四川省大教育联盟2018届高中毕业班第三次诊断性考试理数试题
四川省2018届高三天府教育大联考3数学理试题2018.10 含答案

高中2018届毕业班学月滚动综合能力检测(三) 班级 姓名本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择),考生作答时,须将答案答答题卡上,在本试卷、草稿纸上答题无效。
满分150分,考试时间120分钟。
考试结束后,将本试题卷和答题卡一并交回。
第Ⅰ卷(选择题,共60分)注意事项:必须使用2B 铅笔在答题卡上将所选答案对应的标号涂黑.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={x |x 2—3x ≤0},B ={0,1,2,3},则A .A ∩B =∅ B .A=BC .A ⊆BD .B ⊆A 2.=︒︒-︒︒85sin 55sin 95cos 5cos A .—32 B .—12 C .12 D .323.设a ,b ∈R ,则“ab >2”是“a +b >1”的A .必要条件B .充分而不必要条件C .必要而不充分条件D .既不充分又不必要条件 4.曲线y =e x+x 在点(0,f (0))处的切线方程为A .(e +1)x —y +1=0B .ex —y +1—e =0C .2x —y +1=0D .2x —y —1=05.若函数y =sin3x +cos3x 的图像向左平移π6个单位得到函数f (x )的图像,则函数f (x )的解析式为A .f (x )=sin3x +cos3xB .cos3x —sin3xC .f (x )=2sin(3x —π4)D .f (x )=2cos(3x —π4)6.函数y =Asin(ωx+φ)(A >0,ω>0,0<φ<π)的部分图像如同所示,则y 的表达式为A .y =2sin(3x +3π4)B .y =2sin(3x +π4)C .y =3sin(3x —π3)D .y =3sin(3x —2π3)7.设△ABC 内角A,B,C 的对边分别为a,b,c ,且满足2c —3b a =3cos Bcos A ,则角A 的大小为A .π6B .π3C .2π3D .5π68.下列函数中,最小正周期为π,且图像关于直线x =π3对称的函数是 A .y =sin x +cos x B .y =sin2x +cos2xC .y =cos(x 2—π6)D .y =sin(x 2—π6)9.若函数f(x )=cos x +2x ×f ′(π6),则f(π6)=A .12+π6B .32+π6C .12+π3D .32+π310.函数f(x )=sin(x +2φ) —2cos(x +φ)×sin φ在闭区间上的最大值为 A .1 B .22 C .—22 D .—3211.已知函数⎪⎪⎩⎪⎪⎨⎧≤≤=252,sin 20,log )(23πππx x x x x f <<若函数m x f y -=)( (其中R m ∈)有四个零点4321,,,x x x x ,则4321x x x x 的取值范围是A .(π24,5π24) B .(5π24,2π2) C .(2π2,9π24) D .(5π24,9π24) 12.已知函数f (x )=2sin πx m ,若存在f (x )的极值点x 0满足x 18+2≤16(m 2+5m ),则m 的最大值为A .2B .4C .6D .12第Ⅱ卷(非选择题,共90分)注意事项:必须使用0.5毫米黑色墨迹签字笔在答题卡题目所指示的答题区域内作答。
最新-四川省成都市2018届高三第三次诊断性考试理科数

成都市2013级高中毕业班第三次诊断性检测数学(理工类) 第Ⅰ卷(选择题,共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知田径队有男运动员56人,女运动员42人,若按男女比例用分层抽样的方法,从全体运动员中抽出14人参加比赛,则抽到女运动员的人数为A. 2B. 4C. 6D. 8 2.命题()()"1,,ln 1"x x x ∀∈-+∞+<的否定是A. ()()1,,ln 1x x x ∀∉-+∞+<B. ()()0001,,ln 1x x x ∀∉-+∞+<C. ()()1,,ln 1x x x ∀∈-+∞+≥D. ()()0001,,ln 1x x x ∃∈-+∞+≥ 3.已知复数2z i i=-(其中i 为虚数单位),则z =A. 3B.4.已知,αβ是空间中两个不同的平面,m 为平面β内的一条直线,则""αβ⊥是""m α⊥的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件5.已知向量,a b满足()2,3a a b a =-=- ,则b 在a 方向上的投影为A. 23B. 23- C. 12D. 12-6. 某工厂用A,B两种配件生产甲乙两种产品,每生产一件甲产品需用4个A配件耗时1h,每生产一件乙产品需用4个B配件耗时2h,该厂每天最多可从配件厂获得24个A配件和16个B配件,每天生产总耗时不超过8h.若生产一件甲产品获利3万元,生产一件乙产品获利4万元,则通过恰当的生产安排,该工厂每天可获得的最大利润为A. 24万元 B.22万元 C. 18万元 D. 16万元7.执行如图所示的程序框图,若依次输入1122210.6,0.6,3m n p-⎛⎫=== ⎪⎝⎭,则输出的结果为A.1213⎛⎫⎪⎝⎭B. 120.6 C. 20.6- D.320.6-8.某学校食堂早餐只有花卷、包子、面条和蛋炒饭四种主食可供食用,有5名同学前去就餐,每人只选择其中一种,且每种主食都至少有一名同学选择.已知包子数量不足仅够一人食用,甲同学肠胃不好不会选择蛋炒饭,则这5名同学不同的主食选择方案种数为A.144B. 132C. 96D.489. 定义在()1,+∞上的函数()f x同时满足:①对任意的()1,x∈+∞恒有()()33f x f x=成立;②当(]1,3x∈时,()3.f x x=-记函数()()()1g x f x k x =--,若函数()g x 恰好有两个零点,则实数k 的取值范围是A.()2,3B. [)2,3C. 9,34⎛⎫ ⎪⎝⎭D. 9,34⎡⎫⎪⎢⎣⎭10. 已知O为坐标原点,双曲线()2222:10,0x y C a b a b-=>>的左焦点为()(),00F c c ->,以OF 为直径的圆交双曲线C 的渐近线于A,B ,O 三点,且()0AO AF OF +=.关于x 的方程20ax bx c +-=的两个实数根分别为1x 和2x ,则以12,,2x x 为边长的三角形的形状是A. 钝角三角形B. 直角三角形C. 锐角三角形D. 等腰直角三角形第Ⅱ卷(非选择题,共100分)二、填空题:(大题共5小题,每小题5分,共25分. 11.计算:sin 65cos35sin 25sin 35-= .12. 一块边长为8cm 的正方形铁板按如图所示的阴 影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥(底面是正方形,从顶点向底面作垂线,垂足为底面中心的四棱锥)形容器,O 为底面ABCD 的中心,则侧棱SC 与底面ABCD 所成角的余弦值为13. 已知椭圆()22:101616x y C n n+=<<的两个焦点分别为12,F F ,过1F 的直线交椭圆C 于A,B 两点,若22AF BF +的最大值为10,则n 的值为 .14. 若直线()2101,0ax by a b +-=>->经过曲线()cos 101y x x π=+<<的对称中心,则的121a b++最小值为 . 15.函数()()0,0bf x a b x a=>>-,因其图象像“囧”字,被称为“囧函数”.我们把函数()f x 的图像与y 轴的交点关于原点对称的点称为函数()f x 的“囧点”;以函数()f x 的“囧点”为圆心,与函数()f x 的图象有公共点的圆,皆称为函数()f x 的“囧圆”.当1a b ==时,有以下命题:①对任意()0,x ∈+∞,都有()1f x x>成立;②存在0,63x ππ⎛⎫∈ ⎪⎝⎭,使得()00tan f x x <成立;③函数()f x 的“囧点”与函数ln y x =图象上的点的最短距离为;④函数()f x 的所有“囧圆”中其周长的最小值为.其中正确的命题序号有 .(写出所有正确命题的序号)三、解答题:本大题共6小题,满分70分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分10分)已知函数()22sin cos 44f x x x x ππ⎛⎫⎛⎫=++++ ⎪ ⎪⎝⎭⎝⎭(1)求函数()f x 的单调递增区间;(2)在ABC ∆中,内角A,B,C 的对边分别为,,a b c ,角A 满足()1f A =,若3,sin 2sin a B C ==,求b 的值.17.(本小题满分12分)如图,在三棱台DEF ABC -中,已知底面ABC 是以AB 为斜边的直角三角形,FC⊥底面ABC ,AB=2DE,G,H 分别为AC,BC 的中点. (1)求证:平面ABED//平面GHF; (2))若BC=CF=12AB=1,求二面角A-DE-F 的余弦值.18.(本小题满分12分)某高校一专业在一次自主招生中,对20名已经选拔入围的学生进行语言表达能力和逻辑思维能力测试,结果如下表:由于部分数据丢失,只知道从这20名参加测试的学生中随机抽取一人,抽到语言表达能力优秀或逻辑思维能力优秀的学生的概率为2.5(1) 从参加测试的语言表达能力良好的学生中任意抽取2名,求其中至少有一名逻辑思维能力优秀的学生的概率; (2))从参加测试的20名学生中任意抽取2名,设语言表达能力优秀或逻辑思维能力优秀的学生人数为X ,求随机变量X 的分布列及其均值.19.(本小题满分12分)已知数列{}n a 的前n 项和为n S ,且330,.n n S a n N *+-=∈(1)求数列{}n a 的通项公式;(2)设数列{}n b 满足()211log 12n n b S +=-,求12231111n n n T b b b b b b +=+++ ,求使5041009n T ≥成立的n 的最小值.20.(本小题满分13分)已知一动圆经过点()2,0M ,且在y 轴上截得的弦长为4,设动圆圆心的轨迹为曲线C. (1)求曲线C 的方程;(2)过点()1,0N 任意作相互垂直的两条直线12,l l ,分别交曲线C 于不同的两点A,B 和不同的两点D,E.设线段AB,DE 的中点分别为P,Q.①求证:直线PQ 过定点R ,并求出定点R 的坐标; ②求PQ 的最小值;21.(本小题满分14分)已知函数()x f x e =,其中 2.71828e = 为自然对数的底数. (1)设函数()()()223,.g x x ax a f x a R =+--∈试讨论函数()g x 的单调性;(2)设函数()()2,.h x f x mx x m R =--∈,若对任意121,,22x x ⎡⎤∈⎢⎥⎣⎦,且12x x >都有()()()21121221x h x x h x x x x x ->-成立,求实数m 的取值范围.。
四川省成都市2018届高中毕业班第三次诊断性检测数学(理科)试题

cos
2
4 sin
cos
16 9
,又
2
,
,所以 sin
cos
0 所以
sin cos 4 .故选 C. 3
考点:1、诱导公式;2、同角基本关系求值.
7.已知甲袋中有 1 个黄球和 1 个红球,乙袋中有 2 个黄球和 2 个红球.现随机地从甲袋中出 1 个球放入乙
袋中,再从乙袋中随机取出 1 个球,则从乙袋中取出红球的概率为( )
1i
2
2
考点:1、复数的运算,2、纯虚数的概念.
3.命题“ x 1, , x 1 ln x ”的否定是( )
A. x 1, , x 1 ln x
B. x 1, , x 1 ln x
C. x0 1, , x0 1 ln x0
D. x0 1, , x0 1 ln x0
【答案】 D
【解析】“ x 1, , x 1 ln x ”的否定是“ x0 1, , x0 1 ln x0 ”,故选 D.
投资生产 B 产品时,每生产 100 吨需要资金 300 万元,场地 100 平方米.若该企业现可使用资金 1400 万元,
场地 900 平方米投资生产 A, B 两种产品,则两种产品的量之和的最大值是( )
A. 467 吨
【答案】C
B. 450 吨
C. 575 吨
D. 600 吨
【解析】设生产 A, B 产品的产量分别为 x, y (单位:100 吨),由题意得约束条件
D.
3
【解析】设正三棱柱 ABC A1B1C1 底面边长为 x ,侧棱为 y ,则 6x 3y a ,三棱柱 ABC A1B1C1 侧
面积
S
3xy
.所以
四川省成都市2018届高三第三次诊断性检测理科数学试题 word版

成都市2015级高中毕业班第三次诊断性检测数学(理科)本试卷分选择题和非选择题两部分。
第Ⅰ卷(选择题,第Ⅱ卷(非选择题),满分150分,考试时间120分钟。
注意事项:1.答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上。
2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其它答案标号。
3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。
4.所有题目必须在答题卡上作答,在试题卷上答题无效。
5.考试结束后,只将答题卡交回。
第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,满分60分. 在每小题给出的四个选项中,只有一项符合题目要求.1.设全集{}=0123U ,,,,集合()(){}130A x x x =∈--≤N ,则集合U A ð中元素的个数是( ) A .1 B .2 C .3 D .4 【答案】 A【解析】由题意得{}1,2,3A =,所以{}0U A =ð,故选A. 考点:集合的基本运算. 2.若复数i1ia z +=-(i 是虚数单位)为纯虚数,则实数a 的值为( ) A .2- B .1- C .1 D .2【答案】 C 【解析】因为()()()i 1i 11ii 1i 22a a a a z ++-+++===-是纯虚数,所以10a -=,即1a =,故选C.考点:1、复数的运算,2、纯虚数的概念.3.命题“()1,x ∀∈+∞,1ln x x -≥”的否定是( )A .()1,x ∀∈+∞,1ln x x -≤B .()1,x ∀∈+∞,1ln x x -<C .()01,x ∃∈+∞,001ln x x -≥D .()01,x ∃∈+∞,001ln x x -< 【答案】 D【解析】“()1,x ∀∈+∞,1ln x x -≥”的否定是“()01,x ∃∈+∞,001ln x x -<”,故选D.考点:含一个量词的命题否定.4.定义符号函数1,0,sgn 0,0,1,0,x x x x >⎧⎪==⎨⎪-<⎩则函数()sin sgn f x x x =⋅的图象大致是( )【答案】 B【解析】用排除法,易知()f x 是偶函数,故排除A 选项;当0x <<π时,()0f x >,故排除D 选项;当2x π<<π时,()0f x <,故排除C 选项.故选B. 考点:函数的图象. 5.已知实数ln 22a =,22ln 2b =+,()2ln 2c =,则,,a b c 的大小关系是( )A .c a b <<B .c b a <<C .b a c <<D .a c b << 【答案】A 【解析】易知ln 2122<<,22ln 22+>,()20ln 21<<,所以c a b <<.故选A.考点:指数与对数运算及单调性. 6.当,2απ⎛⎫∈π⎪⎝⎭时,若()()sin cos ααπ--π+=,则sin cos αα-的值为( ) A.3B.3- C .43 D .43-【答案】C【解析】由诱导公式得()()sin cos sin cos ααααπ--π+=+=,所以72sin cos 9αα=-,()()2216sin cos sin cos 4sin cos 9αααααα-=+-=,又,2απ⎛⎫∈π ⎪⎝⎭,所以sin cos 0αα->所以4sin cos 3αα-=.故选C. 考点:1、诱导公式;2、同角基本关系求值.7.已知甲袋中有1个黄球和1个红球,乙袋中有2个黄球和2个红球.现随机地从甲袋中出1个球放入乙袋中,再从乙袋中随机取出1个球,则从乙袋中取出红球的概率为( ) A .13 B .12 C .59 D .29【答案】B【解析】先从甲袋中取出1个球放入乙袋,再从乙袋出1个球的总数为112510C C =,取出红球的总数为111113125C C C C +=,所以乙袋中取出红球的概率为51102P ==.故选B. 考点:古典概型.8.某企业可生产,A B 两种产品.投资生产A 产品时,每生产100吨需要资金200万元,场地200平方米;投资生产B 产品时,每生产100吨需要资金300万元,场地100平方米.若该企业现可使用资金1400万元,场地900平方米投资生产,A B 两种产品,则两种产品的量之和的最大值是( ) A .467吨 B .450吨 C .575吨 D .600吨 【答案】C【解析】设生产,A B 产品的产量分别为,x y (单位:100吨),由题意得约束条件2003001400,200100900,0,0,x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩求目标函数z x y =+的最大值.由约束条件得可行区域(如图),其中()4.5,0A ,()3.25,2.5B ,140,3C ⎛⎫⎪⎝⎭.由可行区域可得目标函数z x y =+经过()3.25,2.5B 时,z 取最大值,故max 5.75z =(100吨). 故选C.考点:线性规划问题.9.在正三棱柱111ABC A B C - (底面是正三角形,侧棱垂直于底面的棱柱)中,所有棱长之和为定值a .若正三棱柱111ABC A B C -的顶点都在球O 的表面上,则当正三棱柱侧面积取得最大值24时,该球的表面积为( )A .B .323πC .12πD .643π【答案】D【解析】设正三棱柱111ABC A B C -底面边长为x ,侧棱为y ,则63x y a +=,三棱柱111ABC A B C -侧面积3S xy =.所以2216336224x y a S xy +⎛⎫=≤= ⎪⎝⎭,当且仅当632a x y ==,即,126a a x y ==时,等号成立,所以24a =,2x =,4y =.所以正三棱柱111ABC A B C -的外接球的球心O 到顶点A 的=643π.故选D. 考点:1、简单几何体;2、基本不等式.10.已知P 为ABC △所在平面内一点,AB PB PC ++=0,2PC PB AB ===,则PBC △的面积等于( )A B . C . D . 【答案】A【解析】分别取边BC ,AC 的中点,D E ,则2PB PC PD +=,2AB ED =, 因为AB PB PC ++=0,所以ED PD =-,所以,,E D P 三点共线,且1ED PD ==.又2PC PB ==,所以PD BC ⊥,所以23BC =,所以PBC △的面积112S =⨯=故选A.考点:平面向量线性运算.11.已知,A B 是椭圆C :221259x y +=上关于坐标原点O 对称的两个点,,,P M N 是椭圆C 异于,A B 的点,且AP ∥OM ,BP ∥ON ,则MON △的面积为( )A B .32 C .152 D .252【答案】C【解析】方法一:特殊值法,取,A B 为短轴的端点,即()0,3A ,()0,3B -,点P 为左顶点()5,0P -,则直线OM ,ON 的方程分别为35y x =,35y x =-,所以M,N ,所以152MON S =△.故选A. 方法二:若,PA PB 与坐标轴平行或垂直时,可得点,M N 为椭圆C 长轴和短轴的一个端点,所以1155322MON S =⨯⨯=△;若,PA PB 与坐标轴不平行或不垂直时,则925PA PB k k ⋅=-,设直线OM ,ON 的方程分别为1y k x =,2y k x =,则12925k k ⋅=-.联立2211,259,x y y k x ⎧+=⎪⎨⎪=⎩解得M ⎛⎫,同理可得N ⎛⎫,所以MON S =△()121222515.2152k k k k ==-==- 故选A.考点:直线与椭圆的位置关系.12.在关于x 的不等式()2222e e 4e e 4e 0x x x a x a -+++> (其中e 2.71828=为自然对数的底数)的解集中,有且仅有两个大于2的整数,则实数a 的取值范围为( ) A .4161,5e 2e ⎛⎤⎥⎝⎦ B .391,4e 2e ⎡⎫⎪⎢⎣⎭ C .42164,5e 3e ⎛⎤ ⎥⎝⎦ D .3294,4e 3e ⎡⎫⎪⎢⎣⎭【答案】D【解析】易得()2222e e 4e e 4e 0x x x a x a -+++>⇔()()22e21e x x a x ->-.设()()22e 2f x x =-,()()1e xg x a x =-,则原不等式等价与()()f x g x >.若0a ≤,则当2x >时,()0f x >,()0g x <,所以原不等式的解集中有无数个大于2的整数,所以0a >.因为()20f =,()22e 0g a =>,所以()()22f g <. 当()()33f g ≤,即12ea ≥时,设()()()()4h x f x g x x =-≥, 则()()()22e 2e 2e 2e 22exxx h x x ax x '=--≤--.设()()()2e 2e 242e xx x x x ϕ=--≥,则()()()21e 2e 302exx x ϕϕ+''=-≤=, 所以()x ϕ在[)4,+∞上为减函数,所以()()()242e 2e 0x ϕϕ≤=-<, 所以当4x ≥时,()0h x '<,所以()h x 在[)4,+∞上为减函数,所以()()324223e 3e 44e 3e 4e e 4022h x h a ⎛⎫≤=-≤-=-< ⎪⎝⎭,所以当4x ≥时,不等式()()f x g x <恒成立,所以原不等式的解集中没有大于2的整数.所以要使原不等式的解集中有且仅有两个大于2的整数,则()()()()()()33,44,55,f g f g f g >⎧⎪>⎨⎪≤⎩所以232425e 2e ,4e 3e ,9e 4e ,a a a ⎧>⎪>⎨⎪≤⎩解得32944e 3ea ≤<.故选D.考点:利用导数研究函数的性质解决不等式成立问题.第Ⅱ卷(非选择题,共90分)二、填空题:本大题共5小题,每小题5分,共25分.请将答案填在题后横线上.13.51x x ⎛⎫- ⎪⎝⎭的展开式中各项系数之和为 .【答案】0【解析】令1x =,得展开式中各项系数之和为()5110-=. 考点:二项式定理.14.如图,在正方体1111ABCD A BC D -中,E 是棱1DD 的中点,则异面直线AE 与1BD 所成角的余弦值为 .【答案】5【解析】以点D 原点,1,,DA DB DD 分别为,,x y z 轴建立空间直角坐标系,设棱长为2,则()2,0,0A ,()0,0,1E ,()2,2,0B ,()10,0,2D ,所以()2,0,1AE =-,()12,2,2BD =--,所以11115cos ,AE BD AE BD AE BD ⋅==AE 与1BD 考点:空间角.15.在ABC △中,内角,,A B C 所对的边分别为,,a bc ,已知a c -=,sin B C =.则cos 26A π⎛⎫-= ⎪⎝⎭ .【解析】因为sin sin B C =,所以b =,又6a c-=,所以2a c =,由余弦定理得2222cos 24b c a A bc +-===,所以sin A =sin 2A =1cos 24A =-. 所以cos 2cos 2cos sin 2sin 6668A A A πππ⎛⎫-=+= ⎪⎝⎭. 考点:1、正余弦定理;2、三角恒等变换.16.已知集合{}1,2,3,4,5,6,7,8,9M =的所有3个元素的子集记为123,,,,k A A A A ,*k ∈N .记i a 为集合i A (1,2,3,,i k =)中的最大元素,则12k a a a +++= .【答案】630【解析】集合M 含有3个元素的子集共有3984C =,所以84k =.在集合i A (1,2,3,,i k =)中:最大元素为3的集合有221C =个;最大元素为4的集合有233C =;最大元素为5的集合有246C =;最大元素为6的集合有2510C =;最大元素为7的集合有2615C =;最大元素为8的集合有2721C =;最大元素为9的集合有2828C =. 所以12314356610715821928630k a a a +++=⨯+⨯+⨯+⨯+⨯+⨯+⨯=.考点:1、集合间的基本关系;2、组合.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知n S 为等比数列{}n a 的前n 项和,243,,S S S 成等差数列,且23438a a a ++=-. (I )求数列{}n a 的通项公式;(Ⅱ)设n n b n a =,求数列{}n b 的前n 项和n T .【答案】(I)112n n a -⎛⎫=- ⎪⎝⎭;(Ⅱ)1242n n n T -+=-. 【解析】考点:1、等比数列;2、错位相减法. 18.(本小题满分12分)某企业统计自2011年到2017年的产品研发费x 和销售额y 的数据如下表:根据上表中的数据作出散点图,得知产品研发费的自然对数值z (精确到小数点后第二位)和销售额y 具有线性相关关系.(I )求销售额y 关于产品研发费x 的回归方程ˆˆˆln yb x a =+ (ˆˆ,a b 的计算结果精确到小数点后第二位);(Ⅱ)根据(I )的结果预则:若2018年的销售额要达到70万元,则产品研发费大约需要多少万元?【答案】(I)ˆ11.99ln 21.86y x =+;(Ⅱ)55.5.【解析】考点:1、用线性回归方程系数公式求线性方程;2、用样本估计总体解决简单实际问题.19.(本小题满分12分)如图①,在等腰梯形ABCD 中,已知AB ∥CD ,60ABC ∠=,2CD =,4AB =,点E 为AB 的中点;现将三角形BEC 沿线段EC 折起,形成直二面角P EC A --,如图②,连接,PA PD得四棱锥P AECD -,如图③.(I )求证:PD EC ⊥;(Ⅱ)求平面PEC 与平面PAD 所成的锐二面角的余弦值.【答案】(I)见解析;(Ⅱ)2. 【解析】考点:1、点线面间的垂直关系;2、向量方法求面面的夹角. 20.(本小题满分12分)在平面直角坐标系xOy 中,动点M 与定点()1,0F 的距离和它到直线4x =的距离的比是1:2.记动点M 的轨迹为曲线C ,直线l :()0y kx m m =+≠与曲线C 相交于不同的两点,P Q .(I )求曲线C 的方程; (Ⅱ)求OPQ △面积的最大值.【答案】(I)22143x y +=; 【解析】考点:1、椭圆的方程;2、直线与椭圆的位置关系.21.(本小题满分12分)已知函数()()1ln 1f x k x k x k =--+-,其中,0k k ∈≠R .(I )讨论函数()f x 的单调性;(Ⅱ)设函数()f x 的导函数为()g x .若函数()f x 恰有两个零点()1212,x x x x <,证明:12203x x g +⎛⎫> ⎪⎝⎭.【答案】(I)22143x y +=; 【解析】考点:导数在研究函数的单调性中的应用.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.作答时,用2B 铅笔在答题卡上把所选题目对应的标号涂黑.22.(本小题满分10分)选修4-4:极坐标与参数方程在极坐标系中,曲线C 的极坐标方程是4c o s ρθ=,直线l 的极坐标方程是s i n 14θπ⎛⎫+= ⎪⎝⎭,点,2Q ρπ⎛⎫ ⎪⎝⎭在直线l 上.以极点为坐标原点O ,极轴为x 轴的正半轴,建立平面直角坐标系xOy ,且两坐标系取相同的单位长度.(I )求曲线C 及直线l 的直角坐标方程;(Ⅱ)若直线l 与曲线C 相交于不同的两点,A B ,求QA QB +的值.【答案】(I)()2224x y -+=,10x y +-=;(Ⅱ) 【解析】考点:1、极坐标和直角坐标的互化;2、参数的意义.23.(本小题满分10分)选修4-5:不等式选讲已知函数()21f x x x a =++-,a ∈R .(I )当2a =时,解不等式()4f x ≤;(Ⅱ)若不等式()1f x <的解集为非空集合,求a 的取值范围.【答案】(I)[]1,1-;(Ⅱ)31,22⎛⎫-⎪⎝⎭. 【解析】考点:解含绝对值的不等式.。
四川省成都2018届高三数学三诊试卷(理科)Word版含解析

四川省成都2018届高三数学三诊试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在一次抛硬币实验中,甲、乙两人各抛一枚硬币一次,设命题p是“甲抛的硬币正面向上”,q是“乙抛的硬币正面向上”,则命题“至少有一人抛的硬币是正面向下”可表示为()A.(¬p)∨(¬q)B.p∧(¬q)C.(¬p)∧(¬q)D.p∨q2.已知集合A={x||x﹣1|<1},B={x|x2﹣1<0},则A∪B=()A.(﹣1,1)B.(﹣1,2)C.(1,2)D.(0,1)3.若,则a=()A.﹣5﹣i B.﹣5+i C.5﹣i D.5+i4.设f(x)是定义在R上周期为2的奇函数,当0≤x≤1时,f(x)=x2﹣x,则=()A.B.C.D.5.某几何体的三视图如图所示,则该几何体的表面积为()A.36+12πB.36+16πC.40+12πD.40+16π6.设D为△ABC中BC边上的中点,且O为AD边上靠近点A的三等分点,则()A.B.C.D.7.执行如图的程序框图,则输出x的值是()A.2016 B.1024 C.D.﹣18.已知M(x0,y0)是函数C: +y2=1上的一点,F1,F2是C上的两个焦点,若•<0,则x0的取值范围是()A.(﹣,)B.(﹣,)C.(﹣,)D.(﹣,)9.等差数列{a n}中的a2、a4032是函数的两个极值点,则log2(a2•a2017•a4032)=()A.B.4 C.D.10.函数f(x)=sinx•(4cos2x﹣1)的最小正周期是()A.B. C.πD.2π11.某医务人员说:“包括我在内,我们社区诊所医生和护士共有17名.无论是否把我算在内,下面说法都是对的.在这些医务人员中:医生不少于护士;女护士多于男医生;男医生比女医生多;至少有两名男护士.”请你推断说话的人的性别与职业是()A.男医生B.男护士C.女医生D.女护士12.设集合,C={(x,y)|2|x ﹣3|+|y﹣4|=λ},若(A∪B)∩C≠ϕ,则实数λ的取值范围是()A. B.C. D.二、填空题:本大题共四小题,每小题5分13.已知向量||=l,||=,且•(2+)=1,则向量,的夹角的余弦值为.14.二项式(x+y)5的展开式中,含x2y3的项的系数是a,若m,n满足,则u=m﹣2n的取值范围是.15.成都七中112岁生日当天在操场开展学生社团活动选课超市,5名远端学生从全部六十多个社团中根据爱好初选了3个不同社团准备参加.若要求这5个远端学生每人选一个社团,而且这3 个社团每个社团都有远端学生参加,则不同的选择方案有种.(用数字作答)16.已知函数,若函数h(x)=f(x)﹣mx﹣2有且仅有一个零点,则实数m的取值范围是.三、解答题(共70分.解答应写出文字说明、证明过程或演算步骤.)17.在△ABC中,角A,B,C所对应的边分别为a,b,c,已知,cosA﹣cos2A=0.(1)求角C;(2)若b2+c2=a﹣bc+2,求S△ABC.18.某商场为吸引顾客消费推出一项优惠活动.活动规则如下:消费额每满100元可转动如图所示的转盘一次,并获得相应金额的返券,假定指针等可能地停在任一位置.若指针停在A区域返券60元;停在B区域返券30元;停在C区域不返券.例如:消费218元,可转动转盘2次,所获得的返券金额是两次金额之和.(Ⅰ)若某位顾客消费128元,求返券金额不低于30元的概率;(Ⅱ)若某位顾客恰好消费280元,并按规则参与了活动,他获得返券的金额记为X(元).求随机变量X的分布列和数学期望.19.如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,AB⊥B1C.(Ⅰ)证明:AC=AB1;(Ⅱ)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A﹣A1B1﹣C1的余弦值.20.如图,设抛物线C1:y2=﹣4mx(m>0)的准线l与x轴交于椭圆C2:的右焦点F2,F1为C2的左焦点.椭圆的离心率为e=,抛物线C1与椭圆C2交于x轴上方一点P,连接PF1并延长其交C1于点Q,M为C1上一动点,且在P,Q之间移动.(1)当取最小值时,求C1和C2的方程;(2)若△PF1F2的边长恰好是三个连续的自然数,当△MPQ面积取最大值时,求面积最大值以及此时直线MP的方程.21.已知函数f(x)=x﹣a x(a>0,且a≠1).(1)当a=e,x取一切非负实数时,若,求b的范围;(2)若函数f(x)存在极大值g(a),求g(a)的最小值.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.在极坐标系下,知圆O:ρ=cosθ+sinθ和直线.(1)求圆O与直线l的直角坐标方程;(2)当θ∈(0,π)时,求圆O和直线l的公共点的极坐标.23.已知函数f(x)=|2x+3|+|2x﹣1|.(1)求不等式f(x)≤5的解集;(2)若关于x的不等式f(x)<|m﹣1|的解集非空,求实数m的取值范围.四川省成都2018届高三数学三诊试卷(理科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在一次抛硬币实验中,甲、乙两人各抛一枚硬币一次,设命题p是“甲抛的硬币正面向上”,q是“乙抛的硬币正面向上”,则命题“至少有一人抛的硬币是正面向下”可表示为()A.(¬p)∨(¬q)B.p∧(¬q)C.(¬p)∧(¬q)D.p∨q【考点】2E:复合命题的真假.【分析】利用“或”“且”“非”命题的意义即可得出.【解答】解:¬P,表示“甲抛的硬币正面向下”,¬q表示“乙抛的硬币正面向下”.则(¬p)∨(¬q)表示“至少有一人抛的硬币是正面向下”.故选:A.2.已知集合A={x||x﹣1|<1},B={x|x2﹣1<0},则A∪B=()A.(﹣1,1)B.(﹣1,2)C.(1,2)D.(0,1)【考点】1D:并集及其运算.【分析】求出A,B中不等式的解集确定出A,B,找出A与B的并集即可.【解答】解:由A中不等式变形得:﹣1<x﹣1<1,解得:0<x<2,即A=(0,2)∵B={x|x2﹣1<0}=(﹣1,1)∴A∪B=(﹣1,2)故选:B.3.若,则a=()A.﹣5﹣i B.﹣5+i C.5﹣i D.5+i【考点】A5:复数代数形式的乘除运算.【分析】利用复数的运算法则、共轭复数的定义即可得出.【解答】解:∵,∴1+ai=(2+i)(1+2i)=5i,∴a===5+i.故选:D.4.设f(x)是定义在R上周期为2的奇函数,当0≤x≤1时,f(x)=x2﹣x,则=()A.B.C.D.【考点】3L:函数奇偶性的性质;31:函数的概念及其构成要素.【分析】根据题意,由函数的周期性以及奇偶性分析可得=﹣f()=﹣f(),又由函数在解析式可得f()的值,综合可得答案.【解答】解:根据题意,f(x)是定义在R上周期为2的奇函数,则=﹣f()=﹣f(),又由当0≤x≤1时,f(x)=x2﹣x,则f()=()2﹣()=﹣,则=,故选:C.5.某几何体的三视图如图所示,则该几何体的表面积为()A.36+12πB.36+16πC.40+12πD.40+16π【考点】L!:由三视图求面积、体积.【分析】几何体为棱柱与半圆柱的组合体,作出直观图,代入数据计算.【解答】解:由三视图可知几何体为长方体与半圆柱的组合体,作出几何体的直观图如图所示:其中半圆柱的底面半径为2,高为4,长方体的棱长分别为4,2,2,∴几何体的表面积S=π×22×2++2×4+2×4×2+2×4+2×2×2=12π+40.故选C.6.设D为△ABC中BC边上的中点,且O为AD边上靠近点A的三等分点,则()A.B.C.D.【考点】9H:平面向量的基本定理及其意义.【分析】可先画出图形,根据条件及向量加法、减法和数乘的几何意义即可得出【解答】解:∵D为△ABC中BC边上的中点,∴=(+),∵O为AD边上靠近点A的三等分点,∴=,∴=(+),∴=﹣=﹣(+)=(﹣)﹣(+)=﹣+.故选:A.7.执行如图的程序框图,则输出x的值是()A.2016 B.1024 C.D.﹣1【考点】EF:程序框图.【分析】模拟执行程序框图,依次写出每次循环得到的x,y的值,当y=1024时,不满足条件退出循环,输出x的值即可得解.【解答】解:模拟执行程序框图,可得x=2,y=0满足条件y<1024,执行循环体,x=﹣1,y=1满足条件y<1024,执行循环体,x=,y=2满足条件y<1024,执行循环体,x=2,y=3满足条件y<1024,执行循环体,x=﹣1,y=4…观察规律可知,x的取值周期为3,由于1024=341×3+1,可得:满足条件y<1024,执行循环体,x=﹣1,y=1024不满足条件y<1024,退出循环,输出x的值为﹣1.故选:D.8.已知M(x0,y0)是函数C: +y2=1上的一点,F1,F2是C上的两个焦点,若•<0,则x0的取值范围是()A.(﹣,) B.(﹣,) C.(﹣,)D.(﹣,)【考点】K4:椭圆的简单性质.【分析】由椭圆方程求得焦点坐标,利用向量的数量积公式,结合椭圆的方程,即可求出x0的取值范围.【解答】解:椭圆C: +y2=1,的焦点坐标F1(﹣,0),F2(,0),=(﹣﹣x0,﹣y0),=(﹣x0,﹣y0)则•=x02﹣3+y02=﹣2,∵•<0,∴﹣2<0,解得:﹣<x0<,故答案选:C.9.等差数列{a n}中的a2、a4032是函数的两个极值点,则log2(a2•a2017•a4032)=()A.B.4 C.D.【考点】84:等差数列的通项公式;6D:利用导数研究函数的极值.【分析】先求出f′(x)=x2﹣8x+6,由等差数列{a n}中的a2、a4032是函数的两个极值点,利用韦达定理得a2+a4032=8,a2•a4032=6,从而=4,由此能求出log2(a2•a2017•a4032)的值.【解答】解:∵,∴f′(x)=x2﹣8x+6,∵等差数列{a n}中的a2、a4032是函数的两个极值点,∴a2+a4032=8,a2•a4032=6,∴=4,∴log2(a2•a2017•a4032)=log2(4×6)==3+log23.故选:C.10.函数f(x)=sinx•(4cos2x﹣1)的最小正周期是()A.B. C.πD.2π【考点】H1:三角函数的周期性及其求法.【分析】利用二倍角和两角和与差以及辅助角公式基本公式将函数化为y=Asin(ωx+φ)的形式,再利用周期公式求函数的最小正周期.【解答】解:函数f(x)=sinx•(4cos2x﹣1)化简可得:f(x)=4sinx•cos2x﹣sinx=4sinx(1﹣sin2x)﹣sinx=3sinx﹣4sin3x=sin3x.∴最小正周期T=.故选:B.11.某医务人员说:“包括我在内,我们社区诊所医生和护士共有17名.无论是否把我算在内,下面说法都是对的.在这些医务人员中:医生不少于护士;女护士多于男医生;男医生比女医生多;至少有两名男护士.”请你推断说话的人的性别与职业是()A.男医生B.男护士C.女医生D.女护士【考点】F4:进行简单的合情推理.【分析】设男医生人数为a,女医生人数为b,女护士人数为c,男护士人数为d,根据已知构造不等式组,推理可得结论.【解答】解:设男医生人数为a,女医生人数为b,女护士人数为c,男护士人数为d,则有:①a+b≥c+d②c>a,③a>b④d≥2得出:c>a>b>d≥2,假设:d=2,仅有:a=5,b=4,c=6,d=2时符合条件,又因为使abcd中一个数减一人符合条件,只有b﹣1符合,即女医生.假设:d>2则没有能满足条件的情况.综上,这位说话的人是女医生,故选:C12.设集合,C={(x,y)|2|x﹣3|+|y ﹣4|=λ},若(A∪B)∩C≠ϕ,则实数λ的取值范围是()A. B.C. D.【考点】1H:交、并、补集的混合运算.【分析】集合A、B是表示以(3,4)点为圆心,半径为和的同心圆;集合C在λ>0时表示以(3,4)为中心,四条边的斜率为±2的菱形;结合题意画出图形,利用图形知(A∪B)∩C≠∅,是菱形与A或B圆有交点,从而求得实数λ的取值范围.【解答】解:集合A={(x,y)|(x﹣3)2+(y﹣4)2=}表示以(3,4)点为圆心,半径为的圆;集合B={(x,y)|(x﹣3)2+(y﹣4)2=}表示以(3,4)点为圆心半径为的圆;集合C={(x,y)|2|x﹣3|+|y﹣4|=λ}在λ>0时,表示以(3,4)为中心,四条边的斜率为±2的菱形,如下图所示:若(A∪B)∩C≠∅,则菱形与A或B圆有交点,当λ<时,菱形在小圆的内部,与两圆均无交点,不满足答案;当菱形与小圆相切时,圆心(3,4)到菱形2|x﹣3|+|y﹣4|=λ任一边的距离等于大于半径,当x>3,且y>4时,菱形一边的方程可化为2x+y﹣(10+λ)=0,由d==得:λ=2;当2<λ<时,菱形在大圆的内部,与两圆均无交点,不满足答案;当菱形与大圆相切时,圆心(3,4)到菱形2|x﹣3|+|y﹣4|=λ任一边的距离等于大于半径,当x>3,且y>4时,菱形一边的方程可化为2x+y﹣(10+λ)=0,由d==得:λ=6,故λ>6时,两圆均在菱形内部,与菱形无交点,不满足答案;综上实数λ的取值范围是[,2]∪[,6],即[,2]∪[,6].故选:A.二、填空题:本大题共四小题,每小题5分13.已知向量||=l,||=,且•(2+)=1,则向量,的夹角的余弦值为.【考点】9R:平面向量数量积的运算.【分析】利用向量的数量积运算法则和夹角公式即可得出.【解答】解:∵•(2+)=1,∴,∵,∴,化为.∴==﹣.故答案为:.14.二项式(x+y)5的展开式中,含x2y3的项的系数是a,若m,n满足,则u=m﹣2n的取值范围是.【考点】7C:简单线性规划;DB:二项式系数的性质.【分析】首先求出a,然后画出可行域,利用目标函数的几何意义求最值.【解答】解:二项式(x+y)5的展开式中,x2y3的项的系数是a==10,所以,对应的可行域如图:由目标函数变形为n=,当此直线经过C()时u最小为,经过B(4,0)时u最大为4,所以u的取值范围为;故答案为:.15.成都七中112岁生日当天在操场开展学生社团活动选课超市,5名远端学生从全部六十多个社团中根据爱好初选了3个不同社团准备参加.若要求这5个远端学生每人选一个社团,而且这3 个社团每个社团都有远端学生参加,则不同的选择方案有150 种.(用数字作答)【考点】D8:排列、组合的实际应用.【分析】根据题意,分2步进行分析:①、先将5名学生分成3组,②、将分好的3组全排列,对应3 个社团,分别求出每一步的情况数目,由分步计数原理计算可得答案.【解答】解:根据题意,分2步进行分析:①、先将5名学生分成3组,若分成2、2、1的三组,有=15种分组方法,若分成3、1、1的三组,有=10种分组方法,则共有15+10=25种分组方法,②、将分好的3组全排列,对应3 个社团,有A33=6种情况,则不同的选择方案有25×6=150种;故答案为:150.16.已知函数,若函数h(x)=f(x)﹣mx﹣2有且仅有一个零点,则实数m的取值范围是(﹣∞,﹣e]∪{0}∪{﹣} .【考点】52:函数零点的判定定理.【分析】画出图象f(x)=转化为函数f(x)与y=mx﹣2有且仅有一个公共点,分类讨论,①当m=0时,y=2与f(x)有一个交点;②当y=mx+2与y=相切,结合导数求解即可,求解相切问题;③y=mx+2过(1,2﹣e)(0,2),动态变化得出此时的m的范围.【解答】解:∵f(x)=∴f(x)=∵函数h(x)=f(x)﹣mx﹣2有且仅有一个零点,∴f(x)与y=mx+2有一个公共点∵直线y=mx+2过(0,2)点①当m=0时,y=2与f(x)有一个交点②当y=mx+2与y=相切即y′=切点(x0,),m=﹣=﹣+2,x0>1x0=(舍去),x0=3∴m==③y=mx+2过(1,2﹣e),(0,2)m=﹣e当m≤﹣e时,f(x)与y=mx+2有一个公共点故答案为:(﹣∞,﹣e]∪{0}∪{﹣}三、解答题(共70分.解答应写出文字说明、证明过程或演算步骤.)17.在△ABC中,角A,B,C所对应的边分别为a,b,c,已知,cosA﹣cos2A=0.(1)求角C;(2)若b2+c2=a﹣bc+2,求S△ABC.【考点】HT:三角形中的几何计算.【分析】(1)根据二倍角公式即可求出A,再根据三角形的内角和定理即可求出C,(2)根据余弦定理和b2+c2=a﹣bc+2,求出a,再根据两角差的正弦公式即可求出sinC,再由正弦公式和三角形的面积公式即可求出【解答】解:(1)因为cosA﹣cos2A=0,所以2cos2A﹣cosA﹣1=0,解得cosA=﹣,cosA=1(舍去).所以,又,所以.(2)在△ABC中,因为,由余弦定理所以a2=b2+c2﹣2bccosA=b2+c2+bc,又b2+c2=a﹣bc+2,所以a2=a+2,所以a=2,又因为,由正弦定理得,所以.18.某商场为吸引顾客消费推出一项优惠活动.活动规则如下:消费额每满100元可转动如图所示的转盘一次,并获得相应金额的返券,假定指针等可能地停在任一位置.若指针停在A区域返券60元;停在B区域返券30元;停在C区域不返券.例如:消费218元,可转动转盘2次,所获得的返券金额是两次金额之和.(Ⅰ)若某位顾客消费128元,求返券金额不低于30元的概率;(Ⅱ)若某位顾客恰好消费280元,并按规则参与了活动,他获得返券的金额记为X(元).求随机变量X 的分布列和数学期望.【考点】C5:互斥事件的概率加法公式;CG:离散型随机变量及其分布列.【分析】(Ⅰ)返券金额不低于30元包括指针停在A区域和停在B区域,而指针停在哪个区域的事件是互斥的,先根据几何概型做出停在各个区域的概率,再用互斥事件的概率公式得到结果.(Ⅱ)若某位顾客恰好消费280元,该顾客可转动转盘2次.随机变量X的可能值为0,30,60,90,120.做出各种情况的概率,写出分布列,算出期望.【解答】解:设指针落在A,B,C区域分别记为事件A,B,C.则.(Ⅰ)若返券金额不低于30元,则指针落在A或B区域.∴即消费128元的顾客,返券金额不低于30元的概率是.(Ⅱ)由题意得,该顾客可转动转盘2次.随机变量X的可能值为0,30,60,90,120.;;;;.所以,随机变量X的分布列为:其数学期望.19.如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,AB⊥B1C.(Ⅰ)证明:AC=AB1;(Ⅱ)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A﹣A1B1﹣C1的余弦值.【考点】MR:用空间向量求平面间的夹角;M7:空间向量的夹角与距离求解公式.【分析】(1)连结BC1,交B1C于点O,连结AO,可证B1C⊥平面ABO,可得B1C⊥AO,B10=CO,进而可得AC=AB1;(2)以O为坐标原点,的方向为x轴的正方向,||为单位长度,的方向为y轴的正方向,的方向为z轴的正方向建立空间直角坐标系,分别可得两平面的法向量,可得所求余弦值.【解答】解:(1)连结BC1,交B1C于点O,连结AO,∵侧面BB1C1C为菱形,∴BC1⊥B1C,且O为BC1和B1C的中点,又∵AB⊥B1C,∴B1C⊥平面ABO,∵AO⊂平面ABO,∴B1C⊥AO,又B10=CO,∴AC=AB1,(2)∵AC⊥AB1,且O为B1C的中点,∴AO=CO,又∵AB=BC,∴△BOA≌△BOC,∴OA⊥OB,∴OA,OB,OB1两两垂直,以O为坐标原点,的方向为x轴的正方向,||为单位长度,的方向为y轴的正方向,的方向为z轴的正方向建立空间直角坐标系,∵∠CBB1=60°,∴△CBB1为正三角形,又AB=BC,∴A(0,0,),B(1,0,0,),B1(0,,0),C(0,,0)∴=(0,,),==(1,0,),==(﹣1,,0),设向量=(x,y,z)是平面AA1B1的法向量,则,可取=(1,,),同理可得平面A1B1C1的一个法向量=(1,﹣,),∴cos<,>==,∴二面角A﹣A1B1﹣C1的余弦值为20.如图,设抛物线C1:y2=﹣4mx(m>0)的准线l与x轴交于椭圆C2:的右焦点F2,F1为C2的左焦点.椭圆的离心率为e=,抛物线C1与椭圆C2交于x轴上方一点P,连接PF1并延长其交C1于点Q,M为C1上一动点,且在P,Q之间移动.(1)当取最小值时,求C1和C2的方程;(2)若△PF1F2的边长恰好是三个连续的自然数,当△MPQ面积取最大值时,求面积最大值以及此时直线MP 的方程.【考点】KL:直线与椭圆的位置关系.【分析】(1)用m表示出a,b,根据基本不等式得出m的值,从而得出C1和C2的方程;(2)用m表示出椭圆方程,联立方程组得出P点坐标,计算出△PF1F2的三边关于m的式子,从而确定m的值,求出PQ的距离和M到直线PQ的距离,利用二次函数性质得出△MPQ面积的最大值.【解答】解:(1)∵,∴,∴=m+≥2,当且仅当m=即m=1时取等号,当m=1时,a=2,b=,∴抛物线C1的方程为:y2=﹣4x,椭圆C2的方程为.(2)因为,则,∴椭圆的标准方程为,设P(x0,y0),Q(x1,y1),由得3x2﹣16mx﹣12m2=0,解得或x0=6m(舍去),代入抛物线方程得,即,于是,又△PF1F2的边长恰好是三个连续的自然数,∴m=3.∴抛物线方程为y2=﹣12x,,∴直线PQ的方程为.联立,得或x1=﹣2(舍去),于是.∴,设到直线PQ的距离为d,则,∴当时,,∴△MPQ的面积最大值为.此时M(﹣,﹣),∴直线MP的方程为y=﹣x﹣.21.已知函数f(x)=x﹣a x(a>0,且a≠1).(1)当a=e,x取一切非负实数时,若,求b的范围;(2)若函数f(x)存在极大值g(a),求g(a)的最小值.【考点】6E:利用导数求闭区间上函数的最值;6B:利用导数研究函数的单调性.【分析】(1)问题转化为恒成立,令g(x)=x2+x﹣e x,根据函数的单调性求出b的范围即可;(2)求出函数的导数,通过讨论a的范围,求出函数的单调区间,求出g(a)的表达式,根据函数的单调性求出g(a)的最小值即可.【解答】解:(1)当a=e时,f(x)=x﹣e x,原题分离参数得恒成立,令g(x)=x2+x﹣e x,g′(x)=x+1﹣e x,g″(x)=1﹣e x<0,故g′(x)在22.在极坐标系下,知圆O:ρ=cosθ+sinθ和直线.(1)求圆O与直线l的直角坐标方程;(2)当θ∈(0,π)时,求圆O和直线l的公共点的极坐标.【考点】Q4:简单曲线的极坐标方程.【分析】(1)圆O的极坐标方程化为ρ2=ρcosθ+ρsinθ,由此能求出圆O的直角坐标方程;直线l的极坐标方程化为ρsinθ﹣ρcosθ=1,由此能求出直线l的直角坐标方程.(2)圆O与直线l的直角坐标方程联立,求出圆O与直线l的在直角坐标系下的公共点,由此能求出圆O 和直线l的公共点的极坐标.【解答】解:(1)圆O:ρ=cosθ+sinθ,即ρ2=ρcosθ+ρsinθ,故圆O的直角坐标方程为:x2+y2﹣x﹣y=0,直线,即ρsinθ﹣ρcosθ=1,则直线的直角坐标方程为:x﹣y+1=0.(2)由(1)知圆O与直线l的直角坐标方程,将两方程联立得,解得.即圆O与直线l的在直角坐标系下的公共点为(0,1),转化为极坐标为.23.已知函数f(x)=|2x+3|+|2x﹣1|.(1)求不等式f(x)≤5的解集;(2)若关于x的不等式f(x)<|m﹣1|的解集非空,求实数m的取值范围.【考点】R4:绝对值三角不等式;R5:绝对值不等式的解法.【分析】(1)让绝对值内各因式为0,求得x值,再由求得的x值把函数定义域分段化简求解,取并集得答案;(2)由(1)可得函数f(x)的最小值,把不等式f(x)<|m﹣1|的解集非空转化为|m﹣2|大于f(x)的最小值求解.【解答】解:(1)原不等式为:|2x+3|+|2x﹣1|≤5,当时,原不等式可转化为﹣4x﹣2≤5,即;当时,原不等式可转化为4≤5恒成立,∴;当时,原不等式可转化为4x+2≤5,即.∴原不等式的解集为.(2)由已知函数,可得函数y=f(x)的最小值为4,∴|m﹣2|>4,解得m>6或m<﹣2.。
四川省南充市2018届高三三诊联合诊断考试数学理科---精校解析Word版

已知集合,,则B. C. D.,,故选C.设复数在复平面内的对应点关于虚轴对称,,则A. 10B. -10C.D.在复平面内的对应点关于虚轴对称,由,所以,则B. C. D.【答案】【解析】试题分析:诱导公式,注意,正方形中,点分别是,的中点,那么B. C. D.【答案】D是的中点,所以,是的中点,所以,故选D.为了从甲、乙两人中选一人参加数学竞赛,老师将二人最近的,,则下列,乙比甲成绩稳定,应选乙参加比赛,甲比乙成绩稳定,应选甲参加比赛,甲比乙成绩稳定,应选甲参加比赛,乙比甲成绩稳定,应选乙参加比赛【答案】D,,所以乙的平均数大于甲的平均数,即从茎叶图可以看出乙的成绩比较稳定,应选乙参加比赛,故选输出的是奇数,,,成立;是偶数,,,成立;是奇数,,,成立;是偶数,,,不成立;输出,结束算法,故选考点:程序框图.过点且与圆交于,两点,如果,那么直线的方程为(B. 或D.,所以圆心到直线的距离。
因为直线经过点斜率不存在时,直线的方程为,此时圆心到直线的距离为3,符合;当直线斜率存在时,设直方程为,则有,解得。
所以直线方程为的方程为或,故选已知函数在定义域若对于任意,的值是因为函数在定义域上是单调函数,,所以为一个常数,则,令这个常数为,则有,且,代入上式可得,解得,所以,故选B.已知长方体内接于球,底面的正方形,的中点,平面,则球的表面积是()B. C. D.内接于球,底面是边长为的中点,为坐标原点,分别以为轴建立空间直角坐标系,,平面,,即,解得所以球的半径满足的表面积,故选B.中,角,所对的边分别为,且,,若,则的B. C. D.【答案】A,则,即,,所以,,所以,解得,又因为,即,即中,由余弦定理,当且仅当时等号成立,即,所以,即的最小值为,故选A.已知双曲线的左、右焦点分别为、,过作平行于的渐近线的直线交,若,则的渐近线方程为(B. C. D.,,双曲线的方程为,的方程为, (1)的方程为在双曲线上,所以,,所以,所以,所以双曲线的渐近线方程为点睛:本题考查了双曲线的几何性质的应用,其中双曲线渐近线是其独有的性质,所以有关渐近线问题受;③双曲线的顶点到渐近线的距离是.在上单调递减,若不等式恒成立,则实数的取值范是(B. C. D.【答案】A上的偶函数在上递减,所以在若不等式上恒成立,上恒成立,上恒成立,对于上恒成立,即对于,则由,求得)当或时,在上恒成立,单调递增,因为最小值,最大值,所以综上可得)当,即时,在上恒成立,因为最大值,最小值,所以)当时,在上,恒成立,上,恒成立,单调递增,故函数最小值为,即,因为,则最大值为此时,由,求得,综上可得;,即,因为,则最大值为,,最大值为,求得综合可得,)(2)(3)可得或或,故选A.点睛:本题主要考查了函数的奇偶性和单调性的综合应用,函数的恒成立问题,着重考查了转化思想、在上恒成立,求的函数的最大值和最小值,的展开式中【答案】-21.,的系数为.根据通项公式所求项的要求,解出若实数,满足,则【答案】【解析】试题分析:画出可行域,当目标函数时取得最小值,由则中,,边上的中线的面积为【答案】【解析】由题意,延长至,使得,,其面积相等,故的面积等于的面积,中由余弦定理可得,.已知单位向量,两两的夹角均为 (),则有序实数组称为向量在“仿射”坐标系 (为坐标原点下的“仿射”坐标,记作,,则,,其中,均为正数,则当且仅当时,向量,,,则;,,则三棱锥的表面积__________.(写出所有真命题的序号),,则,所以不正确;,其中,向量的夹角取得最小值,两向量同向时,存在实数,根据仿射的定义,可知是正确的;,,则,所以是正确的;,则三棱锥为正四面体,棱长为,其表面积为,所以不正确,已知,且,,(Ⅱ)若,求数列前(Ⅰ).【解析】试题分析:(Ⅰ)设数列公比为,根据题设条件,求得,利用等差数列的求和公式,即可求解数列的前公比为,则,因为即,整理得,,所以(Ⅱ)因为,18. 某种产品的质量以其质量指标值来衡量,质量指标值越大表明质量越好,记其质量指标值,当时产品为一级品;当时,产品为二级品,当分别称为配方和(Ⅰ)若从件,记“抽出的件二级品”为事件发生的概率;若两种新产品的利润率与质量指标满足如下关系:其中(Ⅰ)(Ⅱ)投资配方产品的平均利润率较大(Ⅰ)由题意知,求得件的概率,求得概率;,再由,得到(Ⅰ)由题意知,从配方产品中随机抽取一次抽中二级品的概率为,则没有抽中二级品的概率为,配方立品的利润分布列为配方产品的利润分布列为,因为,所以所以投资配方产品的平均利润率较大中,,,,,,分别在,上,现将四边形折起,使平面平面,在折叠后的线段上是否存在一点,且,使得平面?若存在,求出的体积最大时,求二面角(Ⅰ)在存在一点,且,使平面【解析】试题分析:,得,进而得平面,再由,得到平面,进而得平面时,为原点,以,所在直线分别为轴,轴,轴建立空间直角坐标系,求得平面和的的法向量,利用向量的夹角公式即可求解二面,交,过作交,连结,在四边形,所以.,平面,平面平面,所以平面,所以,所以,,,平面,因为平面,所以平面存在一点,且,使平面(Ⅱ)设,所以,所以当时,取是最大值.为原点,以,所在直线分别为轴,轴,,,,所以,,的法向量,即,则,,则,的法向量,则,,则所以二面角的余弦值为已知椭圆的中心在原点,离心率等于,它的一个长轴端点恰好是抛物线(Ⅱ)已知,是椭圆上的两点,是椭圆上位于直线两侧的动点①若直线的斜率为,求四边形运动时,满足,试问直线的斜率是否为定值?请说明理由(Ⅰ).(Ⅱ)①.的斜率为定值【解析】试题分析:(Ⅰ)由抛物线焦点为,求得所以,再由,进而求得(Ⅱ)①设直线的方程为,,得到的表达式,即可求的方程为,联立方程组,根据根据与系数的关系,求得,再利用斜率公式,即可的斜率为定值,所以抛物线焦点为又,所以椭圆的方程为(Ⅱ)①设,,的方程为,得又在直线两侧的动点,所以.,,时,四边形面积取得最大值为.时,,斜率之和为的斜率为,则直线的斜率为.的方程为,联立得,,,.所以的斜率为定值点睛:本题主要考查椭圆的标准方程与几何性质、直线与圆锥曲线的位置关系的应用问题通常利用已知函数,其中,为参数,且(Ⅰ)当时,判断函数是否有极值的极小值大于零,求参数,函数在区间内都是增函数,求实数(Ⅰ)无极值..【解析】试题分析:(Ⅰ)当时,,得到,所以由,,只需分当和两情况讨论,即可得到使函数内的极小值大于零,参数的取值范围函数内是增函数,参数要使的取值范围(Ⅰ)当时,,所以,所以(Ⅱ)因为,,得,只需分下面两情况讨论:时时,单调递增;,单调递减;时,单调递增所以当时,取得极小值,则有,,故;时,时,单调递增;时,,单调递减;时,单调递增;时,取得极小值,则,矛盾时,的极小值不会大于零综上所述,要使函数在(Ⅲ)由(Ⅱ)知,函数在区间内都是增函数,由题设,函数在函数,则时要使恒成立,必有综上:或的取值范围是点睛:本题主要考查导数在函数中的应用,以及利用函数的单调求解参数的取值范围等,着重考查了转化已知曲线,极轴为过.的直角坐标方程与直线的参数方程;与曲线两点,求(Ⅰ)曲线,直线的参数方程为 ((Ⅰ)根据极坐标与直角坐标的互化公式,即可得到的直角坐标方程,进而得到直线的参数方程代入曲线,即可利用的几何意义,求得(Ⅰ)因为,所以,即曲线的直角坐标方程为:的参数方程((为参数)(Ⅱ)设点对应的参数分别为将直线的参数方程代入曲线的直角坐标方程得整理,得,已知函数(Ⅱ)若,且,证明:(Ⅰ)解集;(Ⅱ)由,化简得,再由因为,所以,所以(Ⅰ)解:,;时,,,..因为,所以,所以,.。
四川省成都市2018届高三第三次诊断性检测数学(理)试卷(含答案)
ABC
A1B1C1 侧面积
S
3xy
.所以
S
3xy
1 6
6x
2
3y
2
a2 24
,当且仅当 6x
3y
a 2
,
即 x a , y a 时,等号成立,所以 a 24 , x 2 , y 4 .所以正三棱柱 12 6
ABC A1B1C1 的外接球的球心 O 到顶点 A 的距离为
f 3 g 3,
所以要使原不等式的解集中有且仅有两个大于
2
的整数,则
f
4
g
4, 所以
f
5
g
5,
e2 2ae3, 4e2 3ae4 , 9e2 4ae5,
解得
9 4e3
a
4 3e2
.故选 D.
考点:利用导数研究函数的性质解决不等式成立问题.
成都市 2015 级高中毕业班第三次诊断性检测
数学(理科)
本试卷分选择题和非选择题两部分。第Ⅰ卷(选择题,第Ⅱ卷(非选择题),满分 150 分, 考试时间 120 分钟。
注意事项: 1.答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上。 2.答选择题时,必须使用 2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用 橡皮擦擦干净后,再选涂其它答案标号。 3.答非选择题时,必须使用 0.5 毫米黑色签字笔,将答案书写在答题卡规定的位置上。 4.所有题目必须在答题卡上作答,在试题卷上答题无效。 5.考试结束后,只将答题卡交回。
3 5
x
,
y
四川省广安、眉山、内江、遂宁2018届高三第三次诊断性考试 数学(理) 含答案
C。 嘉
⒐ 卉
尸
直线 BE∥ PF 直 线 EF∥ 平 面 PBC 平 面 BCE⊥ 平 面 PAD
直线
PB与 DC所 成 角 为 60°
规 曲线 嘭 一 羞
⒒ 已知 点 则
A・
AJ捌
=× α >⒐ 。
⑴ 的左 、 右顶点 冻
,记
P在 第 橡
限 内 ,且
P在 双 曲线 C上 。 若 双 曲线 C的 离 心 率 为 镖
做题破万卷, 下笔如有神
秘 密 ★ 启 用前 【 考 试 时 间 :2018年 5月 17日 15:00~17:00】
2015级 高 三 毕业班 第 三次诊断性考试 数
:
毒 工 理 缸 类
)
(考 试 时 间 :120分 钟
试卷 满分 :150分
)
注意 事项 1.答 卷前 ,考 生 务 必 将 自己的 姓 名 、 准考 证 号填 写 在 答题 卡 上 。 2。 回 答选 择 题 时 ,选 出每 小题 答案后 ,用 铅 笔把 答题 卡 上 对应题 目的 答 案标 号 涂 黑 。如 需 改 动 ,用 橡 皮擦 干 净 后 ,再 选 涂 其 它答 案 标 号 。 回 答 非 选 择 题 时 ,将 答 案 写在 答 题 卡 上 。 口 写在 本试 卷 上 无效 。
B=
—2,3〉 〈
B。
扛轧冫
B。
2,3〉 〈
C。
C。
3,5) 〈
第 三象 限
D。
D。
(3,6)
2.在 复平 面 内 ,复 数
A。
应 的点 在 寸 第二象 限
“ “ 是 Ω ⊥ D” 的
B。 D。
第一象 限 充分 而不必要 条件 充 分必要条件
四川省南充市2018届高三(南充三诊)联合诊断考试数学理试题及答案解析
四川高三联合诊断考试数学试题(理科)第Ⅰ卷 选择题(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}10A x x =-≤,{}240B x x x =-≤,则AB =( )A . {}4x x ≤ B . {}04x x ≤≤ C .{}01x x ≤≤ D .{}14x x ≤≤ 2. 设复数1z ,2z 在复平面内的对应点关于虚轴对称,13z i =+,则12z z =( ) A .10 B .-10 C .9i -+ D .9i -- 3. 已知3cos()42πα+=,则sin()4πα-的值等于( )A .23 B .23- C . ±4. 如图,正方形ABCD 中,点E ,F 分别是DC ,BC 的中点,那么EF =( )A .11+22AB AD B .1122AB AD -- C. 1122AB AD -+ D .1122AB AD -5. 为了从甲、乙两人中选一人参加数学竞赛,老师将二人最近的6次数学测试的分数进行统计,甲、乙两人的得分情况如茎叶图所示,若甲、乙两人的平均成绩分别是x 甲,x 乙,则下列 说法正确的是( )A .x x >甲乙,乙比甲成绩稳定,应选乙参加比赛B .x x >甲乙,甲比乙成绩稳定,应选甲参加比赛C. x x <甲乙,甲比乙成绩稳定,应选甲参加比赛 D .x x <甲乙,乙比甲成绩稳定,应选乙参加比赛6. 执行如图所示的程序框图,输出的S 值为A .3B .-6 C.10 D .-157. 直线l 过点(4,0)-且与圆22(1)(2)25x y ++-=交于A ,B 两点,如果8AB =,那么直线l 的方程为( )A .512200x y ++=B .512200x y -+=或40x += C. 512200x y -+= D .512200x x ++=或40x +=8. 已知函数()f x 在定义域(0,)+∞上是单调函数,若对于任意(0,)x ∈+∞,都有1(())2f f x x -=,则1()5f 的值是( ) A . 5 B . 6 C. 7 D .89. 已知长方体1111ABCD A BC D -内接于球O ,底面ABCD 是边长为2的正方形,E 为1AA 的中点,OA ⊥平面BDE ,则球O 的表面积是( ) A . 8π B .16π C. 20π D .32π 10. 在ABC ∆中,角A ,B ,C 所对的边分别为,,a b c ,且21cos sin 212B B +=,02B π<<,若3BC AB +=,则16bac的最小值为( )A.16(23- B.163C. 16(2 D. 11. 已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为1F 、2F ,过2F 作平行于C 的渐近线的直线交C 于点P ,若12PF PF ⊥,则C 的渐近线方程为( ) A .y x =± B.y = C. 2y x =± D.y = 12.已知定义在R 上的偶函数()f x 在[)0,+∞上单调递减,若不等式(ln 1)(ln 1)2(1)f ax x f ax x f -+++--≥对任意[]1,3x ∈恒成立,则实数a 的取值范是( ) A .12ln 3,3e +⎡⎤⎢⎥⎣⎦ B .1,e e ⎡⎤⎢⎥⎣⎦ C. 1,e ⎡⎫+∞⎪⎢⎣⎭D .[]2,e 第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.7(1)x -的展开式中2x 的系数为 .14. 若实数x ,y 满足20,,x y y x y x b -≥⎧⎪≥⎨⎪≥-+⎩且2z x y =+的最小值为3,则b = .15. 在ABC ∆中,2AB =,3AC =,BC 边上的中线2AD =,则ABC ∆的面积为 .16.已知单位向量i ,j ,k 两两的夹角均为θ (0θπ<<,且2πθ≠),若空间向量(,,)a xi yj zk x y z R =++∈,则有序实数组(,,)x y z 称为向量a 在“仿射”坐标系O xyz -(O 为坐标原点)下的“仿射”坐标,记作(,,)a x y z θ=,有下列命题: ①已知(1,3,2)a θ=-,(4,0,2)b θ=,则0a b =;②已知3(,,0)a x y π=,3(0,0,)b z π=,其中x ,y ,z 均为正数,则当且仅当x y =时,向量a ,b 的夹角取得最小值;③已知111(,,)a x y z θ=,222(,,)b x y z θ=,则121212(,,)a b x x y y z z θ+=+++;④已知3(1,0,0)OA π=,3(0,1,0)OB π=,3(0,0,1)w OC =,则三棱锥O ABC -的表面积S =其中真命题为 .(写出所有真命题的序号)三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17. 已知{}n a 是等比数列,12a =,且1a ,31a +,4a 成等差数列. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若2log n n b a =,求数列{}n b 前n 项的和.18.某种产品的质量以其质量指标值来衡量,质量指标值越大表明质量越好,记其质量指标值 为k ,当85k ≥时,产品为一级品;当7585k ≤<时,产品为二级品,当7075k ≤<时,产品为三级品,现用两种新配方(分别称为A 配方和B 配方)做实验,各生产了100件这种产品, 并测量了每件产品的质量指标值,得到下面的试验结果:(以下均视频率为概率)A 配方的频数分配表B 配方的频数分配表(Ⅰ)若从B 配方产品中有放回地随机抽取3件,记“抽出的B 配方产品中至少1件二级品”为事件C ,求事件C 发生的概率()P C ;(Ⅱ)若两种新产品的利润率y 与质量指标k 满足如下关系:22,85,5,7585,,7075,t k y t k t k ≥⎧⎪=≤<⎨⎪≤<⎩其中1176t <<,从长期来看,投资哪种配方的产品平均利润率较大? 19.如图,四边形ABCD 中,AB AD ⊥,//AD BC ,6AD =,24BC AB ==,E ,F 分别在BC ,AD 上,//EF AB ,现将四边形ABCD 沿EF 折起,使平面ABEF ⊥平面EFDC .(Ⅰ)若1BE =,在折叠后的线段AD 上是否存在一点P ,且AP PD λ=,使得//CP 平面ABEF ?若存在,求出λ的值;若不存在,说明理由;(Ⅱ)当三棱锥A CDF -的体积最大时,求二面角E AC F --的余弦值.20.已知椭圆C 的中心在原点,离心率等于12,它的一个长轴端点恰好是抛物线216y x =的焦点,(Ⅰ)求椭圆C 的方程;(Ⅱ)已知(2,3)P ,(2,3)Q -是椭圆上的两点,,A B 是椭圆上位于直线PQ 两侧的动点. ①若直线AB 的斜率为12,求四边形APBQ 面积的最大值. ②当,A B 运动时,满足APQ BPQ ∠=∠,试问直线AB 的斜率是否为定值?请说明理由. 21.已知函数323()43cos cos 16f x x x θθ=-+,其中x R ∈,θ为参数,且02θπ≤<. (Ⅰ)当cos 0θ=时,判断函数()f x 是否有极值.(Ⅱ)要使函数()f x 的极小值大于零,求参数θ的取值范围.(Ⅲ)若对(Ⅱ)中所求的取值范围内的任意参数θ,函数()f x 在区间(21,)a a -内都是增函数,求实数a 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分,做答时请写清题号22.选修4-4:坐标系与参数方程已知曲线C 的极坐标方程是4sin 0ρθ-=,以极点为原点,极轴为x 轴的正半轴,建立平面直角坐标系,直线l 过点(1,0)M ,倾斜角为34π. (Ⅰ)求曲线C 的直角坐标方程与直线l 的参数方程; (Ⅱ)设直线l 与曲线C 交于,A B 两点,求MA MB +的值. 23.选修4-5:不等式选讲 已知函数()2f x x =-.(Ⅰ)解不等式()+(+1)5f x f x ≥;(Ⅱ)若1a >,且()()bf ab a f a>⋅,证明:2b >.四川高三联合诊断考试 数学试题(理科)参考答案一、选择题1-5: CBADD 6-10: CDBBA 11、12:CA 二、填空题13. -21 14. 94 15. 416.②③ 三、解答题17.解:(Ⅰ)设数列{}n a 公比为q ,则22312a a q q ==,33412a a q q ==,因为134,1,a a a +成等差数列,所以,1432(1)a a a +=+即22222(21)q q +=+, 整理得2(2)0q q -=, 因为0q ≠,所以2q =, 所以,1222()n n n a n N -*=⨯=∈(Ⅱ)因为22log log 2nn n b a n ===, 所以12n n S b b b =+++12n =+++(1)()2n n n N *+=∈ 18.解:(Ⅰ)由题意知,从B 配方产品中随机抽取一次抽中二级品的概率为14,则没有抽中二级品的概率为34, 所以,3337()1()464P C =-=.(Ⅱ)A 配方立品的利润分布列为所以2()0.62A E y t t =+B 配方产品的利润分布列为所以2()0.7 1.3B E y t t =+,因为76t <<,所以()()()0107A B E y E y t t -=-> 所以投资A 配方产品的平均利润率较大.19.(Ⅰ)在折叠后的图中过C 作CG FD ⊥,交FD 于G ,过G 作GP FD ⊥交AD 于P ,连结PC ,在四边形ABCD 中,//EF AB ,AB AD ⊥,所以EF AD ⊥. 折起后AF EF ⊥,DF EF ⊥, 又平面ABEF ⊥平面EFDC ,平面ABEF平面EFDC EF =,所以FD ⊥平面ABEF .又AF ⊂平面ABEF ,所以FD AF ⊥,所以//CG EF ,//PG AF ,32AP FG PD GD ==, 因为CGPG G =,EF AF F =,所以平面//CPG 平面ABEF ,因为CP ⊂平面CPG ,所以//CP 平面ABEF . 所以在AD 存在一点P ,且32AP PD =,使//CP 平面ABEF . (Ⅱ)设BE x =,所以(04)AF x x =<≤,6FD x =-, 故2211112(6)(6)[9(3)]3233A CDF V x x x x x -=⨯⨯⨯-⨯=-+=-- 所以当3x =时,A CDE V -取是最大值.由(Ⅰ)可以F 为原点,以FE ,FD ,FA 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则(0,0,3)A ,(0,3,0)D ,(2,1,0)C ,(2,0,0)E ,所以(2,0,3)AE =-,(2,1,3)AC =-,(0,0,3)AF =,(2,1,0)FC =,设平面ACE 的法向量1111(,,)n x y z =,则110,0,n AC n AE ⎧=⎪⎨=⎪⎩即11111230,230,x y z x z +-=⎧⎨-=⎩ 令13x =,则10y =,12z =,则1(3,0,2)n =, 设平面ACF 的法向量2222(,,)n x y z =,则220,0,n FA n FC ⎧=⎪⎨=⎪⎩即2223020,z x y =⎧⎨+=⎩ 令21x =,则22y =-,20z =,则2(1,2,0)n =-所以121212cos ,13n nn n n n ===所以二面角E AC F --. 20.解:(Ⅰ)因为抛物线方程216y x =,所以抛物线焦点为(4,0)所以4a =又222a b c =+,12c e a == 所以216a =,212b =.所以椭圆C 的方程为2211612x y +=. (Ⅱ)①设11(,)A x y ,22(,)B x y , 设直线AB 的方程为12y x t =+ 联立221211612y x t x y ⎧=+⎪⎪⎨⎪+=⎪⎩消y ,得22120x tx t ++-=224(12)0t t ∆=-->又,A B 在直线PQ 两侧的动点,所以42t -<<.所以12x x t +=-,21212x x t =-. 又(2,3)P ,(2,3)Q -所以121642)2APBQ S x x t =⨯⨯-==-<<四边形 当0t =时,四边形APBQ面积取得最大值为②当APQ BPQ ∠=∠时,AP ,BP 斜率之和为O . 设直线PA 的斜率为k ,则直线BP 的斜率为k -. 设PA 的方程为3(2)y k x -=-,联立223(2),3448.y k x x y -=-⎧⎨+=⎩, 消y 得,2222(34)8(32)4(4912)480k x k k x k k ++-++--=,所以128(23)234k k x k -+=+,同理228(23)234k k x k ++=+.所以2122161234k x x k -+=+1224834kx x k --=+所以21122112()412AB y y k x x k k x x x x -+-===--.所以AB 的斜率为定值1221.解:(Ⅰ)当cos 0θ=时,3()4f x x =,x R ∈,所以2()120f x x '=≥,所以()f x 无极值.(Ⅱ)因为2()126cos f x x x θ'=-,设()0f x '=,得10x =,2cos 2x θ=由(Ⅰ),只需分下面两情况讨论: ①当cos 0θ>时当(,0)x ∈-∞时,()0f x '>,()f x 单调递增;当cos (0,)2x θ∈时,()0f x '<,()f x 单调递减; 当cos (,)2x θ∈+∞时,()0f x '>,()f x 单调递增. 所以当cos 2x θ=时,()f x 取得极小值,极小值3cos 13()cos cos 2416f θθθ=-+, 要使cos ()02f θ>则有313cos cos 0416θθ-+>,所以0cos 2θ<<, 因为02θπ≤<,故62ππθ<<或31126ππθ<<; ②当cos 0θ<时, 当cos (,)2x θ∈-∞时,()0f x '>,()f x 单调递增; 当cos (,0)2x θ∈时,()0f x '<,()f x 单调递减; 当(0,)x ∈+∞时,()0f x '>,()f x 单调递增; 所以当0x =时,()f x 取得极小值. 极小值3(0)cos 16f θ=若(0)0f >,则cos 0θ>,矛盾.所以当cos 0θ<时,()f x 的极小值不会大于零.综上所述,要使函数()f x 在R 内的极小值大于零,参数θ的取值范围是:311(,)(,)6226ππππ. (Ⅲ)由(Ⅱ)知,函数()f x 在区间(,0)-∞与cos (,)2θ+∞内都是增函数,由题设,函数()f x 在(21,)a a -内是增函数,则210a a a -<⎧⎨≤⎩或21cos 212a aa θ-<⎧⎪⎨-≥⎪⎩由(Ⅱ)参数311(,)(,)6226ππππθ∈时0cos θ<<要使cos 212a θ-≥恒成立,必有214a -≥即48a ≥1a < 综上:0a ≤1a ≤<. 所以a 的取值范围是(]43,0,1⎡⎫+-∞⎪⎢⎪⎣⎭. 22.解:(Ⅰ)因为4sin ρθ=,所以24sin ρρθ=所以224x y y +=,即曲线C 的直角坐标方程为:22(2)4x y +-=直线l 的参数方程31cos 43sin 4x t y t ππ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数) 即12x y ⎧=⎪⎪⎨⎪=⎪⎩ (t为参数) (Ⅱ)设点,A B 对应的参数分别为1t ,2t将直线l 的参数方程代入曲线C 的直角坐标方程得22(1)(2)422-+-= 整理,得210t -+=,所以1212 1.t t t t ⎧+=⎪⎨=⎪⎩因为10t >,20t >,所以1212MA MB t t t t +=+=+=23.(Ⅰ)解:215x x -+-≥当2x >时,(2)(1)5x x -+-≥,4x ≥;当12x ≤≤时,(2)(1)5x x -+-≥,15≥,无解;当2x <时,(2)(1)5x x -+-≥,1x ≤-.综上,不等式的解集为:{}41x x x ≥≤-或.(Ⅱ)证明:22222()()2222(2)(2)4a b f ab a f ab a ab b a ab b a a b b b a>⇔->-⇔->-⇔->-⇔+-22240(1)(4)0a a b ->⇔-->.因为1a >,所以210a ->,所以240b ->,2b >.。
四川省2018届高三三诊理数试题
四川省2018届高三三诊理数试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,若,则实数的取值范围是( )A. (0,4]B.C.D.【答案】C【解析】错误!未找到引用源。
,若错误!未找到引用源。
,则错误!未找到引用源。
,故选C.2. 欧拉公式 (为虚数单位)是瑞士数学家欧拉发明的,将指数的定义域扩大到复数集,建立了三角函数和指数函数的联系,被誉为“数学中的天桥”.根据欧拉公式可知, 错误!未找到引用源。
表示的复数的模为( )A. B. 1 C. D.【答案】B3. 已知某几何体的三视图如图所示,则该几何体的体积是( )A. 100B. 82C. 96D. 112【答案】A【解析】如图,几何体是长方体截去如图红色截面的三棱锥,所以几何体的体积是错误!未找到引用源。
,故选A.4. 已知函数(,,为常数,,, )的部分图像如图所示,则下列结论正确的是( )A. 函数的最小正周期为B. 直线是函数图象的一条对称轴C. 函数在区间上单调递增D. 将函数的图象向左平移个单位,得到函数的图象,则【答案】D错误!未找到引用源。
不是函数的对称轴,当错误!未找到引用源。
时,错误!未找到引用源。
,是先减后增,不是函数的单调递增区间,函数向左平移错误!未找到引用源。
个单位后得到函数错误!未找到引用源。
,所以D正确,故选D.5. 对于四面体,有以下命题:①若,则,,与底面所成的角相等;②若,,则点在底面内的射影是的内心;③四面体的四个面中最多有四个直角三角形;④若四面体的6条棱长都为1,则它的内切球的表面积为.其中正确的命题是( )A. ①③B. ③④C. ①②③D. ①③④【答案】D③正确,如图,错误!未找到引用源。
平面错误!未找到引用源。
,错误!未找到引用源。
,其中有4个直角三角形;④正确,正四面体的内切球的半径为错误!未找到引用源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中2017-2018学年毕业班第三次诊断性考试数理工类)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知全集,集合,满足,则下列结论正确的是()A. B.C. D.【答案】C【解析】绘制Venn图,则:,,,D. .本题选择C选项.2. 已知复数满足(为虚数单位),则在复平面内对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D据此可得在复平面内对应的点位于第四象限.本题选择D选项.3. 已知为锐角,若,则()A. B. C. D.【答案】C【解析】由题意可得:,据此可得:.本题选择C选项.4. 已知实数,满足不等式则的最大值为()A. 0B. 2C. 4D. 5【答案】D...【解析】绘制不等式组表示的平面区域,结合目标函数的几何意义可得目标函数在点处取得最大值5.本题选择D选项.5. 《九章算术》是我国古代内容极为丰富的数学名著,系统地总结了战国、秦、汉时期的数学成就.书中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为“阳马”,若某“阳马”的三视图如图所示(单位:),则该阳马的外接球的体积为()A. B. C. D.【答案】B【解析】由三视图可得,在长宽高分别为的长方体中,该几何体为如图所示的,设该几何体外接球的半径为R,由题意有:,解得:,该阳马的外接球的体积为。
本题选择B选项.6. 运行如图所示的程序,若输出的值为1,则输入的值为()A. 0或B.C. 1D. 0【答案】A【解析】程序语句等价于分段函数:,当时:,当时:,综上可得输入的值为0或.本题选择A选项.7. 设直角坐标平面内与两个定点,的距离之差的绝对值等于2的点的轨迹是.过点作与轴垂直的直线与曲线交于,两点,则()A. B. C. 3 D. 9【答案】A【解析】根据题意知,轨迹E是以A,B为焦点的双曲线,方程为,x=2带入方程得:y=±3;∴,则:,求得:.本题选择A选项.8. 利用计算机产生120个随机正整数,其最高位数字(如:34的最高位数字为3,567的最高位数字为5)的频数分布图如图所示.设从这120个正整数中任意取出一个数的最高位数字为()的概率为,则下列选项中最能反映与的关系的是()A. B. C. D.【答案】B【解析】试题分析:用排除法,当时,其概率为,对于A,;对C,;对于D,均不符合,故选B.考点:频率分布直方图.【易错点睛】本题主要考查了频率分布直方图、函数的图象及排除法.首先对于频率分布直方图要掌握频率等于频数比样本容量.其次,要能从函数的角度去理解本题.本题给出的函数关系是一个减函数,很容易看出选项C是一个先减后增的函数可以排除,其它选项也可采用类似方法.排除法是解决选择题的一个重要方法.9. 已知为正整数,函数在区间内单调递增,则函数()A. 最小值为,其图象关于点对称B. 最大值为,其图象关于直线对称C. 最小正周期为,其图象关于点对称D. 最小正周期为,其图象关于直线对称【答案】D【解析】函数,由得:,函数在区间内单调递增,则,解得:,由于为正整数,则,函数,据此可得函数的最大值为,最小值为,最小正周期为,再结合选项逐一验证,只有D选项符合题意.本题选择D选项.10. 将正方形沿对角线折成直二面角后的图形如图所示,若为线段的中点,则直线与平面所成角的余弦为()A. B. C. D.【答案】C【解析】过点E作EF⊥BD,垂足为F,则∠EAF为直线AE与平面ABD所成的角,不妨设正方形的边长为2,则,在△ABF中,由余弦定理:,所以,在Rt△AEF中,,所以,故.点睛:求直线与平面所成的角的一般步骤:①找直线与平面所成的角,即通过找直线在平面上的射影来完成;②计算,要把直线与平面所成的角转化到一个三角形中求解.11. 在直角梯形中,,,,,分别为,的中点,以为圆心,为半径的半圆分别交及其延长线于点,,点在上运动(如图).若,其中,,则的取值范围是()A. B. C. D.【答案】C...【解析】分别以AB,AD所在直线为x轴,y轴,AB,AD方向为正方向建立直角坐标系,知,设,由得:,则,由可得:,则.则的取值范围是 .本题选择C选项.点睛:(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.12. 已知椭圆:()的一个焦点为,离心率为,过点的动直线交于,两点,若轴上的点使得总成立(为坐标原点),则()A. 2B.C.D.【答案】A【解析】由题意可得椭圆方程为,很显然AB斜率不存在时,t可以为任意实数,当直线的斜率存在时,设AB的方程为其中,联立直线与椭圆的方程可得:,则:由知直线PA与PB的斜率之和为0,则:,整理得:,故:,解得:.本题选择A选项.点睛:(1)解答直线与椭圆的题目时,时常把两个曲线的方程联立,消去x(或y)建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系.(2)涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 从0,1,2,3,4五个数字中随机取两个数字组成无重复数字的两位数,则所得两位数为偶数的概率是__________.(结果用最简分数表示)【答案】【解析】从0,1,2,3,4五个数字中随机取两个数字组成无重复数字的两位数共有个,最高位为2或4的偶数由个,最高位为1或3的偶数由个,所得两位数为偶数的概率是....14. 曲线与直线所围成的封闭图形的面积为__________.【答案】【解析】由定积分的几何意义可得:封闭图形的面积.15. 在中,,,点在上,且,则__________.【答案】【解析】由余弦定理:,由正弦定理:,在△ABD中,由正弦定理:.16. 已知函数(其中)有两个零点,则的取值范围是__________.【答案】【解析】由题意:,其中,故函数只需还有一个不为零的零点,分类讨论:(1)当时,由得,由得,此时函数仅有一个零点;(2)当时,由可得:①时,,有,,有,时,取得极大值,时,函数取得极小值,而可知函数有两个零点,此时满足条件②时,,有,,有,函数单调递增;函数只有一个零点,不满足条件③时,,有,,有,时,取得极小值,时,函数取得极大值,而可知函数有两个零点,此时满足条件综上可得的取值范围是点睛:函数零点的应用主要表现在利用零点求参数范围,若方程可解,通过解方程即可得出参数的范围,若方程不易解或不可解,则将问题转化为构造两个函数,利用两个函数图象的关系求解,这样会使得问题变得直观、简单,这也体现了数形结合思想的应用.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)...17. 已知数列中,,其前项和满足:().(Ⅰ)求数列的通项公式;(Ⅱ)若,求数列的前项和.【答案】(1)(2).【解析】试题分析:(1)由递推关系可得该数列为等差数列,求得公差为2,则.(2)利用数列通项公式的特点错位相减求和可得.试题解析:(Ⅰ)由题意有.所以,则有(),所以,即().所以,两式相加得,即(),即(,),故数列是等差数列.又,,所以公差,所以数列的通项公式为.(Ⅱ)由(Ⅰ)知,则,两边同乘以得,两式相减得,即,所以.18. 第96届(春季)全国糖酒商品交易会于2017年3月23日至25日在四川举办.交易会开始前,展馆附近一家川菜特色餐厅为了研究参会人数与餐厅所需原材料数量的关系,查阅了最近5次交易会的参会人数(万人)与餐厅所用原材料数量(袋),得到如下数据:(Ⅰ)请根据所给五组数据,求出关于的线性回归方程;(Ⅱ)已知购买原材料的费用(元)与数量(袋)的关系为投入使用的每袋原材料相应的销售收入为600元,多余的原材料只能无偿返还.若餐厅原材料现恰好用完,据悉本次交易会大约有14万人参加,根据(Ⅰ)中求出的线性回归方程,预测餐厅应购买多少袋原材料,才能获得最大利润,最大利润是多少?(注:利润销售收入原材料费用).(参考公式:,)【答案】(1)(2)该餐厅应购买35袋原材料,才能获得最大利润,最大利润是10370元....【解析】试题分析:(1)利用题意可求得回归方程为.试题解析:(Ⅰ)由数据,求得,,,,,,所以关于的线性回归方程为.(Ⅱ)由(Ⅰ)中求出的线性回归方程,当时,,即预计需要原材料34.2袋,因为所以,若,利润,当时,利润元;若,利润,当时,利润元;综上所述,该餐厅应购买35袋原材料,才能获得最大利润,最大利润是10370元.19. 如图,三棱柱中,侧棱底面,,,是棱的中点.(Ⅰ)证明:平面平面;(Ⅱ)求平面与平面所成二面角的余弦值.【答案】(1)详见解析;(2)【解析】试题分析:(1)首先由题意证得平面.然后结合面面垂直的判断定理即可证得平面平面;(2)利用题意建立空间直角坐标系,结合平面向量的法向量可得平面与平面所成二面角的余弦值为.试题解析:(Ⅰ)因为侧棱底面,所以,又因为,,...所以平面,因为平面,所以,设,由,,是棱的中点.所以,,则,所以,因,所以平面.又因为平面,所以平面平面.(Ⅱ)如图所示,分别以,,所在直线为,,轴建立空间直角坐标系,不妨设,则,,,.显然是平面的一个法向量,设平面的法向量,由令,得平面的一个法向量,所以,即平面与平面所成二面角的余弦值为.点睛:利用平面的法向量求二面角的大小时,当求出两半平面α,β的法向量n1,n2时,要根据向量坐标在图形中观察法向量的方向,从而确定二面角与向量n1,n2的夹角是相等,还是互补.20. 已知直线的方程为,点是抛物线上到直线距离最小的点,点是抛物线上异于点的点,直线与直线交于点,过点与轴平行的直线与抛物线交于点. (Ⅰ)求点的坐标;(Ⅱ)证明直线恒过定点,并求这个定点的坐标.【答案】(1)点坐标为(2)【解析】试题分析:(Ⅰ)到直线距离最小的点,可根据点到直线距离公式,取最小值时的点;也可根据几何意义得为与直线平行且与抛物线相切的切点:如根据点到直线的距离得当且仅当时取最小值,(Ⅱ)解析几何中定点问题的解决方法,为以算代证,即先求出直线AB方程,根据恒等关系求定点.先设点,求出直线AP方程,与直线方程联立,解出点纵坐标为.即得点的坐标为,再根据两点式求出直线AB方程,最后根据方程对应恒成立得定点试题解析:(Ⅰ)设点的坐标为,则,...所以,点到直线的距离.当且仅当时等号成立,此时点坐标为.………………………………4分(Ⅱ)设点的坐标为,显然.当时,点坐标为,直线的方程为;当时,直线的方程为,化简得;综上,直线的方程为.与直线的方程联立,可得点的纵坐标为.因为,轴,所以点的纵坐标为.因此,点的坐标为.当,即时,直线的斜率.所以直线的方程为,整理得.当,时,上式对任意恒成立,此时,直线恒过定点,当时,直线的方程为,仍过定点,故符合题意的直线恒过定点.……………………………………13分考点:抛物线的标准方程与几何性质、直线方程、直线与抛物线的位置关系【思路点睛】定点、定值问题通常是通过设参数或取特殊值来确定“定点”是什么、“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒定的. 定点、定值问题同证明问题类似,在求定点、定值之前已知该值的结果,因此求解时应设参数,运用推理,到最后必定参数统消,定点、定值显现.21. 已知函数(,),曲线在处的切线方程为. (Ⅰ)求,的值;(Ⅱ)证明:;(Ⅲ)已知满足的常数为.令函数(其中是自然对数的底数,),若是的极值点,且恒成立,求实数的取值范围. 【答案】(1),.(2)详见解析;(3)【解析】试题分析:(1)由导函数与切线方程的关系可得,.(2)利用题意构造新函数,结合新函数的性质即可证得;(3)由题意,当时,无极值,不符合题意;...当时,是函数的唯一极值点,也是它的唯一最大值点,可得.由题意考察函数,可得的取值范围是.试题解析:(Ⅰ)的导函数,由曲线在处的切线方程为,知,,所以,.(Ⅱ)令,则,当时,,单调递减;当时,,单调递增,所以,当时,取得极小值,也即最小值,该最小值为,所以,即不等式成立.(Ⅲ)函数(),则,当时,,函数在内单调递增,无极值,不符合题意;当时,由,得,结合,在上的图象可知,关于的方程一定有解,其解为(),且当时,,在内单调递增;当时,,在内单调递减.则是函数的唯一极值点,也是它的唯一最大值点,也是在上的唯一零点,即,则.所以.由于恒成立,则,即,(*)考察函数,则,所以为内的增函数,且,,又常数满足,即,所以,是方程的唯一根,于是不等式(*)的解为,又函数()为增函数,故,所以的取值范围是.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. 选修4-4:坐标系与参数方程已知,在直角坐标系中,直线的参数方程为(为参数);在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,直线的极坐标方程是.(Ⅰ)求证:;(Ⅱ)设点的极坐标为,为直线,的交点,求的最大值....【答案】(1)详解解析;(2)2【解析】试题分析:(1)利用题意由直线一般方程的系数关系可得两直线垂直;(2)由题意求得点到直线的距离为的最大值即可得的最大值为2.试题解析:(Ⅰ)易知直线的普通方程为:.又可变形为,即直线的直角坐标方程为:.因为,根据两直线垂直的条件可知,.(Ⅱ)当,时,,所以点在直线上.设点到直线的距离为,由可知,的最大值为.于是,所以的最大值为2.23. 选修4-5:不等式选讲已知函数,其中.(Ⅰ)当时,解不等式;(Ⅱ)对于任意,不等式的解集为空集,求实数的取值范围.【答案】(1)(2)【解析】试题分析:(1)利用题意零点分段可得不等式的解集是.(2)利用题意结合绝对值不等式的性质可得实数的取值范围是.试题解析:(Ⅰ)当时,,①当时,不等式即为,不成立;②当时,不等式即为,解得;③当时,不等式即为,此时.综上所述,不等式的解集是.(Ⅱ)由....而,所以,,则.要使不等式的解集为空集,则有,所以,实数的取值范围是.点睛:形如|x-a|+|x-b|≥c(或≤c)型的不等式主要有三种解法:(1)分段讨论法:利用绝对值号内式子对应方程的根,将数轴分为(-∞,a],(a,b],(b,+∞)(此处设a<b)三个部分,在每个部分上去掉绝对值号分别列出对应的不等式求解,然后取各个不等式解集的并集.(2)几何法:利用|x-a|+|x-b|>c(c>0)的几何意义:数轴上到点x1=a和x2=b的距离之和大于c的全体,|x-a|+|x-b|≥|x-a-(x-b)|=|a-b|.(3)图象法:作出函数y1=|x-a|+|x-b|和y2=c的图象,结合图象求解.。