人教版初中数学整式复习(含答案)

合集下载

初一数学整式试题答案及解析

初一数学整式试题答案及解析

初一数学整式试题答案及解析1.下列计算中,正确的是A.3ab2·(-2a)=-6a2b2B.(-2x2y)3=-6x6y3C.a3·a4=a12D.(-5xy)2÷5x2y=5y2【答案】A.【解析】A、3ab2•(-2a)=-6a2b2,正确;B、(-2x2y)3=-8x6y3,故此选项错误;C、a3•a4=a7,故此选项错误;D、(-5xy)2÷5x2y=5y,故此选项错误;故选A.【考点】1.单项式乘单项式;2.同底数幂的乘法;3.幂的乘方与积的乘方;4.整式的除法.2.若一多项式除以2x2-3,得到的商式为x+4,余式为3x+2,则此多项式为.【答案】2x3+8x2-10.【解析】根据“被除式=除式×商式+余式”进行计算即可求出结果.试题解析:A=(2x2-3)(x+4)+3x+2=2x3+8x2-3x-12+3x+2=2x3+8x2-10故此多项式为2x3+8x2-10.【考点】整式的除法.3.如图,从边长为a+1的正方形纸片中剪去一个边长为a-1的正方形(a>1),剩余部分沿虚线剪开,再拼成一个矩形(不重叠无缝隙),则该矩形的面积是()A.2B.2a C.4a D.a2-1【答案】C.【解析】矩形的面积是(a+1)2-(a-1)2=4a.故选C.【考点】平方差公式的几何背景.4.已知a(a-2)-(a2-2b)=-4.求代数式的值.【答案】2【解析】先把a(a-2)-(a2-2b)=-4进行整理,得出b-a=2,再把要求的式子进行通分,然后合并同类项,最后把b-a的值代入即可.试题解析:∵,∴即b-a=2,∴【考点】整式的混合运算5.若= .【答案】.【解析】:a2x﹣2y=a2x÷a2y=(a x)2÷(a y)2=8)2÷32=.故答案是.【考点】1.同底数幂的除法2.幂的乘方与积的乘方.6.因式分解(1)(2)(3)(4)【答案】(1);(2);(3);(4).【解析】按照提公因式的基本方法即可.试题解析:(1);(2);(3);(4).【考点】提公因式法与公式法的综合运用.7.计算:_____________;【答案】【解析】根据单项式除法法则和同底数幂相除法则即可得出答案单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.所以.注意:容易忽略负号和中a的指数为1.【考点】1.单项式除法;2.同底数幂相除.8.图a是一个长为2 m、宽为2 n的长方形, 沿图中虚线用剪刀均分成四块小长方形, 然后按图b 的形状拼成一个正方形。

整式复习题及答案

整式复习题及答案

整式复习题及答案一、选择题1. 下列哪个表达式不是整式?A. 3x^2 + 2x + 1B. x^0C. √xD. 5答案:C2. 计算下列整式的结果:(2x^2 - 3x + 1) + (4x^2 - x + 5) =A. 6x^2 - 4x + 6B. 6x^2 - 2x + 6C. 6x^2 + 2x + 6D. 6x^2 - 2x + 1答案:B3. 如果多项式f(x) = ax^3 + bx^2 + cx + d,且f(1) = 5,f(-1) = -1,那么a + d的值是多少?A. 4B. 6C. -2D. 2答案:D二、填空题4. 整式\( P(x) = x^3 - 2x^2 + 3x - 4 \)的常数项是________。

答案:-45. 整式\( Q(x) = 4x^2 + 5 \)的二次项系数是________。

答案:46. 如果\( R(x) = x^2 - 6x + 9 \)可以表示为完全平方的形式,那么它可以写成\( (x - a)^2 \)的形式,其中a的值是________。

答案:3三、解答题7. 计算下列整式的乘积,并合并同类项:\( (3x - 2)^2 \)。

解:\( (3x - 2)^2 = (3x - 2)(3x - 2) \)\( = 9x^2 - 6x - 6x + 4 \)\( = 9x^2 - 12x + 4 \)8. 给定多项式\( S(x) = 2x^3 - 5x^2 + 3x - 1 \),求\( S(2) \)的值。

解:\( S(2) = 2(2)^3 - 5(2)^2 + 3(2) - 1 \)\( = 2(8) - 5(4) + 6 - 1 \)\( = 16 - 20 + 6 - 1 \)\( = 1 \)9. 已知\( T(x) = x^3 - 3x^2 + 2x + 1 \),求\( T(-1) \)的值。

解:\( T(-1) = (-1)^3 - 3(-1)^2 + 2(-1) + 1 \)\( = -1 - 3 - 2 + 1 \)\( = -5 \)四、综合题10. 证明整式\( (x + a)(x + b) = x^2 + (a + b)x + ab \)。

人教版初中七年级数学上册第二单元《整式的加减》经典复习题(含答案解析)

人教版初中七年级数学上册第二单元《整式的加减》经典复习题(含答案解析)

一、选择题1.点 1A 、 2A 、 3A 、…… 、 n A (n 为正整数)都在数轴上.点 1A 在原点 O 的左边,且 1A O 1=;点 2A 在点 1A 的右边,且 21A A 2=;点 3A 在点 2A 的左边,且32A A 3=;点 4A 在点 3A 的右边,且 43A A 4=;……,依照上述规律,点 2008A 、2009A 所表示的数分别为( )A .2008 、 2009-B .2008- 、 2009C .1004 、 1005-D .1004 、 1004-2.下列对代数式1a b-的描述,正确的是( ) A .a 与b 的相反数的差 B .a 与b 的差的倒数 C .a 与b 的倒数的差D .a 的相反数与b 的差的倒数3.已知一个多项式与3x 2+9x 的和等于5x 2+4x ﹣1,则这个多项式是( ) A .2x 2﹣5x ﹣1B .﹣2x 2+5x+1C .8x 2﹣5x+1D .8x 2+13x ﹣14.下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有4个小圆圈,第②个图形中一共有10个小圆圈,第③个图形中一共有19个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为( )A .64B .77C .80D .855.设a 是最小的非负数,b 是最小的正整数,c ,d 分别是单项式﹣x 3y 的系数和次数,则a ,b ,c ,d 四个数的和是( ) A .1B .2C .3D .46.把有理数a 代数410a +-得到1a ,称为第一次操作,再将1a 作为a 的值代入410a +-得到2a ,称为第二次操作,...,若a =23,经过第2020次操作后得到的是( ) A .-7B .-1C .5D .117.一个多项式加上3y 2-2y -5得到多项式5y 3-4y -6,则原来的多项式为( ). A .5y 3+3y 2+2y -1B .5y 3-3y 2-2y -6C .5y 3+3y 2-2y -1D .5y 3-3y 2-2y -18.下列变形中,正确的是( ) A .()x z y x z y --=--B .如果22x y -=-,那么x y =C .()x y z x y z -+=+-D .如果||||x y =,那么x y = 9.下列去括号运算正确的是( ) A .()x y z x y z --+=--- B .()x y z x y z --=--C .()222x x y x x y -+=-+D .()()a b c d a b c d -----=-+++10.将正整数按如图的规律排列:平移表中的方框,方框中的4个数的和可能是( )A .2010B .2014C .2018D .202211.有20个数排成一行,对于任意相邻的三个数,都有中间的数等于前后两数的和.如果第一个数是0,第二个数是2,这20个数的和是( ) A .2 B .﹣2C .0D .412.代数式213x -的含义是( ). A .x 的2倍减去1除以3的商的差 B .2倍的x 与1的差除以3的商 C .x 与1的差的2倍除以3的商 D .x 与1的差除以3的2倍13.下列说法:①在数轴上表示a -的点一定在原点的左边;②有理数a 的倒数是1a;③一个数的相反数一定小于或等于这个数;④如果a b >,那么22a b >;⑤235x y的次数是2;⑥有理数可以分为整数、正分数、负分数和0;⑦27m ba -与2abm 是同类项.其中正确的个数为( ) A .1个B .2个C .3个D .4个14.根据图中数字的规律,则x y +的值是( )A .729B .593C .528D .73815.多项式33x y xy +-是( ) A .三次三项式B .四次二项式C .三次二项式D .四次三项式二、填空题16.多项式2213383x kxy y xy --+-中,不含xy 项,则k 的值为______. 17.如图,将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,……如此继续下去,结果如下表:则a n =__________(用含n 的代数式表示).所剪次数 1 2 3 4 … n 正三角形个数471013…a n18.如图,是由一些点组成的图形,按此规律,在第n 个图形中,点的个数为_____.19.一个关于x 的二次三项式,一次项的系数是1,二次项的系数和常数项都是-12,则这个二次三项式为________________________.20.已知轮船在静水中的速度为(a +b )千米/时,逆流速度为(2a -b )千米/时,则顺流速度为_____千米/时21.观察下列图形它们是按一定规律排列的,依照此规律,第 20 个图形共有________________ 个★.22.单项式20.8a h π-的系数是______.23.已知在没有标明原点的数轴上有四个点,且它们表示的数分别为a 、b 、c 、d .若|a ﹣c |=10,|a ﹣d |=12,|b ﹣d |=9,则|b ﹣c |=___.24.如图,有一种飞镖游戏,将飞镖圆盘八等分,每个区域内各有一个单项式,现假设你的每支飞镖均能投中目标区域,如果只提供给你四支飞镖且都要投出,那么要使你投中的目标区域内的单项式之和为a+2b ,共有_____种方式(不考虑投中目标的顺序).25.如果13k x y 与213x y -是同类项,则k =______,21133k x y x y ⎛⎫+-= ⎪⎝⎭______.26.如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即4+3=7;则上图中m +n+p =_________;三、解答题27.已知多项式22622452x mxyy xy x中不含xy 项,求代数式32322125m m m m mm 的值.28.若关于x ,y 的多项式my 3+3nx 2y +2y 3-x 2y +y 不含三次项,求2m +3n 的值. 29.已知2223,Ax xy y B x xy()1若()2230x y ++-=,求2A B -的值()2若2A B -的值与y 的值无关,求x 的值30.生活中,有人喜欢把传送的便条折成形状,折叠过程是这样的(阴影部分表示纸条的反面):如果由信纸折成的长方形纸条(图①)长为26cm ,宽为cm x ,分别回答下列问题:(1)为了保证能折成图④的形状(即纸条两端均超出点P ),试求P 的取值范围.(2)如果不但要折成图④的形状,而且为了美观,希望纸条两端超出点P的长度相等,即最终图形是轴对称图形,试求在开始折叠时起点M与点P的距离(用P表示)。

人教版 初中数学中考一轮复习---整式和整式的加减运算(含解析)

人教版 初中数学中考一轮复习---整式和整式的加减运算(含解析)

整式与整式的加减运算例1: 因式分解:22mx my -. 例2: 已知:,2-=b ,.求代数式:24a b c +-的值. 例3: 先化简,再求值:(1+a )(1﹣a )+(a ﹣2)2,其中a=﹣3.例4: 先化简,再求值:,其中x =A 组1、指出下列各单项式的系数和次数:23223,5,,37a x y ab a bc π- 2. 判断下列各式哪些是单项式: ①2ab x ②a ③25ab -④x y +⑤0.85-⑥12x +⑦2x⑧0 3. 对于多项式2221x yz xy xz -+-- (1)最高次数项的系数是 ; (2)是 次 项式; (3)常数项是 。

3=a 21=c 2(2)(21)(21)4(1)x x x x x +++--+4.已知多项式221345xy x y --,试按下列要求将其重新排列。

(1)按字母x 作降幂排列;(2)按字母y 作升幂排列。

点拨:在按照定义的要求情况下,注意各项前的符号。

5. 把下列各式填在相应的大括号里7x -,13x ,4ab ,23a ,35x -,y ,st,13x +,77x y +,212x x ++,11m m -+,38a x ,1-。

单项式集合{ } 多项式集合{ } 整式集合 { }6、三个连续的奇数中,最小的一个是23n -,那么最大的一个是 。

7、当2x =-时,代数式-221x x +-= ,221x x -+= 。

8、写出一个关于x 的二次三项式,使得它的二次项系数为-5,则这个二次三项式为 。

9、如果3y -+2(24)x -=0,那么2x y -=___。

10、多项式221x x -+的各项分别是( ) A 、22,,1x x B 、22,,1x x - C 、22,,1x x -- D 、22,,1x x --- 11、计算:35_____x x -=; 12、()22______326271x x x x +--=--+13、买一个足球需要m 元,买一个篮球需要n 元,则买4个足球、7个篮球共需要( )元。

初一整式测试题及答案

初一整式测试题及答案

初一整式测试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是单项式?A. 3x^2yB. 2x + 3C. 5x^2 - 3xD. 4x^3y^2 / 22. 合并同类项 2x^2 - 3x^2 + 5x^2 的结果是:A. 4x^2B. -x^2C. 0D. 3x^23. 整式 4x - 3y + 2z 的次数是:A. 1B. 2C. 3D. 44. 计算 (3x - 2)(2x + 5) 的结果是:A. 6x^2 + 11x - 10B. 6x^2 - 11x + 10C. 6x^2 + 11x + 10D. 6x^2 - 11x - 105. 多项式 2x^3 - 5x^2 + 3x - 1 的次数是:A. 1C. 3D. 46. 整式 3x^2y - 5x + 2 是关于 x 的:A. 一次单项式B. 一次多项式C. 二次单项式D. 二次多项式7. 整式 2x^2y + 3xy^2 - 4y 是关于 y 的:A. 一次单项式B. 一次多项式C. 二次单项式D. 二次多项式8. 计算 (x + 1)(x - 1) 的结果是:A. x^2 - 1B. x^2 + 1C. 2xD. 29. 整式 3x^2 - 2x + 1 的系数分别是:A. 3, -2, 1B. -3, 2, -1C. 3, 2, -1D. -3, -2, -110. 整式 4x^3 - 3x^2 + 2x - 1 的最高次项是:A. 4x^3B. -3x^2D. -1二、填空题(每题4分,共20分)1. 单项式 -5x^3y^2 的系数是 ________。

2. 合并同类项 4x^2 - 2x^2 + 3x^2 的结果是 ________。

3. 整式 2x^2y - 3xy^2 + 4y 是关于 y 的 ________ 次多项式。

4. 计算 (2x + 3)(x - 4) 的结果是 ________。

5. 整式 5x^4 - 3x^3 + 2x^2 - x + 1 的常数项是 ________。

初中数学 整式 练习题(含答案)

初中数学  整式 练习题(含答案)

第一篇 数与式 专题02 整式的运算☞解读考点知 识 点名师点晴整式的有关概念单项式知道单项式、单项式的系数、次数多项式 知道多项式、多项式的项、多项式的次数、常数项.同类项能够分清哪些项是同类项.整式的运算1.幂的运算能运用幂的运算法则进行同底数幂的乘法、除法、幂的乘方、积的乘方运算2.整式的加、减、乘、除法运算法则能按照运算法则进行整式的加、减、乘、除法运算以及整式的混合运算3.乘法公式能熟练运用乘法公式☞2年中考【2017年题组】一、选择题1.(2017云南省)下列计算正确的是( )A .2a ×3a =5aB .33(2)6a a -=- C .6a ÷2a =3a D .326()a a -= 【答案】D . 【解析】 试题分析:A .原式=26a ,故A 错误; B .原式=38a -,故B 错误; C .原式=3,故C 错误; D .326()a a -=,正确; 故选D .考点:整式的混合运算.2.(2017内蒙古呼和浩特市)下列运算正确的是( )A .222222(2)2()3a b a b a b +--+=+ B .212111a aa a a +--=-- C .32()(1)mm m m a a a -÷=- D .2651(21)(31)x x x x --=--【答案】C . 【解析】考点:1.分式的加减法;2.整式的混合运算;3.因式分解﹣十字相乘法等.3.(2017吉林省长春市)如图,将边长为3a 的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b 的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为( )A .3a +2bB .3a +4bC .6a +2bD .6a +4b 【答案】A .点睛:考查了列代数式,关键是得到这块矩形较长的长与两个正方形边长的关系. 考点:完全平方公式的几何背景. 4.(2017四川省乐山市)已知31=+x x ,则下列三个等式:①7122=+xx ,②51=-x x ,③2622-=-x x 中,正确的个数有( )A .0个B .1个C .2个D .3个 【答案】C . 【解析】 试题分析:∵31=+x x ,∴21()9x x +=,整理得:7122=+xx ,故①正确. 211()4x x x x-=±+- =±5,故②错误. 方程2622-=-x x 两边同时除以2x 得:13x x -=-,整理得:31=+xx ,故③正确. 故选C .考点:1.完全平方公式;2.分式的混合运算.学科~网 5.(2017四川省眉山市)下列运算结果正确的是( )A .8182-=-B .2(0.1)0.01--=C .222()2a b a b a b÷=D .326()m m m -=- 【答案】A . 【解析】试题分析:A .81822322-=-=-,正确,符合题意; B .21(0.1)0.01--==100,故此选项错误; C .232232428()2a b a a a b a b b b÷=⨯=,故此选项错误; D .325()m m m -=-,故此选项错误; 故选A .考点:1.二次根式的加减法;2.同底数幂的乘法;3.幂的乘方与积的乘方;4.分式的乘除法;5.负整数指数幂.6.(2017宁夏)如图,从边长为a 的大正方形中剪掉一个边长为b 的小正方形,将阴影部分沿虚线剪开,拼成右边的矩形.根据图形的变化过程写出的一个正确的等式是( )A .()2222a b a ab b -=-+ B .()2a ab a ab -=-C .()222a b a b -=- D .()()22a b a b a b -=+-【答案】D .点睛:本题考查了平方差公式的几何背景,正确用两种方法表示阴影部分的面积是关键. 考点:平方差公式的几何背景.7.(2017山东省淄博市)若a +b =3,227a b +=,则ab 等于( ) A .2 B .1 C .﹣2 D .﹣1 【答案】B . 【解析】试题分析:∵a +b =3,∴2()9a b +=,∴2229a ab b ++=,∵227a b +=,∴7+2ab =9,∴ab =1.故选B .考点:1.完全平方公式;2.整体代入.8.(2017南京)计算()3624101010⨯÷的结果是( )A . 310B . 710C . 810D .910 【答案】C . 【解析】试题分析:原式=664101010⨯÷=810.故选C .考点:1.同底数幂的除法;2.同底数幂的乘法;3.幂的乘方与积的乘方.9.(2017上海市)计算:22a a ⋅=. 【答案】32a .考点:单项式乘单项式. 二、填空题10.(2017内蒙古通辽市)若关于x 的二次三项式412++ax x 是完全平方式,则a 的值是 . 【答案】±1. 【解析】试题分析:中间一项为加上或减去x 和12积的2倍,故a =±1,解得a =±1,故答案为:±1. 点睛:本题考查了完全平方式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.关键是注意积的2倍的符号,避免漏解. 考点:1.完全平方式;2.分类讨论.11.(2017广东省深圳市)阅读理解:引入新数i ,新数i 满足分配律,结合律,交换律,已知i 2=﹣1,那么(1+i )•(1﹣i )= . 【答案】2. 【解析】试题分析:由题意可知:原式=1﹣i 2=1﹣(﹣1)=2.故答案为:2. 考点:1.平方差公式;2.实数的运算;3.新定义.12.(2017江苏省徐州市)已知a +b =10,a ﹣b =8,则22a b -= . 【答案】80. 【解析】试题分析:∵(a +b )(a ﹣b )=22a b -,∴22a b -=10×8=80,故答案为:80. 考点:平方差公式.13.(2017江苏省泰州市)已知2m ﹣3n =﹣4,则代数式m (n ﹣4)﹣n (m ﹣6)的值为 . 【答案】8.考点:整式的混合运算—化简求值.14.(2017湖北省孝感市)如图所示,图1是一个边长为a 的正方形剪去一个边长为1的小正方形,图2是一个边长为(a ﹣1)的正方形,记图1,图2中阴影部分的面积分别为S 1,S 2,则12S S 可化简为 .【答案】11a a +-. 【解析】试题分析:12S S =221(1)a a --=2(1)(1)(1)a a a +--=11a a +-,故答案为:11a a +-.点睛:此题主要考查了平方公式的几何背景和分式的化简,关键是正确表示出阴影部分面积. 考点:平方差公式的几何背景.学科!网15.(2017贵州省六盘水市)计算:2017×1983= . 【答案】3999711. 【解析】试题分析:原式=(2000+17)(2000﹣17)=20002﹣172=4000000﹣289=3999711.故答案为:3999711. 考点:平方差公式.16.(2017贵州省黔南州)杨辉三角,又称贾宪三角,是二项式系数在三角形中的一种几何排列,如图,观察下面的杨辉三角:按照前面的规律,则(a +b )5= . 【答案】1a 5+5a 4b +10a 3b 2+10a 2b 3+5ab 4+1b 5. 【解析】点睛:本题考查了完全平方公式以及规律型中数字的变化,观察图形,找出二项式系数与杨辉三角之间的关系是解题的关键.考点:1.完全平方公式;2.规律型. 三、解答题17.(2017吉林省长春市)先化简,再求值:()223(21)21a a a a ++-+,其中a =2.【答案】32342a a a +--,36. 【解析】试题分析:原式利用单项式乘以多项式,以及完全平方公式化简,去括号合并得到最简结果,把a 的值代入计算即可求出值.试题解析:原式=32363242a a a a ++---=32342a a a +--,当a =2时,原式=24+16﹣2﹣2=36. 考点:1.整式的混合运算—化简求值;2.整式.学科#网18.(2017湖北省荆门市)先化简,再求值: ()()()2212132x x x +--+-,其中2x =【答案】225x + ,9. 【解析】试题分析:原式利用完全平方公式,多项式乘以多项式法则计算,去括号合并得到最简结果,把x 的值代入计算即可求出值.试题解析:原式=224412462x x x x ++--+-=225x + 当2x ==4+5=9.考点:整式的混合运算—化简求值.19.(2017贵州省贵阳市)下面是小颖化简整式的过程,仔细阅读后解答所提出的问题. 解:()()2212x x y x x +-++222212x xy x x x =+-+++ 第一步241xy x =++ 第二步(1)小颖的化简过程从第 步开始出现错误; (2)对此整式进行化简.【答案】(1)一;(2)2xy ﹣1. 【解析】考点:1.单项式乘多项式;2.完全平方公式.20.(2017河北省)发现 任意五个连续整数的平方和是5的倍数. 验证 (1)22222(1)0123-++++的结果是5的几倍?(2)设五个连续整数的中间一个为n ,写出它们的平方和,并说明是5的倍数. 延伸 任意三个连续整数的平方和被3整除余数是几呢?请写出理由. 【答案】(1)3;(2)见解析;延伸 2,理由见解析. 【解析】试题分析:(1)直接计算这个算式的值;(2)先用代数式表示出这几个连续整数的平方和,再化简,根据代数式的形式作出结论. 试题解析:(1)∵()2222210123-++++=1+0+1+4+9=15=5×3,∴结果是5的3倍. (2)()()()()()2222222211251052n n n n n n n -+-+++++=+=+. ∵n 为整数,∴这个和是5的倍数. 延伸 余数是2.理由:设中间的整数为n ,()()22221132n n n n -+++=+被3除余2.点睛:本题考查了因式分解的应用,完全平方公式,整式的加减运算,解题的关键是掌握合并同类项的法则并且能够正确运算.考点:1.因式分解的应用;2.完全平方公式;3.整式的加减.【2016年题组】一、选择题1.(2016吉林省)计算32()a -结果正确的是( )A .5a B .﹣5a C .﹣6a D .6a【答案】D . 【解析】考点:幂的乘方与积的乘方.2.(2016内蒙古呼伦贝尔市)化简32()()x x --,结果正确的是( ) A .6x - B .6x C .5x D .5x - 【答案】D . 【解析】试题分析:32()()x x --=5()x -=5x -.故选D .考点:同底数幂的乘法.3.(2016内蒙古包头市)下列计算结果正确的是( )A .233+=B 822=C .236(2)6a a -=-D .22(1)1a a +=+【答案】B . 【解析】试题分析:A .23不是同类二次根式,所以不能合并,所以A 错误; B 822=,所以B 正确; C .236(2)8a a -=-,所以C 错误; D .22(1)21a a a +=++,所以D 错误. 故选B .学科¥网考点:1.二次根式的乘除法;2.幂的乘方与积的乘方;3.完全平方公式. 4.(2016内蒙古呼和浩特市)下列运算正确的是( ) A .235a a a += B .23241(2)()162a a a -÷=- C .1133aa -=D .2222(233)3441a a a a a ÷=-+【答案】D . 【解析】考点:1.整式的除法;2.合并同类项;3.幂的乘方与积的乘方;4.负整数指数幂. 5.(2016云南省昆明市)下列运算正确的是( )A .22(3)9a a -=-B .248a a a ⋅= C 93=± D 382-=-【答案】D . 【解析】试题分析:A .22(3)69a a a -=-+,故错误; B .246a a a ⋅=,故错误; C 93=,故错误; D 382-=-,故正确. 故选D .考点:1.同底数幂的乘法;2.算术平方根;3.立方根;4.完全平方公式. 6.(2016云南省曲靖市)下列运算正确的是( )A .3223=B .632a a a ÷=C .235a a a += D .326(3)9a a =【答案】D . 【解析】考点:1.二次根式的加减法;2.合并同类项;3.幂的乘方与积的乘方;4.同底数幂的除法. 7.(2016内蒙古巴彦淖尔市)下列运算正确的是( )A .2222236x y xy x y -⋅=- B .22(2)(2)4x y x y x y --+=- C .322623x y x y xy ÷= D .32294(4)16x y x y = 【答案】C .【解析】试题分析:2232236x y xy x y -⋅=-,故选项A 错误;.22(2)(2)44x y x y x xy y --+=---,故选项B 错误;.322623x y x y xy ÷=,故选项C 正确;.32264(4)16x y x y =,故选项D 错误;.故选C .考点:整式的混合运算.8.(2016宁夏)下列计算正确的是( )A .a b ab +=B .224()a a -=-C .22(2)4a a -=-D .aa b b ÷=(a ≥0,b >0)【答案】D .【解析】考点:1.二次根式的混合运算;2.幂的乘方与积的乘方;3.完全平方公式.9.(2016安徽)计算102a a ÷(a ≠0)的结果是( )A .5aB .5-aC .8aD .8-a【答案】C .【解析】试题分析:102a a ÷=8a .故选C .考点:1.同底数幂的除法;2.负整数指数幂.学科%网10.(2016四川省乐山市)下列等式一定成立的是( )A .235m n mn +=B .326()=m mC . 236m m m ⋅=D .222()m n m n -=-【答案】B .【解析】试题分析:A .2m +3n 无法计算,故此选项错误;B .326()=m m ,正确;C .235m m m ⋅=,故此选项错误;D .222()2m n m mn n -=-+,故此选项错误.故选B .考点:1.合并同类项;2.同底数幂的乘法;3.幂的乘方与积的乘方;4.完全平方公式.11.(2016四川省凉山州)下列计算正确的是( )A .235a b ab +=B .2363(2)6a b a b -=-C =D .222()a b a b +=+ 【答案】C .【解析】考点:1.二次根式的加减法;2.合并同类项;3.幂的乘方与积的乘方;4.完全平方公式.12.(2016四川省巴中市)下列计算正确的是( )A .2222()a b a b =B .623a a a ÷=C .2224(3)6xy x y =D .725()()m m m -÷-=- 【答案】D .【解析】试题分析:A .积的乘方等于乘方的积,故A 错误;B .同底数幂的除法底数不变指数相减,故B 错误;C .积的乘方等于乘方的积,故C 错误;D .同底数幂的除法底数不变指数相减,故D 正确;故选D .学科…网考点:1.同底数幂的除法;2.幂的乘方与积的乘方.13.(2016四川省广安市)下列运算正确的是( )A .326(2)4a a -=-B 3=±C .236m m m ⋅=D .33323x x x +=【答案】D .【解析】试题分析:A .326(2)4a a -=,故本选项错误;B 3=,故本选项错误;C .235m m m ⋅=,故本选项错误;D .33323x x x +=,故本选项正确.故选D . 考点:1.幂的乘方与积的乘方;2.算术平方根;3.合并同类项;4.同底数幂的乘法.14.(2016四川省甘孜州)下列计算正确的是( )A .431x x -=B .2242x x x +=C .236()x x =D .23622x x x ⋅= 【答案】C .【解析】考点:1.单项式乘单项式;2.合并同类项;3.幂的乘方与积的乘方.15.(2016四川省眉山市)下列等式一定成立的是( )A .2510a a a ⋅=B a b a b +=C .3412()a a -=D 2a a =【答案】C .【解析】试题分析:A .257a a a ⋅=,所以A 错误;B a b +B 错误;C .3412()a a -=,所以C 正确;D 2a a =,所以D 错误.故选C .考点:1.同底数幂的乘法;2.二次根式的加减法;3.幂的乘方与积的乘方;4.二次根式的性质与化简.16.(2016四川省资阳市)下列运算正确的是( )A .426x x x +=B .236x x x ⋅=C .236()x x =D .222()x y x y -=- 【答案】C .【解析】考点:1.幂的乘方与积的乘方;2.合并同类项;3.同底数幂的乘法;4.因式分解-运用公式法.17.(2016山东省济南市)下列运算正确的是( )A .232a a a +=B .236a a a ⋅=C .326(2)4a a -= D .623a a a ÷= 【答案】C .【解析】试题分析:A .2a 与a 不是同类项,不能合并,故本选项错误;B .235a a a ⋅=,故本选项错误;C .326(2)4a a -=,故本选项正确;D .624a a a ÷=,故本选项错误;故选C .考点:1.同底数幂的除法;2.合并同类项;3.同底数幂的乘法;4.幂的乘方与积的乘方.18.(2016山东省聊城市)地球的体积约为1012立方千米,太阳的体积约为1.4×1018立方千米,地球的体积约是太阳体积的倍数是( )A .7.1×10﹣6B .7.1×10﹣7C .1.4×106D .1.4×107【答案】B .【解析】试题分析:∵地球的体积约为1012立方千米,太阳的体积约为1.4×1018立方千米,∴地球的体积约是太阳体积的倍数是:1012÷1.4×1018≈7.1×10﹣7.故选B .考点:整式的除法.19.(2016山东省青岛市)计算5322a a a -⋅)(的结果为( ) A .652a a - B .6a - C .654a a - D .63a -【答案】D .【解析】考点:1.幂的乘方与积的乘方;2.同底数幂的乘法.20.(2016山西省)下列运算正确的是( )A .239()24-=-B .236(3)9a a =C .3515525--÷= D 85032=- 【答案】D .【解析】试题分析:A .239()24-=,故此选项错误; B .236(3)27a a =,故此选项错误;C .355525--÷=,故此选项错误;D .850225232-=-=-,正确;故选D .学科&网考点:1.幂的乘方与积的乘方;2.有理数的乘方;3.算术平方根;4.负整数指数幂.21.(2016广东省广州市)下列计算正确的是( )A .22x x y y =(0y ≠)B .2122xy xy y÷=(0y ≠) C .235x y xy +=(x ≥0,y ≥0) D .()2326xy x y =【答案】D .【解析】 试题分析:A .22x y无法化简,故此选项错误; B 23122xy xy y÷=,故此选项错误; C .23x y +,无法计算,故此选项错误;D .()2326xy x y =,正确.故选D .考点:1.二次根式的加减法;2.幂的乘方与积的乘方;3.分式的乘除法.22.(2016广西来宾市)计算(2x ﹣1)(1﹣2x )结果正确的是( )A .241x -B .214x -C .2441x x -+-D .2441x x -+【答案】C .【解析】考点:完全平方公式.23.(2016河北省)计算正确的是( )A .0(5)0-=B .235x x x +=x 2+x 3=x 5C .2335()ab a b = D .2122a a a -⋅= 【答案】D .【解析】试题分析:A .0(5)1-=,故错误;B .23x x +,不是同类项不能合并,故错误;C .2336()ab a b =,故错误;D .2122a aa -⋅=,正确. 故选D .考点:1.单项式乘单项式;2.幂的乘方与积的乘方;3.零指数幂;4.负整数指数幂.24.(2016江苏省南京市)下列计算中,结果是6a 的是( )A .24a a +B .23a a ⋅C .122a a ÷D .23()a 【答案】D .【解析】试题分析:∵2a 与4a 不是同类项,不能合并,∴选项A 的结果不是6a ;∵235a a a ⋅=,∴选项B 的结果不是6a ;∵12210a a a ÷=,∴选项C 的结果不是6a ;∵236()a a =,∴选项D 的结果是6a . 故选D .考点:1.同底数幂的除法;2.合并同类项;3.同底数幂的乘法;4.幂的乘方与积的乘方;5.推理填空题.25.(2016浙江省杭州市)下列各式变形中,正确的是( )A .236x x x ⋅=B x =C .21()1x x x x -÷=-D .22111()24x x x -+=-+【答案】B .【解析】考点:1.二次根式的性质与化简;2.同底数幂的乘法;3.多项式乘多项式;4.分式的混合运算.26.(2016浙江省杭州市)设a ,b 是实数,定义@的一种运算如下:()()22@a b a b a b =+--,则下列结论: ①若@0a b =,则a =0或b =0;②()@@@a b c a b a c +=+;③不存在实数a ,b ,满足22@5a b a b =+;④设a ,b 是矩形的长和宽,若矩形的周长固定,则当a =b 时,@a b 最大.其中正确的是( )A .②③④B .①③④C .①②④D .①②③【答案】C .【解析】试题分析:由分析可得:对于①若()()22@40a b a b a b ab =+--==,则a =0或b =0正确;对于②()()()22@44a b c a b c a b c ab ac +=++---=+而@@44a b a c ab ac +=+.故正确;对于③ 22@5a b a b =+,由()()2222@45a b a b a b ab a b =+--==+,可得由22450a ab b -+=化简:()2220a b b -+=解出存在实数a ,b ,满足22@5a b a b =+;对于④a ,b 是矩形的长和宽,若矩形的周长固定,则当a =b 时, @a b 最大.正确.故选C .考点:1.完全平方公式;2.新定义.27.(2016湖北省咸宁市)下列运算正确的是( )A 633=B 2(3)3-=-C .22a a a ⋅=D .326(2)4a a =【答案】D .【解析】考点:1.二次根式的加减法;2.同底数幂的乘法;3.幂的乘方与积的乘方;4.二次根式的性质与化简.28.(2016湖北省武汉市)运用乘法公式计算2(3)x +的结果是( )A .29x +B .269x x -+C .269x x ++D .239x x ++【答案】C .【解析】试题分析:2(3)x +=269x x ++,故选C .考点:完全平方公式.29.(2016福建省南平市)下列运算正确的是( )A .3x +2y =5xyB .235()m m =C .2(1)(1)1a a a +-=-D .22b b += 【答案】C .【解析】试题分析:A .3x +2y ≠5xy ,此选项错误;B .236()m m =,此选项错误;C .2(1)(1)1a a a +-=-,此选项正确;D .22b b+≠,此选项错误; 故选C .学科&网考点:1.平方差公式;2.合并同类项;3.幂的乘方与积的乘方;4.约分.30.(2016贵州省铜仁市)单项式22r π的系数是( )A .12B .πC .2D .2π【答案】D .【解析】考点:单项式.31.(2016湖南省怀化市)下列计算正确的是( )A .222()x y x y +=+B .222()2x y x xy y -=--C .2(1)(1)1x x x +-=-D .22(1)1x x -=-【答案】C .【解析】试题分析:A .222()2x y x y xy +=++,故此选项错误;B .(222()2x y x xy y -=-+,故此选项错误;C .(2(1)(1)1x x x +-=-,正确;D .22(1)21x x x -=-+,故此选项错误;故选C .考点:1.平方差公式;2.完全平方公式.32.(2016重庆市)计算23()x y 的结果是( )A .63x yB .53x yC .5x yD .23x y【答案】A .【解析】考点:幂的乘方与积的乘方.二、填空题33.(2016上海市)计算:计算:3a a ÷=__________.【答案】2a .【解析】试题分析:3a a ÷=2a .故答案为:2a .考点:同底数幂的除法.34.(2016四川省南充市)如果221()x mx x n ++=+,且m >0,则n 的值是 .【答案】1.【解析】试题分析:∵221(1)x mx x ++=± =2()x n +,∴m =±2,n =±1,∵m >0,∴m =2,∴n =1,故答案为:1. 考点:完全平方式.35.(2016四川省巴中市)若a +b =3,ab =2,则2()a b -= .【答案】1.【解析】试题分析:将a +b =3平方得:222()29a b a b ab +=++=,把ab =2代入得:22a b +=5,则2()a b -=222a ab b -+=5﹣4=1.故答案为:1.考点:完全平方公式.36.(2016四川省广安市)我国南宋数学家杨辉用三角形解释二项和的乘方规律,称之为“杨辉三角”.这个三角形给出了()n a b +(n =1,2,3,4…)的展开式的系数规律(按a 的次数由大到小的顺序): 请依据上述规律,写出20162()x x -展开式中含2014x 项的系数是 .【答案】﹣4032.【解析】考点:1.整式的混合运算;2.阅读型;3.规律型.37.(2016四川省雅安市)已知8a b +=,224a b =,则222a b ab +-= . 【答案】28或36.【解析】试题分析:∵224a b =,∴ab =±2.①当a +b =8,ab =2时,222a b ab +-=2()22a b ab +-=642﹣2×2=28; ②当a +b =8,ab =﹣2时,222a b ab +-=2()22a b ab +-=642﹣2×(﹣2)=36; 故答案为:28或36.学科*网考点:1.完全平方公式;2.分类讨论.38.(2016江苏省常州市)已知x 、y 满足248xy⋅=,当0≤x ≤1时,y 的取值范围是 . 【答案】1≤y ≤32. 【解析】试题分析:∵248xy⋅=,∴23222x y ⋅=,即2322x y +=,∴x +2y =3,∴y =32x -,∵0≤x ≤1,∴1≤y ≤32. 故答案为:1≤y ≤32. 考点:1.解一元一次不等式组;2.同底数幂的乘法;3.幂的乘方与积的乘方. 39.(2016江苏省淮安市)计算:3a ﹣(2a ﹣b )= . 【答案】a +b . 【解析】试题分析:3a ﹣(2a ﹣b )=3a ﹣2a +b =a +b .故答案为:a +b . 考点:整式的加减.40.(2016河北省)若mn =m +3,则2mn +3m ﹣5mn +10= . 【答案】1. 【解析】考点:整式的加减—化简求值.41.(2016福建省漳州市)一个矩形的面积为a a 22+,若一边长为a ,则另一边长为___________.【答案】a +2. 【解析】试题分析:∵(a a 22+)÷a =a +2,∴另一边长为a +2,故答案为:a +2.考点:整式的除法.42.(2016青海省西宁市)已知250x x +-=,则代数式2(1)(3)(2)(2)x x x x x ---++-的值为 .【答案】2. 【解析】试题分析:原式=2222134x x x x x -+-++-=23x x +-,因为250x x +-=,所以25x x +=,所以原式=5﹣3=2.故答案为:2.考点:1.整式的混合运算—化简求值;2.整体思想. 43.(2016黑龙江省大庆市)若2ma =,8na =,则m na += .【答案】16. 【解析】试题分析:∵2ma =,8na =,∴m n a +=m na a ⋅=16,故答案为:16.考点:同底数幂的乘法. 三、解答题44.(2016山东省济南市)(1)先化简再求值:a (1﹣4a )+(2a +1)(2a ﹣1),其中a =4.(2)解不等式组:217321x x x +≤⎧⎨+≥+⎩①②.【答案】(1)a ﹣1,3;(2)﹣2≤x ≤3. 【解析】 (2)217321x x x +≤⎧⎨+≥+⎩①②,解不等式①得:x ≤3,解不等式②得:x ≥﹣2,∴不等式组的解集为﹣2≤x ≤3.考点:1.整式的混合运算—化简求值;2.解一元一次不等式组.45.(2016山东省济宁市)先化简,再求值:2(2)()a a b a b -++,其中a =﹣1,b. 【答案】222a b +,4. 【解析】试题分析:原式利用单项式乘以多项式,以及完全平方公式化简,去括号合并得到最简结果,把a 与b 的值代入计算即可求出值.试题解析:原式=22222a ab a ab b -+++=222a b + 当a =﹣1,b =2时,原式=2+2=4.考点:整式的混合运算—化简求值.学.科.网46.(2016山东省菏泽市)已知4x =3y ,求代数式22(2)()()2x y x y x y y ---+-的值. 【答案】0. 【解析】考点:整式的混合运算—化简求值.47.(2016广东省茂名市)先化简,再求值:2(2)(1)x x x -++,其中x =1. 【答案】221x +,3. 【解析】试题分析:原式利用单项式乘以多项式,完全平方公式化简,去括号合并得到最简结果,把x 的值代入计算即可求出值.试题解析:原式=22221x x x x -+++=221x +; 当x =1时,原式=2+1=3.考点:整式的混合运算—化简求值.48.(2016吉林省)先化简,再求值:(x +2)(x ﹣2)+x (4﹣x ),其中x =14. 【答案】4x ﹣4,-3. 【解析】试题分析:根据平方差公式和单项式乘以多项式,然后再合并同类项即可对题目中的式子化简,然后将x =14代入化简后的式子,即可求得原式的值. 试题解析:原式=2244x x x -+-=4x ﹣4 当x =14时,原式=1444⨯-=1-4=-3. 考点:整式的混合运算—化简求值.49.(2016吉林省长春市)先化简,再求值:(a +2)(a ﹣2)+a (4﹣a ),其中a =14. 【答案】44a -,3-. 【解析】试题分析:根据平方差公式和单项式乘以多项式可以对原式化简,然后将a =14代入化简后的式子,即可解答本题.试题解析:原式=2244a a a -+-=44a -; 当a =14时,原式=1444⨯-=14-=3-. 考点:整式的混合运算—化简求值.50.(2016浙江省宁波市)先化简,再求值:)3()1)(1(x x x x -+-+,其中x =2. 【答案】3x ﹣1,5. 【解析】考点:整式的混合运算—化简求值.51.(2016浙江省温州市)(1)计算:2020(3)(21)+---.(2)化简:(2+m )(2﹣m )+m (m ﹣1). 【答案】(1)258+;(2)4﹣m . 【解析】试题分析:(1)直接利用二次根式的性质结合零指数幂的性质分别分析得出答案; (2)直接利用平方差公式计算,进而去括号得出答案. 试题解析:(1)原式=2591-=58; (2)原式=224m m m -+-=4﹣m .考点:1.实数的运算;2.单项式乘多项式;3.平方差公式;4.零指数幂.52.(2016湖北省襄阳市)先化简,再求值:(2x +1)(2x ﹣1)﹣(x +1)(3x ﹣2),其中x 21.【答案】21x x -+,532-【解析】试题分析:首先利用整式乘法运算法则化简,进而去括号合并同类项,再将已知代入求出答案.试题解析:原式=2241(3322)x x x x --+--=224132x x x ---+=21x x -+把x =21-代入得:原式=2(21)(21)1---+=32222--+=532-.考点:整式的混合运算—化简求值.☞考点归纳归纳 1:整式的有关概念 基础知识归纳:1.整式:单项式与多项式统称整式.(1)单项式:由数与字母的乘积组成的代数式叫做单项式(单独一个数或字母也是单项式).单项式中的数字因数叫做这个单项式的系数;单项式中的所有字母的指数的和叫做这个单项式的次数.(2) 多项式:几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项,其中次数最高的项的次数叫做这个多项式的次数.不含字母的项叫做常数项. 2. 同类项:所含字母相同并且相同字母的指数也分别相等的项叫做同类项.基本方法归纳:要准确理解和辨认单项式的次数、系数;判断是否为同类项时,关键要看所含的字母是否相同,相同字母的指数是否相同. 注意问题归纳:1、单项式的次数是指单项式中所有字母指数的和,单独一个非0数的次数是0;2、多项式的次数是指次数最高的项的次数.3、同类项一定要先看所含字母是否相同,然后再看相同字母的指数是否相同.【例1】(2016云南省曲靖市)单项式13m xy -与4n xy 的和是单项式,则m n 的值是( )A .3B .6C .8D .9 【答案】D .【分析】根据已知得出两单项式是同类项,得出m ﹣1=1,n =3,求出m 、n 后代入即可. 【解析】∵13m xy -与4n xy 的和是单项式,∴m ﹣1=1,n =3,∴m =2,∴n m =32=9.故选D .【点评】本题考查了合并同类项和负整数指数幂的应用,关键是求出m 、n 的值.考点:1.合并同类项;2.单项式.归纳 2:幂的运算 基础知识归纳:(1)同底数幂相乘:a m ·a n =a m +n (m ,n 都是整数,a ≠0) (2)幂的乘方:(a m )n =a mn (m ,n 都是整数,a ≠0) (3)积的乘方:(ab )n =a n ·b n (n 是整数,a ≠0,b ≠0) (4)同底数幂相除:a m ÷a n =a m -n (m ,n 都是整数,a ≠0)注意问题归纳:(1)幂的运算法则是进行整式乘除法的基础,要熟练掌握,解题时要明确运算的类型,正确运用法则;(2)在运算的过程中,一定要注意指数、系数和符号的处理. 【例2】(2017吉林省)下列计算正确的是( )A .235a a a +=B .236a a a ⋅= C .236()a a = D .22()ab ab =【答案】C .【分析】根据整式的运算法则即可求出答案.【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型. 考点:1.幂的乘方与积的乘方;2.合并同类项;3.同底数幂的乘法.归纳 3:整式的运算 基础知识归纳:1.整式的加减法:实质上就是合并同类项 1.整式乘法①单项式乘多项式:m (a +b )=ma +mb ; ②多项式乘多项式:(a +b )(c +d )=ac +ad +bc +bd③乘法公式:平方差公式:(a +b )(a -b )=a 2-b 2;完全平方公式:(a ±b )2=a 2±2ab +b 2. 3.整式除法:单项式与单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,连同它的指数作为商的一个因式.多项式除以单项式,将这个多项式的每一项分别除以这个单项式,然后把所得的商相加.注意问题归纳:注意整式的加减,实质上就是合并同类项,有括号的,先去括号,只要算式中没有同类项,就是最后的结果;多项式乘多项式的运算中要做到不重不漏,应用乘法公式进行简便计算,另外去括号时,要注意符号的变化,最后把所得式子化简,即合并同类项,再代值计算.【例3】(2017浙江省台州市)下列计算正确的是( )A .()()2222a a a +-=-B .()()2122a a a a +-=+-C .()222a b a b +=+ D .()2222a b a ab b -=-+ 【答案】D .【分析】各项计算得到结果,即可作出判断.【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键. 考点:整式的混合运算.【例4】(2017河南省)先化简,再求值:2(2)()()5()x y x y x y x x y ++-+--,其中21x =+,21y =-.【答案】9xy ,9.【分析】首先化简原式,然后把21x =+,21y =-代入化简后的算式,求出算式的值是多少即可【点评】此题主要考查了整式的混合运算﹣化简求值问题,要熟练掌握,解答此题的关键是要明确:先按运算顺序把整式化简,再把对应字母的值代入求整式的值. 考点:整式的混合运算—化简求值.【例5】(2017贵州省黔东南州)我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项和(a +b )n 的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算(a +b )20的展开式中第三项的系数为( ) A .2017 B .2016 C .191 D .190 【答案】D .【分析】根据图形中的规律即可求出(a +b )20的展开式中第三项的系数; 【解析】找规律发现(a +b )3的第三项系数为3=1+2; (a +b )4的第三项系数为6=1+2+3; (a +b )5的第三项系数为10=1+2+3+4;不难发现(a +b )n 的第三项系数为1+2+3+…+(n ﹣2)+(n ﹣1),∴(a +b )20第三项系数为1+2+3+…+20=190.故选D .【点评】此题考查了通过观察、分析、归纳发现其中的规律,并应用发现的规律解决问题的能力. 考点:1.完全平方公式;2.规律型;3.综合题.☞1年模拟一、选择题1.下列运算正确的是( )A .325()x y x y +=+B .34x x x +=C . 236x x x = D .236()x x =【答案】D . 【解析】考点:1.幂的乘方与积的乘方;2.合并同类项;3.同底数幂的乘法. 2.下列计算正确的是( ) A .232358x y xy x y +=B .222()x y x y+=+C .2(2)4x x x -÷=D .1y x x y y x+=-- 【答案】C . 【解析】 试题分析:A .23x y 与5xy 不是同类项,故A 不正确; B .原式=222x xy y ++ ,故B 不正确; C .原式=24x x ÷=4x ,故C 正确; D .原式=1y x x y x y-=---,故D 不正确; 故选C .考点:1.分式的加减法;2.整式的混合运算. 3.下列运算正确的是( )A .235+=B .32361126xy x y ⎛⎫-=- ⎪⎝⎭C .523()()x x x -÷-=D .31864324+-=-【答案】D . 【解析】考点:1.同底数幂的除法;2.算术平方根;3.立方根;4.幂的乘方与积的乘方. 4.下列计算正确的是( )A .235a b ab +=B 366=±C .22122a b ab a ÷= D .()323526ab a b =【答案】C . 【解析】试题分析:A .2a 与3b 不是同类项,故A 不正确; B .原式=6,故B 不正确;C .22122a b ab a ÷=,正确;D .原式=368a b ,故D 不正确; 故选C .考点:1.整式的除法;2.算术平方根;3.合并同类项;4.幂的乘方与积的乘方. 5.下列运算正确的是( ) A .222()x y x y -=- B 3223=C =D .﹣(﹣a +1)=a +1 【答案】B . 【解析】考点:1.二次根式的加减法;2.实数的性质;3.去括号与添括号;4.完全平方公式. 6.下列运算正确的是( )A .2222a a a =B .224a a a +=C .22(12)124a a a +=++ D .2(1)(1)1a a a -++=- 【答案】D . 【解析】试题分析:A .224a a a =,此选项错误; B .2222a a a +=,此选项错误;C .22(12)144a a a +=++,此选项错误; D .2(1)(1)1a a a -++=-,此选项正确; 故选D .考点:1.平方差公式;2.合并同类项;3.同底数幂的乘法;4.完全平方公式. 7.计算()322323aa a a a -+-÷,结果是( )A .52a a - B .512a a- C .5a D .6a 【答案】D . 【解析】试题分析:原式=655a a a +-=6a .故选D .考点:1.幂的乘方与积的乘方;2.同底数幂的乘法;3.负整数指数幂. 8.计算6236(2)m m ÷-的结果为( )A .﹣mB .﹣1C .43D .43- 【答案】D . 【解析】考点:1.整式的除法;2.幂的乘方与积的乘方.9.若a ﹣b =2,b ﹣c =﹣3,则a ﹣c 等于( )A .1B .﹣1C .5D .﹣5【答案】B .【解析】试题分析:∵a ﹣b =2,b ﹣c =﹣3,∴a ﹣c =(a ﹣b )+(b ﹣c )=2﹣3=﹣1,故选B .考点:1.整式的加减;2.整体思想.二、填空题10.计算:310(5)ab ab ÷-= .【答案】22b -.【解析】试题分析:原式=22b -,故答案为:22b -.考点:整式的除法.11.213x y 是 次单项式. 【答案】3.【解析】 试题分析:213x y 是3次单项式.故答案为:3. 考点:单项式.12.计算:2(x ﹣y )+3y = .【答案】2x +y .【解析】试题分析:原式=2x ﹣2y +3y =2x +y ,故答案为:2x +y .考点:1.整式的加减;2.整式.13.计算(a ﹣2)(a +2)=.【答案】24a -.【解析】考点:平方差公式.14.如图,从边长为(a +3)的正方形纸片中剪去一个边长为3的正方形,剩余部分沿虚线又剪拼成一个如图所示的长方形(不重叠无缝隙),则拼成的长方形的另一边长是 .【答案】a +6.【解析】试题分析:拼成的长方形的面积=(a +3)2﹣32=(a +3+3)(a +3﹣3)=a (a +6),∵拼成的长方形一边长为a ,∴另一边长是a +6.故答案为:a +6.考点:1.平方差公式的几何背景;2.操作型.15.若代数式225x kx ++是一个完全平方式,则k = .【答案】±10.【解析】试题分析:∵代数式225x kx ++是一个完全平方式,∴k =±10,故答案为:±10.考点:完全平方式.三、解答题 16.(1)计算:321(2)()8sin 453--+. (2)分解因式:22(2)(2)y x x y +-+.【答案】(1)-1;(2)3()()x y x y +- .【解析】试题分析:(1)原式=289222-+-1﹣2=-1; (2)原式=[(2)(2)][(2)(2)]y x x y y x x y ++++-+ =3()()x y x y +-.考点:1.实数的运算;2.完全平方公式;3.平方差公式;4.负整数指数幂;5.特殊角的三角函数值.17.先化简,再求值:(x +2)(x ﹣2)﹣x (x ﹣1),其中x =﹣2.。

初一数学整式练习题精选(含答案)

初一数学整式练习题精选(含答案)

初一数学整式练习题精选(含答案)初一数学整式练习题精选(含答案)练习一:填空题1. 3x + 5y - 4z + 2x - y - 3z = ________.2. (x - 3)(x + 2) = ________.3. (2a + 3b)(4a - 2b) = ________.4. 2(x - 1)(x + 3) - (x - 2)(x + 1) = ________.答案:1. 5x + 4y - 7z2. x^2 - x - 63. 8a^2 - 8b^24. x^2 + 2x练习二:展开和化简1. (m - 4)(m + 2)2. (2x + 1)(x - 3)3. (3a - 2)(3a + 2) - (2a - 1)(2a + 1)4. (5x - 2)(5x + 2) + (3x - 1)(3x + 1)答案:1. m^2 - 2m - 82. 2x^2 - 5x - 33. 5a^2 - 14. 34x^2 - 1练习三:因式分解1. x^2 - 92. 81m^2 - 163. 25x^2 - y^24. 16a^2 - 49b^2答案:1. (x + 3)(x - 3)2. (9m + 4)(9m - 4)3. (5x + y)(5x - y)4. (4a + 7b)(4a - 7b)练习四:扩展与合并同类项1. 2x + 3y - 4x + y2. 5a^2 - 3a - 2a^2 + a3. 4x - 2y + 3x + 5y4. 7x^2 - 5x - 3x^2 + 4x + 2x^2答案:1. -2x + 4y2. 3a^2 - 2a3. 7x + 3y4. 6x^2 - x练习五:乘法公式1. (x + y)^22. (3a - 2b)(3a + 2b)3. (4m + 5n)^24. (2x + 3y)(2x - 3y)答案:1. x^2 + 2xy + y^22. 9a^2 - 4b^23. 16m^2 + 40mn + 25n^24. 4x^2 - 9y^2练习六:因式分解与提取公因式1. 4x^2 + 8x2. 6a^2b - 12ab3. 9x^2 - 44. 10ab - 20b答案:1. 4x(x + 2)2. 6ab(a - 2)3. (3x + 2)(3x - 2)4. 10b(a - 2)练习七:应用题1. 若已知(x + 3)(x - 1) = x^2 + bx - 3,求b的值。

初一数学整式试题答案及解析

初一数学整式试题答案及解析

初一数学整式试题答案及解析1.下列运算正确的是()A.a2•a=a2B.(a-b)3=a3-b3C.a10÷a5=a2D.(a2)3=a6【答案】D.【解析】试题分析:A、a2•a=a3,故A选项错误;B、(a-b)3=a3-3a2b+3ab2+b3,故B选项错误;C、a10÷a5=a5,故C选项错误;D、(a2)3=a6,故D选项正确.故选D.【考点】1.完全平方公式;2.同底数幂的乘法;3.幂的乘方与积的乘方;4.同底数幂的除法.2.化简:(-m)2÷(-m)=.【答案】-m【解析】利用分式的乘法,把(-m)2展开再(-m)相除即可求解.【考点】分式的乘除法3.已知:a+b=,ab=1,化简(a-2)(b-2)的结果是_______.【答案】2【解析】根据多项式相乘的法则展开,然后代入数据计算即可.【考点】整式的混合运算4.你能化简(x-1)(x99+x98+x97+……+x+1)吗?遇到这样的问题,我们可以先思考一下,从简单的情形入手.分别计算下列各式的值:①(x-1)(x+1)=x2-1;②(x-1)(x2+x+1)=x3-1;;③(x-1)(x3+x2+1)=x4-1;;……由此我们可以得到:(x-1)(x99+x98+x97+…+x+1)=________________;请你利用上面的结论,完成下面两题的计算:(1) 299+298+297+……+2+1;(2)(-2)50+(-2)49+(-2)48+……+(-2)+1【答案】2100-1;(1)2100-1;(2).【解析】根据平方差公式,和立方差公式可得前2个式子的结果,利用多项式乘以多项式的方法可得出第3个式子的结果;从而总结出规律是(x-1)(x99+x98+x97+…+x+1)=x100-1,根据上述结论计算下列式子即可.试题解析:根据题意:(1)(x-1)(x+1)=x2-1;(2)(x-1)(x2+x+1)=x3-1;(3)(x-1)(x3+x2+x+1)=x4-1;故(x-1)(x99+x98+x97+…+x+1)=x100-1.根据以上分析:(1)299+298+297+…+2+1=(2-1)(299+298+297+…+2+1)=2100-1;(2)(-2)50+(-2)49+(-2)48+…(-2)+1=-(-2-1)[(-2)50+(-2)49+(-2)48+…(-2)+1]=-(-251-1)=.【考点】规律型:数字的变化类.5.下列运算正确的是()A.B.C.D.【答案】D【解析】由题中A选项结果应为,B选项结果应为,C选项结果应为,只有D选项结果正确。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

整式复习本章视点一、课标要求与内容分析1.本章的课标要求是:(1)了解整式的概念,会进行简单的整式加减运算;(2)会进行简单的整式乘法运算(其中多项式相乘仅指一次式相乘);(3)会推导来法公式:(a+b)(a-b)= a2-b2,(a+b)2= a2+2ab+b2,了解公式的几何背景,并能进行简单计算;(4)会用提公因式法、公式法(直接用公式不超过两次)进行因式分解(指数是正整数).2.经历探索事物之间的数量关系,建立初步的符号感,发展抽象思维,在具体情境中进一步理解用字母表示数的意义,能分析简单问题的数量关系并用代数式表示,理解代数式的含义,能解释一些简单代数式的实际背景或几何意义,体会现实世界与数学的联系,理解整式的含义,掌握整式的加减运算的实质,即去括号、合并同类项,并会求代数式的值,掌握整式的乘法运算及其逆运算——因式分解;掌握整式的除法运算(单项式除法和多项式除以单项式).3.本章的重点是代数式和整式的加、减、乘、除运算,以及因式分解.难点是规律的探求及根据代数式推断代数式反映的规律.二、学法指导学习本章要注意从具体情境中探索数量关系和变化规律,培养和发展自己的符号感.要注重对运算法则的探索过程的理解.另外,不仅要注意观察和实验,还要注意归纳、类比、转化等思想方法的运用,因为整式的运算是解方程、解不等式的重要基础,这一知识在初中数学体系中起着承上启下的作用,所以,本章学习整式的运算等内容,会给我们研究数量及其关系带来极大的方便,应引起充分的重视.章末总结知识网络图示基本知识提炼整理一、基本概念1.代数式用基本的运算符号(指加、减、乘、除、乘方及今后要学的开方)把数或表示数的字母连接而成的式子叫做代数式.2.单项式数字与字母的积,这样的代数式叫做单项式.(1)单独的一个数或一个字母也是单项式.(2)单项式中的数字因数叫做这个单项式的系数.(3)一个单项式中,所有字母的指数的和叫做这个单项式的次数.3.多项式几个单项式的和叫做多项式.(1)在多项式中,每个单项式叫做多项式的项,其中,不含字母的项叫做常数项.(2)一般地,多项式里次数最高的项的次数,就是这个多项式的次数.4.整式单项式和多项式统称整式.5.同类项所含字母相同,并且相同字母的指数也相同的项叫做同类项,几个常数项也是同类项.6.合并同类项把多项式中的同类项合并成一项,叫做合并同类项.7.整式乘法的平方差公式(a+b)(a-b)=a2-b2.两个数的和与这两个数的差的积,等于这两个数的平方差.8.整式乘法的完全平方公式(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2.两数和(或差)的平方,等于它们的平方和,加(或减)它们的积的2倍.二、基本运算法则1.整式加减法法则几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接,然后去括号,合并同类项.2.合并同类项法则合并同类项时,把系数相加,字母和字母指数不变.3.同底数幂的乘法法则a m·a n=a m+n(m,n是正整数).同底数幂相乘,底数不变,指数相加.4.幂的乘方法则(a m)n=a mn(m,n是正整数).幂的乘方,底数不变,指数相乘.5.积的乘方的法则(ab)m=a m b m(m是正整数).积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.6.多项式来法法则多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.7.单项式与多项式相来的乘法法则单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加. 8.添括号法则添括号时,如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号.9.同底数幂的除法法则 a m ÷a n =a m-n (a ≠0,m ,n 都是正整数,并且m >n). 同底数幂相除,底数不变,指数相减. 10.单项式除法法则单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.11.多项式除以单项式的除法法则多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加. 三、因式分解常见的方法 1.提公因式法. 2.公式法. 3.分组分解法.4.式子x 2+(p+q)x+pq 的因式分解. x 2+(p+q)x+pq=(x+p)(x+q). 专题总结及应用 一、整式的加减在整式的加减中,基本可以分为以下几种类型题. 1.不含括号的直接合并同类项例1 (1)合并同类项3x 2-4xy+4y 2-5x 2+2xy-2y 2; (2)化简5xy-29x 3y 2-49xy+21x 3y 2-411xy-x 3y-5.解:(1)原式=(3-5)x 3+(-4+2)xy+(4-2)y 2 =-2x 2-2xy+2y 2.(2)原式=(5-41149-)xy+(-2129+)x 3y 2-x 3y -5 =-4x 3y 2-x 3y-5. 2.有括号的情况有括号的先去括号,然后再合并同类项,根据多重括号的去括号法则,可由里向外,也可由外向里逐层推进,在计算过程中要注意符号的变化.例2 化简.(1)3x-[5x+(3x-2)]; (2)1-3(2ab+a)十[1-2(2a-3ab)]. 解:(1)原式=3x-(5x+3x-2) =3x-8x+2=2-5x.(2)原式=1-6ab-3a+(1-4a+6ab)=1-6ab-3a+1-4a+6ab =2-7a. 3.先代入后化简例3 已知A =x 2+xy+y 2,B=-3xy-x 2,求2A-3B. 解:2A-3B=2(x 2+xy+y 2)-3(-3xy-x 2) =2x 2+2xy+2y 2+9xy+3x 2 =5x 2+11xy+2y 2. 二、求代数式的值 1.直接求值法先把整式化简,然后代入求值.例4 先化简,再求值:3-2xy+2yx 2+6xy-4x 2y ,其中x=-1,y=-2. 解:3-2xy+2y x 2+6xy-4x 2y=3+4xy-2x 2y . 当x=-1,y=-2时,原式=3+4×(-1)×(-2)-2×(-1)2·(-2)=3+8+4 =15.2.隐含条件求值法先通过隐含条件将字母取值求出,然后化简求值.例5 若单项式-3a 2-m b 与b n+1a 2是同类项,求代数式m 2-(-3mn+3n 2)+2n 2的值. (分析)先通过-3a 2-m b 与b n+2a 2是同类项这一条件,将m,n 的值求出,然后再化简求值. 解:∵-3a 2-m b 与b n+1a 2是同类项,∴⎩⎨⎧+==-,11,22n m ∴⎩⎨⎧==.0,0n mm 2-(-3mn+3n 2)+2n 2 =m 2+3mn-3n 2+2n 2 =m 2+3mn-n 2,当m=0,n=0时,原式=02+3×0×0-02=0例6 已知2-a +(b+1)2=0,求5a b 2-[2a 2b -(4a b 2-2a 2b)]的值.(分析)利用2-a +(b+1)2=0,求出a ,b 的值,因为绝对值和平方都具有非负性,如果两个非负数之和等于0,那么它们每一个都是0.解:∵2-a +(b+1)2=0,且2-a ≥0,(b+1)2≥0,∴⎩⎨⎧=+=-,01,02b a ∴⎩⎨⎧-==.1,2b a5a b 2-[2a 2b-(4ab 2-2a 2b)] =5a b 2-(2a 2b-4ab 2+2a 2b ) =5ab 2-2a 2b+4ab 2-2a 2b =9a b 2-4a 2b当a=2,b=-1时,原式=9×2×(-1)2-4×22×(-1)=18+16=34. 3.整体代入法不求字母的值,将所求代数式变形成与已知条件有关的式于,如倍差关系、和差关系等等.例7 已知a=201x+19,b=201x+18,c=201x+17,求a 2+b 2+c 2-ab-ac-bc 的值. 解:∵a=201x+19,b=201x+18,c=201x+17,∴a-b=1,b-c=1, a-c=2. 而a 2+b 2+c 2-ab-ac-bc=21(2a 2+2b 2+2c 2-2ab-2ac-2bc) =21[(a 2-2ab+b 2)+(b 2-2bc+c 2)+( a 2-2ac +c 2)] =21[(a-b)2+(b-c)2+(a-c)2]. 当a-b=1,b-c=1, a-c=2时, 原式=21(12+12+22)=21×6=3. 例8 已知x 2+4x-1=0,求2x 4+8x 3-4x 2-8x+1的值.(分析)由x 2+4x-1=0就目前知识水平求x 的值是不可能的,但是,我们可以把x 2+4x 化成一个整体,再逐层代入原式即可.解:∵x 2+4x-1=O ,∴x 2+4x=1. ∴2x 4+8x 3-4x 2-8x+1 =2x 2(x 2+4x)-4(x 2+4x)+8x+1 =2x 2·1-4×1+8x+1 =2x 2+8x-3 =2(x 2+4x)-3=2×1-3 =-1.例9 已知x 2-x-1=0,求x 2+21x的值. 解:∵x 2-x-1=0,∴x ≠0.∴x-x 1=1, ∴x 2+21x =(x-x 1)2+2·x ·x1=12+2=3.4.换元法出现分式或某些整式的幂的形式时,常常需要换元. 例10 已知b a b a +-2=6,求代数式b a b a +-)2(2+)2()(3b a b a -+的值. (分析) 给定的代数式中含a ,b 两个字母,一般地,只有求出a,b 的值,才能求出代数式的值,本题显然此方法行不通.由于题中b a b a +-2与b a b a -+2互为倒数,故将ba b a +-2看成一个整体. 解:设b a b a +-2=q ,则qb a b a 12=-+, ∴原式=2q+q3. 又∵q=6,∴原式=2×6+63=1221. 三、探索规律1.探索自然数间的某种规律设n 表示自然数,用关于n 的等式表示出来.例11 从2开始连续的偶数相加,它们和的情况如下表:(1)s 与n 之间有什么关系?能否用一个关系式来表示? (2)计算2+4+6+8+ (2004)(分析) 观察上表,当n=1时,s=1×2,即第一个数字是1,第二个数字是2;当n=2时,s=2+4=2×3,第一个数字是2,第二个数字是3,依此类推,发现第一个数字是n ,第二个数字比n 大1.解:(1)s 与n 的关系式为s=n(n+1). (2)当n=22004=1002时, s=1002×(1002+1)=1005006. 即2+4+6+8+…+2004=1005006.小结 观察是解题的前提条件,当已知数据有很多组时,需要仔细观察,反复比较,才能发现其中的规律.2.探索图形拼接的规律例12 一张正方形的桌子可坐4人,按照如图15-20所示的方式将桌子拼在一起,试回答下列问题.(1)两张桌子拼在一起可以坐几人?三张桌子拼在一起可以坐几人?n 张桌子拼在一起可以坐几人?(2)一家酒楼有60张这样的正方形桌子,按上图方式每4张拼成一个大桌子,则60张桌子可以拼成15张大桌子,共可坐多少人?(3)在(2)中若每4张桌子拼成一个大的正方形,共可坐多少人? (4)对于这家酒楼,哪种拼桌子的方式可以坐的人更多? 解:(1)两张桌子拼在一起可坐2+2+2=6(人); 三张桌子拼在一起可坐2+2+2+2=8(人);n 张桌子拼在一起可坐个)1(2222+++++n =2(n+1)=2n+2(人). (2)按上图方式每4张桌子拼成一个大桌子,那么一张大桌子可坐2×4+2=10(人). 所以,15张大桌子可坐10×15=150(人).(3)在(2)中,若每4张桌子拼成一个大的正方形桌子,则一张大正方形桌子可坐8人,15张大正方形桌子可坐8×15=120(人).(4)由(2)(3)比较可知,该酒楼采用第一种拼摆方式可以坐的人更多.小结 寻找和探索规律是人类认识世界的重要环节,找到规律并利用规律不仅在数学上,而且在人类社会的发展过程中都具有非常重要的意义.3.探索数据所反映的规律收集数据,观察数据所反映的规律,并作出推测. 例13 填表并回答下列问题.(1)观察上表,描述所求得的这一列数的变化规律; (2)当x 非常大时,24x 的值接近什么数? 解:(1)表格里从左到右依次填-39999,-399,-3,0.96,0.9996,0.999996.随着x 值变大,代数式的值变得越来越大.(2)当x 非常大时,24x 的值接近于零. 四、因式分解 1.直接因式分解例14 把下列各式分解因式. (1)x 2y 2-9; (2)4x 2-12xy+9y 2; (3)x 2-5x-6;(4)m 2-m-20.解:(1)x 2y 2-9=(xy+3)(xy-3). (2)4x 2-12xy+9y 2=(2x-3y)2. (3)x 2-5x-6=(x-6)(x+1). (4)m 2-m-20=(m-5)(m+4).2.先提公因式.然后再利用公式法分解因式 例15 把下列各式分解因式. (1)x 3-4x 2y+4xy 2;(2)x 3-x ;(3)m 3-3m 2-4m.解:(1)x 3-4x 2y+4xy 2=x(x 2-4xy+4y 2)=x(x-2y)2. (2)x 3-x=x(x 2-1)=x(x+1)(x-1). (3)m 3-3m 2-4m=m(m 2-3m-4)=m(m-4)(m+1). 3.分组分解法分解因式实质上,分组分解法分解因式是对因式分解方法的一种综合运用. 例16 把下列各式分解因式. (1)x 2-4(x-1); (2)(am+bn )2+(an-bm )2; (3)a 2-2ab+b 2-c 2;(4)x 2-2xy+y 2-x +y-2.解:(1)x 2-4(x-1)=x 2-4x+4=(x-2)2. (2)(am+bn )2+(an-bm)2=a 2m 2+2abmn+b 2n 2+a 2n 2-2abmn+b 2m 2=a2m2+b2n2+a2n2+b2m2=(a2m2+a2n2)+(b2n2+b2m2)=a2(m2+n2)+b2(m2+n2)=(a2+b2)(m2+n2).(3)a2-2ab+b2-c2=(a2-2a b+b2)-c2=(a-b)2-c2=(a-b+c)(a-b-c).(4)x2-2xy+y2-x+y-2=(x2-2xy+y2)-(x-y)-2=(x-y)2-(x-y)-2=(x-y-2)(x-y+1).4.用换元法分解因式例17 把多项式(x+1)(x+2)(x+3)(x+4)-120分解因式.解:(x+1)(x+2)(x+3)(x+4)-120=[(x+1)(x+4)][(x+2)(x+3)]-120=(x2+5x+4)(x2+5x+6)-120设x2+5x=y,则原式=(y+4)(y+6)-120=y2+10y+24-120=y2+10y-96=(y+16)(y-6)=(x2+5x+16)(x+6)(x-1).【说明】 (1)在分解这个多项式时,(x+1)(x+2)(x+3)(x+4)化简时注意两两相乘时合理组合,创设出以(x2+5x)为主的多项式,进而整理.(2)采用把x2+5x作为一个整体(即换元法)的方法进一步因式分解.(3)要注意到x2+5x+16不能再分解,而(x2+5x-6)则可以继续分解.本章综合评价(一)一、训练平台 1.若3a 2b n-1与-21a m+1b 2是同类项,则( ) A.m=3,n=2B.m=2,n=3C.m=3,n=-23 D.m=1,n=32.a ,b ,c 都是有理数,那么a-b+c 的相反数是( )A.b-a-cB.b+a-cC.-b-a+cD.b-a+c3.下列去括号正确的是( )A.2y 2-(3x-y+3z)=2y 2-3x-y+3zB.9x 2-[y-(5z+4)]=9x 2-y+5z+4C.4x+[-6y+(5z-1)]=4x-6y-5z+1D.-(9x+2y)+(z+4)=-9x-2y-z-44.若a m =3,a n =2,则a m+n 等于( )A.5B.6C.8D.95.一个两位数,十位上的数字是a ,个位上的数字是b ,用代数式表示这个两位数是 .6.图15-21中阴影部分的面积为 .7.计算:(-0.5)2003·22004= . 8.计算:(-a b)3·(ab 2)2= .9.计算:(m+2n)(m-2n)= ,(7x-3y)( )=9y 2-49x 2,(x-2)(x+4)= , (3x+2y )2=(3x-2y)2+ .10.化简:(1)-(m-2n)+5(m+4n)-2(-4m-2n); (2)3(2x+1)(2x-1)-4(3x+2)(3x-2).11.分解因式.(1)m2n(m-n)2-4mn(n-m); (2)(x+y)2+64-16(x+y).12.已知a,b是有理数,试说明a2+b2-2a-4b+8的值是正数.二、探究平台1.从左到右的变形,是因式分解的为( )A.ma+mb-c=m(a+b)-cB.(a-b)(a2+ab+b2)=a3-b3C.a2-4ab+4b2-1=a(a-4b)+(2b+1)(2b-1);D.4x2-25y2=(2x+5y)(2x-5y)2.下列各式中,能用平方差公式分解因式的是( )A.-a2+b2B.-a2-b2C.a2+b2D.a3-b33.如果(x-2)(x-3)=x2+px+q,那么p,q的值是( )A.p=-5,q=6B.p=1,q=-6C.p=1,q=6D.p=5,q=-64.(-a+b+c)(a+b-c)=[b-( )][b+( )].5.若x-y=2,x2-y2=10,则x+y= .6.若x+y=10,xy=24,则(x-y)2= .7.若m2+2(k-1)m+9是完全平方式,则k= .8.已知(x2+mx+n)(x2-3x+2)的展开式中不含x2项和x项,则m= ,n= .9.若(x-2)0=1,则x应满足的条件是 .10.化简.(1)20002-1999×2001; (2)(2x+7)(3x-4)+(3x+5)(3-2x).11.分解因式.(1)(a-2b)2-16a2;(2)x3-x2-4x+4.12.若3x3-x=1,则9x4+12x3-3x2-7x+2004的值等于多少?三、交流平台1.(1)计算:①(a-1)(a+1);②(a-1)(a2+a+1);③(a-1)(a3+a2+a+1);④(a-1)( a4+a3+a2+a+1).(2)根据(1)中的计算,你发现了什么规律?用字母表示出来;(3)根据(2)中的结论,直接写出下题的结果.①(a-1)(a9+a8+a7+a6+a5+a4+a3+a2+a+1)= ;②若(a-1)·M=a15-1,求M;③(a-b)(a5+a4b+a3b2+a2b3+ab4+b5)= ;④(2x-1)(16x4+8x3+4x2+2x+1)= .2.如图15-22所示,有一个形如四边形的点阵,第1层每边有两个点,第2层每边有三个点,第3层每边有四个点,依此类推.(1)填写下表;(2)写出第n 层对应的点数; (3)写出n 层的四边形点阵的总点数;(4)如果某一层共有96个点,你知道它是第几层吗? (5)有没有一层点数为100?(二)一、训练平台1.下列各式中,计算正确的是( )A.27×27=28B.25×22=210C.26+26=27D.26+26=2122.当x=23时,3(x+5)(x-3)-5(x-2)(x+3)的值等于( ) A.-239 B.-18 C.18 D.239 3.已知x-y=3,x-z=21,则(y-z)2+5(y-z)+425的值等于( )A.425B.25C.-25 D.04.设n 为正整数,若a 2n =5,则2a 6n -4的值为( )A.26B.246C.242D.不能确定5.(a+b)(a-2b)= .6.(2a+0.5b )2= .7.(a+4b)(m+n)= .8.计算:(1)(2a-b 2)(b 2+2a); (2)(5a-b)(-5a+b).9.分解因式:(1)1-4m+4m 2;(2)7x 3-7x.10.先化简,再求值:[(x-y )2+(x+y)(x-y)]÷2x ,其中x=3,y=-1.5.二、探究平台:1.分解因式(a-b)(a 2-ab+b 2)-ab(b-a)为( )A.(a-b)(a 2+b 2)B.(a-b )2(a+b)C.(a-b)3D.-(a-b)32.下列计算正确的是( )A.a 8÷a 2=a 4(a ≠0)B.a 3÷a 4=a(a ≠0)C.a 9÷a 6=a 3(a ≠0)D.(a 2b)3=a 6b3.下列各题是在有理数范围内分解因式,结果正确的是( )A.x 4-0.1=(x 2+0.1)(x 2-0.1)B.-x 2-16=(-x+4)(-x-4)C.2x n +x 3n =x n (2+x 3)D.41-x 2=41(1+2x)(1-2x) 4.分解因式:-a 2+4ab-4b 2= .5.如果x 2+2(m-3)x+25能用公式法分解因式,那么m 的值是 .6.(3x 3+3x)÷(x 2+1)= .7.1.22222×9-1.33332×4= .8.计算:(1)12345678921234567890123456789112345678902⨯-;(2)20032002200220002002220022323-+-⨯-.9.分解因式:(1)x(m-x)(m-y)-m(x-m)(y-m); (2)x 4-81x 2y 2.10.112--x x +x(1+x 1),其中x=2-1.三、交流平台1.一条水渠其横断面为梯形,如图15-23所示,根据图中的长度求出横断面面积的代数式,并计算当a=2,b=0.8时的面积.2.已知多项式x3+k x+6有一个因式x+3,当k为何值时,能分解成三个一次因式的积?并将它分解.3.如果x+y=0,试求x3+x2y+xy2+y3的值.4.试说明无论m,n为任何有理数,多项式4m2+12m+25+9n2-24n的值为非负数.参考答案一、1.D 2.A 3.B 4.B 5.10a+b 6.21ab 7.-2 8.-a 5b 7 9.m 2-4n 2 -3y-7x x 2+2x-8 24xy 10.(1)原式=26n+12m ; (2)原式=13-24x 2.11.解:(1)原式=m 2n(m-n)2+4mn(m-n)=mn(m-n)[m(m-n)+4]=mn(m-n)(m 2-mn+4). (2)原式=(x+y-8)2. 12解:a 2+b 2-2a-4b+8=(a 2-2a+1)+(b 2-4b+4)+3 =(a-1)2+(b-2)2+3. ∵(a-1)2≥0,(b-2)2≥0, ∴(a-1)2+(b-2)2+3>0, ∴原式>0,即a 2+b 2-2a-4b+8的正数.二、1.D 2.A 3.A 4.a-c a-c 5.5 6.4 7.4或-2 8.76 749.x ≠2 10.(1)原式=1;(2)原式=12x-13.11.解:(1)原式=(a-2b+4a)(a-2b-4a)=(5a-2b)(-3a-2b)=-(5a-2b)(3a+2b).(2)原式=(x 3-x 2)-(4x-4)=x 2(x-1)-4(x-1) =(x-1)(x 2-4)=(x-1)(x+2)(x-2). 12解:∵3x 3-x=1,∴9x 4+12x 3-3x 2-7x+2004 =3x(3x 3-x)+4(3x 3-x)-3x+2004 =3x ×1+4×1-3x+2004=2008.∴9x 4+12x 3-3x 2-7x+2004的值等于2008.三、1.(1)①原式=a 2-1;②原式=a 3-1;③原式=a 4-1;④原式=a 5-1. (2)(a-1)(a n +a n-1+a n-2+…+a 3+a 2+a+1)=a n+1-1.(3)①a 10-1 ②M=a 14+a 13+a 12+a 11+…+a 3+a 2+a+1 ③a 6-b 6 ④32x 5-12.(1)4,8,12,16,20,24;4,12,24,40,60,84(2)4n (3)2n(n+1) (4)第24层 (5)有,第25层(二)一、1.C 2.B 3.D 4.B 5.a 2-ab-2b 2 6.4a 2+2ab+0.25b 2 7.am+an+4bm+4bn8.(1)4a 2-b 4. (2)-25a 2+10ab-b 2. 9.(1)(1-2m)2. (2)7x(x+1)(x-1).10.解:原式=(x-y)[(x-y)+(x+y)]÷2x=(x-y)·2x ÷2x=x-y.当x=3,y=-15时,原式=3-(-1.5)=4.5.二、1.A 2.C 3.D 4.-(a-2b)2 5.8或-2 6.3x 7.6.33328.(1)解:12345678921234567890123456789112345678902⨯- =)11234567891)(11234567891(123456789112345678902+-- =)11234567891(1234567891123456789022-- =112345678911234567891123456798022+- =1234567890.(2)解:20032002200220002002220022323-+-⨯-=2003)12002(20022000)22002(200222-+-- =20032003200220002000200222-⨯-⨯ =)12002(2003)12002(200022-- =20032000. 9.(1)(x-m)2(y-m). (2)x 2(x+9y)(x-9y)10.原式=1)1)(1(--+x x x +x ·xx 1+ =x+1+x+1=2x+2.当x=2-1时,原式=2(2-1)+2=22.三、1.提示:S=a 2-b 2,当a=2,b=0.8时,S=3.362.解:令x 3+kx+6=(x+3)(x 2+ax+b),x 3+kx+6=x 3+(3+a)x 2+(3a+b)x+3b ,则有3+a=0,3a+b=k,3b=6,所以a=-3,b=2,k=-7,所以x 3-7x+6=(x+3)(x 2-3x+2)=(x+3)(x-1)(x-2).3.解:x 3+x 2y+xy 2+y 3=x 2(x+y)+y 2(x+y)=(x+y)(x 2+y 2)=0.4.解:4m 2+12m+25+9n 2-24n=4m 2+12m+9+16+9n 2-24n=(2m+3)2+(3n-4)2.因为(2m+3)2≥0,(3n-4)2≥0,所以(2m+3)2+(3n-4)2≥0,即无论m ,n 为何有理数,多项式4m 2+12m+25+9n 2-24n 的值恒为非负数.。

相关文档
最新文档