin |)(ππϕx x x x , 求)6(πϕ, )4(πϕ, )4(πϕ-, ϕ(-2), 并作出函数y =ϕ(x )的图形.解 21|6sin |)6(==ππϕ, 22|4sin |)4(==ππϕ, 22|)4sin(|)4(=-=-ππϕ, 0)2(=-ϕ. 9. 试证下列函数在指定区间内的单调性:(1)xx y -=1, (-∞, 1); (2)y =x +ln x , (0, +∞).证明 (1)对于任意的x 1, x 2∈(-∞, 1), 有1-x 1>0, 1-x 2>0. 因为当x 1<x 2时,0)1)(1(112121221121<---=---=-x x x x x x x x y y , 所以函数xx y -=1在区间(-∞, 1)内是单调增加的. (2)对于任意的x 1, x 2∈(0, +∞), 当x 1<x 2时, 有0ln )()ln ()ln (2121221121<+-=+-+=-x x x x x x x x y y , 所以函数y =x +ln x 在区间(0, +∞)内是单调增加的.10. 设 f (x )为定义在(-l , l )内的奇函数, 若f (x )在(0, l )内单调增加, 证明f (x )在(-l , 0)内也单调增加.证明 对于∀x 1, x 2∈(-l , 0)且x 1<x 2, 有-x 1, -x 2∈(0, l )且-x 1>-x 2.因为f (x )在(0, l )内单调增加且为奇函数, 所以f (-x 2)<f (-x 1), -f (x 2)<-f (x 1), f (x 2)>f (x 1),这就证明了对于∀x 1, x 2∈(-l , 0), 有f (x 1)< f (x 2), 所以f (x )在(-l , 0)内也单调增加. 11. 设下面所考虑的函数都是定义在对称区间(-l , l )上的, 证明:(1)两个偶函数的和是偶函数, 两个奇函数的和是奇函数;(2)两个偶函数的乘积是偶函数, 两个奇函数的乘积是偶函数, 偶函数与奇函数的乘积是奇函数.证明 (1)设F (x )=f (x )+g (x ). 如果f (x )和g (x )都是偶函数, 则F (-x )=f (-x )+g (-x )=f (x )+g (x )=F (x ),所以F (x )为偶函数, 即两个偶函数的和是偶函数.如果f (x )和g (x )都是奇函数, 则F (-x )=f (-x )+g (-x )=-f (x )-g (x )=-F (x ),所以F (x )为奇函数, 即两个奇函数的和是奇函数.(2)设F (x )=f (x )⋅g (x ). 如果f (x )和g (x )都是偶函数, 则F (-x )=f (-x )⋅g (-x )=f (x )⋅g (x )=F (x ),所以F (x )为偶函数, 即两个偶函数的积是偶函数.如果f (x )和g (x )都是奇函数, 则F (-x )=f (-x )⋅g (-x )=[-f (x )][-g (x )]=f (x )⋅g (x )=F (x ),所以F (x )为偶函数, 即两个奇函数的积是偶函数.如果f (x )是偶函数, 而g (x )是奇函数, 则F (-x )=f (-x )⋅g (-x )=f (x )[-g (x )]=-f (x )⋅g (x )=-F (x ),所以F (x )为奇函数, 即偶函数与奇函数的积是奇函数.12. 下列函数中哪些是偶函数, 哪些是奇函数, 哪些既非奇函数又非偶函数?(1)y =x 2(1-x 2);(2)y =3x 2-x 3;(3)2211xx y +-=; (4)y =x (x -1)(x +1);(5)y =sin x -cos x +1;(6)2x x a a y -+=. 解 (1)因为f (-x )=(-x )2[1-(-x )2]=x 2(1-x 2)=f (x ), 所以f (x )是偶函数.(2)由f (-x )=3(-x )2-(-x )3=3x 2+x 3可见f (x )既非奇函数又非偶函数.(3)因为())(111)(1)(2222x f x x x x x f =+-=-+--=-, 所以f (x )是偶函数. (4)因为f (-x )=(-x )(-x -1)(-x +1)=-x (x +1)(x -1)=-f (x ), 所以f (x )是奇函数.(5)由f (-x )=sin(-x )-cos(-x )+1=-sin x -cos x +1可见f (x )既非奇函数又非偶函数.(6)因为)(22)()()(x f a a a a x f x x x x =+=+=-----, 所以f (x )是偶函数. 13. 下列各函数中哪些是周期函数?对于周期函数, 指出其周期:(1)y =cos(x -2);解 是周期函数, 周期为l =2π.(2)y =cos 4x ;解 是周期函数, 周期为2π=l . (3)y =1+sin πx ;解 是周期函数, 周期为l =2.(4)y =x cos x ;解 不是周期函数.(5)y =sin 2x .解 是周期函数, 周期为l =π.14. 求下列函数的反函数:(1)31+=x y 错误!未指定书签。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x
2 dx
−
4∫
xdx
+
4∫
dx
=
1 3
x
3
−
2x
2
+
4x
+C
.
(11) ∫ (x2 + 1)2 dx ;
解
∫
(
x
2
+1)
2
dx
=
∫
(
x
4
+
2
x
2
+1)dx
=
∫
x
4
dx
+
2∫
x
2
dx
+
∫
dx
=
1 5
x
5
+
2 3
x
3
+
x
+
C
.
(12) ∫ ( x +1)( x3 −1)dx ;
1
3
解 ∫ ( x +1)( x3 −1)dx = ∫ (x 2 − x + x3 −1)dx = ∫ x 2dx − ∫ x 2 dx + ∫ x 2 dx − ∫ dx
dx =
∫
−1
x2
dx =
−
1 1 +1
− 1 +1
x2
+C
=2
x +C .
2
(4) ∫ x 2 3 xdx ;
解
∫x23
7
xdx = ∫ x 3 dx =
1
7 +1
x3
+C =
3
7 +1
10
x33
x +C
.
3
(5)
∫
1 x2
x
dx
;
解
∫
1 x2
x
dx
=
∫
x
−
5 2
dx
=
−
1 5 +1
x
−
5 2
+1
(5) xdx= d (1− x 2 ) ;
解 xdx = − 1 d (1− x 2 ) . 2
(6)x3dx= d(3x4−2); 解x3dx= 1 d(3x4−2).
12 (7)e 2x dx= d(e2x);
解e 2x dx= 1 d(e2x). 2
(8)
e
−
x 2
dx
=
d
(1+
e
−
x 2
)
+1
dx
=
∫
(3x
2
+
x
1 )dx 2 +1
=
x3
+
arctan
x
+
C
.
(15)
∫
x 1+
2
x
2
dx
;
解
∫
x 1+
2
x
2
dx = ∫
x 2 +1−1 1+ x 2
dx
=
∫
(1−
1 1+ x
2
)dx = x −arctan x +C
.
(16)
∫
(2e
x
+
3 x
)dx
;
解
∫
(2e
x
+
3 x
)dx
=
2∫
e
;
解
e
−
x 2
dx
=
−2
d
(1+
e
−
x 2
)
.
(9) sin 3 xdx = d (cos 3 x) ;
2
2
解 sin 3 xdx = − 2 d (cos 3 x) .
2
3
2
(10) dx = d (5ln| x|) ; x
解 dx = 1 d (5ln| x|) . x5
(11) dx = d (3−5ln|x|) ; x
=
∫
ln
x
1 ln
ln
x
d
ln
x
=
∫
ln
1 ln
x
d
ln
ln
x
=
ln|ln
ln
x|+C
.
(9) ∫ tan 1+ x 2 ⋅ x dx ;
1+ x 2
解 ∫ tan 1+ x2 ⋅
x
dx = ∫ tan
1+ x 2 d
1+ x 2 = ∫ sin
1+ x 2 d
1+ x 2
1+ x2
cos 1+ x 2
−
1 3
d
(2
−
3x)
=
−
1
⋅
3
(2
−
3x)
2 3
32
+
C
=
−
1
(2
−
3x)
2 3
2
+C
.
x
(5) ∫(sinax−e b )dx ;
解
∫(sin ax−e
x b
)dx =
1 a
∫ sin
axd (ax) − b∫ e
x b
d( x)=− b
1 a
cos ax − be
x b
+C
.
(6) ∫ sin t dt ;
dx
=∫
e x dx = e2x +1
∫
1 1+ e
2
x
de x
= arctane x
+C
.
(12) ∫ xe−x2 dx ;
解
∫
xe −x2
dx =−
1 2
∫e−x2
d (− x 2
)=−
1 2
e−x2
+C.
(13) ∫ x⋅cos( x2 )dx ;
解
∫
x⋅cos(x2)dx
=
1 2
∫
cos(x2)d(x2) =
+
C
=
−
3 2
⋅
x
1
x
+C
.
2
(6) ∫ m x n dx ;
解
∫m
n
x n dx = ∫ x m dx =
1
n +1
xm +C=
m
n +1
n+m
m+n
xm
+C
.
m
(7) ∫5x3dx ;
解
∫
5x
3 dx
=5∫
x 3 dx
=
5 4
x
4
+C
.
(8) ∫(x 2 −3x+ 2)dx ;
解
∫
(
x
2
−3x
+
(22)
∫
cos
2
x 2
dx
;
解
∫ cos 2
x 2
dx
=
∫
1+
cos 2
x
dx =
1 2
∫ (1+ cos
x)dx =
1 2
(x +sin
x)+C
.
(23)
∫
1+
1 cos
2x
dx
;
解
∫
1+
1 cos
2x
dx
=
∫
2
1 cos
2
x
dx
=
1 2
tan
x
+
C
.
(24)
∫
cos 2x cos x − sin
1 2
sin(x2) +C
.
(14) ∫ x dx ;
2 −3x 2
解∫
x 2 −3x 2
dx
=
−
1 6
∫
(2
−
3x
2
)
−
1 2
d
(2
−
3x
2
)
=
−
1 3
(2
−
3x
2
)
1 2
+C =− 1 3
2−3x2 +C .
(15)
∫
3x 3 1− x 4
dx
;
解
∫
3x3 1− x 4
dx = −
3 4
∫
1 1− x
=
∫[2
−
5(
2 3
)
x
]dx
=2xFra bibliotek−5
(2 3 ln
)x 2
+C =2x−
5 (2)x ln 2−ln3 3
+C
.
3
(21) ∫sec x(sec x− tan x)dx ;
解 ∫secx(secx−tan x)dx = ∫(sec2 x−secxtan x)dx = tan x−secx+C .
2)dx
=
∫
x
2
dx
−
3∫
xdx
+
2∫
dx
=
1 3
x
3
−
3 2
x