不等式组与简单的线性规划
高一 二元一次不等式(组)与简单的线性规划问题知识点+例题+练习 含答案

1.二元一次不等式表示的平面区域(1)一般地,二元一次不等式Ax+By+C>0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域.我们把直线画成虚线以表示区域不包括边界直线.当我们在坐标系中画不等式Ax+By+C≥0所表示的平面区域时,此区域应包括边界直线,则把边界直线画成实线.(2)由于对直线Ax+By+C=0同一侧的所有点(x,y),把它的坐标(x,y)代入Ax+By+C,所得的符号都相同,所以只需在此直线的同一侧取一个特殊点(x0,y0)作为测试点,由Ax0+By0+C的符号即可判断Ax+By+C>0表示的直线是Ax+By+C=0哪一侧的平面区域.2.线性规划相关概念名称意义约束条件由变量x,y组成的一次不等式线性约束条件由x,y的一次不等式(或方程)组成的不等式组目标函数欲求最大值或最小值的函数线性目标函数关于x,y的一次解析式可行解满足线性约束条件的解可行域所有可行解组成的集合最优解使目标函数取得最大值或最小值的可行解线性规划问题在线性约束条件下求线性目标函数的最大值或最小值问题3.(1)画二元一次不等式表示的平面区域的直线定界,特殊点定域:①直线定界:不等式中无等号时直线画成虚线,有等号时直线画成实线;②特殊点定域:若直线不过原点,特殊点常选原点;若直线过原点,则特殊点常选取(0,1)或(1,0)来验证.(2)利用“同号上,异号下”判断二元一次不等式表示的平面区域: 对于Ax +By +C >0或Ax +By +C <0,则有①当B (Ax +By +C )>0时,区域为直线Ax +By +C =0的上方; ②当B (Ax +By +C )<0时,区域为直线Ax +By +C =0的下方. (3)最优解和可行解的关系:最优解必定是可行解,但可行解不一定是最优解.最优解不一定唯一,有时唯一,有时有多个. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)不等式Ax +By +C >0表示的平面区域一定在直线Ax +By +C =0的上方.( × ) (2)线性目标函数的最优解可能是不唯一的.( √ )(3)目标函数z =ax +by (b ≠0)中,z 的几何意义是直线ax +by -z =0在y 轴上的截距.( × ) (4)不等式x 2-y 2<0表示的平面区域是一、三象限角的平分线和二、四象限角的平分线围成的含有y 轴的两块区域.( √ )1.如图阴影部分表示的区域可用二元一次不等式组表示为________.答案 ⎩⎪⎨⎪⎧x +y -1≥0,x -2y +2≥0解析 两直线方程分别为x -2y +2=0与x +y -1=0. 由(0,0)点在直线x -2y +2=0右下方可知x -2y +2≥0, 又(0,0)点在直线x +y -1=0左下方可知x +y -1≥0,即⎩⎪⎨⎪⎧x +y -1≥0,x -2y +2≥0为所表示的可行域. 2.(教材改编)不等式组⎩⎪⎨⎪⎧x -3y +6<0,x -y +2≥0表示的平面区域是________.答案 ③解析 用特殊点代入,比如(0,0),容易判断为③. 3.若实数x ,y 满足不等式组⎩⎪⎨⎪⎧x -y ≥-1,x +y ≥1,3x -y ≤3,则该约束条件所围成的平面区域的面积是________. 答案 2解析 因为直线x -y =-1与x +y =1互相垂直, 所以如图所示的可行域为直角三角形,易得A (0,1),B (1,0),C (2,3),故AB =2,AC =22, 其面积为12×AB ×AC =2.4.(2015·北京改编)若x ,y 满足⎩⎪⎨⎪⎧x -y ≤0,x +y ≤1,x ≥0,则z =x +2y 的最大值为________.答案 2解析 可行域如图所示.目标函数化为y =-12x +12z ,当直线y =-12x +12z 过点A (0,1)时,z 取得最大值2.5.(教材改编)投资生产A 产品时,每生产100吨需要资金200万元,需场地200平方米;投资生产B 产品时,每生产100吨需要资金300万元,需场地100平方米.现某单位可使用资金1 400万元,场地900平方米,则上述要求可用不等式组表示为__________________(用x ,y 分别表示生产A ,B 产品的吨数,x 和y 的单位是百吨).答案 ⎩⎪⎨⎪⎧200x +300y ≤1 400,200x +100y ≤900,x ≥0,y ≥0解析 用表格列出各数据A B 总数 产品吨数 x y 资金 200x 300y 1 400 场地200x100y900所以不难看出,x ≥0,y ≥0,200x +300y ≤1 400,200x +100y ≤900.题型一 二元一次不等式(组)表示的平面区域命题点1 不含参数的平面区域问题例1 (1)不等式(x -2y +1)(x +y -3)≤0在坐标平面内表示的区域(用阴影部分表示),应是下列图形中的________.(2)不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域的面积等于________.答案 (1)③ (2)43解析 (1)(x -2y +1)(x +y -3)≤0⇒⎩⎪⎨⎪⎧x -2y +1≥0,x +y -3≤0,或⎩⎪⎨⎪⎧x -2y +1≤0,x +y -3≥0.画出平面区域后,只有③符合题意.(2)由题意得不等式组表示的平面区域如图阴影部分,A (0,43),B (1,1),C (0,4),则△ABC 的面积为12×1×83=43.命题点2 含参数的平面区域问题 例2 若不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域被直线y =kx +43分为面积相等的两部分,则k 的值是____________________________________________________________. 答案 73解析 不等式组表示的平面区域如图所示.由于直线y =kx +43过定点⎝⎛⎭⎫0,43.因此只有直线过AB 中点时,直线y =kx +43能平分平面区域.因为A (1,1),B (0,4),所以AB 中点D ⎝⎛⎭⎫12,52. 当y =kx +43过点⎝⎛⎭⎫12,52时,52=k 2+43, 所以k =73.思维升华 (1)求平面区域的面积:①首先画出不等式组表示的平面区域,若不能直接画出,应利用题目的已知条件转化为不等式组问题,从而再作出平面区域;②对平面区域进行分析,若为三角形应确定底与高,若为规则的四边形(如平行四边形或梯形),可利用面积公式直接求解,若为不规则四边形,可分割成几个三角形分别求解再求和即可.(2)利用几何意义求解的平面区域问题,也应作出平面图形,利用数形结合的方法去求解.(1)不等式组⎩⎪⎨⎪⎧x ≥0,x +y ≤3,y ≥x +1表示的平面区域为Ω,直线y =kx -1与区域Ω有公共点,则实数k 的取值范围为________. (2)已知约束条件⎩⎪⎨⎪⎧x ≥1,x +y -4≤0,kx -y ≤0表示面积为1的直角三角形区域,则实数k 的值为________.答案 (1)[3,+∞) (2)1解析 (1)直线y =kx -1过定点M (0,-1),由图可知,当直线y =kx -1经过直线y =x +1与直线x +y =3的交点C (1,2)时,k 最小,此时k CM =2-(-1)1-0=3,因此k ≥3,即k ∈[3,+∞).(2)由于x =1与x +y -4=0不可能垂直,所以只有可能x +y -4=0与kx -y =0垂直或x =1与kx -y =0垂直.①当x +y -4=0与kx -y =0垂直时,k =1,检验知三角形区域面积为1,即符合要求. ②当x =1与kx -y =0垂直时,k =0,检验不符合要求.题型二 求目标函数的最值问题命题点1 求线性目标函数的最值例3 (2014·广东)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤x ,x +y ≤1,y ≥-1,且z =2x +y 的最大值和最小值分别为m 和n ,则m -n =________. 答案 6解析 画出可行域,如图阴影部分所示. 由z =2x +y ,得y =-2x +z .由⎩⎪⎨⎪⎧ y =x ,y =-1,得⎩⎪⎨⎪⎧x =-1,y =-1,∴A (-1,-1).由⎩⎪⎨⎪⎧ x +y =1,y =-1,得⎩⎪⎨⎪⎧x =2,y =-1,∴B (2,-1).当直线y =-2x +z 经过点A 时,z min =2×(-1)-1=-3=n .当直线y =-2x +z 经过点B 时,z max =2×2-1=3=m ,故m -n =6. 命题点2 求非线性目标函数的最值 例4 实数x ,y 满足⎩⎪⎨⎪⎧x -y +1≤0,x >0,y ≤2.(1)若z =yx ,求z 的最大值和最小值,并求z 的取值范围;(2)若z =x 2+y 2,求z 的最大值与最小值,并求z 的取值范围. 解 由⎩⎪⎨⎪⎧x -y +1≤0,x >0,y ≤2,作出可行域,如图中阴影部分所示.(1)z =yx表示可行域内任一点与坐标原点连线的斜率,因此yx的范围为直线OB 的斜率到直线OA 的斜率(直线OA 的斜率不存在,即z max 不存在).由⎩⎪⎨⎪⎧x -y +1=0,y =2,得B (1,2), ∴k OB =21=2,即z min =2,∴z 的取值范围是[2,+∞).(2)z =x 2+y 2表示可行域内的任意一点与坐标原点之间距离的平方. 因此x 2+y 2的值最小为OA 2(取不到),最大值为OB 2.由⎩⎪⎨⎪⎧x -y +1=0,x =0,得A (0,1), ∴OA 2=(02+12)2=1,OB 2=(12+22)2=5,∴z 的取值范围是(1,5]. 引申探究1.若z =y -1x -1,求z 的取值范围.解 z =y -1x -1可以看作过点P (1,1)及(x ,y )两点的直线的斜率.∴z 的取值范围是(-∞,0).2.若z =x 2+y 2-2x -2y +3.求z 的最大值、最小值. 解 z =x 2+y 2-2x -2y +3 =(x -1)2+(y -1)2+1,而(x -1)2+(y -1)2表示点P (1,1)与Q (x ,y )的距离的平方,(PQ 2)max =(0-1)2+(2-1)2=2, (PQ 2)min =(|1-1+1|12+(-1)2)2=12,∴z max =2+1=3,z min =12+1=32.命题点3 求线性规划的参数例5 已知a >0,x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y ≤3,y ≥a (x -3),若z =2x +y 的最小值为1,则a =________.答案 12解析 作出不等式组表示的可行域,如图(阴影部分).易知直线z =2x +y 过交点A 时,z 取最小值,由⎩⎪⎨⎪⎧x =1,y =a (x -3), 得⎩⎪⎨⎪⎧x =1,y =-2a , ∴z min =2-2a =1,解得a =12.思维升华 (1)先准确作出可行域,再借助目标函数的几何意义求目标函数的最值. (2)当目标函数是非线性的函数时,常利用目标函数的几何意义来解题,常见代数式的几何意义有: ①x 2+y 2表示点(x ,y )与原点(0,0)的距离,(x -a )2+(y -b )2表示点(x ,y )与点(a ,b )的距离;②yx 表示点(x ,y )与原点(0,0)连线的斜率,y -b x -a 表示点(x ,y )与点(a ,b )连线的斜率. (3)当目标函数中含有参数时,要根据临界位置确定参数所满足条件.(1)(2015·无锡一模)在直角坐标平面内,不等式组⎩⎪⎨⎪⎧y ≤x +1,y ≥0,0≤x ≤t所表示的平面区域的面积为32,则t 的值为________.(2)(2014·安徽改编)x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0.若z =y -ax 取得最大值的最优解不唯一,则实数a 的值为________. 答案 (1)1 (2)2或-1 解析 (1)不等式组⎩⎨⎧y ≤x +1,y ≥0,0≤x ≤t所表示的平面区域如图中阴影部分所示.由⎩⎪⎨⎪⎧y =x +1,x =t ,解得交点B (t ,t +1),在y =x +1中,令x =0得y =1,即直线y =x +1与y 轴的交点为C (0,1),由平面区域的面积S =(1+t +1)×t 2=32,得t 2+2t -3=0,解得t =1或t =-3(不合题意,舍去).(2)如图,由y =ax +z 知z 的几何意义是直线在y 轴上的截距,故当a >0时,要使z =y -ax 取得最大值的最优解不唯一,则a =2; 当a <0时,要使z =y -ax 取得最大值的最优解不唯一,则a =-1.题型三 线性规划的实际应用例6 某客运公司用A 、B 两种型号的车辆承担甲、乙两地间的长途客运业务,每车每天往返一次.A 、B 两种车辆的载客量分别为36人和60人,从甲地去乙地的营运成本分别为1 600元/辆和2 400元/辆,公司拟组建一个不超过21辆车的客运车队,并要求B 型车不多于A 型车7辆.若每天运送人数不少于900,且使公司从甲地去乙地的营运成本最小,那么应配备A 型车、B 型车各多少辆?解 设A 型、B 型车辆分别为x 、y 辆,相应营运成本为z 元,则z =1 600x +2 400y .由题意,得x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤21,y ≤x +7,36x +60y ≥900,x ,y ≥0,x ,y ∈N .作可行域如图所示,可行域的三个顶点坐标分别为P (5,12),Q (7,14),R (15,6).由图可知,当直线z =1 600x +2 400y 经过可行域的点P 时,直线z =1 600x +2 400y 在y 轴上的截距z2 400最小,即z 取得最小值.故应配备A 型车5辆、B 型车12辆,可以满足公司从甲地去乙地的营运成本最小. 思维升华 解线性规划应用问题的一般步骤: (1)分析题意,设出未知量; (2)列出线性约束条件和目标函数; (3)作出可行域并利用数形结合求解; (4)作答.(2015·陕西改编)某企业生产甲、乙两种产品均需用A ,B 两种原料,已知生产1吨每种产品所需原料及每天原料的可用限额如表所示,如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为________万元.甲 乙 原料限额 A (吨) 3 2 12 B (吨)128答案 18解析 设每天甲、乙的产量分别为x 吨,y 吨,由已知可得⎩⎪⎨⎪⎧3x +2y ≤12,x +2y ≤8,x ≥0,y ≥0,目标函数z =3x +4y ,线性约束条件表示的可行域如图阴影部分所示:可得目标函数在点A 处取到最大值.由⎩⎪⎨⎪⎧x +2y =8,3x +2y =12,得A (2,3). 则z max =3×2+4×3=18(万元).8.含参数的线性规划问题的易错点典例 已知实数x ,y 满足⎩⎪⎨⎪⎧y ≥1,y ≤2x -1,x +y ≤m ,如果目标函数z =x -y 的最小值为-1,则实数m =________.易错分析 题目给出的区域边界“两静一动”,可先画出已知边界表示的区域,分析动直线的位置时容易出错,没有抓住直线x +y =m 和直线y =-x 平行这个特点;另外在寻找最优点时也容易找错区域的顶点.解析 显然,当m <2时,不等式组表示的平面区域是空集;当m =2时,不等式组表示的平面区域只包含一个点A (1,1).此时z min =1-1=0≠-1. 显然都不符合题意.故必有m >2,此时不等式组⎩⎪⎨⎪⎧y ≥1,y ≤2x -1,x +y ≤m所表示的平面区域如图所示,平面区域为一个三角形区域,其顶点为A (1,1),B (m -1,1),C (m +13,2m -13).由图可知,当直线y =x -z 经过点C 时,z 取得最小值, 最小值为m +13-2m -13=2-m3.由题意,得2-m3=-1,解得m =5.答案 5温馨提醒 (1)当约束条件含有参数时,要注意根据题目条件,画出符合条件的可行域.本题因含有变化的参数,可能导致可行域画不出来. (2)应注意直线y =x -z 经过的特殊点.[方法与技巧]1.平面区域的画法:线定界、点定域(注意实虚线).2.求最值:求二元一次函数z =ax +by (ab ≠0)的最值,将函数z =ax +by 转化为直线的斜截式:y =-a b x +z b ,通过求直线的截距zb 的最值间接求出z 的最值.最优解在顶点或边界取得.3.解线性规划应用题,可先找出各变量之间的关系,最好列成表格,然后用字母表示变量,列出线性约束条件;写出要研究的函数,转化成线性规划问题.4.利用线性规划的思想结合代数式的几何意义可以解决一些非线性规划问题. [失误与防范]1.画出平面区域.避免失误的重要方法就是首先使二元一次不等式标准化.2.在通过求直线的截距z b 的最值间接求出z 的最值时,要注意:当b >0时,截距zb 取最大值时,z 也取最大值;截距z b 取最小值时,z 也取最小值;当b <0时,截距zb 取最大值时,z 取最小值;截距zb 取最小值时,z 取最大值.A 组 专项基础训练(时间:30分钟)1.直线2x +y -10=0与不等式组⎩⎪⎨⎪⎧x ≥0,y ≥0,x -y ≥-2,4x +3y ≤20表示的平面区域的公共点有________个.答案 1解析 由不等式组画出平面区域如图(阴影部分).直线2x +y -10=0恰过点A (5,0),且其斜率k =-2<k AB =-43,即直线2x +y -10=0与平面区域仅有一个公共点A (5,0).2.若点(m,1)在不等式2x +3y -5>0所表示的平面区域内,则m 的取值范围是________. 答案 m >1解析 由2m +3-5>0,得m >1.3.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≥0,x -y -2≤0,y ≥1,则目标函数z =x +2y 的最小值为________.答案 3解析 由线性约束条件画出可行域(如图所示).由z =x +2y ,得y =-12x +12z ,12z 的几何意义是直线y =-12x +12z 在y 轴上的截距,要使z 最小,需使12z 最小,易知当直线y =-12x +12z 过点A (1,1)时,z 最小,最小值为3.4.若不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0,x +y ≤a ,表示的平面区域是一个三角形,则a 的取值范围是______________. 答案 (0,1]∪⎣⎡⎭⎫43,+∞ 解析 不等式组⎩⎨⎧x -y ≥0,2x +y ≤2,y ≥0表示的平面区域如图(阴影部分),求得A ,B 两点的坐标分别为⎝⎛⎭⎫23,23和(1,0),若原不等式组表示的平面区域是一个三角形,则a 取值范围是0<a ≤1或a ≥43.5.某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A 原料1千克、B 原料2千克;生产乙产品1桶需耗A 原料2千克、B 原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A 、B 原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是________元. 答案 2 800解析 设每天生产甲种产品x 桶,乙种产品y 桶,则根据题意得x 、y 的约束条件为⎩⎪⎨⎪⎧x ≥0,x ∈N ,y ≥0,y ∈N ,x +2y ≤12,2x +y ≤12.设获利z 元, 则z =300x +400y . 画出可行域如图.画直线l :300x +400y =0, 即3x +4y =0.平移直线l ,从图中可知,当直线过点M 时, 目标函数取得最大值.由⎩⎪⎨⎪⎧ x +2y =12,2x +y =12,解得⎩⎪⎨⎪⎧x =4,y =4,即M 的坐标为(4,4),∴z max =300×4+400×4=2 800(元).6.若函数y =2x 图象上存在点(x ,y )满足约束条件⎩⎪⎨⎪⎧x +y -3≤0,x -2y -3≤0,x ≥m ,则实数m 的最大值为________. 答案 1解析 在同一直角坐标系中作出函数y =2x的图象及⎩⎪⎨⎪⎧x +y -3≤0,x -2y -3≤0所表示的平面区域,如图阴影部分所示.由图可知,当m ≤1时,函数y =2x 的图象上存在点(x ,y )满足约束条件,故m 的最大值为1.7.(2015·枣庄模拟)已知实数x ,y 满足约束条件⎩⎪⎨⎪⎧x >0,4x +3y ≤4,y ≥0,则ω=y +1x的最小值是________. 答案 1解析 作出不等式组对应的平面区域如图,ω=y +1x 的几何意义是区域内的点P (x ,y )与定点A (0,-1)所在直线的斜率,由图象可知当P 位于点D (1,0)时,直线AP 的斜率最小,此时ω=y +1x 的最小值为-1-00-1=1.8.已知实数x ,y 满足⎩⎪⎨⎪⎧x -2y +1≥0,x <2,x +y -1≥0,则z =2x -2y -1的取值范围是__________.答案 [-53,5)解析 画出不等式组所表示的区域,如图中阴影部分所示,可知2×13-2×23-1≤z <2×2-2×(-1)-1,即z 的取值范围是[-53,5).9.铁矿石A 和B 的含铁率a ,冶炼每万吨铁矿石的CO 2的排放量b 及每万吨铁矿石的价格c 如表:a b (万吨) c (百万元)A 50% 1 3 B70%0.56某冶炼厂至少要生产1.9(万吨)铁,若要求CO 2的排放量不超过2(万吨),则购买铁矿石的最少费用为________(百万元). 答案 15解析 设购买铁矿石A 、B 分别为x 万吨,y 万吨,购买铁矿石的费用为z (百万元),则⎩⎪⎨⎪⎧0.5x +0.7y ≥1.9,x +0.5y ≤2,x ≥0,y ≥0.目标函数z =3x +6y ,由⎩⎪⎨⎪⎧0.5x +0.7y =1.9,x +0.5y =2,得⎩⎪⎨⎪⎧x =1,y =2.记P (1,2), 画出可行域可知,当目标函数z =3x +6y 过点P (1,2)时,z 取到最小值15. 10.设实数x ,y 满足约束条件⎩⎪⎨⎪⎧3x -y -6≤0,x -y +2≥0,x ≥0,y ≥0,若目标函数z =ax +by (a >0,b >0)的最大值为10,则a 2+b 2的最小值为________. 答案2513解析 因为a >0,b >0, 所以由可行域得,如图,当目标函数过点(4,6)时z 取最大值,∴4a +6b =10.a 2+b 2的几何意义是直线4a +6b =10上任意一点到点(0,0)的距离的平方,那么其最小值是点(0,0)到直线4a +6b =10距离的平方,则a 2+b 2的最小值是2513.B 组 专项能力提升(时间:20分钟)11.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y ≥1,x -y ≤1,y -1≤0,若z =x -2y 的最大值与最小值分别为a ,b ,且方程x 2-kx +1=0在区间(b ,a )上有两个不同实数解,则实数k 的取值范围是__________. 答案 (-103,-2)解析 作出可行域,如图所示,则目标函数z =x -2y 在点(1,0)处取得最大值1,在点(-1,1)处取得最小值-3, ∴a =1,b =-3,从而可知方程x 2-kx +1=0在区间(-3,1)上有两个不同实数解. 令f (x )=x 2-kx +1,则⎩⎪⎨⎪⎧f (-3)>0,f (1)>0,-3<k2<1,Δ=k 2-4>0⇒-103<k <-2.12.在平面直角坐标系中,点P 是由不等式组⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≥1所确定的平面区域内的动点,Q 是直线2x +y =0上任意一点,O 为坐标原点,则|OP →+OQ →|的最小值为________. 答案55解析 在直线2x +y =0上取一点Q ′,使得Q ′O →=OQ →, 则|OP →+OQ →|=|OP →+Q ′O →| =|Q ′P →|≥|P ′P →|≥|BA →|,其中P ′,B 分别为点P ,A 在直线2x +y =0上的投影,如图.因为|AB →|=|0+1|12+22=55,因此|OP →+OQ →|min =55.13.设平面点集A ={(x ,y )|(y -x )·(y -1x )≥0},B ={(x ,y )|(x -1)2+(y -1)2≤1},则A ∩B 所表示的平面图形的面积为________. 答案 π2解析 平面点集A 表示的平面区域就是不等式组⎩⎪⎨⎪⎧ y -x ≥0,y -1x ≥0与⎩⎪⎨⎪⎧y -x ≤0,y -1x≤0表示的两块平面区域,而平面点集B 表示的平面区域为以点(1,1)为圆心, 以1为半径的圆及圆的内部, 作出它们表示的平面区域如图所示,图中的阴影部分就是A ∩B 所表示的平面图形. 由于圆和曲线y =1x 关于直线y =x 对称,因此,阴影部分所表示的图形面积为圆面积的12,即为π2.14.已知圆C :(x -a )2+(y -b )2=1,平面区域Ω:⎩⎪⎨⎪⎧ x +y -7≤0,x -y +3≥0,y ≥0.若圆心C ∈Ω,且圆C与x 轴相切,则a 2+b 2的最大值为________.答案 37解析 由已知得平面区域Ω为△MNP 内部及边界.∵圆C 与x 轴相切,∴b =1. 显然当圆心C 位于直线y =1与x +y -7=0的交点(6,1)处时,a max =6.∴a 2+b 2的最大值为62+12=37.15.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧ x +2y -3≤0,x +3y -3≥0,y -1≤0,若目标函数z =ax +y (其中a >0)仅在点(3,0)处取得最大值,则a 的取值范围是__________.答案 ⎝⎛⎭⎫12,+∞解析 画出x 、y 满足约束条件的可行域如图所示,要使目标函数z =ax +y 仅在点(3,0)处取得最大值,则直线y =-ax +z 的斜率应小于直线x +2y -3=0的斜率,即-a <-12,∴a >12.16.给定区域D :⎩⎪⎨⎪⎧ x +4y ≥4,x +y ≤4,x ≥0,令点集T ={(x 0,y 0)∈D |x 0,y 0∈Z ,(x 0,y 0)是z =x +y 在D上取得最大值或最小值的点},则T 中的点共确定________条不同的直线.答案 6解析 作出图形可知,△ABF 所围成的区域即为区域D ,其中A (0,1)是z 在D 上取得最小值的点,B ,C ,D ,E ,F 是z 在D 上取得最大值的点,则T 中的点共确定AB ,AC ,AD ,AE ,AF ,BF 共6条不同的直线.。
高考数学 专题27 二元一次不等式(组)与简单的线性规划问题热点题型和提分秘籍 理-人教版高三全册数

专题27 二元一次不等式(组)与简单的线性规划问题1.会从实际情境中抽象出二元一次不等式组。
2.了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组。
3.会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决。
热点题型一 二元一次不等式(组)表示平面区域例1、 (1)在平面直角坐标系xOy 中,不等式组⎩⎪⎨⎪⎧1≤x +y ≤3,-1≤x -y ≤1表示图形的面积等于( )A .1B .2C .3D .4(2)已知不等式组⎩⎪⎨⎪⎧x -y +1≥0,x +y -1≥0,3x -y -3≤0表示的平面区域为D ,若直线y =kx +1将区域D 分成面积相等的两部分,则实数k 的值是________。
解析:(1)不等式组对应的平面区域如图,对应的区域为正方形ABCD , 其中A (0,1),D (1,0),边长AD=2,则正方形的面积S=2×2=2,故选B。
(2)区域D如图中的阴影部分所示,直线y=kx+1经过定点C(0,1),如果其把区域D划分为面积相等的两个部分,则直线y=kx+1只要经过AB的中点即可。
【提分秘籍】平面区域面积问题的解题思路(1)求平面区域的面积:①首先画出不等式组表示的平面区域,若不能直接画出,应利用题目的已知条件转化为不等式组问题,从而再作出平面区域;②对平面区域进行分析,若为三角形应确定底与高,若为规则的四边形(如平行四边形或梯形),可利用面积公式直接求解。
若为不规则四边形,可分割成几个三角形分别求解再求和即可。
(2)利用几何意义求解的平面区域问题,也应作出平面图形,利用数形结合的方法去求解。
【举一反三】已知约束条件⎩⎪⎨⎪⎧x ≥1,x +y -4≤0,kx -y ≤0表示面积为1的直角三角形区域,则实数k 的值为( )A .1B .-1C .0D .-2解析:先作出不等式组⎩⎪⎨⎪⎧x ≥1,x +y ≤4对应的平面区域,如图:热点题型二 求线性目标函数的最值例2、【2017课标II ,理5】设x ,y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最小值是( )A .15-B .9-C .1D .9 【答案】A【解析】x 、y 满足约束条件2+330{2330 30x y x y y -≤-+≥+≥的可行域如图:z =2x +y 经过可行域的A 时,目标函数取得最小值,由3{2330y x y =--+= 解得A (−6,−3),则z =2x +y 的最小值是:−15. 故选:A.【变式探究】设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -1≥0,x -y -1≤0,x -3y +3≥0,则z =x +2y 的最大值为( )A .8B .7C .2D .1【提分秘籍】利用可行域求线性目标函数最值的方法首先利用约束条件作出可行域,根据目标函数找到最优解时的点,解得点的坐标代入求解即可。
二元一次不等式(组)与简单的线性规划问题1

高三一轮复习数学学案二元一次不等式(组)与简单的线性规划问题一、考纲要求及重难点: 1、 考纲要求:(1) 会从实际情境中抽象出二元一次不等式(组)。
(2) 了解二元一次不等式(组)的几何意义,能用平面区域表示二元一次不等式(组)。
(3) 会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决。
2、 重难点:(1) 以考查线性目标函数的最值为重点,兼顾考查代数式的几何意义(如斜率、距离、面积)。
(2) 多在选择题、填空题中出现,有时也会在解答题中出现,常与实际问题相联系,列出线性约束条件,求出最优解。
二、课前自测:1、下列各点中,不在10x y +-≤表示的平面区域内的点是( ) A 、(0,0) B 、(1,1)- C 、(1,3)- D 、(2,3)-2、直线2x+y-10=0与不等式组0024320x y x y x y ≥⎧⎪≥⎪⎨-≥-⎪⎪+≤⎩表示的平面区域的公共点有( )A 、0个B 、1个C 、2个D 、无数个3.(2013山东)在平面直角坐标系xoy 中,M 为不等式组220,210,380,x y x y x y --≥⎧⎪+-≥⎨⎪+-≤⎩所表示的区域上一动点,则直线OM 斜率的最小值为( )A .2B .1C .13-D .12-4.实数x ,y 满足不等式组5003x y x y x -+≥⎧⎪+≥⎨⎪≤⎩,那么目标函数24z x y =+的最小值是( )A 、6B 、-6C 、-2D 、45.完成一项装修工程需要木工和瓦工共同完成。
请木工需付工资每人50元,请瓦工需付工资每人40元,现有工人工资预算2000元,设木工x 人,瓦工y 人,请工人的约束条件是 。
三、知识梳理:1、二元一次不等式表示的平面区域 已知直线l :0Ax By C ++=(1)开半平面与闭半平面直线l 把坐标平面分成 部分,每个部分叫开半平面, 与 的并集叫做闭半平面。
(2)不等式表示的区域以不等式解 为坐标的所有点构成的集合,叫做不等式表示的区域或不等式的图象。
第3讲 二元一次不等式(组)与简单的线性

二元一次不等式(组)与简单的线性规划问题一、选择题1. 设变量x ,y 满足10,020,015,x y x y y -⎧⎪≤+≤⎨⎪≤≤⎩则2x +3y 的最大值为( )A. 20B.35C. 45D. 55解析 画出可行域,根据图形可知当x=5,y=15时2x +3y 最大,最大值为55,故选D. 答案 D2.设实数x ,y 满足不等式组⎩⎨⎧x +2y -5>0,2x +y -7>0,x ≥0,y ≥0.若x ,y 为整数,则3x +4y 的最小值是( ).A .14B .16C .17D .19解析 线性区域边界上的整点为(3,1),因此最符合条件的整点可能为(4,1)或(3,2),对于点(4,1),3x +4y =3×4+4×1=16;对于点(3,2),3x +4y =3×3+4×2=17,因此3x +4y 的最小值为16. 答案 B 3.若不等式组⎩⎨⎧x -y +5≥0,y ≥a ,0≤x ≤2表示的平面区域是一个三角形,则a 的取值范围是 ( ).A .(-∞,5)B .[7,+∞)C .[5,7)D .(-∞,5)∪[7,+∞)解析 画出可行域,知当直线y =a 在x -y +5=0与y 轴的交点(0,5)和x -y +5=0与x =2的交点(2,7)之间移动时平面区域是三角形.故5≤a <7. 答案 C4.设实数x ,y 满足条件⎩⎨⎧4x -y -10≤0,x -2y +8≥0,x ≥0,y ≥0,若目标函数z =ax +by (a >0,b >0)的最大值为12,则2a +3b的最小值为( ).A.256B.83C.113D .4解析 由可行域可得,当x =4,y =6时,目标函数z =ax +by 取得最大值,∴4a +6b =12,即a 3+b 2=1.∴2a +3b =⎝ ⎛⎭⎪⎫2a +3b ·⎝ ⎛⎭⎪⎫a 3+b 2=136+b a +a b ≥136+2=256.答案 A5.实数x ,y 满足⎩⎨⎧x ≥1,y ≤a (a >1),x -y ≤0,若目标函数z =x +y 取得最大值4,则实数a 的值为 ( ).A .4B .3C .2D.32解析 作出可行域,由题意可知可行域为△ABC 内部及边界,y =-x +z ,则z 的几何意义为直线在y 轴上的截距,将目标函数平移可知当直线经过点A 时,目标函数取得最大值4,此时A 点坐标为(a ,a ),代入得4=a +a =2a ,所以a =2.答案 C6.某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A 原料1千克、B 原料2千克;生产乙产品1桶需耗A 原料2千克、B 原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A 、B 原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是( ).A .1 800元B .2 400元C .2 800元D .3 100元解析 设某公司生产甲产品x 桶,生产乙产品y 桶,获利为z元,则x ,y 满足的线性约束条件为错误!目标函数z =300x +400y .作出可行域,如图中四边形OABC 的边界及其内部整点.作直线l 0:3x +4y =0,平移直线l 0经可行域内点B时,z 取最大值,由⎩⎨⎧2x +y =12,x +2y =12,得B (4,4),满足题意,所以z max =4×300+4×400=2 800.答案 C二、填空题7.若点P (m,3)到直线4x -3y +1=0的距离为4,且点P 在不等式2x +y <3表示的平面区域内,则m =________.解析由题意可得⎩⎨⎧|4m -9+1|5=4,2m +3<3,解得m =-3.答案 -38.若x ,y 满足约束条件⎝ ⎛x ≥0,x +2y ≥3,2x +y ≤3,则x -y 的取值范围是________.解析 记z =x -y ,则y =x -z ,所以z 为直线y =x -z 在y 轴上的截距的相反数,画出不等式组表示的可行域如图中△ABC 区域所示.结合图形可知,当直线经过点B (1,1)时,x -y 取得最大值0,当直线经过点C (0,3)时,x -y 取得最小值-3. 答案 [-3,0]9.设实数x 、y满足⎩⎨⎧x -y -2≤0,x +2y -4≥0,2y -3≤0,则yx 的最大值是________.解析 不等式组确定的平面区域如图阴影部分. 设y x =t ,则y =tx ,求yx 的最大值,即求y =tx 的斜率的最大值.显然y =tx 过A 点时,t 最大. 由⎩⎨⎧x +2y -4=0,2y -3=0,解得A ⎝ ⎛⎭⎪⎫1,32.代入y =tx ,得t =32.所以y x 的最大值为32. 答案 3210.铁矿石A 和B 的含铁率a ,冶炼每万吨铁矿石的CO 2的排放量b 及每万吨铁矿石的价格c 如下表:a b /万吨 c /百万元 A 50% 1 3 B70%0.56某冶炼厂至少要生产1.9(万吨)铁,若要求CO 2的排放量不超过2(万吨),则购买铁矿石的最少费用为________百万元.解析 可设需购买A 矿石x 万吨,B 矿石y 万吨,则根据题意得到约束条件为:⎩⎨⎧x ≥0,y ≥0,0.5x +0.7y ≥1.9,x +0.5y ≤2,目标函数为z =3x +6y ,作图可知当目标函数经过(1,2)点时目标函数取得最小值,最小值为z min =3×1+6×2=15(百万元).答案 15 三、解答题11.设集合A ={(x ,y )|x ,y,1-x -y 是三角形的三边长}.(1)求出x ,y 所满足的不等式; (2)画出点(x ,y )所在的平面区域.解 (1)已知条件即⎩⎨⎧x +y >1-x -y >0,x +1-x -y >y >0,y +1-x -y >x >0,化简即⎩⎪⎨⎪⎧-x +12<y <-x +1,0<y <12,0<x <12.(2)区域如下图.12.画出不等式组⎩⎨⎧x -y +5≥0,x +y ≥0,x ≤3表示的平面区域,并回答下列问题:(1)指出x 、y 的取值范围;(2)平面区域内有多少个整点?解 (1)不等式x -y +5≥0表示直线x -y +5=0上及其右下方的点的集合,x +y ≥0表示直线x +y =0上及其右上方的点的集合,x ≤3表示直线x =3上及其左方的点的集合.所以,不等式组⎩⎨⎧x -y +5≥0,x +y ≥0,x ≤3表示的平面区域如图所示.结合图中可行域得x ∈⎣⎢⎡⎦⎥⎤-52,3,y ∈[-3,8].(2)由图形及不等式组知⎩⎪⎨⎪⎧-x ≤y ≤x +5,-52≤x ≤3,且x ∈Z ,当x =3时,-3≤y ≤8,有12个整点; 当x =2时,-2≤y ≤7,有10个整点; 当x =1时,-1≤y ≤6,有8个整点; 当x =0时,0≤y ≤5,有6个整点; 当x =-1时,1≤y ≤4,有4个整点; 当x =-2时,2≤y ≤3,有2个整点;∴平面区域内的整点共有2+4+6+8+10+12=42(个).13.若x ,y 满足约束条件⎩⎨⎧x +y ≥1,x -y ≥-1,2x -y ≤2,(1)求目标函数z =12x -y +12的最值.(2)若目标函数z =ax +2y 仅在点(1,0)处取得最小值,求a 的取值范围. 解 (1)作出可行域如图,可求得A (3,4),B (0,1),C (1,0). 平移初始直线12x -y =0,过A (3,4)取最小值-2,过C (1,0)取最大值1.∴z 的最大值为1,最小值为-2.(2)直线ax +2y =z 仅在点(1,0)处取得最小值,由图象可知-1<-a2<2,解得-4<a <2.故所求a 的取值范围是(-4,2).14.某工厂生产甲、乙两种产品,每种产品都有一部分是一等品,其余是二等品,已知甲产品为一等品的概率比乙产品为一等品的概率多0.25,甲产品为二等品的概率比乙产品为一等品的概率少0.05.(1)分别求甲、乙产品为一等品的概率P 甲,P 乙;(2)已知生产一件产品需要用的工人数和资金数如表所示,且该厂有工人32名,可用资金55万元.设x ,y 分别表示生产甲、乙产品的数量,在(1)的条件下,求x ,y 为何值时,z =xP 甲+yP 乙最大,最大值是多少?项目用量 产品工人(名)资金(万元)甲 4 20 乙85解 (1)依题意得⎩⎨⎧P 甲-P 乙=0.25,1-P 甲=P 乙-0.05,解得⎩⎨⎧P 甲=0.65,P 乙=0.4,故甲产品为一等品的概率P 甲=0.65,乙产品为一等品的概率P 乙=0.4. (2)依题意得x 、y 应满足的约束条件为⎩⎨⎧4x +8y ≤32,20x +5y ≤55,x ≥0,y ≥0,且z =0.65x +0.4y .作出不等式组所表示的平面区域,如图阴影部分,即可行域.作直线l 0:0.65x +0.4y =0即13x +8y =0,把直线l 向上方平移到l 1的位置时,直线经过可行域内的点M ,此时z 取得最大值.解方程组⎩⎨⎧x +2y =8,4x +y =11,得x =2,y =3.故M 的坐标为(2,3),所以z 的最大值为z max =0.65×2+0.4×3=2.5.所以,当x=2,y =3时,z 取最大值为 2.5.。
二元一次不等式(组)与简单线性规划问题练习题含答案

二元一次不等式(组)与简单的线性规划问题练习题
1、画出下列二元不等式所表示的平面区域:21
03
x y x y +-≤-+
2、已知二次函数()f x 的图象过原点,且1(1)2(1)4f f -≤-≤≤≤,求(2)f -的取值范围。
3、求函数23z x y =+的最大值,式中的,x y 满足约束条件23240700
x y x y x y +-≤⎧⎪-≤⎪
⎨≥⎪⎪≥⎩
4、某公司的A ,B 两仓库至多可以分别调运出某型号的机器14台,8台。
甲地需要10台,乙地需要8台。
已知从A 仓库将1台机器运到甲地的运费为400元,运到乙地的运费为800元;B 仓库将1台机器运到甲地的运费为300元,运到乙地的运费为500元.问怎样安排调运方案,可使运输费用最少?
5、某厂拟生产甲、乙两种适销产品,每件销售收入分别为3千元、2千元.甲、乙两种产品都需要在A ,B 两种机床上加工,A ,B 两种机床上每加工一件甲种产品所需时间分别为1小时、2小时;每加工一件乙种产品所需时间分别为2小时、1小时.如果A ,B 两种机床每月有效使用时数分别为400小时、500小时。
如何安排生产,才能使销售总收入最大?
6、要将两种大小不同的钢板截成A ,B ,C 三种规格的小钢板,每张钢板可截得三种规格的小钢板的块数如下表所示:
如果至少需要A ,B ,C 三种规格的小钢板各15块,18块,27块,问分别截这两种钢板各多少张可以满足需要,且使所用两种钢板的张数最少?
二元一次不等式(组)与简单的线性规划问题练习题 答案
1、 2、 3、24 4、 5、 6、
二元一次不等式(组)与简单的线性规划问题练习题 答案
1、
2、 3、24 4、 5、 6、。
二元一次不等式(组)与简单的线性规划问题

第十四课时二元一次不等式(组)与简单的线性规划问题【知识与技能】会画出二元一次不等式(组)所表示的平面区域.【重点难点】教学重点:二元一次不等式(组)表示的平面区域.教学难点:准确理解和判断二元一次不等式所表示的平面区域在直线的哪一侧.【教学过程】一、问题与探究1.给出不等式(1)2x+3y-4>0,(2)x-4y+1≤0,观察它们有什么共同特点?提示:都含有个未知数,未知数的次数都是.归纳:(1)含有未知数,并且未知数的次数是的不等式叫做二元一次不等式.由几个二元一次不等式组成的不等式组叫做二元一次不等式组.(2)满足二元一次不等式(组)的x和y的取值构成的有序数对(x,y),称为二元一次不等式(组)的一个,所有这样的有序数对(x,y)构成的集合称为二元一次不等式(组)的.2.如图作直线x+y-1=0,此直线将坐标平面分成几部分?提示:三个部分.即直线的两侧与直线上.3.在直线上任取点P(x0,y0),它与方程x+y-1=0有怎样的关系?提示:P点的坐标满足方程.4.在直线上方取点(0,2),(1,3),(0,5),(2,2),把它们分别代入式子x+y-1中,其符号怎样?在直线的下方取点呢?提示:直线上方的点的坐标都满足x+y-1>0,直线下方的点的坐标都满足x+y-1<0.归纳:(1)直线l:ax+by+c=0把直角坐标平面分成的三个部分:①直线l上的点(x,y)的坐标满足.②直线l一侧的平面区域内的点(x,y)的坐标满足ax+by+c>0,另一侧平面区域内的点(x,y)的坐标满足.(2)在直角坐标平面内,把直线l:ax+by+c=0画成,表示平面区域包括这一边界直线;画成表示平面区域不包括这一边界直线.(3)①对于直线ax+by+c=0同一侧的所有点,把它的坐标(x,y)代入ax+by+c所得的符号都.②在直线ax+by+c=0的一侧取某个特殊点(x0,y0),由的符号可以断定ax+by+c>0表示的是直线ax+by+c=0哪一侧的平面区域.(4)二元一次不等式组表示的平面区域是各个不等式表示的平面区域的.二、合作与探究类型1 二元一次不等式表示的平面区域【例1】画出下列不等式表示的平面区域:(1)2x +y -10<0; (2)y ≤-2x +3.小结:1.画平面区域时,要分清实线和虚线,“≥”“≤”应画成实线如(2),“>,<”应画成虚线,如(1).2.二元一次不等式表示的平面区域的画法是以线定界,以点定域(以Ax +By +C >0为例).(1)“以线定界”,即画二元一次方程Ax +By +C =0表示的直线定边界,其中要注意实线或虚线.(2)“以点定域”,由于对在直线Ax +By +C =0同侧的点,实数Ax +By +C 的值的符号都相同,故为了确定Ax +By +C 的符号,可采用取特殊点法,如取原点等.【练习】画出下列不等式表示的平面区域:(1)2x -3y +6≥0; (2)x ≥1; (3)2y +3<0.类型2 二元一次不等式组表示的平面区域 【例2】已知不等式组⎩⎪⎨⎪⎧x >0,y >0,4x +3y ≤12.(1)画出不等式组表示的平面区域;(2)求不等式所表示的平面区域的面积;(3)求不等式所表示的平面区域内的整点坐标.小结:1.在画二元一次不等式组所表示的平面区域时,应先画出每个不等式表示的区域,再取它们的公共部分即可,其步骤为:①画线(注意实、虚);②定侧;③求“交”;④表示.2.画出不等式表示的平面区域后,常常要求区域面积或区域内整点的坐标.(1)求区域面积时,要先确定好平面区域的形状,注意与坐标轴垂直的直线及区域端点的坐标,这样易求底与高.必要时分割区域为特殊图形.(2)整点是横纵坐标都是整数的点,求整点坐标时要注意虚线上的点和靠近直线的点,以免出现错误.【练习】画出不等式组⎩⎪⎨⎪⎧x +2y -1≥0,2x +y -5≤0,y ≤x +2所表示的平面区域,并求其面积.类型3 用二元一次不等式组表示实际问题【例3】一工厂生产甲、乙两种产品,生产每吨产品的资源需求如下表所示,设厂里有工人200人,每天只能保证160 kW·h 的用电额度,每天用煤不得超过150 t ,请在直角坐标系中画出每天甲、乙两种产品允许的产量范围.小结:用平面区域来表示实际问题相关量的取值范围的基本方法是:先根据问题的需要设出有关量,再根据有关量的限制条件和实际意义写出不等式,组成不等式组,最后画出平面区域.注意:在实际问题中写不等式组时,必须把所有的限制条件都表示出来,而不能遗漏任何一个.【练习】甲、乙、丙三种食物的维生素A 、维生素D 的含量如下表:混合食物中至少含有560单位维生素A 和630单位维生素D.请在平面直角坐标系画出甲、乙两种食物的用量范围.三、课时小结1.一般地,二元一次不等式Ax +By +C >0或Ax +By +C <0在平面直角坐标系内表示直线Ax +By +C =0某一侧的所有点组成的平面区域.2.在画二元一次不等式表示的平面区域时,应用“直线定边界、特殊点定区域”的方法来画区域.取点时,若直线不过原点,一般用“原点定区域”;若直线过原点,则取点(1,0)即可.总之,尽量减少运算量.3.画平面区域时,注意边界线的虚实问题. 四、课时作业1.(2013·岳阳高二检测)图中阴影部分表示的平面区域满足的不等式是( ) A .x +y -1<0 B .x +y -1>0 C .x -y -1<0D .x -y -1>02.(2013·新余高二检测)在平面直角坐标系中,可表示满足不等式x 2-y 2≤0的点(x ,y )的集合(用阴影部分来表示)的是( )3.(2013·福建师大附中高二检测)在平面直角坐标系中,若点(2,t )在直线x -2y +4=0的右下方区域包括边界,则t 的取值范围是( )A .t <3B .t >3C .t ≥3D .t ≤3 4. 5.若不等式组⎩⎪⎨⎪⎧x -y +5≥0,y ≥a ,0≤x ≤2表示的平面区域是一个三角形,则a 的取值范围是( )A .a <5B .a ≥7C .5≤a <7D .a <5或a ≥7 5.点P (m ,n )不在不等式5x +4y -1>0表示的平面区域内,则m ,n 满足的条件是________. 6.(2013·苏州高二检测)不等式|2x +y +m |<3表示的平面区域包含点(0,0)和点(-1,1),则m 的取值范围是________.7.(2013·南昌高二检测)已知点(3,1)和(-4,6)在直线3x -2y +a =0的两侧,则a 的取值范围是________.8.在△ABC 中,A (3,-1),B (-1,1),C (1,3),写出△ABC (包含边界)内部所对应的二元一次不等式组.9.画出下列不等式(组)表示的平面区域.(1)(x -y )(x -y -1)≤0; (2)|3x +4y -1|<5; (3)x ≤|y |≤2x .。
二元一次不等式(组)及简单的线性规划问题

第2讲 二元一次不等式(组)及简单的线性规划问题, [学生用书P111])1.二元一次不等式(组)表示的平面区域不等式(组) 表示区域 Ax +By +C >0 直线Ax +By +C =0某一侧的所有点组成的平面区域不包括边界直线Ax +By +C ≥0 包括边界直线 不等式组 各个不等式所表示平面区域的公共部分 2.二元一次不等式(组)的解集满足二元一次不等式(组)的x 和y 的取值构成的有序数对(x ,y ),叫做二元一次不等式(组)的解,所有这样的有序数对(x ,y )构成的集合称为二元一次不等式(组)的解集.3.线性规划的有关概念名称 意义 约束条件 由变量x ,y 组成的不等式(组) 线性约束条件 由x ,y 的一次不等式(或方程)组成的不等式(组) 目标函数 关于变量x ,y 的函数解析式,如z =x +2y 线性目标函数 关于变量x ,y 的一次解析式 可行解 满足线性约束条件的解(x ,y ) 可行域 所有可行解组成的集合 最优解 使目标函数取得最大值或最小值的可行解 线性规划问题 在线性约束条件下求线性目标函数的最大值或最小值问题 1.辨明两个易误点(1)画出平面区域,避免失误的重要方法就是首先将二元一次不等式化为ax +by +c >0(a >0)的形式;(2)线性规划问题中的最优解不一定是唯一的,即可行域内使目标函数取得最值的点不一定只有一个,也可能有无数多个,也可能没有.2.求z =ax +by (ab ≠0)的最值方法将函数z =ax +by 转化为直线的斜截式:y =-a b x +z b ,通过求直线的截距zb的最值间接求出z 的最值.(1)当b >0时,截距z b 取最大值时,z 也取最大值;截距zb 取最小值时,z 也取最小值;(2)当b <0时,截距z b 取最大值时,z 取最小值;截距zb取最小值时,z 取最大值.1.教材习题改编 不等式x -2y +6<0表示的区域在直线x -2y +6=0的( ) A .右上方 B .右下方 C .左上方 D .左下方C [解析] 画出x -2y +6<0的图象如图所示,可知该区域在直线x -2y +6=0的左上方.故选C.2.教材习题改编 已知实数x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤x ,x +y ≤1,y ≥-1,则z =2x +y 的最大值为( )A .3B .32C .-32D .-3A [解析] 画出可行域,如图阴影部分所示.由z =2x +y ,知y =-2x +z ,当目标函数过点(2,-1)时直线在y 轴上的截距最大,为3.3.(2016·高考北京卷)已知A (2,5),B (4,1).若点P (x ,y )在线段AB 上,则2x -y的最大值为( )A .-1B .3C .7D .8C [解析] 依题意得k AB =5-12-4=-2,所以线段l AB :y -1=-2(x -4),x ∈[2,4],即y =-2x +9,x ∈[2,4],故2x -y =2x -(-2x +9)=4x -9,x ∈[2,4].设h (x )=4x -9,易知h (x )=4x -9在[2,4]上单调递增,故当x =4时,h (x )max =4×4-9=7.4.(2017·扬州模拟)点(-2,t )在直线2x -3y +6=0的上方,则t 的取值范围是__________.[解析] 因为直线2x -3y +6=0的上方区域可以用不等式2x -3y +6<0表示,所以由点(-2,t )在直线2x -3y +6=0的上方得-4-3t +6<0,解得t >23.[答案] ⎝⎛⎭⎫23,+∞ 5.约束条件⎩⎪⎨⎪⎧x +y ≤2x -y ≥-2y ≥0表示的平面区域的面积为________.[解析]作出⎩⎨⎧x +y ≤2x -y ≥-2y ≥0所表示的平面区域如图中阴影部分所示.则A (0,2),B (-2,0),C (2,0),所以S 阴=S △ABC =12×4×2=4.[答案] 4二元一次不等式(组)表示的平面区域[学生用书P112][典例引领](1)不等式组⎩⎪⎨⎪⎧x +y -2≥0,x +2y -4≤0,x +3y -2≥0表示的平面区域的面积为________.(2)若不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0,x +y ≤a 表示的平面区域是一个三角形,则a 的取值范围是________.【解析】 (1)不等式组表示的平面区域如图阴影部分所示,由⎩⎪⎨⎪⎧x +3y -2=0,x +2y -4=0得A (8,-2). 由x +y -2=0得B (0,2).又|CD |=2,故S 阴影=12×2×2+12×2×2=4.(2)不等式组⎩⎨⎧x -y ≥0,2x +y ≤2,y ≥0表示的平面区域如图所示(阴影部分).解⎩⎪⎨⎪⎧y =x ,2x +y =2得A ⎝⎛⎭⎫23,23;解⎩⎪⎨⎪⎧y =0,2x +y =2得B (1,0).若原不等式组表示的平面区域是一个三角形,则直线x +y =a 中的a 的取值范围是0<a ≤1或a ≥43.【答案】 (1)4 (2)(0,1]∪⎣⎡⎭⎫43,+∞若本例(2)条件变为:若不等式组⎩⎪⎨⎪⎧x -y +5≥0,y ≥a ,0≤x ≤2表示的平面区域是一个三角形,则a 的取值范围是________.[解析] 如图,当直线y =a 位于直线y =5和y =7之间(不含y =7)时满足条件.[答案] [5,7)二元一次不等式(组)表示的平面区域的确定方法(1)确定二元一次不等式(组)表示的平面区域的方法是:“直线定界,特殊点定域”,即先作直线,再取特殊点并代入不等式(组).若满足不等式(组),则不等式(组)表示的平面区域为直线与特殊点同侧的那部分区域;否则就对应与特殊点异侧的平面区域;(2)当不等式中带等号时,边界为实线,不带等号时,边界应画为虚线,特殊点常取原点.[通关练习]1.不等式(x -2y +1)(x +y -3)≤0在坐标平面内表示的区域(用阴影部分表示)大致是( )C [解析] (x -2y +1)(x +y -3)≤0,即⎩⎪⎨⎪⎧x -2y +1≥0,x +y -3≤0或⎩⎪⎨⎪⎧x -2y +1≤0,x +y -3≥0,与选项C 符合.故选C.2.若满足条件⎩⎪⎨⎪⎧x -y ≥0x +y -2≤0y ≥a 的整点(x ,y )恰有9个,其中整点是指横、纵坐标都是整数的点,则整数a 的值为________.[解析] 不等式组所表示的平面区域如图中阴影部分,当a =0时,只有4个整点(1,1),(0,0),(1,0),(2,0);当a =-1时,正好增加(-1,-1),(0,-1),(1,-1),(2,-1),(3,-1)共5个整点.[答案] -1求线性目标函数的最值(范围)(高频考点)[学生用书P113]线性目标函数的最值(范围)问题是每年高考的热点,属必考内容,题型多为选择题和填空题,属中档题.高考对线性目标函数最值(范围)问题的考查主要有以下两个命题角度: (1)求线性目标函数的最值(范围);(2)已知线性目标函数的最值(范围)求参数值(范围).[典例引领](1)(2016·高考全国卷丙)设x ,y 满足约束条件⎩⎪⎨⎪⎧2x -y +1≥0,x -2y -1≤0,x ≤1,则z =2x +3y -5的最小值为________.(2)设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥a ,x -y ≤-1,且z =x +ay 的最小值为7,则a =( )A .-5B .3C .-5或3D .5或-3【解析】 (1)作出不等式组表示的平面区域, 如图中阴影部分所示,由图知当z =2x +3y -5经过点A (-1,-1)时, z 取得最小值,z min =2×(-1)+3×(-1)-5=-10.(2)联立方程组⎩⎪⎨⎪⎧x +y =ax -y =-1,解得⎩⎪⎨⎪⎧x =a -12y =a +12,代入x +ay =7中, 解得a =3或-5,当a =-5时,z =x +ay 的最大值是7;当a =3时,z =x +ay 的最小值是7,故选B. 【答案】 (1)-10 (2)B利用线性规划求目标函数最值的步骤 (1)画出约束条件对应的可行域;(2)将目标函数视为动直线,并将其平移经过可行域,找到最优解对应的点; (3)将最优解代入目标函数,求出最大值或最小值.[注意] 对于已知目标函数的最值,求参数问题,把参数当作已知数,找出最优解代入目标函数.[题点通关]角度一 求线性目标函数的最值(范围)1.(2016·高考全国卷甲)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≥0,x +y -3≥0,x -3≤0,则z =x -2y 的最小值为________.[解析] 法一:(通性通法)作出可行域,如图中阴影部分所示,由z =x -2y 得y =12x -12z ,作直线y =12x 并平移,观察可知,当直线经过点A (3,4)时,z min =3-2×4=-5.法二:(光速解法)因为可行域为封闭区域,所以线性目标函数的最值只可能在边界点处取得,易求得边界点分别为(3,4),(1,2),(3,0),依次代入目标函数可求得z min =-5.[答案] -5角度二 已知线性目标函数的最值(范围)求参数值(范围)2.(2017·郑州第二次质量预测)已知实数x ,y 满足⎩⎪⎨⎪⎧2x +y ≥0,x -y ≥0,0≤x ≤a ,设b =x -2y ,若b 的最小值为-2,则b 的最大值为________.[解析] 画出可行域,如图阴影部分所示.由b =x -2y 得,y =12x -b2.易知在点(a ,a )处b 取最小值,故a -2a =-2,可得a =2.在点(2,-4)处b 取最大值,于是b 的最大值为2+8=10.[答案] 10线性规划的实际应用[学生用书P113][典例引领](2016·高考全国卷乙)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时.生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为________元.【解析】 由题意,设产品A 生产x 件, 产品B 生产y 件, 利润z =2 100x +900y , 线性约束条件为⎩⎪⎨⎪⎧1.5x +0.5y ≤150,x +0.3y ≤90,5x +3y ≤600,x ≥0,y ≥0,作出不等式组表示的平面区域如图中阴影部分所示, 又由x ∈N ,y ∈N ,可知取得最大值时的最优解为(60,100), 所以z max =2 100×60+900×100=216 000(元). 【答案】 216 000(2016·高考天津卷)某化肥厂生产甲、乙两种混合肥料,需要A ,B ,C三种主要原料.生产1车皮甲种肥料和生产1车皮乙种肥料所需三种原料的吨数如下表所示:原料肥料A B C甲 4 8 3 乙 5 5 10现有A 种原料200吨,B 种原料360吨,C 种原料300吨,在此基础上生产甲、乙两种肥料.已知生产1车皮甲种肥料,产生的利润为2万元;生产1车皮乙种肥料,产生的利润为3万元.分别用x ,y 表示计划生产甲、乙两种肥料的车皮数.(1)用x ,y 列出满足生产条件的数学关系式,并画出相应的平面区域;(2)问分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?并求出此最大利润.[解] (1)由已知,x ,y 满足的数学关系式为⎩⎪⎨⎪⎧4x +5y ≤200,8x +5y ≤360,3x +10y ≤300,x ≥0,y ≥0.设二元一次不等式组所表示的平面区域为图1中的阴影部分.(2)设利润为z 万元,则目标函数为z =2x +3y .考虑z =2x +3y ,将它变形为y =-23x +z 3, 这是斜率为-23,随z 变化的一族平行直线.z3为直线在y 轴上的截距,当z3取最大值时,z 的值最大.又因为x ,y 满足约束条件,所以由图2可知,当直线z =2x +3y 经过可行域上的点M 时,截距z3最大,即z 最大.解方程组⎩⎪⎨⎪⎧4x +5y =200,3x +10y =300,得点M 的坐标为(20,24).所以z max =2×20+3×24=112.即生产甲种肥料20车皮、乙种肥料24车皮时利润最大,且最大利润为112万元., [学生用书P114])——数形结合思想求解非线性规划问题(2015·高考全国卷Ⅰ)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -1≥0,x -y ≤0,x +y -4≤0,则yx的最大值为________.【解析】 画出可行域如图阴影所示,因为 yx 表示过点(x ,y )与原点(0,0)的直线的斜率,所以点(x ,y )在点A 处时yx最大.由⎩⎪⎨⎪⎧x =1,x +y -4=0, 得⎩⎪⎨⎪⎧x =1,y =3. 所以A (1,3). 所以yx的最大值为3.【答案】 3(1)本题在求y x 的取值范围时,利用数形结合思想,把yx转化为动点(x ,y )与定点(0,0)连线的斜率.解决这类问题时,需充分把握目标函数的几何含义,在几何含义的基础上加以处理.(2)常见代数式的几何意义: ①x 2+y 2表示点(x ,y )与原点(0,0)的距离;② (x -a )2+(y -b )2表示点(x ,y )与点(a ,b )的距离;③yx 表示点(x ,y )与原点(0,0)连线的斜率值; ④y -bx -a表示点(x ,y )与点(a ,b )连线的斜率值.1.(2016·高考山东卷)若变量x ,y 满足⎩⎪⎨⎪⎧x +y ≤2,2x -3y ≤9,x ≥0,则x 2+y 2的最大值是( )A .4B .9C .10D .12C [解析] 作出不等式组所表示的平面区域如图中阴影部分所示,设P (x ,y )为平面区域内任意一点,则x 2+y 2表示|OP |2.显然,当点P 与点A 重合时,|OP |2即x 2+y 2取得最大值.由⎩⎪⎨⎪⎧x +y =2,2x -3y =9,解得⎩⎪⎨⎪⎧x =3,y =-1,故A (3,-1).所以x 2+y 2的最大值为32+(-1)2=10.故选C.2.(2017·洛阳统考)已知不等式组⎩⎪⎨⎪⎧x +y ≤2,x ≥0,y ≥m表示的平面区域的面积为2,则x +y +2x +1的最小值为( )A .32B .43C .2D .4B [解析] 画出不等式组所表示的区域,由区域面积为2,可得m =0.而x +y +2x +1=1+y +1x +1,y +1x +1表示可行域内任意一点与点(-1,-1)连线的斜率,所以y +1x +1的最小值为0-(-1)2-(-1)=13,所以x +y +2x +1的最小值为43., [学生用书P331(独立成册)])1.已知点(-3,-1)和点(4,-6)在直线3x -2y -a =0的两侧,则a 的取值范围为( )A .(-24,7)B .(-7,24)C .(-∞,-7)∪(24,+∞)D .(-∞,-24)∪(7,+∞)B [解析] 根据题意知(-9+2-a )·(12+12-a )<0. 即(a +7)(a -24)<0,解得-7<a <24.2.如图阴影部分表示的区域可用二元一次不等式组表示为( )A .⎩⎪⎨⎪⎧x +y -1≥0x -2y +2≥0B .⎩⎪⎨⎪⎧x +y -1≤0x -2y +2≤0C .⎩⎪⎨⎪⎧x -y +1≥0x +2y +2≥0D .⎩⎪⎨⎪⎧x +y -1>0x -2y +2>0A [解析] 两直线方程分别为x -2y +2=0与x +y -1=0. 由(0,0)点在直线x -2y +2=0右下方可知x -2y +2≥0, 又(0,0)点在直线x +y -1=0左下方可知x +y -1≥0,即⎩⎪⎨⎪⎧x +y -1≥0,x -2y +2≥0为所表示的可行域. 3.不等式组⎩⎪⎨⎪⎧x ≥0,x +y ≤3,y ≥x +1表示的平面区域为Ω,直线y =kx -1与区域Ω有公共点,则实数k 的取值范围为( )A .(0,3]B .[-1,1]C .(-∞,3]D .[3,+∞)D [解析] 直线y =kx -1过定点M (0,-1),由图可知,当直线y =kx -1经过直线y =x +1与直线x +y =3的交点C (1,2)时,k 最小,此时k CM =2-(-1)1-0=3,因此k ≥3,即k ∈[3,+∞).故选D.4.(2017·大连双基测试)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y -2≤0,3x +y -6≥0,y ≤3,则z =-2x +y 的最小值为( )A .-7B .-6C .-1D .2A [解析] 可行域如图,平移直线y =2x 至过点(5,3)时,z 取得最小值-7.5.若不等式组⎩⎪⎨⎪⎧x +y -2≤0,x +2y -2≥0,x -y +2m ≥0表示的平面区域为三角形,且其面积等于43,则m 的值为( )A .-3B .1C .43D .3B [解析] 作出可行域,如图中阴影部分所示,易求A ,B ,C ,D 的坐标分别为A (2,0),B (1-m ,1+m ),C ⎝⎛⎭⎪⎫2-4m 3,2+2m 3,D (-2m ,0).S △ABC =S △ADB -S △ADC =12|AD |·|y B -y C |=12(2+2m )(1+m -2+2m 3) =(1+m )⎝⎛⎭⎪⎫1+m -23=43,解得m =1或m =-3(舍去).6.(2017·河南省六市第一次联考)已知实数x 、y 满足⎩⎪⎨⎪⎧y ≥1,y ≤2x -1,x +y ≤m ,如果目标函数z =x -y的最小值为-1,则实数m =( )A .6B .5C .4D .3B [解析] 画出不等式组所表示的可行域如图中阴影部分所示,作直线l :y =x ,平移l 可知,当直线l 经过A (2,3)时符合题意,又A (2,3)在直线x +y =m 上,所以m =5,故选B.7.(2017·安徽安庆二模)若x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y -2≥0,x -y +1≥0,2x +y -4≤0,z =x -2y ,则z 的取值范围是________.[解析] 作出不等式组表示的平面区域,如图,由图可知当z =x -2y 过点A 时,z 取得最大值; 当z =x -2y 过点B 时,z 取得最小值,由⎩⎪⎨⎪⎧x -y +1=0,2x +y -4=0解得B (1,2),则z min =1-2×2=-3, 由⎩⎪⎨⎪⎧x +2y -2=0,2x +y -4=0解得A (2,0),则z max =2-2×0=2, 故z =x -2y 的取值范围是[-3,2]. [答案] [-3,2]8.(2017·贵州黔东南州模拟)若变量x 、y 满足约束条件⎩⎪⎨⎪⎧x -y +1≤0,y ≤1,x >-1,则(x -2)2+y 2的最小值为________.[解析] 作出不等式组对应的平面区域如图,设z =(x -2)2+y 2,则z 的几何意义为区域内的点到定点D (2,0)的距离的平方, 由图知C 、D 间的距离最小,此时z 最小.由⎩⎪⎨⎪⎧y =1,x -y +1=0得⎩⎪⎨⎪⎧x =0,y =1,即C (0,1), 此时z min =(x -2)2+y 2=4+1=5. [答案] 5 9.(2016·高考浙江卷改编)在平面上,过点P 作直线l 的垂线所得的垂足称为点P 在直线l 上的投影.由区域⎩⎪⎨⎪⎧x -2≤0,x +y ≥0,x -3y +4≥0中的点在直线x +y -2=0上的投影构成的线段记为AB ,则|AB |=________.[解析] 作出不等式组所表示的平面区域如图中阴影部分所示,过点C ,D 分别作直线x +y -2=0的垂线,垂足分别为A ,B ,则四边形ABDC 为矩形,又C (2,-2),D (-1,1),所以|AB |=|CD |=(2+1)2+(-2-1)2=3 2.[答案] 3 210.x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0,若z =y -ax 取得最大值的最优解不唯一,则实数a 的值为________.[解析] 法一:由题中条件画出可行域如图中阴影部分所示,可知A (0,2),B (2,0),C (-2,-2),则z A =2,z B =-2a ,z C =2a -2,要使目标函数取得最大值的最优解不唯一,只要z A =z B >z C 或z A =z C >z B 或z B =z C >z A ,解得a =-1或a =2.法二:目标函数z =y -ax 可化为y =ax +z ,令l 0:y =ax ,平移l 0,则当l 0∥AB 或l 0∥AC 时符合题意,故a =-1或a =2.[答案] -1或211.若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥1,x -y ≥-1,2x -y ≤2,(1)求目标函数z =12x -y +12的最值;(2)若目标函数z =ax +2y 仅在点(1,0)处取得最小值,求a 的取值范围. [解] (1)作出可行域如图,可求得A (3,4),B (0,1),C (1,0).平移初始直线12x -y +12=0,过A (3,4)时z 取最小值-2,过C (1,0)时z 取最大值1.所以z 的最大值为1,最小值为-2.(2)直线ax +2y =z 仅在点(1,0)处取得最小值,由图象可知-1<-a2<2,解得-4<a <2.故a 的取值范围是(-4,2).12.(2017·江西高安中学联考)已知实数x ,y 满足⎩⎪⎨⎪⎧x -2y +1≥0,x <2,x +y -1≥0,z =|2x -2y -1|,则z的取值范围是( )A .⎣⎡⎦⎤53,5B .[0,5)C .[0,5]D .⎣⎡⎭⎫53,5B [解析] 作出可行域如图所示:易求得A ⎝⎛⎭⎫2,32,B ⎝⎛⎭⎫13,23,C (2,-1),令μ=2x -2y -1,则y =x -μ+12,当直线y =x -μ+12过点C (2,-1)时,μ有最大值5,过点B ⎝⎛⎭⎫13,23时,μ有最小值-53,因为可行域不包括x =2的边界,所以z =|2x -2y -1|的取值范围是[0,5).故选B.13.在直角坐标系xOy 中,已知点A (1,1),B (2,3),C (3,2),点P (x ,y )在△ABC 三边围成的区域(含边界)上.(1)若P A →+PB →+PC →=0,求|OP →|;(2)设OP →=mAB →+nAC →(m ,n ∈R ),用x ,y 表示m -n ,并求m -n 的最大值.[解] (1)法一:因为P A →+PB →+PC →=0, 又P A →+PB →+PC →=(1-x ,1-y )+(2-x ,3-y )+(3-x ,2-y )=(6-3x ,6-3y ),所以⎩⎪⎨⎪⎧6-3x =0,6-3y =0,解得⎩⎪⎨⎪⎧x =2,y =2,即OP →=(2,2),故|OP →|=2 2.法二:因为P A →+PB →+PC →=0, 则(OA →-OP →)+(OB →-OP →)+(OC →-OP →)=0,所以OP →=13(OA →+OB →+OC →)=(2,2),所以|OP →|=2 2. (2)因为OP →=mAB →+nAC →, 所以(x ,y )=(m +2n ,2m +n ),所以⎩⎪⎨⎪⎧x =m +2n ,y =2m +n ,两式相减得,m -n =y -x .令y -x =t ,由图知,当直线y =x +t 过点B (2,3)时,t 取得最大值1,故m -n 的最大值为1.14.某小型工厂安排甲、乙两种产品的生产,已知工厂生产甲、乙两种产品每吨所需要的原材料A ,B ,C 的数量和一周内可用资源数量如下表所示:原材料 甲(吨) 乙(吨) 资源数量(吨) A 1 1 50 B 4 0 160 C 2 5 200如果甲产品每吨的利润为300元,乙产品每吨的利润为200元,那么应如何安排生产,工厂每周才可获得最大利润?[解] 设工厂一周内安排生产甲产品x 吨、乙产品y 吨,所获周利润为z 元.依据题意,得目标函数为z =300x +200y ,约束条件为⎩⎪⎨⎪⎧x +y ≤50,4x ≤160,2x +5y ≤200,y ≥0,x ≥0.欲求目标函数z =300x +200y =100(3x +2y )的最大值,先画出约束条件表示的可行域, 如图中阴影部分所示,则点A (40,0),B (40,10),C ⎝⎛⎭⎫503,1003,D (0,40).作直线3x +2y =0,当移动该直线过点B (40,10)时,3x +2y 取得最大值,则z =300x +200y 取得最大值(也可通过代入凸多边形端点进行计算,比较大小求得). 故z max =300×40+200×10=14 000.所以工厂每周生产甲产品40吨,乙产品10吨时,才可获得最大周利润,为14 000元.。
不等式与线性规划

1.不等式的性质: 性质1:(对称性)如果a b >,那么b a <;如果b a <,那么a b >. 性质2:(传递性)如果a b >,且b c >,则a c >. 性质3:如果a b >,则a c b c +>+. 推论1:(移项法则)不等式中的任意一项都可以把它的符号变成相反的符号后,从不等式的一边移到另一边.推论2:(同向可加性)如果a b c d >>,,则a c b d +>+.性质4:如果a b >,0c >,则ac bc >;如果a b >,0c <,则ac bc <. 推论1:如果00a b c d >>>>,,则ac bd >.推论2:如果0a b >>,则*(1)n n a b n n >∈>N ,. 推论3:如果0a b >>*(1)n n a b n n >∈>N , 2.均值不等式:如果a ,b +∈R (+R 表示正实数),那么2a bab +,当且仅当a b =时,等号成立.对于任意两个正实数a ,b ,数2a b+叫做a ,b ab a ,b 的几何平均值. 均值不等式可以表述为:两个正实数的算术平均值大于或等于它的几何平均值.<教师备案>在利用均值不等式求某些函数的最值时,要注意以下几个条件:⑴函数式中的各项必须都是正数,在异号时不能运用均值不等式,在同负时可以先进行转化,再运用均值不等式;⑵函数式中含变量的各项的和或积必须是定值;⑶只有具备了不等式中等号成立的条件,才能使函数式取到最大或最小值.否则不能由均值不等式求最值,只能用函数的单调性求最值.⑷如果多次使用均值不等式,则等号成立的条件必须同时成立.3.简单的线性规划用图解法解决简单的线性规划问题的基本步骤:⑴ 首先,要根据线性约束条件画出可行域(即画出不等式组所表示的公共区域). ⑵ 设0z =,画出直线0l . ⑶ 观察、分析,平移直线0l ,从而找到最优解. ⑷ 最后求得目标函数的最大值及最小值.知识点睛第10讲不等式与 线性规划考点:不等式性质 【例1】 ⑴ 若a b c d >>,,则下列不等式中恒成立的是( )A .a d b c +>+B .ac bd >C .a bc d> D .d a c b -<-⑵ 若a b >且c ∈R ,则下列不等式中一定成立的是( )A .a c b c ->-B .ac bc >C .22ac bc >D .22a b > ⑶ 已知a b c ,,满足c b a <<,且0ac <,那么下列选项中一定成立的是( )A .ab ac >B .()0c b a -<C .22ac ab <D .()0ac a c -> ⑷ 下列命题中正确的命题是_________. ①若a b ∈R ,且22ac bc >,则a b >;②若a b ∈R ,且a b >,则11a b<;③若a b ∈R ,且a b >,则44a b >; ④若00a b c d >>>>,,则ac bd >.【解析】 ⑴ D⑵ A ⑶ A ⑷ ①③④【备选】试写出同时满足0a cb d>>,ad bc <的一组():a b c d ,,, . 【解析】 (2111)--,,,考点:不等式恒成立【例2】 ⑴ 不等式04)2(2)2(2<--+-x a x a 对一切x ∈R 恒成立, 则实数a 的取值范围是______⑵ 不等式2(2)2(2)40a x a x -+-->对一切[)1,x ∈+∞恒成立,则实数a 的取值范围是_____ ⑶ 不等式2|3||1|3x x a a +---≤对任意实数x 都成立, 则实数a 的取值范围是_________.【解析】 ⑴ (]2,2-⑵ 8,3⎛⎫+∞ ⎪⎝⎭⑶ ()(),14,-∞-+∞考点:均值不等式 【例3】 ⑴ 已知a b ,是两个正数,则下列不等式中错误的是( )A .232a a +>B .222a b ab +≥C .2a bb a+≥ D.2a b +⑵ 已知a b +∈R ,且21a b +=,则ab 的最大值是( ) A .12 B .14 C .18 D .19经典精讲⑶ 已知正数a b ,满足1ab =,则2a b +的最小值是_______; ⑷ 设实数a b ,满足0a b <<,且1a b +=,则下列四个数中最大的是( )A .22a b +B .2abC .aD .12【解析】 ⑴ D⑵ C ⑶⑷ A尖子班学案1 【拓1】 ⑴ 函数221xy x =+在0x >的最大值为________. ⑵ 已知1(2)2m a a a =+>-,212n x x -⎛⎫= ⎪⎝⎭≥,则m n ,之间的大小关系为________. 【解析】 ⑴ 1⑵ m n ≥目标班学案1【拓2】 已知正数a ,b ,且2244a b +=,则y =的最大值是 ;【解析】 54【例4】 ⑴ 已知0a >,0b >,a b ,的等差中项为12,且1a a α=+,1b bβ=+,则αβ+的最小值是________;⑵ 已知a b ,是正常数,x y +ÎR ,,且10a b +=,1a bx y+=,x y +的最小值为18,求a b ,的值. 【解析】 ⑴ 5⑵ 2a =,8b =或8a =,2b =.【例5】 已知0a >,0b >,1a b +=,证明下列不等式..⑴ 11122a b ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭≤;⑵ 12133a b ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭≤;⑶2【解析】 ⑴ 法一:()1111322244a b ab a b ab ⎛⎫⎛⎫++=+++=+ ⎪⎪⎝⎭⎝⎭,122a b +=,所以111312244a b ⎛⎫⎛⎫+++= ⎪⎪⎝⎭⎝⎭≤.法二:∵111222a b a b ⎛⎫⎛⎫+++=++= ⎪ ⎪⎝⎭⎝⎭112212a b ⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭=,即11122a b ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭≤.⑵ ∵121233a b a b ⎛⎫⎛⎫+++=++= ⎪ ⎪⎝⎭⎝⎭123312a b ⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭=,即12133a b ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭≤.⑶∵2212a b +=++=,1=2.2a b +的理解与运用:2a b +中要求,a b +∈R,而2a b +对任意x ∈R 均成立; 在需要使用均值不等式时,一般的处理方式是先观察待求式与已知条件,找到什么时候为定值,之后再使用具体的不等式,化简的到最终结果.本题的⑴和⑵2a b+; ⑶中观察得到平方和为定值,求两数和的最大,从而用2a b +【备选】 已知2x y xy ++=,且0x >,0y >,求x y +的最小值.【解析】 x y +的最小值为2.考点:线性规划 尖子班学案2【铺1】 已知二次函数2()f x ax bx =+,1(1)1f --≤≤,3(1)5f ≤≤.⑴ 求a b ,的取值范围; ⑵ 求(2)f 的取值范围. 【解析】 ⑴ [13]a ∈,,[13]b ∈,,⑵ 8(2)16f ≤≤.【例6】 ⑴ 不等式组20210x y x y -⎧⎪+⎨⎪-+⎩,,≤≥0≥表示的区域为D ,z x y =+是定义在D 上的目标函数,则区域D 的面积为 ;z 的最大值为 .⑵ 已知1324a b <<<<,,则2a b -的取值范围是____,ab的取值范围是_____. ⑶ 在直角坐标系中,若不等式组0(1)y y y k x ìïïïïíïï?ïî≥≤,则实数k 的值为________ 【解析】 ⑴ 252,5⑵ (24)-,;1342⎛⎫⎪⎝⎭,⑶-目标班学案2【拓2】 定义max{}a a b a b b a b ìïï=íï<ïî,≥,,,设实数x y ,满足约束条件2244x y ìïïíïïî≤≤,则m a x {43}z x y x y=+-,的取值范围为________【解析】 []710-,定义在R 上的函数()y f x =是增函数,且为奇函数,若实数s t ,满足不等式22(2)(2)f s s f t t ---≥,则当14s ≤≤时,求3t s +的取值范围.【解析】 ∵函数()f x 为奇函数,则2222(2)(2)(2)(2)f s s f t t f s s f t t ---?-≥≥,又函数()f x 为增函数,则2222s s t t --≥,即()(2)0s t s t -+-≥ ∵14s ≤≤,则若s t <,则有20s t +->,与()(2)0s t s t -+-≥∴s t ≥,即s t ,满足的约束条件为02014s t s t s ì-ïïïï+-íïïïïî≥≥≤≤,画出可行域如图,则点(42)A -,,(44)B ,,(11)C ,,当目标函数3z t s =+过点A B ,时,取到最值,即min 2z =-,max 16z =,即3t s +的取值范围为[]216-,.已知,,a b c 是不完全相等的任意实数.若2x a bc =-,2y b ac =-,2z c ab =-,则,,x y z 的值( )A .都大于0B .至少有一个大于0C .至少有一个小于0D .都不小于0【解析】 B大千世界222x y z a b c ab ac bc ++=++---222222222222a b ab a c ac c b bc+-+-+-=++()()()222111222a b a c c b =-+-+-, 因为a b c ≠≠,则0x y z ++>, 所以x y z ,,中至少有一个大于0.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三节 不等式组与简单的线性规划第一部分五年高考荟萃 2009年高考题一、选择题1. (2009山东卷理)设x ,y 满足约束条件⎪⎩⎪⎨⎧≥≥≥+-≤--0,002063y x y x y x ,若目标函数z=ax+by (a>0,b>0)的是最大值为12,则23a b +的最小值为( ). A.625 B.38 C. 311 D. 4答案 A解析 不等式表示的平面区域如图所示阴影部分,当直线ax+by= z (a>0,b>0) 过直线x-y+2=0与直线3x-y-6=0的交点(4,6)时, 目标函数z=ax+by (a>0,b>0)取得最大12, 即4a+6b=12,即2a+3b=6, 而23a b +=2323131325()()26666a b b a a b a b ++=++≥+=,故选A. 【命题立意】:本题综合地考查了线性规划问题和由基本不等式求函数的最值问题.要求能准确地画出不等式表示的平面区域,并且能够求得目标函数的最值,对于形如已知2a+3b=6,求23a b+的最小值常用乘积进而用基本不等式解答. 2.(2009安徽卷理)若不等式组03434x x y x y ≥⎧⎪+≥⎨⎪+≤⎩所表示的平面区域被直线43y kx =+分为面积相等的两部分,则k 的值是A.73 B. 37 C.43 D. 34答案 B解析 不等式表示的平面区域如图所示阴影部分△ABC 由3434x y x y +=⎧⎨+=⎩得A (1,1),又B (0,4),C (0,43)x22 yO -2 z=ax+by3x-y-6=0x-y+2=0AD yCy=kx+43∴S △ABC =144(4)1233-⨯=,设y kx =与34x y +=的 交点为D ,则由1223BCD S S ABC ∆=∆=知12D x =,∴52D y =∴5147,2233k k =⨯+=选A 。
3.(2009安徽卷文)不等式组 所表示的平面区域的面积等于 A.23 B.32C.34D.43解析 由340340x y x y +-=⎧⎨+-=⎩可得(1,1)C ,故S 阴 =1423c AB x ⨯⨯=,选C 。
答案 C4.(2009四川卷文)某企业生产甲、乙两种产品,已知生产每吨甲产品要用A 原料3吨,B 原料2吨;生产每吨乙产品要用A 原料1吨,B 原料3吨,销售每吨甲产品可获得利润5万元,每吨乙产品可获得利润3万元。
该企业在一个生产周期内消耗A 原料不超过13吨,B 原料不超过18吨.那么该企业可获得最大利润是A. 12万元B. 20万元C. 25万元D. 27万元 答案 D解析 设生产甲产品x 吨,生产乙产品y 吨,则有关系:A原料B 原料甲产品x 吨3x 2x 乙产品y 吨y3y则有:⎪⎪⎩⎪⎪⎨⎧≤+≤+>>183213300y x y x y x目标函数y x z 35+=作出可行域后求出可行域边界上各端点的坐标,经验证知:当x =3,y =5时可获得最大利润为27万元,故选D5.(2009宁夏海南卷理)设x,y 满足241,22x y x y z x y x y +≥⎧⎪-≥-=+⎨⎪-≤⎩则A.有最小值2,最大值3B.有最小值2,无最大值C.有最大值3,无最小值D.既无最小值,也无最大值 答案 B解析 画出可行域可知,当z x y =+过点(2,0)时,min 2z =,但无最大值。
选B.(3,4)(0,6)O(313,0) yx9 136.(2009宁夏海南卷文)设,x y 满足24,1,22,x y x y x y +≥⎧⎪-≥⎨⎪-≤⎩则z x y =+A.有最小值2,最大值3B.有最小值2,无最大值C.有最大值3,无最小值D.既无最小值,也无最大值答案 B解析 画出不等式表示的平面区域,如右图,由z =x +y ,得y =-x +z ,令z =0,画出y =-x 的图象,当它的平行线经过A (2,0)时,z 取得最小值,最小值为:z =2,无最大值,故选.B7.(2009湖南卷理)已知D 是由不等式组2030x y x y -≥⎧⎨+≥⎩,所确定的平面区域,则圆 224x y +=在区域D 内的弧长为 [ B] A .4π B.2πC.34πD.32π答案 B解析 解析如图示,图中阴影部分所在圆心角所对弧长即为所求,易知图中两直线的斜率分别是1,213-,所以圆心角α即为两直线的所成夹角,所以11|()|23tan 1111|23α--==+⋅-(),所以4πα=,而圆的半径是2,所以弧长是2π,故选B 现。
8.(2009天津卷理)设变量x ,y 满足约束条件:3123x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩.则目标函数z=2x+3y 的最小值为A.6B.7C.8D.23 答案 B【考点定位】本小考查简单的线性规划,基础题。
解析 画出不等式3123x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩表示的可行域,如右图,让目标函数表示直线332zx y +-=在可行域上平移,知在点B 自目标函数取到最小值,解方程组⎩⎨⎧=-=+323y x y x 得)1,2(,所以734min =+=z ,故选择B 。
8642-2-4-15-10-5510152x-y=3x-y=1x+y=3q x () =-2⋅x 3+7h x () = 2⋅x-3g x () = x+1f x () = -x+3AB9.(2009四川卷理)某企业生产甲、乙两种产品,已知生产每吨甲产品要用A 原料3吨、B 原料2吨;生产每吨乙产品要用A 原料1吨、B 原料3吨。
销售每吨甲产品可获得利润5万元,每吨乙产品可获得利润3万元,该企业在一个生产周期内消耗A 原料不超过13吨,B 原料不超过18吨,那么该企业可获得最大利润是A. 12万元B. 20万元C. 25万元D. 27万元答案 D【考点定位】本小题考查简单的线性规划,基础题。
(同文10)解析 设甲、乙种两种产品各需生产x 、y 吨,可使利润z 最大,故本题即已知约束条件⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+001832133y x y x y x ,求目标函数y x z 35+=的最大值,可求出最优解为⎩⎨⎧==43y x ,故271215max =+=z ,故选 择D 。
10.(2009福建卷文)在平面直角坐标系中,若不等式组101010x y x ax y +-≥⎧⎪-≤⎨⎪-+≥⎩(α为常数)所表示的平面区域内的面积等于2,则a 的值为A. -5B. 1C. 2D. 3答案 D解析 如图可得黄色即为满足010101=+-≥-+≤-y ax y x x 的可行域,而与 的直线恒过(0,1),故看作直线绕点(0,1)旋转,当a=-5时,则可行域不是一个封闭区域,当a=1时,面积是1;a=2时,面积是23;当a=3时,面积恰好为2,故选D.二、填空题11.(2009浙江理)若实数,x y 满足不等式组2,24,0,x y x y x y +≥⎧⎪-≤⎨⎪-≥⎩则23x y +的最小值是 .答案 4解析 通过画出其线性规划,可知直线23y x Z =-+过点()2,0时,()min 234x y += 12.(2009浙江卷文)若实数,x y 满足不等式组2,24,0,x y x y x y +≥⎧⎪-≤⎨⎪-≥⎩则23x y +的最小是 .【命题意图】此题主要是考查了线性规划中的最值问题,此题的考查既体现了正确画线性区域的要求,也体现了线性目标函数最值求解的要求 解析 通过画出其线性规划,可知直线23y x Z =-+过点()2,0时,()min 234x y += 13.(2009北京文)若实数,x y 满足20,4,5,x y x x +-≥⎧⎪≤⎨⎪≤⎩则s x y =+的最大值为 .答案 9解析:本题主要考查线性规划方面的基础知. 属于基础知识、基本运算的考查.如图,当4,5x y ==时,459s x y =+=+=为最大值.故应填9.14.(2009北京卷理)若实数,x y 满足2045x y x y +-≥⎧⎪≤⎨⎪≤⎩则s y x =-的最小值为__________.答案 6-解析 本题主要考查线性规划方面 的基础知. 属于基础知识、基本运算 的考查.如图,当4,2x y ==-时,246s y x =---=-为最小值.故应填6-.15.(2009山东卷理)不等式0212<---x x 的解集为 .答案 {|11}x x -<<解析 原不等式等价于不等式组①221(2)0x x x ≥⎧⎨---<⎩或②12221(2)0x x x ⎧<<⎪⎨⎪-+-<⎩ 或③12(21)(2)0x x x ⎧≤⎪⎨⎪--+-<⎩不等式组①无解,由②得112x <<,由③得112x -<≤,综上得11x -<<,所以原不等式的解集为{|11}x x -<<.16.(2009山东卷文)某公司租赁甲、乙两种设备生产A,B 两类产品,甲种设备每天能生产A 类产品5件和B 类产品10件,乙种设备每天能生产A 类产品6件和B 类产品20件.已知设备甲每天的租赁费为200元,设备乙每天的租赁费为300元,现该公司至少要生产A 类产品50件,B 类产品140件,所需租赁费最少为__________元.答案 2300解析 设甲种设备需要生产x 天, 乙种设备需要生产y 天, 该公司所需租赁费为z 元,则200300z x y =+,甲、乙两种设备生产A,B 两类产品的情况为下表所示:产品 设备 A 类产品 (件)(≥50) B 类产品 (件)(≥140) 租赁费 (元) 甲设备 5 10 200 乙设备620300则满足的关系为565010201400,0x y x y x y +≥⎧⎪+≥⎨⎪≥≥⎩即:61052140,0x y x y x y ⎧+≥⎪⎪⎨+≥⎪⎪≥≥⎩,作出不等式表示的平面区域,当200300z x y =+对应的直线过两直线6105214x y x y ⎧+=⎪⎨⎪+=⎩的交点(4,5)时,目标函数200300z x y =+取得最低为2300元.【命题立意】:本题是线性规划的实际应用问题,需要通过审题理解题意,找出各量之间的关系,最好是列成表格,找出线性约束条件,写出所研究的目标函数,通过数形结合解答问题..17.(2009上海卷文) 已知实数x 、y 满足223y x y x x ≤⎧⎪≥-⎨⎪≤⎩则目标函数z=x-2y 的最小值是_______.答案 -9解析 画出满足不等式组的可行域如右图,目标函数化为:x y 21=-z ,画直线x y 21=及其平行线,当此直线经过点A 时,-z 的值最大,z 的值最小,A 点坐标为(3,6),所以,z 的最小值为:3-2×6=-9。