八年级数学上册15.1分式同步练习(二)含解析(新版)新人教版

合集下载

最新8年级数学人教版上册同步练习15.1分式(含答案解析)

最新8年级数学人教版上册同步练习15.1分式(含答案解析)

第十五章 分式15.1 分式 专题一 分式存心义的条件、分式的值为0 的条件1.使代数式x存心义,那么 x 的取值范围是()xA .x ≥0B . x ≠1C . x >0D . x ≥0且 x ≠12.假如分式 3x227的值为 0,则 x 的值应为.x 33.若分式x 2 9 的值为零,求 x 的值.x2x 9专题二 约分4.化简 m 2mn n 2 的结果是( )m 2 mn2m nm n m n A .2nB .C .nD .mm m5.约分:9a(y x)227x =____________ .27 y6.从以下三个代数式中任选两个组成一个分式,并将它化简:4x 2-4xy+y 2,4x 2-y 2,2x - y .状元笔录 【知识重点】 1.分式的观点一般地,假如 A , B 表示两个整式,而且 B 中含有字母,那么式子A叫做分式.B2.分式的基天性质分式的分子与分母乘 (或除以 )同一个不等于 0 的整式,分式的值不变.用式子表示为:A =A C, A =AC(此中 A ,B ,C 是整式,C ≠0).B BC B B C3.约分与通分约分:依据分式的基天性质,把一个分式的分子与分母的公因式约去,叫做分式的约分.通分:依据分式的基天性质,把几个异分母的分式分别化成与本来的分式相等的同分母的分式,叫做分式的通分.【温馨提示】1.分式的值为0 遇到分母不等于0 的限制,“分式的值为0”包括两层意思:一是分式存心义,二是分子的值为0,不要误会为“只需分子的值为0,分式的值就是0”.2.分式的基天性质中的A、 B、 C 表示的都是整式,且C≠ 0.3.分子、分母一定“同时”乘C(C≠ 0),不要只乘分子(或分母).4.性质中“分式的值不变”这句话的本质,是当字母取同一值(零除外)时,变形前后分式的值是相等的.可是变形前后分式中字母的取值范围是变化的.【方法技巧】1.分式的符号法例可总结为:一个负号任意跑,两个负号都去掉.就是说,分式中若出现一个负号,则此负号可“随”我们的“意” (即依据题目要求)跑到分子、分母以及分式自己三者中的任何一个地点上;若分式中出现两个负号,则能够将这两个负号同时去掉.2.分式的分子、分母系数化整问题的基本做法是分式的分子、分母都乘同一个“适合”的不为零的数,这里的“适合”的数又分两种状况:若分式分子、分母中的系数都是分数时,“适合”的数就是分子、分母中各项系数的全部分母的最小公倍数;若分式的分子、分母中各项系数是小数时,则“适合的数”就是 10n,此中 n 是分子、分母中各项系数的小数点后最多的位数.最后依据状况需要约分时,则要约分.参照答案 :1. D 分析:依据题意得: x ≥0且 x - 1≠0.解得 x ≥0且 x ≠1.应选D . 2.- 3 分析:依据分式值为0,可得 3x227,解得 x=- 3.x3 0x 2 9222,得 x=±3.当 x=33.解:∵x 9 的值为 0,∴ x - 9=0 且 x - 6x+9≠ 0.解 x - 9=0x 2时, x 2-6x+9=3 2- 6× 3+9=0,故 x=3 舍去.当 x=-3 时, x 2- 6x+9=( - 3)2- 6× (-3)+9=36 .∴当分式x 2 9 的值为 0 时, x=- 3.x2x 94. B 分析: m2mn n 2= (m n)2 =m n.应选 B .m 2 mn m(m n)max ay分析:9a(y x) 2 9a(xy)2 a(x y)ax ay. 5.327 x27 y =27(x ==3y)36.解:答案不独一,如:4x 24xy y 2=(2 x y)22x y.4x 2y 2y) =y(2 x y)(2 x 2 x别想一下造出海洋,一定先由小河川开始。

人教版八年级数学上册《15.1.2分式的基本性质》同步训练题-附答案

人教版八年级数学上册《15.1.2分式的基本性质》同步训练题-附答案

人教版八年级数学上册《15.1.2分式的基本性质》同步训练题-附答案学校:___________班级:___________姓名:___________考号:___________一、单选题 1.根据分式的性质,分式a ab --可变形为( ) A .a a b --- B .a a b + C .a a b -+ D .a a b- 2.下列分式变形从左到右一定成立的是( )A .22a a b b= B .a ac b bc = C .a a b b -=-- D .ac a bc b = 3.使得等式4477m m⨯=⨯成立的m 的取值范围为( ) A .0m =B .1m =C .0m =或1m =D .0m ≠ 4.把分式 2a b ab-的 a ,b 都扩大到原来的 3 倍,则分式的值( ) A .扩大到原来的9倍B .扩大到原来的3倍C .不变D .缩小到原来的 13 5.下列分式中,最简分式是( )A .22x x B .21x x +- C .122x x -- D .211x x +- 6.下列分式中与x y x y -+--的值相等的分式是( ) A .+-x y x y B .x y x y -+ C .-+-x y x y D .-x y x y-+ 7.将分式11134312a b a b -+的分子与分母中的各项系数化为整数,正确的是 ( ) A .3234a b a b -+ B .4334a b a b -+ C .6334a b a b ++ D .6434a b a b-+ 8.下列分式的变形正确的是( )A .11a b a b=---- B .22x y x y x y +=++ C .11a a b b +=+ D .2111a a a -=-+ 9.分式2x21x x - 31x +的最简公分母是( )A.A=3,B=﹣2B.A=2,B=3C.A=3,B=2D.A=﹣2,B=3二、填空题三、解答题(1)比较1S 与2S 的大小,并说明理由:(2)该小区参与“最美小区”评选活动,其中一项评比指标是小区规划绿化区域的绿化覆盖率不低于50%,若6a b =,该区域能否通过该项指标的评比?(绿化覆盖率100%⨯绿地面积=规划绿化区域面积) 参考答案:1.C2.D3.D4.D5.B6.B7.D8.D9.B10.B11.分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.12.25103x y x y-+ 13.2x y x y-+ 14.310x y15.116.(1)3xy -;(2)2221455,3121212y x x x y xy x y==.。

推荐8年级数学人教版上册同步练习15.1分式(含答案解析)

推荐8年级数学人教版上册同步练习15.1分式(含答案解析)

推荐8年级数学人教版上册同步练习15.1分式(含答案解析)----2f88e57a-6eb3-11ec-a2b4-7cb59b590d7d第十五章分式15.1分式主题一有意义分数的条件和分数值为0 1的条件。

制作代数公式x有意义,那么x的取值范围是()x??a.x≥0b.x≠1c.x>0d.x≥0且x≠13x2?272.如果分数的值是0,那么X的值应该是x?3x2?93.若分式2的值为零,求x的值.十、十、九专题二约分m2??mn?N24。

简化的结果是()m2?mna.2n2b.M纳米?纳米?nc.d.mm?Nm9a(y?X)25。

近似分数:=______27x?27y6.从下列三个代数式中任选两个构成一个分式,并将它化简:4x2-4xy+y2,4x2-y2,2x-y.顶尖学生笔记【知识要点】1.分式的概念一般地,如果a,b表示两个整式,并且b中含有字母,那么式子a叫做分式.b2.分式的基本性质分式的分子与分母乘(或除以)同一个不等于0的整式,分式的值不变.用式子表示为:aa?caa?c=,=(其中a,b,c是整式,c≠0).bb?cbb?c3.约分与通分分数约化:根据分数的基本性质,将分数的分子和分母的公因子约化,称为分数的分数。

广义除法:根据分数的基本性质,将几个不同分母的分数变换成与原分数分母相同的分数,称为分数的广义除法。

[温馨提示]1.分式的值为0受到分母不等于0的限制,“分式的值为0”包含两层意思:一是分式有意义,二是分子的值为0,不要误解为“只要分子的值为0,分式的值就是0”.2.分式的基本性质中的a、b、c表示的都是整式,且c≠0.3.分子、分母必须“同时”乘c(c≠0),不要只乘分子(或分母).4.“分数的值保持不变”这句话的本质是,当字母取相同的值时(零除外),变形前后分数的值相等。

但是,变形前后分数中字母的值范围会发生变化。

[方法和技能]1.分式的符号法则可总结为:一个负号随意跑,两个负号都去掉.就是说,分式中若出现一个负号,则此负号可“随”我们的“意”(即根据题目要求)跑到分子、分母以及分式本身三者中的任何一个位置上;若分式中出现两个负号,则可以将这两个负号同时去掉.2.分式的分子、分母系数化整问题的基本做法是分式的分子、分母都乘同一个“适当”的不为零的数,这里的“适当”的数又分两种情况:若分式分子、分母中的系数都是分数时,“适当”的数就是分子、分母中各项系数的所有分母的最小公倍数;若分式的分子、分母中各项系数是小数时,则“适当的数”就是10n,其中n是分子、分母中各项系数的小数点后最多的位数.最后根据情况需要约分时,则要约分.参考答案:1.d解析:根据题意得:x≥0且x-1≠0.解得x≥0且x≠1.故选d.? 3x2?27? 02.-3分析:根据0的分数值,可以得到?,解决方案是x=-3x?3?0?x2?93.解:∵2的值为0,∴x2-9=0且x2-6x+9≠0.解x2-9=0,得x=±3.当x=3十、十、在9时,X2-6x+9=32-6×3+9=0,因此x=3四舍五入。

人教版八年级上册数学15.1 分式 课后训练及答案解析

人教版八年级上册数学15.1 分式 课后训练及答案解析

课后训练1.式子①2x ;②5x y +;③12a -;④1x π-中,是分式的有( ).A .①②B .③④C .①③D .①②③④2.(新疆)若分式23x -有意义,则x 的取值范围是( ).A .x ≠3B .x =3C .x <3D .x >33.分式434y x a +,2411x x --,22x xy y x y -++,2222a abab b +-中是最简分式的有().A .1个B .2个C .3个D .4个4.下列各式中,正确的是( ).A .a m ab m b +=+ B .a ba b ++=0C .11ab ac --=11b c -- D .22x yx y --=1x y +5.分式22(1)x x --,323(1)x x --,51x -的最简公分母为( ).A .(x -1)2B .(x -1)3C .(x -1)D .(x -1)2(1-x )36.(广东茂名)若分式293a a -+的值为0,则a 的值为________.7.约分:(1)22699x x x ++-;(2)2232m m m m -+-.8.通分:(1)26xab ,29ya bc ;(2)2121a a a -++,261a -.能力提升9.下列各式中,可能取值为零的是( ).A .2211m m +- B .211m m -+C .211m m +-D .211m m ++ 10.使分式||1x x -无意义的x 的取值是( ). A .0B .1C .-1D .±111.不改变分式的值,使分式115101139x y x y -+的各项系数化为整数,分子、分母应乘以( ). A .10 B .9 C .45 D .9012.不改变分式2323523x x x x -+-+-的值,使分子、分母最高次项的系数为正数,正确的是( ).A .2332523x x x x +++- B .2332523x x x x -++- C .2332523x x x x +--+ D .2332523x x x x ---+ 13.当x =-2时,分式x n x m-+无意义,当x =4时,分式的值为0,求m +n 的值. 参考答案1.C 点拨:5x y +的分母中不含字母,所以5x y +不是分式;π1x -的分母中虽然含有π,但是π是常数,所以π1x -不是分式. 2.A 点拨:由分式分母3-x 不为0得不等式3-x ≠0,解这个不等式得x ≠3.故选择A.3.C 4.D 5.B6.3 点拨:由分式的值为零的条件得a 2-9=0,,a +3≠0,解得a =3.7.解:(1)22269(3)39(3)(3)3x x x x x x x x ++++==-+--; (2)2232(1)(2)2(1)m m m m m m m m m m-+---==--. 8.解:(1)22223366318x x ac acx ab ab ac a b c⋅==⋅, 29y a bc =2292y b a bc b ⋅⋅=22218by a b c;(2)2121a a a -++=21(1)a a -+=22(1)(1)(1)a a a -+-, 266(1)1(1)(1)(1)a a a a a +=-+-+ =26(1)(1)(1)a a a ++-. 9.B 10.D11.D 点拨:取分子、分母各分数系数分母的最小公倍数,即为所乘的数.故选D.12.D13.解:当分母x +m =0,即x =-m 时分式x n x m -+无意义,解得m =2. 当x -n =0,即x =n 时分式x n x m -+的值为0,即n =4, 故m +n =2+4=6.。

八年级数学人教版上册同步练习分式的基本性质(解析版)

八年级数学人教版上册同步练习分式的基本性质(解析版)

15.1.2分式的基本性质一、单选题1.下列约分计算结果正确的是 ( )A .22a b a b a b+=++ B .a m m a n n +=+ C .1a b a b -+=-- D .632a a a= 【答案】C 【分析】利用因式分解,确定分子,分母的公因式,后约分化简,计算即可.【详解】∵22a b +与a +b 没有公因式, ∴22a b a b++无法计算, ∴22a b a b a b+=++的计算是错误的, ∴选项A 不符合题意;∵a +m 与a +n 没有公因式, ∴++a m a n 无法计算, ∴a m m a n n+=+的计算是错误的; ∴选项B 不符合题意;∵-a +b = -(a +b )与a +b 的公因式是a +b , ∴()1a b a b a b a b-+--==---, ∴选项C 符合题意; ∵642a a a=, ∴632a a a=的计算是错误的; ∴选项D 不符合题意;故选C .【点评】本题考查了分式的化简,同底数幂的除法,熟练掌握化简计算的要领是解题的关键.2.下列分式中,属于最简分式的个数是( )①42x ,②221x x +,③211x x --,④11x x --,⑤22y x x y -+,⑥2222x y x y xy++. A .1个B .2个C .3个D .4个【答案】B【分析】根据最简分式的定义判断即可. 【详解】①422x x =,③21111x x x -=-+,④111x x -=--,⑤22y x y x x y-=-+,可约分,不是最简分式; ②221x x +,⑥2222x y x y xy++分子分母没有公因式,是最简分式,一共有二个; 故选:B .【点评】本题考查了最简分式,解题关键是明确最简分式的定义,准确判断分子分母是否含有公因式. 3.下列命题中的真命题是( )A .多项式x 2-6x +9是完全平方式B .若∠A ∶∠B ∶∠C =3∶4∶5,则△ABC 是直角三角形C .分式211x x +-是最简分式 D .命题“对顶角相等”的逆命题是真命题【答案】A【分析】根据完全平方公式、直角三角形性质、分式化简、和对顶角相等的逆命题进行判断即可.【详解】∵x 2-6x +9=(x -3)2,故A 选项是真命题;∵∠A ∶∠B ∶∠C =3∶4∶5,∴∠A =45°,∠B =60°,∠C =75°,故B 选项是假命题; ∵21111x x x +=--,故C 选项是假命题; “对顶角相等”的逆命题是相等的角是对顶角,是假命题,故D 选项是假命题;故选:A【点评】本题考查了分式的性质、完全平方公式、直角三角形性质、逆命题,解题关键是熟练掌握相关知识,准确进行判断.4.化简211x x --的结果是( ) A .11x -+ B .11x - C .11x + D .11x-【答案】A【分析】分母因式分解,再约分即可. 【详解】2111(1)(1)11x x x x x x --==-+-+-, 故选:A .【点评】本题考查了分式的约分,解题关键是把多项式因式分解,然后熟练运用分式基本性质进行约分. 5.若把x ,y 的值同时扩大为原来的2倍,则下列分式的值保持不变的是( )A .()22x y x + B .xy x y + C .22x y ++ D .22x y -- 【答案】A 【分析】根据分式的基本性质即可求出答案.【详解】A 、()22224x y x +=()22x y x +,故A 的值保持不变. B 、42=22xy xy x y x y++,故B 的值不能保持不变. C 、221=221x x y y ++++,故C 的值不能保持不变. D 、221=221x x y y ----,故D 的值不能保持不变. 故选:A .【点评】本题考查了分式,解题的关键是正确理解分式的基本性质,本题属于基础题型.6.下列关于分式2x x+的各种说法中,错误的是( ). A .当0x =时,分式无意义 B .当2x >-时,分式的值为负数C .当2x <-时,分式的值为正数D .当2x =-时,分式的值为0 【答案】B【分析】根据分式的定义和性质,对各个选项逐个分析,即可得到答案.【详解】当0x =时,分式无意义,选项A 正确;当2x >-时,分式的值可能为负数,可能为正数,故选项B 错误;当2x <-时,20x +<,分式的值为正数,选项C 正确;当2x =-时,20x +=,分式的值为0,选项D 正确;故选:B .【点评】本题考查了分式的知识;解题的关键是熟练掌握分式的性质,从而完成求解.7.下列命题中,属于真命题的是( )A .如果0ab =,那么0a =B .253x x x -是最简分式C .直角三角形的两个锐角互余D .不是对顶角的两个角不相等【答案】C【分析】根据有理数的乘法、最简分式的化简、直角三角形的性质、对顶角的概念判断即可.【详解】A. 如果 ab=0,那么a=0或b=0或a 、b 同时为0,本选项说法是假命题,不符合题意; B. ()2555==333x x x x x x x ---,故253x x x-不是最简分式,本选项说法是假命题,不符合题意; C. 直角三角形的两个锐角互余,本选项说法是真命题,符合题意;D. 不是对顶角的两个角可能相等,本选项说法是假命题,不符合题意;故选:C .【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉教材中的性质定理.8.若a b ,则下列分式化简中,正确的是( ) A .22a a b b+=+ B .22a a b b -=- C .33a a b b = D .22a a b b = 【答案】C【分析】根据ab ,可以判断各个选项中的式子是否正确,从而可以解答本题; 【详解】∵ab A 、22a a b b+≠+ ,故该选项错误; B 、22a a b b-≠- ,故该选项错误; C 、33a a b b= ,故该选项正确; D 、22a a b b≠ ,故该选项错误; 故选:C .【点评】本题考查了分式的混合运算,解题时需要熟练掌握分式的性质,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,熟练掌握分式的基本性质是解题的关键;二、填空题目9.已知a 、b 、c 、d 、e 、f 都为正数,12 bcdef a =,14 acdef b =,18 abdef c =,2 abcef d=,4 abcdf e=,8 abcde f =,则222222a b c d e f +++++=________. 【答案】1198【分析】根据等式性质及分式性质进行计算即可求得结果. 【详解】由12 bcdef a =,14 acdef b =,18 abdef c =,2 abcef d =,4 abcdf e=,8 abcde f =,可将每个等式的左右两边相乘得: ()51abcdef abcdef =,∴1abcdef =,2112bcdef a a a a ⋅==⋅, ∴22a =,同理可得:24b =,28c =,212d =,214e =,218f =, ∴2222221198a b c d e f +++++=; 故答案为1198. 【点评】本题主要考查等式性质及分式性质,熟练掌握等式性质及分式性质是解题的关键. 10.已知114y x -=,则分式2322x xy y x xy y+---的值为______. 【答案】112 【分析】先根据题意得出x-y=4xy ,然后代入所求的式子,进行约分就可求出结果. 【详解】∵114y x-=,∴x-y=4xy ,∴原式=2()383112422x y xy xy xy x y xy xy xy -++==---, 故答案为:112 . 【点评】此题考查分式的基本性质,正确对已知式子进行化简,约分,正确进行变形是关键.11.已知2310x x --=,求4231x x x x ++=-__________. 【答案】4 【分析】将分式整理成()()2222131x x x x -+-,根据2310x x --=可得213x x -=,代入分式并约分即可求解.【详解】∵2310x x --=,∴213x x -=∴4231x x x x++- ()()2222131x x x x -+=- ()223343x x x x+==⋅, 故答案为:4. 【点评】本题考查分式的性质,将分式整理成()()2222131x x x x -+-的形式是解题的关键. 12.将分式132132a b a b +-的分子、分母各项系数化为整数,其结果为_______________. 【答案】6243a b a b+- 【分析】根据分式的基本性质,分子分母都乘以最小公倍数6,分式的值不变,并且其分子、分母各项系数化为整数.【详解】1623214332a b a b a ba b ++=--. 故答案为:6243a b a b+-. 【点评】本题考查了分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.三、解答题13.我们知道:分式和分数有着很多的相似点,如类比分数的基本性质,我们得到了分式的基本性质,等等.小学里,把分子比分母小的数叫做真分数.类似的,我们把分子的次数小于分母的次数的分式称为真分式,反之,称为假分式.对于任何一个假分式都可以化成整式与真分式的和的形式.如:11211x x x x +-+=--=1211x x x -+-- =1+21x -. (1)请写出分式的基本性质 ;(2)下列分式中,属于真分式的是 ;A .21x x -B .11x x -+C .﹣321x -D .2211x x +- (3)将假分式231m m ++,化成整式和真分式的形式. 【答案】(1)分式的分子和分母乘(或除以)同一个不等于0的整式,分式的分式值不变;(2)C ;(3)231m m ++=m ﹣1+41m + 【分析】(1)根据分式的基本性质回答即可;(2)根据分子的次数小于分母的次数的分式称为真分式进行判断即可;(3)先把23m +转化为214m -+得到22314111m m m m m +-=++++,其中前面一个分式约分后化为整式,后面一个是真分式.【详解】(1)分式的分子和分母乘(或除以)同一个不等于0的整式,分式的分式值不变.(2)根据题意得:选项C 的分子次数是0,分母次数是1,分子的次数小于分母的次数是真分式.而其他选项是分子的次数均不小于分母的次数的分式,故AB D 选项是假分式,故选:C .(3)∵22231441411111m m m m m m m m +-+-=+=++++++=m ﹣1+41m +, ∴故答案为:m ﹣1+41m +. 【点评】本题考察了分式的基本性质以及未知数的次数问题,解答本题的关键是熟悉掌握未知数次数的判断以及分式的分子和分母乘(或除以)同一个不等于0的整式,分式的分式值不变.14.约分(1)1232632418a x y a x; (2)ma mb mc a b c+-+-; (3)2222444a ab b a b-+-. 【答案】(1)6243a y ;(2)m ;(3)22a b a b-+ 【分析】(1)约去分子分母的公因式636a x 即可得到结果;(2)将分子进行因式分解,约去公因式(a b c +-)即可得到结果;(3)首先把分子分母分解因式,然后再约掉分子分母的公因式即可.【详解】(1)1232632418a x y a x=6362636463a x a y a x ⨯ =6243a y ; (2)ma mb mc a b c+-+- =()m a b c a b c +-+- =m ;(3)2222444a ab b a b-+-=2(2)(2)(2)a b a b a b -+- =22a b a b-+. 【点评】此题主要考查了分式的约分,关键是正确确定分子分母的公因式.15.先约分,再求值:32322444a ab a a b ab--+ 其中12,2a b ==-. 【答案】2123a b a b +-, 【分析】先把分式的分子分母分解因式,约分后把a 、b 的值代入即可求出答案.【详解】原式=2222444a a b a a ab b ()()--+ =2(2)(2)(2)a a b a b a a b +-- =22a b a b +- 当122a b ==-,时 原式=2121-+=13. 【点评】本题考查了分式的约分,解题的关键是熟练进行分式的约分,本题属于基础题型.16.已知32(1)(1)11x A B x x x x -=++--+,求A 、B 的值. 【答案】A=12, B=52 【分析】先对等式右边通分,再利用分式相等的条件列出关于A 、B 的方程组,解之即可求出A 、B 的值. 【详解】∵()()()()(1)(1)()111111A B A x B x A B x A B x x x x x x ++-++-+==-++-+- , 又∵()()321111A B x x x x x -+=-++-, ∴()()()()()321111A B x A B x x x x x ++--=+-+-,∴32A B A B +=⎧⎨-=-⎩ , 解得1252A B ⎧=⎪⎪⎨⎪=⎪⎩. ∴A =12, B =52. 【点评】本题考查了分式的基本性质.利用分式的基本性质进行通分,再利用系数对应法列出方程组是解题的关键.17.若分式,A B 的和化简后是整式,则称,A B 是一对整合分式.(1)判断22244x x x ---与22x x -是否是一对整合分式,并说明理由; (2)已知分式M ,N 是一对整合分式,2a b M a b-=+,直接写出两个符合题意的分式N . 【答案】(1)是一对整合分式,理由见解析;(2)答案不唯一,如1224,b a a b N N a b a b -+==++. 【分析】(1)根据整合分式的定义即可求出答案.(2)根据整合分式的定义以及分式的运算法则即可求出答案.【详解】(1)是一对整合分式,理由如下: ∵2222222424(2)424x x x x x x x x x x x ----+++==---, 满足一对整合分式的定义,22244x x x --∴-与22x x -是一对整合分式. (2)答案不唯一,如1224,b a a b N N a b a b-+==++. 【点评】本题考查了分式的加减法,解题的关键是熟练运用分式的运算法则,本题属于基础题型.18.已知430,4520,x y z x y z +-=⎧⎨-+=⎩0xyz ≠. (1)用含z 的代数式表示x ,y ;(2)求222232x xy z x y+++的值. 【答案】(1)13x z =,23y z =;(2)165. 【分析】(1)根据加减消元法解关于x 、y 的方程组即可(2)将(1)中的结果代入分式中进行运算即可【详解】(1)430,4520,x y z x y z +-=⎧⎨-+=⎩①② ①4⨯-②得21140y z -=,解得23y z =. 把23y z =代入①,得24303x z z +⨯-=, 解得13x z =. (2)2222222211232321633351233z z z z x xy z x y z z ⎛⎫⨯+⨯⨯+ ⎪++⎝⎭==+⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭. 【点评】本题考查了用加减法解方程组的特殊解法,把x 、y 看作未知数解方程组是解题的关键19.一个矩形的面积为223()x y -,如果它的一边为()x y +,求这个矩形的周长.【答案】这个矩形的周长为:84x y -【分析】根据整式的除法运算法则与合并同类项法则,即可求解.【详解】∵矩形的一边长为()x y +,面积为223()x y -, ∴矩形的另一边长为:223()3()()x y x y x y -=-+ ∴该矩形的周长为:2[()3()]x y x y ++-2(42)x y =-84x y =-.答:这个矩形的周长为:84x y -.【点评】本题主要考查整式的除法法则与加法法则,掌握因式分解与合并同类项法则,是解题的关键. 20.阅读理解:对于二次三项式a 2+2ab+b 2,能直接用完全平方公式进行因式分解,得到结果为(a+b )2.而对于二次三项式a 2+4ab ﹣5b 2,就不能直接用完全平方公式了,但我们可采用下述方法:a2+4ab﹣5b2=a2+4ab+4b2﹣4b2﹣5b2=(a+2b)2﹣9b2,=(a+2b﹣3b)(a+2b+3b)=(a﹣b)(a+5b).像这样把二次三项式分解因式的方法叫做添(拆)项法.解决问趣:(1)请利用上述方法将二次三项式a2+6ab+8b2分解因式;(2)如图,边长为a的正方形纸片1张,边长为b的正方形纸片8张,长为a,宽为b的长方形纸片6张,这些纸片可以拼成一个不重叠,无空隙的长方形图案,请画出示意图;(3)已知x>0,且x≠2,试比较分式2244812x xx x++++与22428xx x-+-的大小.【答案】(1)(a+2b)(a+4b);(2)见解析;(3)222244428812 x x xx x x x-++>+-++【分析】(1)根据题目的引导,先分组,后运用公式法对原式进行因式分解;(2)根据第一问的因式分解结果,对图形进行排列即可;(3)对两个分式的分子和分母分别进行因式分解,然后对分式进行化简并比较大小.【详解】(1)原式=a2+6ab+9a2﹣b2=(a+3b)2﹣b2=(a+3b﹣b)(a+3b+b)=(a+2b)(a+4b);(2)如图:(3)224(2)(2)(2)28(4)(2)(4)x x x xx x x x x-+-+==+-+-+;22244(2)(2)812(2)(6)(6)x x x xx x x x x++++==+++++;∵x>0,∴x+4<x+6,∴222244428812 x x xx x x x-++>+-++.【点评】本题考查了因式分解的应用,通过因式分解化简分式,根据分母大,分数值反而小来比较大小是解题的关键.祝福语祝你考试成功!。

部编数学八年级上册15.1分式同步练习及答案含答案

部编数学八年级上册15.1分式同步练习及答案含答案

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!第15章《分 式》同步练习(§15.1 分式)班级 学号 姓名 得分一、选择题1.在代数式中,分式共有( ).(A)2个(B)3个(C)4个(D)5个2.下列变形从左到右一定正确的是( ).(A)(B)(C)(D)3.把分式中的x 、y 都扩大3倍,则分式的值( ).(A)扩大3倍(B)扩大6倍(C)缩小为原来的(D)不变4.下列各式中,正确的是( ).(A)(B)(C)(D)5.若分式的值为零,则x 的值为( ).(A)-1(B)1(C)2(D)2或-1二、填空题6.当x ______时,分式有意义.7.当x ______时,分式的值为正.8.若分式的值为0,则x 的值为______.9.分式约分的结果是______.32,252,43,32,1,32222-++x x x x xy x x 22--=b a b a bc ac b a =b a bx ax =22b a b a =yx x +231yx y x y x y x +-=--+-y x y x y x y x ---=--+-y x y x y x y x -+=--+-y x y x y x y x ++-=--+-222---x x x 121-+x x 122+-x 1||2--x x x 22112m m m -+-10.若x 2-12y 2=xy ,且xy >0,则分式的值为______.11.填上适当的代数式,使等式成立:(1);(2);(3);(4).三、解答题12.把下列各组分式通分:(1)(2).13.把分子、分母的各项系数化为整数:(1)(2).14.不改变分式的值,使分式的分子与分式本身不含负号:(1);(2).15.有这样一道题,计算,其中x =2080.某同学把x =2080错抄成x =2008,但他的计算结果是正确的.你能解释其中的原因吗?yx y x -+23b a b a b ab a +=--+)(22222xx x x 2122)(2--=-a b b a b a-=-+)(11)(22xy xy =;65,31,22abc a b a -222,b a a ab a b --;04.03.05.02.0+-x x b a b a -+32232y x y x ---22ba b a +-+-2)())(1()12)((2222x x x x x x x --+-+16.已知,求分式的值.17.当x 为何整数时,分式的值为正整数.18.已知3x -4y -z =0,2x +y -8z =0,求的值.参考答案1.B . 2.C . 3.D . 4.A . 5.A .6.. 7.. 8.0. 9. 10.1.11.(1)a +2b ; (2)2x 2; (3)b +a ; (4)x 2y 2.12.(1) (2)13.(1) (2)14.(1) (2)15.化简原式后为1,结果与x 的取值无关.16. 17.x =0或2或3或-1. 18.311=-y x yxy x y xy x ---+22322)1(4-x yz xy z y x +-+22221≠21-<⋅+--11m m ;65,62,632223bc a a bc a bc bc a c a -⋅-+-++))((,))(()(2b a b a a a b a b a a b a b ;2152510+-x x ⋅-+ba b a 64912;22x y y x --⋅-+b a b a 2⋅53⋅23。

人教版八年级上数学15.1 分式 同步练习及答案(含答案)

第15章《分 式》同步练习(§15.1 分式)班级 学号 姓名 得分一、选择题1.在代数式32,252,43,32,1,32222-++x x x x xy x x 中,分式共有( ). (A)2个 (B)3个(C)4个(D)5个2.下列变形从左到右一定正确的是( ).(A)22--=b a b a(B)bc ac b a =(C)ba bx ax =(D)22ba b a =3.把分式yx x+2中的x 、y 都扩大3倍,则分式的值( ). (A)扩大3倍(B)扩大6倍 (C)缩小为原来的31(D)不变4.下列各式中,正确的是( ). (A)y x yx y x y x +-=--+-(B)y x yx y x y x ---=--+-(C)yx yx y x y x -+=--+-(D)yx yx y x y x ++-=--+-5.若分式222---x x x 的值为零,则x 的值为( ).(A)-1 (B)1(C)2(D)2或-1二、填空题6.当x ______时,分式121-+x x 有意义. 7.当x ______时,分式122+-x 的值为正.8.若分式1||2--x xx 的值为0,则x 的值为______.9.分式22112m m m -+-约分的结果是______.10.若x 2-12y 2=xy ,且xy >0,则分式yx yx -+23的值为______.11.填上适当的代数式,使等式成立:(1)ba b a b ab a +=--+)(22222;(2)xxx x 2122)(2--=-;(3)a b b a b a-=-+)(11; (4))(22xy xy =.三、解答题12.把下列各组分式通分:(1);65,31,22abca b a - (2)222,b a aab a b --.13.把分子、分母的各项系数化为整数:(1);04.03.05.02.0+-x x(2)b a ba -+32232.14.不改变分式的值,使分式的分子与分式本身不含负号:(1)yx yx ---22;(2)ba b a +-+-2)(.15.有这样一道题,计算))(1()12)((2222x x x x x x x --+-+,其中x =2080.某同学把x =2080错抄成x =2008,但他的计算结果是正确的.你能解释其中的原因吗?16.已知311=-y x ,求分式yxy x y xy x ---+2232的值.17.当x 为何整数时,分式2)1(4-x 的值为正整数.18.已知3x -4y -z =0,2x +y -8z =0,求yz xy z y x +-+222的值.参考答案1.B . 2.C . 3.D . 4.A . 5.A . 6.21≠. 7.21-<. 8.0. 9.⋅+--11m m 10.1.11.(1)a +2b ; (2)2x 2; (3)b +a ; (4)x 2y 2.12.(1);65,62,632223bca abc a bc bc a c a - (2)⋅-+-++))((,))(()(2b a b a a a b a b a a b a b 13.(1);2152510+-x x (2)⋅-+ba ba 6491214.(1);22x y y x -- (2)⋅-+ba ba 215.化简原式后为1,结果与x 的取值无关. 16.⋅53 17.x =0或2或3或-1. 18.⋅23。

人教版八年级上册 第15章《分式》同步练习及答案(15.2)

第15章《分 式》同步练习(§15.2 分式的运算)班级 学号 姓名 得分一、选择题1.下列各式计算结果是分式的是( ).(A)b a m n ÷(B)n m m n 23.(C)xx 53÷(D)3223473y x y x ÷2.下列计算中正确的是( ).(A)(-1)0=-1 (B)(-1)-1=1(C)33212aa=-(D)4731)()(aa a =-÷- 3.下列各式计算正确的是( ). (A)m ÷n ·m =m(B)m nn m =⋅÷1(C)11=⋅÷m m m(D)n ÷m ·m =n4.计算54)()(ab a a b a -⋅-的结果是( ).(A)-1(B)1(C)a1(D)ba a--5.下列分式中,最简分式是( ).(A)21521y xy(B)y x y x +-22(C)yx y xy x -+-.222(D)y x y x -+226.下列运算中,计算正确的是( ). (A))(212121b a b a +=+ (B)acbc b a b 2=+ (C)aa c a c 11=+- (D)011=-+-ab b α 7.ab a b a -++2的结果是( ).(A)a 2-(B)a4(C)ba b --2(D)ab-8.化简22)11(yx xy y x -⋅-的结果是( ). (A)y x +1(B)yx +-1(C)x -y (D)y -x二、填空题9.2232)()(yx y x -÷=______.10.232])[(x y -=______.11.a 、b 为实数,且ab =1,设1111,11+++=+++=b a Q b b a a P ,则P ______Q (填“>”、“<”或“=”). 12.aa a -+-21422=______. 13.若x <0,则|3|1||31---x x =______.14.若ab =2,a +b =3,则ba 11+=______.三、解答题15.计算:)()()(432b a ba ba -÷-⋅-.16.计算:⋅-+-++222244242x y yx y x y y x17.计算:⋅-÷+--+11)1211(22x x x x18.已知2222222y x y x N yx xy M -+=-=、,用“+”或“-”连结M 、N ,有三种不同的形式:M +N 、M -N 、N -M ,请你任选其中一种进行计算,并化简求值,其中x ∶y =5∶2.19.先化简,再求值:1112+---x xx x ,其中x =2.20.已知x 2-2=0,求代数式11)1(222++--x x x x 的值.21.等式⋅-++=-++236982x Bx A x x x 对于任何使分母不为0的x 均成立,求A 、B 的值.22.A 玉米试验田是边长为a m 的正方形减去边长为1m 的蓄水池后余下部分,B 玉米试验田是边长为(a -1)m 的正方形,两块试验田的玉米都收获了500kg . (1)哪种玉米田的单位面积产量高?(2)高的单位面积产量是低的单位面积产量的多少倍?参考答案1.A . 2.D . 3.D . 4.D . 5.D . 6.D . 7.C . 8.B .9.x 4y . 10.⋅612x y 11.=. 12.⋅+21a 13.⋅-922x x 14.⋅2315.⋅6ba16.⋅+y x x 22提示:分步通分.17.2x .18.选择一:y x y x N M -+=+,当x ∶y =5∶2时,原式37= 选择二:y x x y N M +-=-,当x ∶y =5∶2时,原式⋅-=73选择三:y x yx M N +-=-,当x ∶y =5∶2时,原式73=. 注:只写一种即可. 19.化简得1)1(+--x x ,把x =2代入得31-.20.原式112+-+=x x x∵x 2-2=0,∴x 2=2,∴原式112+-+=x x ,∴原式=121.A =3,B =5.22.(1)A 面积(a 2-1)米2,单位产量15002-a 千克/米;B 玉米田面积(a -1)2米2,单位产量是2)1(500-a 千克/米2,22)1(5001500-<-a a ,B 玉米的单位面积产量高;(2)11-+a a 倍.。

八年级数学上册《第十五章-分式》同步练习题含答案(人教版)

八年级数学上册《第十五章 分式》同步练习题含答案(人教版)学校:___________班级:___________姓名:___________考号:___________知识点:一、分式1、分式的概念一般地,用A 、B 表示两个整式,A ÷B 就可以表示成B A 的形式,如果B 中含有字母,式子BA 就叫做分式。

其中,A 叫做分式的分子,B 叫做分式的分母。

分式和整式通称为有理式。

2、分式的性质(1)分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变。

(2)分式的变号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变。

3、分式的运算法则;;bcad c d b a d c b a bd ac d c b a =⨯=÷=⨯ );()(为整数n ba b a n nn = ;cb ac b c a ±=± bdbc ad d c b a ±=± 二、分式方程1、分式方程分母里含有未知数的方程叫做分式方程。

2、分式方程的一般方法解分式方程的思想是将“分式方程”转化为“整式方程”。

它的一般解法是:(1)去分母,方程两边都乘以最简公分母(2)解所得的整式方程(3)验根:将所得的根代入最简公分母,若等于零,就是增根,应该舍去;若不等于零,就是原方程的根。

3、分式方程的特殊解法换元法:换元法是中学数学中的一个重要的数学思想,其应用非常广泛,当分式方程具有某种特殊形式,一般的去分母不易解决时,可考虑用换元法。

练习题一、单选题1.化简22x y y x x y+--的结果为( ) A .﹣x ﹣y B .y ﹣x C .x ﹣y D .x+y2.把分式x x y+(x ≠0,y ≠0)中的分子、分母的x 、y 同时扩大为原来的2倍,那么分式的值( ) A .扩大为原来的2倍B .扩大为原来的4倍C .缩小为原来的12D .不改变 3.小王乘公共汽车从甲地到相距40千米的乙地办事,然后乘出租车返回,出租车的平均速度比公共汽车多20千米/时,回来时路上所花时间比去时节省了14,设公共汽车的平均速度为x 千米/时,则下面列出的方程中正确的是( ) A .4020x +=34×40x B .40x =34×4020x + C .4020x ++14=40x D .40x =4020x +-144.分式方程21124x x x -=--去分母后的结果正确的是( ) A .x 2﹣4﹣1=1B .x 2+2x ﹣(x 2﹣4)=1C .x+2﹣x 2﹣4=1D .x+2﹣1=1 5.已知1a +12b =3,则代数式254436a ab b ab a b-+--的值为( ) A .3 B .-2 C .13- D .12- 6.关于x 的方程31133x a x x-=---有增根,则a 的值是( ) A .3 B .8 C .8- D .14-7.若关于x 的分式方程2311x m x x-=--的解为正数,则m 的取值范围是( ). A .m<-2且3m ≠- B .m<2且3m ≠-C .m>-3且2m ≠-D .m>-3且2m ≠8.已知1112x y z +=+,1113y z x +=+与1114z x y +=+,则234x y z++的值为( ) A .1B .32C .2D .52二、填空题 9.当x= 时,分式 225x x -+ 的值为0.10.小成每周末要到距离家5千米的体育馆打球,他骑自行车前往体育馆比乘汽车多用10分钟,乘汽车的速度是骑自行车速度的2倍.设骑自行车的速度为x 千米/时,根据题意列方程为11.某药品原来每盒p 元,现在每盒提高3元,用200元买这种药品现在比原来少买 盒.12.若关于x 的分式方程23m x x +- ﹣1= 2x无解,则m 的值 13.若x + 1x =3,则 21x x x ++ 的值是 . 14.若关于x 的分式方程 2-1--1k x x x = 的解为正数,则满足条件的非负整数K 的值为 . 三、计算题15.解方程:12133x x x-+=--16.化简:212111a a a a +⎛⎫+÷ ⎪--⎝⎭.17.先化简2344111a a a a a -+⎛⎫-+÷ ⎪++⎝⎭,然后从22a -≤≤的范围内选择一个合适的整数作为a 的值代入求值.18.某公司开发生产的1200件新产品需要精加工后才能投放市场,现有甲、乙两个工厂都想加工这批产品.公司派出相关人员分别到这两间工厂了解生产情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天比甲工厂多加工20件.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?19.为了深入贯彻习总书记关于“双减”工作的重要指示,增强学生的体质,济南市某中学决定购买一些篮球和足球来促进学生的体育锻炼,已知每个篮球的售价比每个足球的售价单价多20元,并且花费6000元购买篮球的数量是花费3200元购买足球数量的1.25倍.(1)求篮球和足球的单价分别是多少元?(2)根据学校的实际需求,需要一次性购买篮球和足球共200个,并且要求购买篮球和足球的总费用不超过9600元,那么学校最少购入多少个足球?参考答案:1.【答案】A 2.【答案】D 3.【答案】A 4.【答案】B 5.【答案】D 6.【答案】C 7.【答案】C 8.【答案】C9.【答案】210.【答案】5x ﹣52x =1611.【答案】26003p p+ 12.【答案】﹣32 或﹣ 12 13.【答案】1414.【答案】015.【答案】解:等式两边同时乘以 3x - 原方程可化为: 123x x --=-解得 1x =经检验 1x = 是原方程的解.16.【答案】解:原式211112a a a a a++--=⋅- 2(1)(1)12a a a a a+-=⋅- 1a =+. 17.【答案】解:2344111a a a a a -+⎛⎫-+÷ ⎪++⎝⎭=()()231111(2)a a a a a --++⋅+- =()()22211(2)a a a a a +-+-⋅+- =22a a +-- 当a =0时,原式=1.18.【答案】解:设甲工厂每天能加工x 件新产品,则乙工厂每天能加工x+20件新产品,根据题意得:1200x ﹣120020x +=10解得:x=40或x=﹣60(不合题意舍去)经检验:x=40是所列方程的解.乙工厂每天加工零件为:40+20=60(件).答:甲工厂每天能加工40件新产品,乙工厂每天能加工60件新产品.19.【答案】(1)解:设每个足球的售价为x 元,则每个篮球的售价为()20x +元 由题意得600032001.2520x x =⨯+ 解得40x =经检验40x =是所列方程解且正确∴2060x +=答:每个足球售价为40元,则每个篮球售价为60元;(2)解:设购入m 个足球,则购入()200m -个篮球.由题意得()40602009600m m +-≤解得120m ≥答:学校最少购入120个足球。

人教版 八年级上册数学 15.1 分式 同步课时训练(含答案)

人教版 初二数学 15.1 分式 同步课时训练一、选择题1. 计算的结果是 ( )A .x -1B .-x+1C .x+1D .-x -12. 已知买n 千克苹果共花了m 元,则买2千克苹果要花( )A .2mn 元B.2m n 元C.mn 2元D.2n m 元3. 下列分式中,最简分式是 ( )A .B .C .D . 4. 已知当x=-2时,分式无意义,则□可以是 ( ) A .2-xB .x -2C .2x+4D .x+4 5. 若将分式与分式通分后,分式的分母变为2(x -y )(x+y ),则分式的分子应变为 ( )A .6x 2(x -y )2B .2(x -y )C .6x 2D .6x 2(x+y )6. 不改变分式的值,把分子、分母中的各项系数都化成整数,那么结果是( ) A .B .C .D .7. 不改变分式的值,使分子、分母最高次项的系数变为正数,正确的是( ) A .B .C .D .8. 若x ,y 的值均扩大为原来的2倍,则下列分式的值保持不变的是 ( )A .B .C .D .二、填空题9. 当x 当________当当当当x 当22x 当5当当当0.10. 当当当x x 当1当1x 当1当________当11. 下列各式:①2x ,②x2-23,③2x2+52x ,④23xy3中,是分式的是________(填序号).12. 不改变分式的值,使分子、分母中x 的系数都变为正数,则= .13. 对于分式x -b x +a,当x =-2时,无意义,当x =4时,值为0,则a +b =________.14. 不改变分式的值,使分子、分母各项系数都化成整数,且首项系数都为正数,则= .15. 如果=成立,那么a 的取值范围是 .16. 当y ≠0时,=,这种变形的依据是 .三、解答题17. 自习课上,小明遇到了下面一道题,刚做了两步,就去辅导同学做题了,请你把小明的解题过程补充完整:题目:已知不论x 取何值,分式1x2-2x +m总有意义,求m 的取值范围. 小明:1x2-2x +m =1(x2-2x +1)+m -1=…18. (1)填空:=-=-=,-===-;(2)你对于分式的分子、分母和分式本身三个位置的符号变化有怎样的猜想?19. 某单位全体员工在植树节义务植树240棵.原计划每小时植树m棵,实际每小时植树的棵数比原计划每小时植树的棵数多10棵,那么实际比原计划提前了小时完成任务.(用含m的式子表示)20. 阅读下列解题过程,然后回答问题:题目:已知==(a,b,c互不相等),求x+y+z的值.解:设===k,则x=k(a-b),y=k(b-c),z=k(c-a),∴x+y+z=k(a-b+b-c+c-a)=k·0=0,即x+y+z=0.依照上述方法解答下列问题:已知==(x+y+z≠0),求的值.人教版初二数学15.1 分式同步课时训练-答案一、选择题1. 【答案】D[解析] ==-x-1.故选D.2. 【答案】B [解析] 已知买n 千克苹果共花了m 元,则买1千克苹果需花m n 元,所以买2千克苹果要花2m n 元.3. 【答案】B [解析] ==,=,只有选项B 是最简分式.4. 【答案】C5. 【答案】C [解析] 分式的分母变为2(x -y )(x+y ),说明公分母为2(x -y )(x+y ),所以===. 6. 【答案】D [解析] 分子、分母都乘6,得==.7. 【答案】D [解析] 分子的最高次项为-3x 2,分母的最高次项为-5x 3,系数均为负数,所以应同时改变分子、分母的符号,可得===.8. 【答案】A [解析] 根据分式的基本性质,可知若x ,y 的值均扩大为原来的2倍,有=.所以选项A 符合题意.二、填空题9. 【答案】2 当当当当当当当当当⎩⎪⎨⎪⎧x 当2当02x 当5≠0当当当x 当2.10. 【答案】1 当当当当当当当x当1x当1当1.11. 【答案】①③12. 【答案】-[解析] ==-.13. 【答案】6[解析] 因为对于分式x-bx+a,当x=-2时,无意义,当x=4时,值为0,所以-2+a=0,4-b=0,解得a=2,b=4,则a+b=6.14. 【答案】[解析] ===.15. 【答案】a≠[解析] 由=成立,得2a-1≠0,解得a≠.16. 【答案】分式的基本性质三、解答题17. 【答案】解:1x2-2x+m=1(x2-2x+1)+m-1=1(x-1)2+m-1.由题意知无论x取何值,(x2-2x+1)+m-1=(x-1)2+(m-1)都不等于0,所以m-1>0,因此m>1.18. 【答案】解:(1)-b-a-b-a a b(2)对于分式的符号、分子的符号、分母的符号,改变其中任意两个,分式的值不变.19. 【答案】-[解析] 原计划需要的时间为小时,实际上每小时植树(m+10)棵,因此植树240棵所需的时间为小时,所以实际比原计划提前了-小时.20. 【答案】解:设===k,则①+②+③,得2x+2y+2z=k(x+y+z).∵x+y+z≠0,∴k=2.∴===.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

15.1分式
一、单项选择题(本大题共有15小题,每小题3分,共45分)
1、化简的结果是()
A.
B.
C.
D.
2、若分式的值为零,则的值为( )
A. 或
B.
C.
D.
3、将分式中的,的值同时扩大倍,则分式的值()
A. 扩大倍
B. 缩小到原来的
C. 保持不变
D. 无法确定
4、已知分式的值为,那么的值是()
A.
B.
C.
D. 或
5、已知,且,则代数式的值是()
A.
B.
C.
D. 或
6、若分式的和扩大为原来各自的倍,则分式的值()
A. 不变
B. 缩小到原分式的
C. 缩小到原分式的
D. 缩小到原分式的
7、分式,,的最简公分母是()
A.
B.
C.
D.
8、不改变分式的值,使分式的分子与分母的最高次项的系数是正数.
A.
B.
C.
D.
9、分式和最简公分母是()
A.
B.
C.
D.
10、分式,,的最简公分母是()
A.
B.
C.
D.
11、化简:的结果是()
A.
B.
C.
D.
12、若分式的值为正数,则的取值范围是()
A.
B.
C.
D. 且
13、已知,求分式的值是()
A.
B.
C.
D. 无法确定
14、已知,则的值为()
A.
B.
C.
D.
15、要使分式有意义,则的取值应满足()
A.
B.
C.
D.
二、填空题(本大题共有5小题,每小题5分,共25分)
16、当时,则分式无意义.
17、对分式和进行通分,则它们的最简公分母为______.
18、不改变分式的值,把分式中的分子、分母中各项的系数都化为整数,且使系数的绝对值最小,则所得的结果为____________.
19、化简:,括号内应填_________.
20、若,则____________.
三、解答题(本大题共有3小题,每小题10分,共30分)
21、若分式有意义,求的取值范围.
22、约分:.
23、若不论取任意实数,分式都有意义,求的取值范围.
15.1分式同步练习(二) 答案部分
一、单项选择题(本大题共有15小题,每小题3分,共45分)
1、化简的结果是()
A.
B.
C.
D.
【答案】D
【解析】解:
故正确答案是:
2、若分式的值为零,则的值为( )
A. 或
B.
C.
D.
【答案】C
【解析】解:
分式的值为零,条件是:分子为零,分母不为零.
即:,
解得.

解得.
故正确答案是.
3、将分式中的,的值同时扩大倍,则分式的值()
A. 扩大倍
B. 缩小到原来的
C. 保持不变
D. 无法确定
【答案】A
【解析】解:
同时扩大倍,原式为:,变成原来的倍.
故正确答案是:扩大倍
4、已知分式的值为,那么的值是()
A.
B.
C.
D. 或
【答案】B
【解析】解:
分式的值为,。

相关文档
最新文档