《高等数学》 第六版上册(同济大学出版社)课件 PPT
同济大学高等数学第六版上册第五章第一节定积分的概念与性质

三、存在定理
定理1
当函数 f ( x ) 在区间 a , b] 上连续时, [
[ 称 f ( x ) 在区间 a , b] 上可积.
定理2
[ 设函数 f ( x ) 在区间 a , b] 上有界,
且只有有限个间断点, 则 f ( x ) 在
区间[a , b ]上可积.
证
b
b
b
a [ f ( x ) g( x )]dx
n
b
lim [ f ( i ) g ( i )]xi
0 i 1
n
n
lim f ( i )xi lim g( i )xi
a f ( x )dx g( x )dx. a
b
0 i 1 b
注意:
被 积 表 达 式
积 分 变 量
[a , b] 积分区间
(1) 积分值仅与被积函数及积分区间有关, 而与积分变量的字母无关.
a f ( x )dx a f (t )dt a f (u)du
(2)定义中区间的分法和 i 的取法是任意的.
b
b
b
[ (3)当函数 f ( x ) 在区间 a , b] 上的定积分存在时,
难点
定义及换元法和分部法的运用
基本要求
①正确理解定积分的概念及其实际背景 ②记住定积分的性质并能正确地运用 ③掌握变上限定积分概念,微积分基本定理, 并会用N-L公式计算定积分, ④能正确熟练地运用换元法和分部积分法 计 算定积分 ⑤正确理解两类广义积分概念, 并会用定义 计算一些较简单的广义积分。
定积分的概念
前一章我们从导数的逆运算引出了不定积 分,系统地介绍了积分法,这是积分学的第一类 基本问题。本章先从实例出发,引出积分学的第 二类基本问题——定积分,它是微分(求局部量 )的逆运算(微分的无限求和——求总量),然 后着重介绍定积分的计算方法,它在科学技术领 域中有着极其广泛的应用。 重点 定积分的概念和性质,微积分基本公 式,定积分的换元法和分部积分法
高等数学同济大学第六版32省名师优质课赛课获奖课件市赛课一等奖课件

lim[af (h) bf (2h) f (0)] (a b 1) f (0) 0,
h0
f (0) 0, a b 1 0. 由罗必达法则得
0 lim af (h) bf (2h) f (0) lim af (h) 2bf (2h)
h0
h
h0
1
(a 2b) f (0), f (0) 0, a 2b 0.
g( x)
g( x)
限不存在,是否 f ( x)的极限也一定不存在? g( x)
举例说明.
思索题解答
不一定. 例 f ( x) x sin x, g( x) x
显然 lim f ( x) lim 1 cos x
x g( x) x 1
极限不存在.
但 lim f ( x) lim x sin x 1 极限存在. x g( x) x x
0) 0
lim
x0
ln sin ax (a 0, b 0), ln sin bx
(
)
定理1 设
(1) lim f ( x) lim F ( x) 0;
xa
xa
(2) 在 a 点的某去心邻域内, f ( x)及 F ( x) 都存在
且 F ( x) 0;
(3) lim f ( x) 存在(或为无穷大); xa F ( x)
解
原式
lim
x
e x x2
(
)
lim x
e x
2x
()
lim
2e x
2 x
.
lim
x
e x x
( 0, 0).
(2) 求 lim x
ln x x
(
0). 1
高等数学-同济大学第六版--高等数学课件第一章函数与极限

函数与极限
x
4
{x a x b} 称为半开区间, 记作 [a,b)
{x a x b} 称为半开区间, 记作 (a,b]
有限区间
[a,) {x a x} (,b) {x x b}
无限区间
oa
x
ob
x
区间长度的定义:
两端点间的距离(线段的长度)称为区间的长度.
2024/7/17
函数与极限
一、基本概念
1.集合: 具有某种特定性质的事物的总体.
组成这个集合的事物称为该集合的元素.
aM, aM, A {a1 , a2 ,, an }
有限集
M { x x所具有的特征} 无限集
若x A,则必x B,就说A是B的子集. 记作 A B.
2024/7/17
函数与极限
2
数集分类: N----自然数集 Z----整数集
2024/7/17
函数与极限
47
注意:1.不是任何两个函数都可以复合成一个复 合函数的;
例如 y arcsin u, u 2 x2; y arcsin(2 x2 )
(通常说周期函数的周期是指其最小正周期).
3l
l
2
2
l 2
3l 2
2024/7/17
函数与极限
25
四、反函数
y 反函数y ( x)
Q(b, a )
直接函数y f ( x)
o
P(a, b)
x
直接函数与反函数的图形关于直线 y x对称.
2024/7/17
函数与极限
26
五、小结
基本概念 集合, 区间, 邻域, 常量与变量, 绝对值. 函数的概念 函数的特性 有界性,单调性,奇偶性,周期性. 反函数
《高等数学》电子课件(同济第六版)01第一章第1节函数

复合函数在数学、物理、工程等领域有广 泛的应用。
反函数
反函数的定义
反函数是原函数关于y=x对称的函数。
反函数的性质
反函数具有原函数的性质,如连续性、可导性等。
反函数的求导法则
反函数的求导法则与原函数有关,可以通过交换x和y的导数来实现。
反函数的应用
反函数在数学、物理、工程等领域有广泛的应用,如解方程、优化问题等。
函数单调性的定义
如果对于函数的定义域内的任意两个数$x_1$和$x_2$,当$x_1 < x_2$时,都 有$f(x_1) leq f(x_2)$(或$f(x_1) geq f(x_2)$),则称函数在该区间内单调递 增(或单调递减)。
单调性的判定方法
通过比较函数在不同区间内的增减性,可以判断函数的单调性。此外,导数也 是判断函数单调性的重要工具,如果函数在某区间内的导数大于0,则函数在该 区间内单调递增;如果导数小于0,则函数单调递减。
04
函数的图像与性质
函数的图像
函数图像的概念
函数图像是表示函数值的点在平面上 的集合。通过函数图像,我们可以直 观地了解函数的形态和变化趋势。
函数图像的绘制方法
绘制函数图像通常需要确定函数的定 义域和值域,然后根据函数的解析式 ,在坐标系上标出对应的点,最后用 光滑的曲线将它们连接起来。
函数的单调性
答案与解析
$|x|$ 是偶函数。
$x^3$ 是奇函数。
判断下列函数是否为奇函 数或偶函数
01
03 02
答案与解析
$frac{1}{x}$ 是奇函数。
解析:奇函数的定义是对于定义域内的任意 $x$,都有 $f(-x) = -f(x)$;偶函数的定义是对 于定义域内的任意 $x$,都有 $f(-x) = f(x)$。 根据这些定义,可以判断出 $x^3$、$|x|$ 和 $frac{1}{x}$ 的奇偶性。
《高等数学》第六版上册同济大学出版社课件PPT

1 x
0
1
1
1 t4
1 t2
d
t
t 2 0 1t4
d
t
ห้องสมุดไป่ตู้
0
1
d
x x4
1 2
0 1
d
x x4
x2
0 1 x4
d
x
1
2
1 01
x2 x4
d
x
17
目录 上页 下页 返回 结束
1
2
0
1 x2
1
1 x2
二无界函数的反常积分第四节常义积分积分限有限被积函数有界推广一无穷限的反常积分反常积分广义积分反常积分第五章1一无穷限的反常积分引例
第四节 反常积分
第五章
积分限有限 常义积分 被积函数有界
推广
反常积分 (广义积分)
一、无穷限的反常积分
二、无界函数的反常积分
1
目录 上页 下页 返回 结束
一、无穷限的反常积分
F (b)
F(c )
F(c ) F(a)
可相消吗?
12
目录 上页 下页 返回 结束
例4. 计算反常积分
解: 显然瑕点为 a , 所以
原式
arcsin x a
a 0
arcsin1
π 2
例5. 讨论反常积分
的收敛性 .
解所下:以述1反1解dx常x2法积是分0否1dx1x正x2 确11:0发1dxx散21.11x2 ,0∴1 积 分 1x收敛01
x2
同济大学高等数学第六版上第一章第五节 极限运算法则

3.无穷小的运算性质:
定理2 在同一过程中,有限个无穷小的代数和 仍是无穷小. 证 设及 是当x 时的两个无穷小,
0, N 1 0, N 2 0, 使得
当 x N 1时恒有 ; 当 x N 2时恒有 ; 2 2 取 N max{ N 1 , N 2 }, 当 x N时, 恒有 , 2 2 0 ( x )
证 必要性 设 lim f ( x ) A, 令 ( x ) f ( x ) A, x x
0
则有 lim ( x ) 0,
x x0
f ( x ) A ( x ).
充分性 设 f ( x ) A ( x ),
其中 ( x )是当x x 0时的无穷小,
又设是当x x 0时的无穷小,
0, 2 0, 使得当0 x x 0 2时 恒有 . M
取 min{ 1 , 2 }, 则当 0 x x 0 时, 恒有 u u M , M
当x x Байду номын сангаас时, u 为无穷小.
lim P ( x )
若Q( x 0 ) 0, 则商的法则不能应用.
4x 1 . 例2 求 lim 2 x 1 x 2 x 3
解 lim( x 2 2 x 3) 0,
x 1
商的法则不能用
又 lim(4 x 1) 3 0,
x 1
x 2x 3 0 lim 0. x 1 4x 1 3
1 1 例如, 当x 0时, y sin x x 是一个无界变量, 但不是无穷大.
(1) 取 x 0 1 ( k 0,1,2,3,)
同济高等数学第六版上册第一章ppt精编版

k
lim x 2 k 1 1;
lim x 2 k 1
目录
上页
下页
返回
结束
内容小结
1. 数列极限的 “ – N ” 定义及应用 2. 收敛数列的性质: 唯一性 ; 有界性 ; 保号性; 任一子数列收敛于同一极限
目录
上页
下页
返回
结束
第三节 函数的极限
对 y f ( x) , 自变量变化过程的六种形式: ( 4) x ( 1 ) x x0
定义
如果对于任意给定的正数 (不论它多么
小),总存在正数 N ,使得对于 n N 时的一切 x n , 不等式 x n a 都成立,那末就称常数 a 是数列
x n 的极限,或者称数列 x n 收敛于a ,记为
lim x n a , 或 x n a ( n ).
n
n (1) n 1 n
故
n (1) n lim xn lim 1 n n n
目录 上页 下页 返回 结束
例2. 设 q 1 , 证明等比数列 1 , q , q 2 , , q n 1 , 的极限为0 . 证:
n 1
n 1
n 1
xn 0 q
,;
n ( 1) { n
n 1
}
3 , 3 3 , , 3 3 3 ,
1.数列对应着数轴上一个点列.可看作一 注 意: 动点在数轴上依次取 x1 , x 2 , , x n , .
x3
x1
x2 x4
xn
2.数列是整标函数 x n f ( n).
目录 上页 下页 返回 结束
第一章
( 2) x x 0 (3) x x0 本节内容 :
同济高等数学第六版上册第一章ppt.

第一章二、收敛数列的性质三、极限存在准则一、数列极限的定义第二节数列的极限∞第一章一、自变量趋于有限值时函数的极限第三节,)(x f y =对0)1(x x →+→0)2(x x -→0)3(x x ∞→x )4(+∞→x )5(-∞→x )6(自变量变化过程的六种形式:二、自变量趋于无穷大时函数的极限本节内容:函数的极限x 0定理2 .若在0x 的某去心邻域内0)(≥x f )0)((≤x f , 且,)(lim 0A x f x x =→则.0≥A )0(≤A 证:用反证法.则由定理1,0x 的某去心邻域,使在该邻域内,0)(<x f 与已知所以假设不真, .0≥A (同样可证0)(≤x f 的情形)思考:若定理2 中的条件改为,0)(>x f 是否必有?0>A 不能!lim 2=→x x 存在如假设A < 0, 条件矛盾,故时,当0)(≥x fyX-xX直线y= A为曲线的水平渐近线.第一章二、无穷大三、无穷小与无穷大的关系一、无穷小第四节无穷小与无穷大第一章二、极限的四则运算法则三、复合函数的极限运算法则一、无穷小运算法则第五节极限运算法则二、极限的四则运算法则,)(lim ,)(lim B x g A x f ==则有=±)]()(lim[x g x f )(lim )(lim x g x f ±证: 因,)(lim ,)(lim B x g A x f ==则有βα+=+=B x g A x f )(,)((其中βα,为无穷小)于是)()()()(βα+±+=±B A x g x f )()(βα±+±=B A 由定理1 可知βα±也是无穷小,再利用极限与无穷小BA ±=的关系定理, 知定理结论成立.定理3 .若推论:若,)(lim ,)(lim B x g A x f ==且),()(x g x f ≥则.B A ≥( P46 定理5 ))()()(x g x f x -=ϕ利用保号性定理证明.说明:定理3 可推广到有限个函数相加、减的情形.提示:令定理4. 若,)(lim ,)(lim B x g A x f ==则有=)]()(lim[x g x f )(lim )(lim x g x f 提示:利用极限与无穷小关系定理及本节定理2 证明.说明:定理4 可推广到有限个函数相乘的情形.推论1 .)(lim )](lim[x f C x f C =( C 为常数)推论2 .nnx f x f ])(lim [)](lim[=( n 为正整数)例2.设n 次多项式,)(10nn n x a x a a x P +++= 试证).()(lim 00x P x P n n x x =→证:=→)(lim 0x P n x x 0a x a x x 0lim 1→+++ nx x n xa 0lim →)(0x P n =BA =。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录 上页 下页 返回 结束
例3. 计算反常积分
t pt 解: 原式 e p
1 pt 2e p 1 2 p
1 p t e dt p 0
8
目录 上页 下页 返回 结束
二、无界函数的反常积分
引例:曲线 与 x 轴, y 轴和直线 所围成的
开口曲边梯形的面积可记作
注意: 若瑕点 c (a , b) , 则
f ( x) dx F (b) F (c ) F (c ) F (a)
可相消吗?
12
目录 上页 下页 返回 结束
例4. 计算反常积分 解: 显然瑕点为 a , 所以 a x π arcsin 1 原式 arcsin a 0 2 例5. 讨论反常积分
第四节 反常积分
常义积分
推广
第五章
积分限有限 被积函数有界
反常积分 (广义积分)
一、无穷限的反常积分
二、无界函数的反常积分
1
目录 上页 下页 返回 结束
一、无穷限的反常积分
引例. 曲线 和直线 及 x 轴所围成的开口曲
边梯形的面积 可记作
y
1 y 2 x A
x 其含义可理解为 A lim
A
0 dx 下述解法是否正确 : 1 dx
的收敛性 .
1 1 解: 2 2 x x 1 x 0x 1 1 dx 0 1 1 2 1 1 2 , ∴积分收敛 1 x x 所以反常积分 1 发散 .
3
f ( x) d f ( x) 1 f 2 ( x) d x 1 f 2 ( x) arctan f ( x) C
π ] 2
π 32 ] arctan 2 π 2 27 15
目录 上页 下页 返回 结束
内容小结
1. 反常积分
积分区间无限
被积函数无界
16
数 f (x) 在 [a , b] 上的反常积分, 记作
这时称反常积分 就称反常积分
收敛 ; 如果上述极限不存在, 发散 .
类似地 , 若 f ( x) C [a , b) , 而在 b 的左邻域内无界,
则定义
10
目录 上页 下页 返回 结束
而在点 c 的 邻域内无界 , 则定义
a f ( x) dx c f ( x) dx
y
1 y x
其含义可理解为
A lim
0
1
dx 1 lim 2 x x 0
A
O
lim 2(1 ) 2
0
x
9
目录 上页 下页 返回 结束
定义2. 设 f ( x) C (a , b] , 而在点 a 的右邻域内无界,
若极限 存在 , 则称此极限为函
目录 上页 下页 返回 结束
备用题 试证
解:
0
dx x d x , 并求其值 . 4 4 0 1 x 1 x
2
令t1 x
1 1 1 14 t 2 d t
0 t
t2 dt 4 0 1 t 2 d x 1 dx x d x 4 4 4 0 1 x 0 1 x 2 0 1 x 1 1 x 2 d x 2 0 1 x4
当 p >1 时收敛 ; p≤1
证:当 p =1 时有
ln x
当 p ≠ 1 时有
a
x 1 p a
1 p
,
a 1 p , p 1
p 1 p 1
a 1 p ; 因此, 当 p >1 时, 反常积分收敛 , 其值为 p 1 当 p≤1 时, 反常积分发散 .
x
则有类似牛 – 莱公式的计算表达式 :
a
f ( x ) dx F ( x)
F () F (a) F (b) F () F () F ()
5
目录 上页 下页 返回 结束
f ( x) dx F ( x) f ( x) dx F ( x)
( c 为任意取定的常数 ) 只要有一个极限不存在 , 就称 发散 .
c b
无穷限的反常积分也称为第一类反常积分.
说明: 上述定义中若出现 , 并非不定型 ,
它表明该反常积分发散 .
4
目录 上页 下页 返回 结束
引入记号
F () lim F ( x) ;
x பைடு நூலகம்
F () lim F ( x)
dx 2
b
1
b 1
b
1 dx lim 2 b x 1 x
O 1
b
x
1 lim 1 1 b b
2
目录 上页 下页 返回 结束
定义1. 设 f ( x) C [a , ) , 取 b a , 若
17
目录 上页 下页 返回 结束
1 2
1 1 x 2 1 x2 0 x2
dx
1 1 1 d (x ) 2 2 0 (x 1) 2 x
x
1 2 2
arctan
x1 x 2
0
18
目录 上页 下页 返回 结束
0
1
13
目录 上页 下页 返回 结束
例6. 证明反常积分 时发散 .
当 q < 1 时收敛 ; q≥1
证 : 当 q = 1 时,
当 q≠1 时
ln x a
1 q
a
b
q 1 q 1
( x a) 1 q
(b a)1q , b 1 q a ,
b
例1. 计算反常积分
解:
[ arctan x ] π π ( ) π 2 2
y O
y
1 1 x 2
x
思考: 分析: 原积分发散 !
注意: 对反常积分, 只有在收敛的条件下才能使用 “偶倍奇零” 的性质, 否则会出现错误 .
6
目录 上页 下页 返回 结束
例2. 证明第一类 p 积分 时发散 .
(b a)1q ; 所以当 q < 1 时, 该广义积分收敛 , 其值为 1 q 当 q ≥ 1 时, 该广义积分发散 .
14
目录 上页 下页 返回 结束
例7. 解: 积分.
求 的无穷间断点, 故 I 为反常
0
f ( x) I dx 2 11 f ( x )
f ( x) dx 2 2 1 f ( x)
11
目录 上页 下页 返回 结束
则也有类似牛 – 莱公式的
计算表达式 :
若 b 为瑕点, 则
若 a 为瑕点, 则
a a
b
f ( x) dx F (b ) F (a) f ( x) dx F (b) F (a )
b
若 a , b 都为瑕点, 则
a a
b
b
f ( x) dx F (b ) F (a )
lim
1 0
c 1 a
c
b
f ( x) dx lim
2 0
b
c 2
f ( x ) dx
无界函数的积分又称作第二类反常积分, 无界点常称 为瑕点(奇点) .
说明: 若被积函数在积分区间上仅存在有限个第一类 间断点, 则本质上是常义积分, 而不是反常积分. 例如,
存在 , 则称此极限为 f (x) 的无穷限反常积分, 记作
这时称反常积分 就称反常积分
收敛 ; 如果上述极限不存在, 发散 .
类似地 , 若 f ( x) C ( , b] , 则定义
3
目录 上页 下页 返回 结束
若 f ( x) C ( , ) , 则定义
f ( x) dx lim f ( x) dx a a b c lim