酵母双杂交技术
酵母双杂交

酵母转录因子(Gal 4)
与BD-fusion ---诱饵蛋白(bait protein ) 与AD-fusion ---猎物或靶蛋白(prey or target protein)
报告基因(reporter gene)
---Lac Z(编码β -半乳糖苷酶)
报道株
经改造的、含报告基因的重组质粒的宿 主细胞。 酵母细胞作为报道株的酵母双杂交系统具有 许多优点:
酵母双杂交系统
一、酵母双杂交系统的简介
酵母双杂交系统(yeast two-hybrid system) 是由Fields和song等在1989年提出的一种在真 核模式生物酵母中进行的,研究活细胞内蛋 白质相互作用的遗传系统。 酵母双杂交系统的建立得力于对真核细 胞调控转录起始过程的认识。研究发现,许 多真核生物的转录因子都是由两个可以分开 的、功能上相互独立的结构域组成的。
DNA结合结构域(BD)
(DNA binding domain)
转录激活因子
转录激活结构域(AD) (activation domain)
•这两个结构域各具功能,互不影响,
•单独存在时都没有转录激活的功能,
•只有二者在空间上充分接近时,才表现出一个完整的
激活特定基因表达的激活因子的功能。
二、酵母双杂交系统的建立
五、酵母双杂交的应用
酵母双杂交系统是在真核模式生物酵母中进行的, 研究活细胞内蛋白质相互作用,对蛋白质之间微弱的、 瞬间的作用也能够通过报告基因的表达产物敏感地检 测得到,它是一种具有很高灵敏度的研究蛋白质之间 关系的技术。
大量的研究文献表明,酵母双杂交技术既可以用 来研究哺乳动物基因组编码的蛋白质之间的互作,也 可以用来研究高等植物基因组编码的蛋白质之间的互 作。因此,它在许多的研究领域中有着广泛的应用。
酵母双杂交

酵母双杂交酵母双杂交(筛库)pGBK-gene 转化酵母1. 酵母细胞(AH109)划线,YPDA平板,30°C烘箱培养18-20小时。
2. 挑取单细胞菌落,在YPDA培养基中,30°C摇床培养18-20小时至菌液饱和。
3. 次日,取饱和的酵母培养液5ml转接至100mlYPDA培养基中,30°C摇床培养2h,测定OD600,直至OD600达到0.5左右。
4. (超净台下工作,下同)将上述菌液分装在2只50ml离心管(灭菌)中,室温下3000rpm离心5min。
5. 弃上清,重悬于20ml无菌水中,3000rpm离心5min。
6. 弃上清,重悬于10ml 1×TE/LiAc溶液中,3000rpm离心5min。
7. 弃上清,重悬于500μl 1×TE/LiAc溶液中,室温温育10min。
8. 取eppendorf管,每管加100μl酵母细胞、5μl鲑鱼精DNA(10mg/ml,用之前沸水煮2-3min,立即放冰上)、15μl DNA(pGBK连接的基因)。
9. 加入280μlPEG/LiAc 溶液,30°C放置45min(可摇)。
10. 42°C热激10min,立即放冰上2min。
11. 室温下6000-8000rpm离心20~30s,去上清。
12. 重悬于500μl无菌水中,取100-200μl涂在SD-trp板上,30°C烘箱培养48-72h。
酵母大规模转化AD文库1. 挑取上述SD-trp板上的pGBK连的基因转化子,YPDA培养基中培养至饱和。
2.将上述转化子转接至200mlYPDA培养基中,30°C培养至OD600 0.5-0.6左右。
3. 离心收集菌体,20ml无菌水洗涤,3000rpm离心5min。
4. 去上清,重悬于20ml 1×TE/LiAc溶液中,3000rpm离心5min。
酵母双杂交实验

酵母双杂交实验酵母双杂交相关实验方法一、酵母总DNA提取方法(蜗牛酶法)1。
酵母质粒提取试剂bufferi0.9mol/lsorbitol0.1mol/ledtabufferii50mm/ltris20mm/ledtabufferiii10mm/l tris1mm/ledta2、操作步骤:(1)收集新鲜细菌,加入150μlbufferi、25μL蜗牛酶(30mg/ml)(2)37℃水浴1小时。
(3)10000rpm离心10min,去上清,沉淀中加入250μlbufferii。
(4)加入25μl10%sds,65℃水浴30min,每间隔5min中震荡一次。
(5)加入25μl5mol/l醋酸钾,冰浴60min。
(6)4℃12000rpm离心15min,取上清。
(7)向上清液中加入2-3倍体积的无水乙醇,充分混合,并在-20℃下静置1小时以上。
(8)取出,在4℃12000rpm下离心15分钟,丢弃上清液。
(9)加入150μlbufferiii溶解沉淀,用等体积苯酚/氯仿/异戊醇抽提。
(10)12000rpm离心15min。
(11)将上清液转移到新的离心管中,并添加6μl(10u/μl)核糖核酸酶,在37℃下放置30分钟。
(12)取上清液并添加等量的异丙醇。
(13)在4℃下静置10分钟超过1小时或过夜。
(14)在4℃下以10000 rpm离心5分钟。
(15)弃上清,并把沉淀溶于10μlbufferiii中。
二、小规模酵母转化1、酵母转化试剂:除PEG过滤灭菌外,其他转化试剂需要在与普通培养基灭菌相同的条件下进行高温高压灭菌。
(1)m醋酸锂(lithiumacetate)(2)聚乙二醇(PEG)分子量3350,浓度50%(w/V)(3)PEG/liac溶液的制备(即用)800μl50%peg100μl10×te100μl10×liac1ml总体积(4)1.1×TE/liac溶液(用于使用和制备)11ml10×TE(5)11ml10×liac(6)78mlddh202。
酵母双杂交ad自激活验证步骤

酵母双杂交ad自激活验证步骤
酵母双杂交(Yeast Two-Hybrid)是一种常用的蛋白质相互作用研究技术。
下面是酵母双杂交AD自激活验证的步骤:
1. 构建酵母双杂交AD靶蛋白的表达载体:将目标蛋白的编码序列克隆到酵母双杂交AD表达载体中,将其与AD激活域相连,以使目标蛋白能够激活报告基因的表达。
2. 转化AD靶蛋白表达载体到酵母菌株中:通过酵母转化方法将AD靶蛋白表达载体导入酵母菌中,使其能够表达目标蛋白并激活报告基因。
3. 培养转化后的酵母菌株:将转化后的酵母菌株分别培养在选择性培养基上,其中包含AD靶蛋白表达载体所对应的选择性标记物,以筛选出成功转化的酵母菌株。
4. 鉴定AD自激活:通过观察报告基因的表达情况,若转化后的酵母菌株在选择性培养基上形成克隆,表明AD靶蛋白具有自激活能力。
此时需要通过相应的对照实验来确认AD靶蛋白的自激活性质。
需要注意的是,酵母双杂交中AD自激活验证的结果需要慎重解读,因为自激活可能会产生误报。
因此,在进行酵母双杂交实验时,通常需要配对对照实验来排除自激活的影响,以确保结果的准确性。
蛋白互作常用的研究方法

蛋白互作常用的研究方法
蛋白质互作常用的研究方法包括酵母双杂交技术、免疫共沉淀和GST pull-down实验。
1. 酵母双杂交技术:主要用来进行互作蛋白的筛选,缺点就是假阳性较高,所以需要进行结果验证,一般可采用免疫共沉淀或GST-pull down实验进
行验证。
2. 免疫共沉淀:是以抗体和抗原之间的专一性作用为基础的用于研究蛋白质相互作用的经典方法。
是确定两种蛋白质在完整细胞内相互作用的有效方法。
当细胞在非变性条件下被裂解时,完整细胞内存在的许多蛋白质-蛋白质间的相互作用被保留了下来。
当用预先固化在argarose beads上的蛋白质A 的抗体免疫沉淀A蛋白,那么与A蛋白在体内结合的蛋白质B也能一起沉
淀下来。
再通过蛋白变性分离,对B蛋白进行Western blot检测,进而证明两者间的相互作用。
3. GST pull-down实验:是一个行之有效的验证酵母双杂交系统的体外试
验技术。
其基本原理是先构建靶蛋白-GST融合蛋白载体,然后进行体外表
达及纯化。
但是也存在一定局限性。
这些方法各有优缺点,应根据研究目的和具体情况选择合适的方法。
酵母双杂交技术

酵母双杂交常规技术一.双杂交系统原理及应用范围蛋白质之间的互作是很多反应机制分子水平的核心动作,如DNA合成、转录激活、蛋白质翻译、蛋白质定位和信号转导等所有的的反应的完成都涉及到蛋白质复合体的作用。
而随着酵母双杂系统的成熟和完善,其在蛋白质互作研究中的应用越来越广泛。
酵母双杂交系统是基于转录因子的典型结构特征所建立的,它利用了酵母的转录因子GAL4基因产物,该蛋白拥有两个典型的转录因子结构域DNA结合结构域(BD)与转录激活结构域(AD)。
前者结合GAL1启动子区的DNA序列,后者则激活转录(Fields and Song,1989)。
Fields和Song分别构建了含有含有编码GAL4 DNA结合结构域(GAL4BD)和GAL4转录激活结构(GAL4AD)序列的载体。
将我们所要研究的目的基因分别装载到这两个质粒载体中,两个结构域序列则分别与基因的ORF进行融合。
当转入相应酵母菌株后,若在酵母内表达的不同蛋白发生互作,则将使GAL4-BD和GAL4-AD相互靠近结合,再进一步与上游激活序列结合,激活相应报告基因(report gene)的表达。
特点与优点酵母双杂交系统的最主要的应用是快速、直接分析已知蛋白之间的相互作用及分离新的与已知蛋白作用的配体及其编码基因。
酵母双杂交系统检测蛋白之间的相互作用具有以下优点:(1)作用信号是在融合基因表达后,在细胞内重建转录因子的作用而给出的,省去了纯化蛋白质的繁琐步骤。
(2)检测在活细胞内进行,可以在一定程度上代表细胞内的真实情况。
(3)检测的结果可以是基因表达产物的积累效应,因而可检测存在于蛋白质之间的微弱的或暂时的相互作用。
(4)酵母双杂交系统可采用不同组织、器官、细胞类型和分化时期材料构建cDNA文库,能分析细胞浆、细胞核及膜结合蛋白等多种不同亚细胞部位及功能的蛋白。
局限性和存在的问题酵母双杂交系统是分析蛋白-蛋白间相互作用的有效和快速的方法,有多方面的应用,但仍存在一些局限性。
(完整版)酵母双杂交原理

酵母双杂交系统原理酵母双杂交系统(Yeast Two-hybrid System)由Fields和Song等首先在研究真核基因转录调控中建立。
典型的真核生长转录因子,如GAL4、GCN4、等都含有二个不同的结构域: DNA 结合结构域(DNA-binding domain)和转录激活结构域(transcription-activating domain)。
前者可识别DNA上的特异序列,并使转录激活结构域定位于所调节的基因的上游,转录激活结构域可同转录复合体的其他成分作用,启动它所调节的基因的转录。
二个结构域不但可在其连接区适当部位打开,仍具有各自的功能。
而且不同两结构域可重建发挥转录激活作用。
酵母双杂交系统利用杂交基因通过激活报道基因的表达探测蛋白-蛋白的相互作用。
主要有二类载体: a 含DNA -binding domain的载体; b 含DNA-activating domain的载体。
上述二类载体在构建融合基因时,测试蛋白基因与结构域基因必须在阅读框内融合。
融合基因在报告株中表达,其表达产物只有定位于核内才能驱动报告基因的转录。
例如GAL4-bd具有核定位序列(nuclear-localization sequence),而GAL4-ad没有。
因此,在GAL4-ad氨基端或羧基端应克隆来自SV40的T-抗原的一段序列作为核定位的序列。
双杂交系统的另一个重要的元件是报道株。
报道株指经改造的、含报道基因(reporter gene)的重组质粒的宿主细胞。
最常用的是酵母细胞,酵母细胞作为报道株的酵母双杂交系统具有许多优点: 〈1〉易于转化、便于回收扩增质粒。
〈2〉具有可直接进行选择的标记基因和特征性报道基因。
〈3〉酵母的内源性蛋白不易同来源于哺乳动物的蛋白结合。
一般编码一个蛋白的基因融合到明确的转录调控因子的DNA-结合结构域(如GAL4-bd,LexA-bd);另一个基因融合到转录激活结构域(如GAL4-ad,VP16)。
酵母双杂交技术

缺点: (1)可能检测不到低亲和力和瞬间的蛋白 质-蛋白质相互作用; (2)两种蛋白质的结合可能不是直接结合, 而可能有第三者在中间起桥梁作用; (3)必须在实验前预测目的蛋白是什么, 以选择最后检测的抗体,所以,若预测不 正确,实验就得不到结果,方法本身具有 冒险性。
酵母单杂交技术
HIS3:筛选标记
Serial analysis of gene expression
AAAAA AAAAA AAAAA AAAAA AAAAA AAAAA AAAAA AAAAA
Isolate SAGE tags
Link tags together and sequence
Quantify Tags and Determine Patterns of Gene Expression
BiFC技术原理将荧光蛋白在某些特定的位点切开,形成不发荧光的N和C 端2个多肽,称为N片段(N-fragment)和C片段(C-fragment)。 当这 2 个荧光蛋白的片段分别 连接到 1 组有相互作用的目标 蛋白上,在细胞内共表达或体 外混合这 2 个融合蛋白时,由 于目标蛋白质的相互作用,荧 光蛋白的 2 个片段在空间上互 相靠近互, DNA chip, or DNA microarry) :生物芯片的一种。它是将DNA分子固定于支持物上,并与标记的样品杂交
,通过自动化仪器检测杂交信号的强度来判断样品中靶分子的数量,进而得知 样品中mRNA的表达量,也可进行基因突变体的检测和基因序列的测定,为 进一步了解基因间的相互关系及基因克隆提供有用的工具 GeneChip 将探针固定在特定的固体基质上,而原来印记在膜上的目标 DNA或RNA进行标记,然后进行的大规模的杂交。
5、利用EST数据库发现新基因
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
酵母双杂交系统
1.原理
酵母双杂交系统的建立得力于对真核细胞调控转录起始过程的认识。
研究发现,许多真核生物的转录激活因子都是由两个可以分开的、功能上相互独立的
结构域(domain)组成的。
例如,酵母的转录激活因子GAL4,在N端有一个由147个氨基酸组成的DNA结合域(DNA binding domain,BD),C端有一个由113
个氨基酸组成的转录激活域(transcription activation domain,AD)。
GAL4分子的DNA结合域可以和上游激活序列(upstream activating sequence,UAS)结合,而
转录激活域则能激活UAS下游的基因进行转录。
但是,单独的DNA结合域不
能激活基因转录,单独的转录激活域也不能激活UAS的下游基因,它们之间只
有通过某种方式结合在一起才具有完整的转录激活因子的功能。
2.试验流程
酵母双杂交系统正是利用了GAL4的功能特点,通过两个杂交蛋白在酵母细
胞中的相互结合及对报告基因的转录激活来捕获新的蛋白质,其大致步骤为: 2.1、视已知蛋白的cDNA序列为诱饵(bait),将其与DNA结合域融合,构建
成诱饵质粒。
2.2、将待筛选蛋白的cDNA序列与转录激活域融合,构建成文库质粒。
2.3、将这两个质粒共转化于酵母细胞中。
2.4、酵母细胞中,已分离的DNA结合域和转录激活域不会相互作用,但诱
饵蛋白若能与待筛选的未知蛋白特异性地相互作用,则可激活报告基因的转录;反之,则不能。
利用4种报告基因的表达,便可捕捉到新的蛋白质。
3.特点
优点
蛋白--蛋白相互作用是细胞进行一切代谢活动的基础。
酵母双杂交系统的建立
为研究这一问题提供了有利的手段和方法。
缺点
尽管该系统己被证实为一种非常有效的方法,但它也有自身的缺点和问题。
1、它并非对所有蛋白质都适用,这是由其原理所决定的。
双杂交系统要求两种杂
交体蛋白都是融合蛋白,都必须能进入细胞核内。
因为融合蛋白相互作用激活
报告基因转录是在细胞核内发生的。
2、假阳性的发生较为频繁。
所谓假阳性,即指未能与诱饵蛋白发生作用而被误认为是阳性反应的蛋白。
而且部分假阳性
原因不清,可能与酵母中其他蛋白质的作用有关。
3、在酵母菌株中大量表达外源蛋白将产生毒性作用,从而影响菌株生长和报告基因的表达。
使用酵母双杂交技术应注意的问题
真正明了酵母双杂交技术的主要原理及筛选方法是进行酵母双杂交实验的前提,构建成功的诱饵质粒及大量的材料准备是进行酵母双杂交实验的保证。
只
有明了双杂交的原理,才有可能设计实验进程、才能有目的的进行材料准备,
并能对实验结果作出预测与分析,尤其要对具体实验中各种选择性压力培养基
的使用目的要十分清楚。
大量的材料准备、较长的实验流程是酵母双杂交有别
于其他实验的特点,而其操作技术本身并不十分困难。
特别应提出的是,一个
阳性克隆的编号往往要被反复记录多次,因此,要时时注意编号的正确性。
另外,若从公司购得待筛选的酵母cDNA文库,应注意不同的公司有不同的产品,且各公司的产品不断更新换代,要认真阅读实验指导手册,以防出现失误。
4.应用
研究已知蛋白间的相互作用、寻找在蛋白—蛋白相互作用中起关键作用的结构域、寻找与靶蛋白相互作用的新蛋白。
相信随着分子生物学技术的发展与推广,酵母双杂交技术在今后的蛋白质组学研究中将发挥更大的作用。
酵母双杂交系统操作方法
LexA酵母双杂交系统简介
一、LexA酵母双杂交系统的设计原理
报告质粒p8op-LacZ的GAL4 UAS编码序列被完全去除,因此在缺乏LexA融合激活剂的
情况下,报告基因LacZ的转录活性为零,该基因的筛选标志为URA3,可以作为有自主复制能力的质粒存在于酵母EGY48菌株中,也可以被整合到EGY48基因组DNA上。
质粒pLexA的筛选标志为HIS3,在双杂交系统中用于表达DNA-BD(202个氨基酸残基组
成的LexA蛋白)与目标蛋白(钓饵,Bait)的融合蛋白,该融合体的表达受酵母强启动子
ADH1的调控,选择与报告基因的操纵子LexA×8结合。
质粒pB42AD的筛选标志为TRP1,在其供外源基因插入的多克隆位点(EcoR I与Xho I)上游,含有SV40核定位(SV40 nuclear localization)、HA(血凝素)及AD(来自于E.coli的88
个氨基酸残基组成的B42蛋白)等几种编码序列,共同组成可以启动报告基因转录表达的激活成份。
在酵母EGY48的基因组中还整合有另一个报告基因Leu,它与LacZ报告基因具有相同的
操纵子-LexA,但两者启动子不同。
根据双杂交系统的原理,如果某一复合物同时具有DNA-BD和AD的活性,即可激活报告
基因的转录和表达。
分别将待测蛋白X、Y的编码序列插入pLexA质粒载体和pB42AD质
粒载体的多克隆位点中,然后共同转入含有报告基因的酵母菌株,如果蛋白X与Y能相互
作用,则启动报告基因的转录和表达,通过检测报告基因的表达情况,就可以间接反映蛋
白X、Y是否具有相互作用以及作用的强弱。
如果将蛋白Y换为取自组织或血液的cDNA文库,则可用X从该文库中筛选出能与其相互
作用的蛋白,并且可以获得编码这些蛋白的cDNA。
二、商品化酵母双杂交系统的组成
1. 载体质粒:pLexA、pB42AD、p8op-LacZ、pB42AD-DNA文库
2. 酵母菌株:EGY48、EGY48(p8op-LacZ)、YM4271(EGY48的伴侣菌株)
3. 大肠杆菌菌株:E.coli KC8株
4. 对照质粒:
质粒用途
pLexA-53,pB42AD-T 阳性对照
pLexA-Pos(LexA/GAL4 AD融合蛋白〕阳性对照
pLexA-Lam(LaminC蛋白少与其它蛋白相互作用) 假阳性检测质粒
5. 引物:
pLexA测序引物及pB42AD测序引物。
三、酵母双杂交实验的基本流程
1. 将报告基因p8op-LacZ转化酵母EGY48菌株,用培养基SD/-Ura筛选。
2. 同时构建或扩增DNA文库,并纯化足够的质粒以转化酵母细胞。
3. 构建DNA-BD/靶蛋白质粒pLexA-X,作为钓饵(bait)。
4. 将上述钓饵质粒pLexA-X转化EGY48(p8op-LacZ)细胞株,用SD/-His/-Ura筛选;并用固体诱导培养基SD/Gal/Raf/-His/-Ura检测此DNA-BD/靶蛋白是否具有直接激活报告基因的活性,以及对酵母细胞是否具有杀伤毒性。
转化质粒选择培养基克隆生长情况说明
(含有Gal/Raf)
pLexA-Pos SD/-His,-Ura 蓝阳性对照
pLexA SD/-His,-Ura 白阴性对照
PlexA-X SD/-His,-Ura 白没有直接激活活性
PlexA-X SD/-His,-Ura 蓝具有直接激活活性
PlexA-X SD/-His,-Ura 菌落不能生长酵母细胞毒性
4-1. 如果pLexA-X -半乳糖苷酶的信号作用。
能够自动激活报告基因,则设法去除其激活活性部位、或者将LacZ报告基因整合入基因组,减少
4-2. 如果pLexA-X虽然不会自动激活报告基因,但对酵母宿主细胞有毒性,则需要与纯化的文库DNA同时转化酵母。