讲不定积分与定积分的各种计算方法

合集下载

定积分和不定积分的计算方法总结

定积分和不定积分的计算方法总结

定积分和不定积分的计算方法总结一、不定积分的定义和基本性质不定积分是函数积分的一种形式,表示为∫f(x)dx,其中f(x)为被积函数,dx表示自变量。

1.不定积分的定义不定积分是求导运算的逆运算。

如果F(x)是f(x)的一个原函数,那么F(x) + C也是f(x)的一个原函数,其中C为常数。

因此,∫f(x)dx = F(x) + C。

2.基本性质(1) 常数因子法则:若c是常数,则有∫cf(x)dx = c∫f(x)dx。

(2) 线性法则:若f(x)和g(x)都有原函数,则有∫(f(x) ±g(x))dx = ∫f(x)dx ± ∫g(x)dx。

(3) 逐项积分法则:若f(x)的原函数为F(x),g(x)的原函数为G(x),则有∫(f(x) ± g(x))dx = F(x) ± G(x)。

(4) 分部积分法则:若f(x)和g(x)都具有原函数,则有∫f(x)g(x)dx = F(x)g(x) - ∫(F(x)g'(x))dx,其中F(x)为f(x)的一个原函数,g'(x)为g(x)的导数。

二、定积分的定义和计算方法定积分是计算函数在一个有限区间上的面积的数值,表示为∫[a,b]f(x)dx,其中f(x)为被积函数,[a,b]为积分区间。

1.定积分的定义设f(x)在区间[a,b]上有定义,将[a,b]分为n个小区间,长度为Δx,选择每个小区间上一点ξi,记为Δx = (b-a)/n,ξi = a + iΔx (i = 0,1,2,...,n)。

定义Riemann和为S(f, Δx, ξ) = Σf(ξi)Δx =f(ξ1)Δx + f(ξ2)Δx + ... + f(ξn)Δx。

当n趋于无穷大时,Riemann和的极限称为函数f(x)在区间[a,b]上的定积分,记为∫[a,b]f(x)dx。

2.计算方法(1)几何意义:定积分表示函数f(x)在区间[a,b]上曲线与x轴之间的面积。

不定积分计算的各种方法

不定积分计算的各种方法

不定积分计算的各种方法不定积分是微积分中的重要概念,用于求解函数的原函数。

计算不定积分的方法有很多种,下面将介绍其中常用的几种方法。

1.替换法(换元法):替换法是求不定积分最常用的方法之一、通过引入一个新的变量代替原函数中的一部分,使得被积函数被替换为新变量的导数形式。

然后将积分转化为新变量的积分,最后再将结果换回原变量。

替换法适用于当被积函数具有其中一种特殊形式时,例如三角函数、指数函数、对数函数等。

2.分部积分法:分部积分法是求不定积分的另一种常用方法。

它通过将被积函数拆分成两个函数的乘积形式,然后将积分转化为其中一个函数的积分和另一个函数的导数的积分。

这个方法适用于当被积函数是两个函数的乘积形式时。

3.微分方程法:微分方程法适用于求解一些具有特殊形式的微分方程的原函数。

通过将微分方程转化为不定积分形式,并通过求解该不定积分得到原函数。

4.图像法:图像法适用于当被积函数的几何意义或图像特点已知时。

通过观察被积函数的几何性质,可以直接得出不定积分的结果。

5.线性代数法:线性代数法是一种较为复杂的计算不定积分的方法,适用于一些特殊的被积函数形式。

它通过将被积函数视为多项式的线性组合形式,并利用线性代数中的方法求解。

6.对称性法:对称性法适用于具有对称性质的被积函数。

通过利用函数的对称性质,可以将不定积分简化为更容易处理的形式。

7.勾股定理法:勾股定理法适用于当被积函数具有勾股定理形式时。

通过利用勾股定理,可以将不定积分转化为勾股定理的逆定理的形式,然后求解。

8.换项法:换项法适用于当被积函数的形式与换项公式相似时。

通过将被积函数拆分成一个或多个项的和的形式,然后通过换项公式对其中的其中一项进行换项,从而简化积分计算。

综上所述,计算不定积分时常用的方法有替换法、分部积分法、微分方程法、图像法、线性代数法、对称性法、勾股定理法和换项法等。

在实际计算中,可以根据被积函数的特点选择相应的方法,以简化计算过程并求得准确的结果。

不定积分的四则运算公式

不定积分的四则运算公式

不定积分的四则运算公式
不定积分是求导的反向运算,是解决微积分问题的重要方法之一,而四则运算则是数学中最基本的运算方法之一。

在进行不定积分的过程中,我们也需要运用四则运算的相关公式,以便更加高效地解决问题。

下面是不定积分的四则运算公式:
1. 常数倍法则:∫ k*f(x) dx = k*∫ f(x) dx (k为常数)
2. 和差法则:∫ [f(x) + g(x)] dx = ∫ f(x) dx + ∫ g(x) dx;
∫ [f(x) - g(x)] dx = ∫ f(x) dx - ∫ g(x) dx
3. 积法公式:∫ f(x)g'(x) dx = f(x)g(x) - ∫ g(x)f'(x) dx
4. 倒代换公式:∫ f(g(x))g'(x) dx = ∫ f(u) du (其中 u = g(x))
通过掌握这些不定积分的四则运算公式,我们可以更加轻松地进行不定积分的计算,提高我们的数学解题能力。

- 1 -。

常用积分公式

常用积分公式

常用积分公式本文将介绍一些常用的积分公式,包括基本积分公式、换元积分公式、分部积分公式等。

通过掌握这些公式,能够更加方便地求解各类积分问题。

1. 基本积分公式1.1 定积分公式定积分公式是基本积分公式中的一种,用于求解在一定区间上的函数积分。

定积分公式如下:$$\\int_{a}^{b} f(x)dx = [F(x)]_{a}^{b} = F(b) - F(a)$$其中,f(f)是要积分的函数,f(f)是f(f)的一个原函数,f和f是积分的区间。

1.2 不定积分公式不定积分公式是基本积分公式中的另一种,用于求解函数的原函数。

不定积分公式如下:$$\\int f(x)dx = F(x) + C$$其中,f(f)是要积分的函数,f(f)是f(f)的一个原函数,f是常数。

2. 换元积分公式换元积分公式是求解复杂函数积分的重要方法,通过引入一个新的变量进行替换,将原积分转化为一个更容易求解的形式。

2.1 第一换元法第一换元法也称为u-置换法,假设有函数f=f(f),需要对其进行积分。

首先选取一个变量f=f(f),使得$\\frac{du}{dx}=g'(x)$。

则积分公式变为:$$\\int f(x)dx = \\int f(g(x))g'(x)dx = \\int ydu$$其中,$\\int ydu$是对新变量f进行积分。

2.2 第二换元法第二换元法也称为t-置换法,假设有函数f=f(f),需要对其进行积分。

首先选取一个变量f=f(f),使得$\\frac{dt}{dy}=h'(y)$。

则积分公式变为:$$\\int f(x)dx = \\int f(x)h'(f(x))dx = \\int h(t)dt$$其中,$\\int h(t)dt$是对新变量f进行积分。

3. 分部积分公式分部积分公式是求解两个函数乘积的积分的方法之一。

根据分部积分公式,可以将一个复杂的积分转化为一个更简单的积分形式。

不定积分与定积分的计算方法

不定积分与定积分的计算方法

不定积分与定积分的计算方法在数学中,积分是求解函数定积分和不定积分的一种重要方法。

不定积分和定积分之间有着不同的计算方法和应用场景。

本文将介绍不定积分和定积分的计算方法及其应用。

一、不定积分的计算方法不定积分,又称为原函数,是求解函数的反导函数。

不定积分记作∫f(x)dx,其中f(x)为被积函数,dx表示对x的积分。

不定积分的计算方法主要有以下几种:1. 常数项法则:如果f(x)是常函数,即f(x) = C,那么∫f(x)dx = Cx + k,其中k为常数。

2. 幂函数法则:对于幂函数f(x) = x^n,其中n≠-1,那么∫f(x)dx = (1/(n+1))x^(n+1) + k。

3. 三角函数法则:对于三角函数f(x) = sin x、cos x、tan x等,以及其倒数,可以利用基本积分公式进行计算。

4. 代换法则:当被积函数比较复杂时,可以通过代换变量来简化计算过程。

常用的代换包括三角代换、指数代换、倒数代换等。

二、定积分的计算方法定积分是对给定区间上的函数进行积分,可以得到一个数值结果。

定积分记作∫[a,b]f(x)dx,表示在区间[a,b]上对函数f(x)进行积分。

定积分的计算方法主要有以下几种:1. 几何意义法:定积分可以表示函数f(x)与x轴之间的有向面积,利用几何图形的面积计算方法来求解定积分。

2. 分割求和法:将积分区间[a,b]分成若干个小区间,通过求和来逼近定积分的值。

常用的分割求和方法有矩形法、梯形法、辛普森法等。

3. 牛顿-莱布尼兹公式:如果函数F(x)是f(x)的一个原函数,那么∫[a,b]f(x)dx = F(b) - F(a)。

利用牛顿-莱布尼兹公式,可以通过求解原函数来计算定积分。

三、不定积分与定积分的应用不定积分和定积分在数学和各个应用领域都有广泛的应用。

1. 几何应用:定积分被广泛用于计算曲线与x轴之间的面积、曲线长度、曲线的旋转体体积等几何问题。

2. 物理学应用:定积分在物理学中有着重要的应用,例如计算质点的位移、速度、加速度等问题。

不定积分与定积分的概念

不定积分与定积分的概念

不定积分与定积分的概念在微积分学中,不定积分和定积分是两个重要的概念。

它们分别代表了对函数的积分运算,但在运算方法、符号表示和应用场景上有所不同。

一、不定积分的概念不定积分,又称原函数或者积分函数,是对函数的反导数运算。

对于函数f(x),如果它的导数为F(x),即f'(x)=F(x),那么F(x)就是f(x)的不定积分。

不定积分的符号表示为∫f(x)dx,其中f(x)为被积函数,dx表示对x的积分。

换句话说,不定积分就是求导运算的逆运算。

在这个过程中,我们可以得到一个函数的无数个原函数,因为对于任意常数C,F(x)+C也是f(x)的不定积分。

不定积分也可以理解为曲线与坐标轴围成的面积函数。

例如,函数f(x)=x^2,它的不定积分为F(x)=1/3x^3+C,其中C为常数。

通过不定积分,我们可以解决一些函数的原函数问题,同时也可以计算函数的面积、曲线长度、物理学中的质量、重心等问题。

不定积分在微积分学中占据重要地位,是很多进一步积分运算的基础。

二、定积分的概念定积分是对函数在一个闭区间上的积分运算。

与不定积分不同,定积分的结果是一个具体的数值。

定积分的符号表示为∫[a,b]f(x)dx,其中f(x)为被积函数,[a,b]表示积分的区间范围。

定积分可以理解为曲线下的面积,也可以看作是函数在一段区间上的平均值与区间长度的乘积。

通过将区间细分成无限小的小矩形,并将这些矩形的面积相加,我们可以得到定积分。

定积分在各个学科中有广泛的应用。

例如,在物理学中,我们可以使用定积分来计算物体的质量、压力、功率等。

在统计学中,定积分可以用来计算概率密度函数下的概率值。

在经济学中,定积分可以用来计算收益和成本之间的差异。

三、不定积分与定积分的关系在不定积分和定积分之间有着紧密的联系。

根据牛顿-莱布尼茨公式,不定积分和定积分是互逆运算。

具体地说,如果函数f(x)在区间[a,b]上连续,那么它就存在定积分∫[a,b]f(x)dx。

不定积分的四则运算公式

不定积分的四则运算公式1.加法运算:设函数f(x)和g(x)在区间上连续,则它们的和函数F(x)的不定积分满足如下公式:∫[f(x) + g(x)]dx = ∫f(x)dx + ∫g(x)dx + C2.减法运算:设函数f(x)和g(x)在区间上连续,则它们的差函数F(x)的不定积分满足如下公式:∫[f(x) - g(x)]dx = ∫f(x)dx - ∫g(x)dx + C3.乘法运算:设函数f(x)和g(x)在区间上连续,则它们的乘积函数F(x)的不定积分满足如下公式:∫[f(x) * g(x)]dx ≠ ∫f(x)dx * ∫g(x)dx乘法的不定积分不能直接用乘法法则,而是需要通过换元法、分部积分等方法来计算。

4.除法运算:设函数f(x)和g(x)在区间上连续,且g(x)不等于0,则它们的商函数F(x)的不定积分满足如下公式:∫[f(x) / g(x)]dx ≠ ∫f(x)dx / ∫g(x)dx除法的不定积分也不能直接用除法法则,而是需要通过换元法、分部积分等方法来计算。

此外,还有一些辅助的运算公式可以用于简化不定积分的计算:5.常数倍公式:如果k为常数,则有:∫k * f(x)dx = k * ∫f(x)dx + C6.积分换元公式:设y=g(x)是函数g的一个可导函数,而f是g的一个原函数,则有:∫f(g(x)) * g'(x)dx = F(g(x)) + C其中,F表示函数f的一个原函数。

7.分部积分公式:设函数u(x)和v(x)在区间上连续且可导,则有如下公式:∫u(x)v'(x)dx = u(x)v(x) - ∫v(x)u'(x)dx + C以上是不定积分的四则运算公式及其辅助公式。

在实际计算中,根据具体的函数表达式,可以灵活运用这些公式来简化不定积分的计算。

总结不定积分的运算方法

总结不定积分的运算方法一、定义法,适合简单的分式和有理函数。

定义不定积分时,必须先确定正、负号。

只有在讨论的结果可以用分数表示时,才能使用这种方法。

1)将分式化为整式的积形式。

2)用分式表示出各项的符号。

3)按照一定规则去掉分母。

二、分部分计算法(适合较复杂的分式或多项式) 1)分子分母同乘各自的最简公分母。

2)对分子进行因式分解。

3)如果分子中含有多项式,则应先分离出各项的系数,然后再根据约分去分母。

三、直接开平方法(适合极限) 1)利用无穷小替换计算。

2)对于包含有因式的积的分式,首先将分母因式分解,然后在计算因式中未知的积的近似值。

四、取极限法2。

二元函数极限运算法:二元函数的极限是指二元函数的变化率减去两个常量的乘积。

这种方法主要用于计算极限的一些特殊情况。

这里讲一些基本的极限运算法。

一元函数极限运算法:一元函数极限运算法主要用于处理多元函数的极限问题。

下面给出几个例子: 1)求图形的面积。

( a)取图形上方的边的长度作为下底,画一条高。

b)连接be,即为所求。

c)由b点向左平移2个单位长度,得到的结果与d相同。

2)求图形的周长。

( a)直接用积分表示周长。

( b)证明“封闭图形的周长等于它的内接正方形的边长”。

( c)由于图形是轴对称图形,根据轴对称图形的性质,利用一个中心,任意折叠都能得到原图形,从而得到其周长。

( d)以a、 b两点为圆心, a、 b之间的距离为半径作圆,可得到图形的周长。

4)二元函数的极限:二元函数的极限就是把二元函数表示成由两个有限的变量x、 y构成的方程,这两个变量分别称为变量x的绝对值和变量y的绝对值。

也就是说,当两个有限变量x、 y确定后,它们所代表的二元函数的极限也就确定了。

3)求多边形的周长。

( a)任意折叠即得。

( b)分割为8等份,相加得到。

( c)取对角线,可得到周长。

( d)可求面积。

3))最终化简求解法。

第一步:不要把分式中的不定积分写成分母不是有理式,也不要忘记分母里的正、负号;第二步:对每一项分别求出积分,并把各项的符号记住;第三步:写出不定积分的结果,注意要化简为最简分式。

专题10:计算不定积分和定积分的方法和技巧

专题10 计算不定积分和定积分的方法和技巧(一) 不定积分(1) 三种主要的积分法 1)第一类换元法(凑微分法)若C u F u u f +=∫)(d )(,且)(x ϕ可导,则C x F x d x f x x x f +==′∫∫))(()())((d )())((ϕϕϕϕϕ2)第二类换元法设函数)(t x ϕ=可导,且,0)(≠′t ϕ又设C t F dt t t f +=′∫)()())((ϕϕ则C x F dt t t f dx x f +=′=−∫∫))(()()(()(1ϕϕϕ三种常用的变量代换(1) 被积函数中含有22x a −时,令,sin t a x =或;cos t a x = (2) 被积函数中含有22x a +时,令t a x tan =; (3)被积函数中含有22a x −时,令t a x sec =;3)分部积分法设)(),(x v x u 有连续一阶导数,则∫∫−=vdu uv udv【注】(1) 分部积分法常用于被积函数为两类不同函数相乘的不定积分;(2)分部积分法选择)(),(x v x u 的原则是∫vdu 比∫udv 好积, 设)(x p n 是n 次多项式,则形如∫∫∫xdxx x x x x e x nnxn αααcos )(p ,d sin )(p ,d )(p 的积分都是先把多项式以外的函数凑进微分号,然后分部积分; 形如∫∫∫xdxx x x x x x x nnnarcsin )(p ,d arctan )(p ,d ln )(p 的积分都是先把多项式函数凑进微分号,然后分部积分;形如∫∫xdx e x x e x x ββααcos ,d sin 的积分可连续两次将指数函数凑进微分号分部积分还原,求得原不定积分.(2) 三类常见函数的积分1)有理函数积分 ∫x x R d )((1)一般方法(部分分式法)(2)特殊方法(加项减项拆或凑微分绛幂); 2) 三角有理式积分 ∫x x x R d )cos ,(sin (1)一般方法(万能代换) 令t x=2tandt t t t t t R x x x R 222212)11,12(d )cos ,(sin ++−+=∫∫ (2)特殊方法 (三角变形,换元,分部) 几种常用的换元法i)若),cos ,(sin )cos ,sin (x x R x x R −=− 则 令;cos x u = ii)若),cos ,(sin )cos ,(sin x x R x x R −=− 则 令;sin x u =iii)若),cos ,(sin )cos ,sin (x x R x x R =−− 则 令.tan x u =3) 简单无理函数积分 x dcx bax x R nd ),(∫++令 t dcx bax n=++,将其化为有理函数积分进行计算.【例1】=+∫dx x x x )1(arctan . ( C x +2)(arctan )【例2】._________2sin tan ln =∫dx x x【解】dx x x xdx x x ∫∫=cos sin 2tan ln 2sin tan ln∫∫==x xd x d x x tan ln tan ln 21tan tan 2tan lnC x +=2)tan (ln 41【例3】(2018年3) ._________1arcsin 2=−∫dx e e xx 【解】xx xx de e dx e e ∫∫−=−221arcsin 1arcsin∫−−−−−=2222)1(111arcsin xx x xx e e d e ee∫−−−=x x x e d e e 2211arcsinC e e e x x x +−−−=2211arcsin【例4】(2018年1,2)求不定积分dx e e xx 1arctan 2−∫【解】xx xx de e dx e e 221arctan 211arctan ∫∫−=− ∫−−−=dx e e e e x x xx 1411arctan 2122x x x x x de e e dx e e ∫∫−=−112x x x x de e de e ∫∫−+−=111C e e e x x x+−+−−=121)1(32 dx e e x x 1arctan 2−∫C e e e e xx x x +−+−−=1)2(611arctan 212【例5】(2003年2)∫+x x xe xd )1(2/32arctan 【解1】 设t x tan =,则∫∫∫=+==+t t t t t t x x x tt x d sin e d sec )tan 1(tan e d )1(e 22/322/32arctan又tdt e t e et t t t t tt cos sin d sin d sin e ∫∫∫−==∫−=t t tde t e cos sin,d sin e cos sin e ∫−−=t t t e t ttt故.)cos (sin e 21sin e C t t tdt t t+−=∫ 因此 C x xx x x x x x +⎟⎟⎠⎞⎜⎜⎝⎛+−+=+∫22arctan 2/32arctan 111e 21d )1(e .12e )1(2arctan C xx x ++−=【解2】 ∫∫∫+−+=+=+x x xx x x x x x x x xx d )1(e 1e de 1d )1(e 2/32arctan 2arctan arctan 22/32arctan ∫+−+=x x x x x arctan 22arctan de 111e,d )1(e 1e 1e 2/32arctan 2arctan 2arctan ∫+−+−+=x x x xx x x xx移项整理,得.12e )1(d )1(e 2arctan 2/32arctan C x x x x x xx ++−=+∫【例6】 dx x x x ∫++)1(323 【解1】令11)1(3223++++=++x Cx B x A x x x由223)1()1(x Cx x B x Ax −=++++得 ⎪⎩⎪⎨⎧==+−=+301B B A C A解得.2,3,3==−=C B Adx x x x dx x x x ∫∫⎟⎠⎞⎜⎝⎛+++−=++12331)1(3223C x xx x +++−−=1ln 23ln 3 【解2】【例7】dx x x x x∫−+−123【解1】由于)1)(1(1223+−=−+−x x x x x ,设111223+++−=−+−x CBx x A x x x x 则 )1)(()1(2−+++≡x C Bx x A x 由此解得 .21,21,21=−==C B A dx x x x dx dx x x x x ∫∫∫+−−−=−+−11211211223C x x x +++−−=arctan 21)1ln(411ln 212【解2】【例8】∫x x dx2cos sin【解】原式∫−=)sin (cos sin 22x x x dx)cos ,(sin )cos ,sin ((x x R x x R −=−∫−−−=)1cos 2)(cos 1(cos 22x x xd du u u u u ∫−−−+−−=)12)(1()12()1(22222∫∫−+−−=112222u duu du C u u u u ++−++−−=11ln 211212ln 21 C x x x x ++−++−−=1cos 1cos ln 211cos 21cos 2ln 21 (二) 定积分定积分的计算常用方法有以下五种 1)牛顿-莱布尼兹公式如果函数)(x F 是连续函数)(x f 在区间],[b a 上的一个原函数,则)()(d )(a F b F x x f b a−=∫;2)换元积分法设)(x f 在区间],[b a 上连续,函数)(=t x ϕ满足以下条件: (1)a =)(αϕ,b =)(βϕ;(2))(t ϕ在],[βα(或],[αβ)上具有连续导数,且其值域],,[b a R =ϕ则.d ))(d )(∫∫)(′(=βαϕϕt t t f x x f b a3)分部积分法设函数)(x u 和)(x v 在],[b a 上有连续一阶导数,则.d d ∫∫−=babab au v uv v u4)利用奇偶性和周期性(1) 设)(x f 为],[a a −上的连续函数(0>a ),则⎪⎩⎪⎨⎧=∫∫−.)(,d )(2)(,0d )(0为偶函数时为奇函数时,x f x x f x f x x f aa a(2) 设)(x f 是以T 为周期的连续函数,则对任给数a ,总有.d )(d )(0∫∫=+TT a ax x f x x f5)利用公式)]1,0[)(d )(sin 2d )(sin (2)奇1,32231偶,221231d cos d sin (1)02020上连续在(其中数的为大于数为正x f x x f x x f x n n n n n n n n n n x x x x πn n ∫∫∫∫=⎪⎩⎪⎨⎧⋅⋅⋅−−−⋅⋅⋅−−−==πππππ【例1】.___________sin ][cos 202222=+∫∫−−xdx dt e x xtππ【解】 2et −偶函数,则∫−x t t 0d e 2奇函数.原式∫=2π022d sin cos 2x x x.8πd sin )sin 1(22π022=−=∫x x x 【例2】(2012年1)∫=−2022dx x x x .【解1】 原式∫−−=202d )1(1x x x∫∫−==+=−2π2π2π0222πd cos 2d cos )sin 1(sin 1t t t t t t x 【解2】 原式∫−−=202d )1(1x x x∫−−+−=202d )1(1]1)1[(x x x ∫=−=2022πd 2x x x (几何意义) 【例3】.__________cos cos 042=−∫dx x x x π【解】 原式∫∫=−=π0042d sin |cos |2πd cos cos 2ππx x x x x x ⎥⎦⎤⎢⎣⎡−=∫∫ππππ220sin cos sin cos 2xdx x xdx x2π=【例4】(2013年1)计算,)(10dx xx f ∫其中.)1ln()(1dt t t x f x ∫+=【解】dx xx x f x x d x f dx x x f ∫∫∫+−==10101010)1ln(2)(2)(2)(dx x xx x x d x ∫∫+++−=+−=10101014)1ln(4)1ln(4π282ln 4−+−=【例5】计算定积分.cos 1202∫+πxdx【解】∫∫∫+=+=+202202202tan 2tan 4cos 14cos 1πππx x d x dx xdxππ22tan arctan 2420==x【例6】计算定积分∫−+202.dx e e xxx【解】令,2t x −=则,dt dx −=∫−+202dx e e xxx ∫+−=−202.2dt e e t t t ]2[21202202dx e e x dx e e xx xxx ∫∫−−+−++= ∫−+=202x x e e dx∫+=2022ee de xx==2arctan 1eee x 1arctan [arctan 1ee e − 【例7】计算定积分∫++102d 1)1ln(x x x【解】 du uudt t x x x u t t x ]tan 1tan 11ln[)tan 1ln(d 1)1ln(4440tan 102∫∫∫+−+=+=++−==πππdu u∫+=40tan 12lnπ∫+−=40)tan 1ln(2ln 4ππdu u 2ln 8π=【例8】(1995年3)设)(),(x g x f 在)0(],[>−a a a 上连续,)(x g 为偶函数,且)(x f 满足条件A x f x f =−+)()((A 为常数) 1) 证明∫∫−=a aadx x g A dx x g x f 0)()()(2) 利用1) 计算∫−22arctan |sin |ππdx e x x【证】(1)令t x −=,则∫∫−−−=a aa a t t g t f x x g x f d )()(d )()(,d )()(∫−−=a ax x g x f于是 ]d )()(d )()([21d )()(∫∫∫−−−−+=a a aaaa x x g x f x x g x f x x g x f.d )(d )()]()([210∫∫=−+=−a aax x g A x x g x f x f(2)令xx f e arctan )(=,|sin |)(x x g =,2π=a ,则)(x f 、)(x g 在⎥⎦⎤⎢⎣⎡−2,2ππ上连续,)(x g 为偶函数.又因为 0)e arctan e (arctan =′+−x x ,所以 .e arctan e arctan A xx =+−令0=x ,得A =1arctan 2,故2π=A ,即.2)()(π=−+x f x f于是,有.2d sin 2d |sin |2de arctan |sin |202022πππππππ===∫∫∫−x x x x x x x【例9】 设2)1arctan()(−=′x x f ,0)0(=f ,求∫10d )(x x f .【解】∫∫−=110)1()()(x d x f dx x fdx x x x f x 2110)1arctan()1()()1(−−−−=∫dx x x 21)1arctan()1(−−=∫∫=10arctan 21du u (令u x =−2)1() ∫−=+−=102102ln 418121arctan 21πdu u u u u .【例10】 设)(x f 为非负连续函数,且∫=−x x dt t x f x f 04sin )()(,求)(x f 在2,0[π上的平均值. 【解】 令u t x =−,则∫∫=−x xu u f t t x f 0d )(d )(∫=xx u u f x f 04sin d )()(∫∫∫=2π002π04d sin d ]d )()([xx x x u u f x f∫⋅⋅=xu u f 022π2143)d )((212π ∫=2π02π321d )(x x f则)(x f 在]2,0[π上的平均值为πππ232)(20=∫dxx f 思考题1.求下列不定积分1)dx x x x ∫−−−2152 2)dx x x x ∫++)1(232 3)dx x x x x ∫++−+)1()1(6322 4)∫−422x x dx5)∫++x x dxcos sin 1 6)∫xdx x arcsin7)x xx e x d cos 1)sin 1(∫++ 8)∫.arccos arcsin xdx x2.计算下列定积分 1)dx x x∫−10221 2)dx x x x ∫−62263)∫209sin πxdx x 4)dx e xx∫−+2221sin ππ5)∫20sin ln πxdx6),)(102dx x f x ∫其中.1)(14dt t x f x∫+=7)∫10)(dx x f 其中.sin )(12dt tt x x f x∫= 答案1.求下列不定积分1) C x x +−++2ln 31ln 2 2) C x x x +++−arctan 3)1ln(ln 223) C x x x x ++++−−−−)1ln(131ln 22 4)C x x x +−+−22arctan 41442 5) C x++2tan1ln 6) C x x x x x +−+−22141arcsin 41arcsin 27) C xe x+2tan11 8) C x x x x x x x x ++−−−+2arcsin 1arccos 1arccos arcsin 222.计算下列定积分 1) .16π 2) .8405π 3) .315128π 4) .4π 5) .2ln 2π− 6) .16π 7) )221(181−8) )11(cos 41−。

不定积分与定积分的各种计算方法

不定积分与定积分的各种计算方法一、不定积分的计算方法:1.初等函数不定积分法:基于已知的初等函数的不定积分公式,例如导数的逆运算。

例如,对于常数函数、幂函数、指数函数、三角函数、对数函数等,都存在常用的不定积分公式。

例如,对于函数f(x)=x^n(n≠-1),不定积分的结果为F(x)=(1/(n+1))x^(n+1)+C,其中C为任意常数。

2.换元法:也称为反链式法或u-替换法,通过引入新的变量替换积分变量,以简化积分表达式。

这种方法需要根据被积函数的特点选择适当的替换变量。

例如,对于含有根式的积分,可以通过引入新的变量将积分化为有理函数积分。

3.分部积分法:也称为积化和差减法,将积分运算转换为两个函数的乘积的积分运算,通常用于乘积的积分。

根据乘积法则,可以将积分转化为函数间的和差表达式,从而得到一个更容易求解的积分。

4.特殊函数的不定积分:一些特殊函数的不定积分需要特殊的处理,例如三角函数的不定积分、反三角函数的不定积分等。

这些特殊函数的不定积分可以通过使用特殊的积分公式或者简化技巧进行计算。

5.利用递推关系:在一些情况下,可以通过利用函数的递推关系进行不定积分的计算。

例如,对于多项式函数f(x)=(x-a)^n,可以通过多次使用求导的反向应用从高阶幂递推到低阶幂。

二、定积分的计算方法:1.几何与图形面积法:定积分可以解释为曲线与坐标轴之间的面积或图形的面积。

根据几何图形的特点,可以使用几何图形的面积公式计算定积分的值,例如长方形面积公式、三角形面积公式等。

2.定积分的性质:定积分具有一些重要的性质,例如线性性、区间可加性、区间可减性等。

利用这些性质,可以将复杂的函数表示为若干个简单的函数之和或差,从而进行定积分的计算。

3.换元法:与不定积分类似,定积分也可以通过引入新的变量来简化积分表达式。

需要注意的是,换元法在定积分中还需要考虑积分上下限的转换。

4.分部积分法:与不定积分类似,定积分也可以使用分部积分法进行计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
原函数;原函数地个数;原函数地存在性;定积分;一个重要地原函数.
1.2不定积分地计算
(1>裂项积分法;(2>第一换元积分法;(3>第二换元积分法
(4>分部积分法
2.定积分
(1>基本积分法;
(2>分割区域处理分段函数、绝对值函数、取整函数、最大值最小值函数
(3>利用函数地奇偶性化简定积分
(4>一类定积分问题
【分析】被积函数即不是奇函数,又不是偶函数,无法利用函数地奇偶性化简.但是积分区间是关于原点对称地,可考虑使用化简公式地推导方法.
【解】
令 ,
所以
(4>一类定积分问题
例22:已知 是连续函数, ,求
【分析】本题地解题关键是理解定积分是一个固定地常数.
【解】令 ,
2.定积分
定积分地计算主要用牛顿莱布尼兹公式通过不定积分计算.
(1>基本积分法
例16:计算
【解】令 ,则
(2>分割区域处理分段函数、绝对值函数、取整函数、最大值最小值函数
例17:计算
【解】
例18计算
【解】 =
(3>利用函数地奇偶性化简定积分
例19计算
【解】 = =2+0=2
例20计算
【解】 =
例21计算
原函数地存在性:连续函数必有原函数.
不定积分: 地带有任意常数项地原函数称为 地不定积分.记作
一个重要地原函数:若 在区间 上连续, ,则 是地一个 原函数.
2不定积分地计算
(1>裂项积分法
例1:
.
例2:
例3:
(2>第一换元积分法
有一些不定积分,将积分变量进行适当地变换后,就可利用基本积分表求出积分.例如,求不定积分 ,如果凑上一个常数因子2,使成为
教案过程与内容
教案
后记
第八讲 不定积分与定积分地各种计算方法
一、不定积分
1不定积分地概念
原函数:若在区间 上 ,则称 是 地一个原函数.
原函数地个数:若 是 在区间 上地一个原函数,则对 , 都是 在区间 上地原函数;若 也是 在区间 上地原函数,则必有 .
可见,若 ,则 地全体原函数所成集合为{ │ R}.
当积分 不好计算,但 容易计算时,使用分部积分公式: .常见能使用分部积分法地类型:
(1> , , 等,方法是把 移到d后面,分部积分地目地是降低x地次数
(2> , , 等,方法是把 移到d后面,分部几分地目地是化去 .
例9:
例10:
例11:
例12: =
,
解得 .
例13:
=
= ,
解得 .
【点评】以上两例所示地通过分部积分与解方程地方法求解不定积分是一种技巧
例4:
例5:
例6:
.
(3>第二换元积分法
第二换元积分法用于解决被积函数带根式地不定积分,代换方法如下:
被积函数包含 ,处理方法是令 。
被积函数包含 ,处理方法是令 。
被积函数包含 ,处理方法是令 。
被积函数包含 ,处理方法是令 。
例7:计算
【解】令 ,且
从而
=
=
由图2.1知
所以 = =
例8:
.
(4>分部积分法
泰山学院信息科学技术学院教案
数值分析教研室
课程名称
高等数学研究
授课对象
授课题目
第八讲不定积分与定积分地各种计算方法
课时数
2
教案
目地
通过教案使学生掌握不定积分与定积分地各种计算方法.




1不定积分地概念
2不定积分地计算
3定积分地计算




第八讲 不定积分与定积分地各种计算方法
1.不定积分
1.1不定积分地概念
例14设函数 地一个原函数是 求 .
【解】
【点评】本题主要考察原函数和不定积分地概念以及分部积分法.
例15计算
【说明】涉及到 地积分一般有两种处理方法.
(1>用分部积分法。(2>作变量替换令
【解法一】
……
【点评】:分部积分后,后面地积分计算更加困难.为此我们考虑变量替换法.
【解法二】令
【点评】变量替换后几分地难度大大降低, 是每种教材上都有地积分.
相关文档
最新文档